Publications

Found 417 results
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Alves JF, Castro A, Pinheiro V. Backward volume contraction for endomorphisms with eventual volume expansion. C. R. Math. Acad. Sci. Paris. 2006;342:259-262.Edit
Alves JF, Luzzatto S, Pinheiro V. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electron. Res. Announc. Amer. Math. Soc.. 2003;9:26-31.Edit
Alves JF, Pumariño A., Vigil E. Statistical stability for multidimensional piecewise expanding maps. Proceedings of the American Mathematical Society. 2017;145:3057-3068.Edit
Alves JF, Li X. Gibbs-Markov-Young structures with (stretched) exponential tail for partially hyperbolic attractors. Adv. Math.. 2015;279:405-437.Edit
Alves JF, Azevedo D. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete Contin. Dyn. Syst.. 2016;36(1):1-41.Edit
Alves JF, Pinheiro V. Topological structure of (partially) hyperbolic sets with positive volume. Trans. Amer. Math. Soc.. 2008;360:5551-5569.Edit
Alves JF, Pinheiro V, Pinto AA. Explosion of smoothness for conjugacies between multimodal maps. J. Lond. Math. Soc. (2). 2014;89:255-274.Edit
Alves JF. Strong statistical stability of non-uniformly expanding maps. Nonlinearity. 2004;17:1193-1215.
Alves JF. Non-uniformly expanding dynamics: stability from a probabilistic viewpoint. Discrete Contin. Dynam. Systems. 2001;7:363-375.
Alzer H., Yakubovich SB. Identities involving Bernoulli and Euler polynomials. Integral Transforms and Special Functions. . 2018;29(1):43-61.Edit
Amado N, Ferreira RA, Carreira S. Affective issues in solving challenging mathematical problems within an inclusive competition. Portugal, Vilamoura: Universidade do Algarve; 2014. Edit
Amado N, Carreira S, Ferreira RA. A relação afetiva dos jovens e suas famílias com a matemática: A resolução de problemas em competições matemáticas inclusivas Autêntica Editora 2016.Edit
Amaral IF, Coelho F., Da Costa J, Cardoso JS. hierarchical medical image annotation using svm-based approaches. proceedings of the ieee/embs region 8 international conference on information technology applications in biomedicine, itab. 2010.Edit
Amorim I, Machiavelo A, Reis R. Statistical Study on The Number of Injective Linear Finite Transducers. In: Non-Classical Models of Automata and Applications (NCMA 2014). Germany, Kassel: books@ocg.at; 2014. Edit
Amorim I, Machiavelo A, Reis R. On the number of linear finite transducers. International Journal of Foundations of Computer Science. 2015;26(7):873-893.Edit
Amorim I, Machiavelo A, Reis R. Counting Equivalent Linear Finite Transducers Using a Canonical Form. Vol 8587. Holzer M, Kutrib M, editors 2014 (LNCS; vol 8587).Edit
Amorim I, Machiavelo A, Reis R. Counting Equivalent Linear Finite Transducers Using a Canonical Form. Holzer M, Kutrib M, editors Germany, Giessen: Springer 2014.Edit
Amorim I, Machiavelo A, Reis R. Statistical Study on The Number of Injective Linear Finite Transducers. Bensch S, Freund R, Otto F, editors Oesterreichische Computer Gesellschaft 2014.Edit
Amorim I, Machiavelo A, Reis R. On the invertibility of finite linear transducers. RAIRO Theor. Inform. Appl.. 2014;48:107-125.Edit
[2011-35] Amorim I, Machiavelo A, Reis R. On Linear Finite Automata and Cryptography .Edit
Amorim-Costa C., Gaio A., Ayres-de-Campos D., Bernardes J. Longitudinal changes of cardiotocographic parameters throughout pregnancy: a prospective cohort study comparing small-for-gestational-age and normal fetuses from 24 to 40 weeks. J Perinat Med. . 2016.Edit
[2008-17] Antoneli F, Dias AP, Pinto CM. Rich phenomena in a network of two rings coupled through a `buffer' cell .Edit
[2004-30] Antoneli F, Dias AP, Golubitsky M, Wang Y. Flow Invariant Subspaces for Lattice Dynamical Systems .Edit
Antoneli F, Dias AP, Golubitsky M, Wang Y. Patterns of Synchrony in Lattice Dynamical Systems. Nonlinearity. 2005;18:2193-2209.Edit
Antoneli F, Dias AP, Paiva RC. Coupled Cell Networks: Hopf Bifurcation and Interior Symmetry. Discrete and Continuous Dynamical Systems. 2011:71-78.Edit

Pages