Publications

Found 142 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is L  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Lomp K., Nasrutdinov M., Sakhaev I.. On projective modules with a semilocal endomorphism ring. Izv. Vyssh. Uchebn. Zaved. Mat.. 2002:23-29.Edit
[2017-17] Lomp C, Sant'Ana A, Santos RL. Panov's theorem for weak Hopf algebras .Edit
[2004-25] Lomp C. A note on extending Hopf actions to rings og quotients of module algebras .
Lomp C. An example of an indecomposable module without non-zero hollow factor modules. Turkish J. Math.. 2007;31:415-419.Edit
[2006-38] Lomp C. Idempotent submodules .
Lomp C. Modules whose small submodules have Krull dimension. J. Pure Appl. Algebra. 1998;133:197-202.Edit
Lomp C. When is a smash product semiprime? A partial answer. J. Algebra. 2004;275:339-355.Edit
Lomp C. Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions. J. Algebra Appl.. 2005;4:77-97.Edit
Lomp C, Pansera D. A note on a paper by Cuadra, Etingof and Walton. Communications in Algebra. 2017;45(8):3402-3409.Edit
Lomp C, Matczuk J. A note on semicentral idempotents. Communications in Algebra. 2017;45:2735-2737.Edit
[2004-2] Lomp C. Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions .
Lomp C. Regular and biregular module algebras. Arab. J. Sci. Eng. Sect. C Theme Issues. 2008;33:351-363.Edit
[2006-32] Lomp C, Sant'Ana A. Chain and Distributive Coalgebras .Edit
Lomp C. On semilocal modules and rings. Comm. Algebra. 1999;27:1921-1935.Edit
Lomp C. Integrals in Hopf algebras over rings. Comm. Algebra. 2004;32:4687-4711.Edit
Lomp C. A central closure construction for certain algebra extensions. Applications to Hopf actions. J. Pure Appl. Algebra. 2005;198:297-316.Edit
[2007-22] Lomp C. Duality for partial group actions .
Lomp C. A counterexample for a problem on quasi Baer modules. Taiwanese Journal of Mathematics. 2017;21(6):1277-1281.
Lomp C, Brzeziński T. Differential smoothness of skew polynomial rings. Journal of pure and applied Algebra. 2018;(222 no.9):2413-2426.Edit
[2006-27] Lomp C. An example of an indecomposable module without non-zero hollow factor modules. .
Lomp C, van den Berg J. All hereditary torsion theories are differential. J. Pure Appl. Algebra. 2009;213:476-478.Edit
Lomp C. Duality for partial group actions. Int. Electron. J. Algebra. 2008;4:53-62.Edit
Lomp C, Peña-P AJ. A note on prime modules. Divulg. Mat.. 2000;8:31-42.Edit
[2008-18] Lomp C, van den Berg J. All hereditary torsion theories are differential .Edit
Loll R., Mourão J., Tavares JN. Symplectic reduction via complex group actions. In: Constraint theory and quantization methods (Montepulciano, 1993). World Sci. Publ., River Edge, NJ; 1994. 2. p. 291-304p. Edit

Pages