Publications

Found 213 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Ben Cheikh Y., Yakubovich SB. Generalized Fourier transform associated with the differential operator $D_z^n$ in the complex domain. Integral Transforms Spec. Funct.. 2010;21:541-555.Edit
Beloka S., Gouveia S., Gujic M., Naeije R., Rocha AP, Van De Borne P.. Differential Effects of Oral beta Blockade on Cardiovascular and Sympathetic Regulation. {JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS}. 2009;{14}:{323-331}.Edit
Beloka S., Gouveia S., Gujic M., Rocha AP, Van De Borne P.. DIFFERENTIAL EFFECTS OF ORAL BETA BLOCKADE ON CARDIOVASCULAR AND SYMPATHETIC REGULATION IN NORMAL SUBJECTS. {JOURNAL OF HYPERTENSION}. 2009;{27}:{S296-S297}.Edit
Bell J, Brzozowski J, Moreira N, Reis R. Symmetric Groups and Quotient Complexity of Boolean Operations. Vol 8573. Esparza J, Fraigniaud P, Husfeldt T, Koutsoupias E, editors 2014.Edit
Baziar M, Lomp C. Endomorphism rings of modules over prime rings. Taiwanese J. Math.. 2015;19:953-962.Edit
[2013-21] Bastos R, Moreira N, Reis R. Manipulation of extended regular expressions with derivatives .Edit
Bastos R, Broda S, Machiavelo A, Moreira N. On the Average Complexity of Partial Derivative Automata for Semi-Extended Expressions. Journal of Automata, Languages and Combinatorics. 2017;22:5-28.Edit
Bastos R, Broda S, Machiavelo A, Moreira N, Reis R. On the State Complexity of Partial Derivative Automata for Regular Expressions with Intersection. In: Proceedings of the 18th Int. Workshop on Descriptional Complexity of Formal Systems (DCFS16). Vol 9777. Springer; 2016. 4. p. 45-59p. (LNCS; vol 9777).Edit
Basto-Gonçalves J. Implicit Hamilton equations. Mat. Contemp.. 1997;12:1-16.
[2004-39] Basto-Gonçalves J, Reis H.. The geometry of quadratic 2x2 systems of conservation laws .Edit
Basto-Gonçalves J. Local controllability in $3$-manifolds. Systems Control Lett.. 1990;14:45-49.
Basto-Gonçalves J, Reis H.. The geometry of $2\times 2$ systems of conservation laws. Acta Appl. Math.. 2005;88:269-329.Edit
[2009-31] Basto-Gonçalves J. Symplectic rigidity and flexibility of ellipsoids .
Basto-Gonçalves J. Local controllability of nonlinear systems on surfaces. Mat. Apl. Comput.. 1993;12:33-52.
Basto-Gonçalves J. Realization theory for Hamiltonian systems. SIAM J. Control Optim.. 1987;25:63-73.
Basto-Gonçalves J. Second-order conditions for local controllability. Systems Control Lett.. 1998;35:287-290.
Basto-Gonçalves J. Geometric conditions for local controllability. J. Differential Equations. 1991;89:388-395.
Basto-Gonçalves J. Equivalence of gradient systems. Portugal. Math.. 1981;40:263-277 (1985).
Basto-Gonçalves J. Linearization of resonant vector fields. Trans. Amer. Math. Soc.. 2010;362:6457-6476.
Basto-Gonçalves J. Invariant manifolds of a differentiable vector field. Portugal. Math.. 1993;50:497-505.
[2012-38] Basto-Gonçalves J. Local geometry of surfaces in $\mathbf R^4$ .
Basto-Gonçalves J. Controllability in codimension one. J. Differential Equations. 1987;68:1-9.
Basto-Gonçalves J, Cruz I. Analytic $k$-linearizability of some resonant Poisson structures. Lett. Math. Phys.. 1999;49:59-66.Edit
[2004-6] Basto-Gonçalves J, Ferreira AC. Normal forms and linearization of resonant vector fields with multiple eigenvalues .Edit
Basto-Gonçalves J, Reis H. The geometry of 2×2 systems of conservation laws. Acta Applicandae Mathematicae. 2005;88(3):269-329.

Pages