# Generic iterated function systems on the circle

## Speaker:

## Date:

## Venue:

An iterated function system (IFS) on a manifold M is a tuple of smooth maps f1, ...,fs : M → M. One of the reasons for studying IFS's is that they (more precisely, associated step skew products over Bernoulli shift) provide a nice model example of partially hyperbolic skew products. If some interesting robust property is found for the IFS's, it is often possible to find this property for a locally generic set of diffeomorphisms (see, e.g., [1]).