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REPRESENTATIONS OF SURFACE GROUPSIN REAL SYMPLECTIC GROUPSOSCAR GARCÍA-PRADA, PETER B. GOTHEN, AND IGNASI MUNDET I RIERAAbstra
t. In this paper we study the moduli spa
e of representations of a surfa
e group(i.e., the fundamental group of a 
losed oriented surfa
e) in the real symple
ti
 group
Sp(2n, R). The moduli spa
e is partitioned by an integer invariant, 
alled the Toledo in-variant. This invariant is bounded by a Milnor�Wood type inequality. Our main result is a
ount of the number of 
onne
ted 
omponents of the moduli spa
e of maximal representa-tions, i.e. representations with maximal Toledo invariant. Our approa
h uses non-abelianHodge theory through the 
orresponden
e of the moduli spa
e of representations withthe moduli spa
e of polystable Sp(2n, R)-Higgs bundles. A key step is provided by thedis
overy of new dis
rete invariants of maximal representations. These new invariantsarise from an identi�
ation, in the maximal 
ase, of the moduli spa
e of Sp(2n, R)-Higgsbundles with a moduli spa
e of twisted Higgs bundles for the group GL(n, R). In twoappendi
es we develop a Hit
hin�Kobayashi 
orresponden
e in the generality required forthe appli
ation of Higgs bundle theory to the problem at hand. This in
ludes a generalstudy of the notion of polystability for G-Higgs bundles for a real redu
tive Lie group G.
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es 841. Introdu
tionIn this paper we study representations of the fundamental group of a 
ompa
t orientedsurfa
e X in Sp(2n,R) � the group of linear transformations of R2n whi
h preserve thestandard symple
ti
 form. By a representation we mean a homomorphism from π1(X) to
Sp(2n,R). Given a representation of π1(X) in Sp(2n,R) there is an integer, often referredto as the Toledo invariant, asso
iated to it. This integer 
an be obtained geometri
allyby 
onsidering the �at Sp(2n,R)-bundle 
orresponding to the representation and takinga redu
tion of the stru
ture group of the underlying smooth ve
tor bundle to U(n) �a maximal 
ompa
t subgroup of Sp(2n,R). The degree of the resulting U(n)-bundle isthe Toledo invariant (this is well de�ned be
ause Sp(2n,R)/U(n) is 
ontra
tible, so allredu
tions of the stru
ture group from Sp(2n,R) to U(n) are homotopi
 and hen
e de�neisomorphi
 
omplex ve
tor bundles). As shown by Turaev [53℄ the Toledo invariant d of arepresentation satis�es the inequality(1.1) |d| ≤ n(g − 1),where g is the genus of the surfa
e. When n = 1, one has Sp(2,R) ∼= SL(2,R), the Toledoinvariant 
oin
ides with the Euler 
lass of the SL(2,R)-bundle, and (1.1) is the 
lassi
alinequality of Milnor [37℄ whi
h was later generalized by Wood [55℄. We shall follow 
ustomand refer to (1.1) as as the Milnor�Wood inequality.Given two representations, a basi
 question to ask is whether one 
an be 
ontinuouslydeformed into the other. Put in a more pre
ise way, we are asking for the 
onne
ted
omponents of the spa
e of representations

Hom(π1(X), Sp(2n,R)).As shown in [24℄, this spa
e has the same number of 
onne
ted 
omponents as the modulispa
e, or 
hara
ter variety,
R(π1(X), Sp(2n,R)) = Hom+(π1(X), Sp(2n,R))/ Sp(2n,R)



REPRESENTATIONS OF SURFACE GROUPS 3of redu
tive representations ρ : π1(X)→ Sp(2n,R), modulo the natural equivalen
e givenby the a
tion of Sp(2n,R) by overall 
onjugation. The notation �Hom+� refers to redu
tiverepresentations, i.e., those whose image has redu
tive Zariski 
losure. Repla
ing Hom by
Hom+ is justi�ed by the fa
t that the quotient spa
e Hom+(π1(X), Sp(2n,R))/ Sp(2n,R)is Hausdor�, whereas Hom+(π1(X), Sp(2n,R))/ Sp(2n,R) is not Hausdor� in general (seeTheorem 11.4 in [43℄).The Toledo invariant des
ends to the quotient so, for any d satisfying (1.1), we 
an de�ne

Rd(π1(X), Sp(2n,R)) ⊂ R(π1(X), Sp(2n,R))to be the subspa
e of representations with Toledo invariant d. For ease of notation, for theremaining part of the Introdu
tion, we shall write Rd for Rd(π1(X), Sp(2n,R)) and R for
R(π1(X), Sp(2n,R)). Sin
e the Toledo invariant varies 
ontinuously with the representa-tion, the subspa
e Rd is a union of 
onne
ted 
omponents, and our basi
 problem is thatof 
ounting the number of 
onne
ted 
omponents of Rd for d satisfying (1.1). This hasbeen done for n = 1 by Goldman [25, 28℄ and Hit
hin [31℄, and for n = 2 in [29℄ (in the
ases d = 0 and |d| = 2g − 2) and [24℄ (in the 
ases |d| < 2g − 2). In this paper we 
ountthe number of 
onne
ted 
omponents of Rd for n > 2 when d = 0 and |d| = n(g−1) � themaximal value allowed by the Milnor�Wood inequality. Our main result is the following(Theorem 8.7 below).Theorem 1.1. Let X be a 
ompa
t oriented surfa
e of genus g. Let Rd be the modulispa
e of redu
tive representations of π1(X) in Sp(2n,R) with Toledo invariant d. Let
n ≥ 3. Then(1) R0 is non-empty and 
onne
ted;(2) R±n(g−1) has 3.22g non-empty 
onne
ted 
omponents.The main tool we employ to 
ount 
onne
ted 
omponents is the theory of Higgs bundles,as pioneered by Hit
hin [31℄ for SL(2,R) = Sp(2,R). In the following we outline the mainfeatures of the theory whi
h make it relevant to our problem � mu
h more detail will beprovided in the body of the paper. We �x a 
omplex stru
ture on X endowing it with astru
ture of a 
ompa
t Riemann surfa
e, whi
h we will denote, abusing notation, also byX.An Sp(2n,R)-Higgs bundle over X is a triple (V, β, γ) 
onsisting of a rank n holomorphi
ve
tor bundle V and holomorphi
 se
tions β ∈ H0(X,S2V ⊗K) and γ ∈ H0(X,S2V ∗⊗K),where K is the 
anoni
al line bundle of X. The se
tions β and γ are often referred to asHiggs �elds. Looking at X as an algebrai
 
urve, algebrai
 moduli spa
es for Sp(2n,R)-Higgs bundle exist as a 
onsequen
e of the work of S
hmitt [44, 45℄. Fixing d ∈ Z, wedenote by Md the moduli spa
e of Sp(2n,R)-Higgs bundles on X with deg V = d. Asusual, one must introdu
e an appropriate stability 
ondition (with related 
onditions ofpoly- and semistability) in order to have good moduli spa
es. Thus Md parametrizesisomorphism 
lasses of polystable Sp(2n,R)-Higgs bundles. A basi
 result of non-abelianHodge theory, growing out of the work of Corlette [17℄, Donaldson [19℄, Hit
hin [31℄ andSimpson [47, 48, 49, 50℄, is the following (Theorem 2.28 below).Theorem 1.2. The moduli spa
es Rd andMd are homeomorphi
.An essential part of the proof of this Theorem follows from a Hit
hin�Kobayashi 
or-responden
e between polystable Sp(2n,R)-Higgs bundles and solutions to 
ertain gaugetheoreti
 equations, known as Hit
hin's equations, for a triple (A, β, γ). Here A is a smoothunitary 
onne
tion on a smooth 
omplex ve
tor bundle of rank n and degree d, and β and
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γ are smooth 
ounterparts to the holomorphi
 se
tions de�ned above. Under the 
orre-sponden
e, A is the Chern 
onne
tion on the the holomorphi
 bundle V introdu
ed aboveendowed with a suitable Hermitian metri
 whi
h is an analogue for Higgs bundles of theHermite�Einstein metri
. In the generality required for stable Sp(2n,R)-Higgs bundles,the Hit
hin�Kobayashi 
orresponden
e is provided by the general theory of [10℄. However,in that paper no proper attention was given to the 
ase of polystable (non-stable) pairs ingeneral, and we take the opportunity to �ll this gap in the present paper.Using the homeomorphism Rd

∼=Md, our problem is redu
ed to studying the 
onne
t-edness properties of Md. This is done by using the Hit
hin fun
tional. This is a propernon-negative fun
tion whi
h is de�ned on Md using the solution to Hit
hin's equations,as follows:(1.2) f : Md → R,

(A, β, γ) 7→ 1
2
‖β‖2 + 1

2
‖γ‖2.Here ‖·‖ is the L2-norm obtained by using the Hermitian metri
 in V whose Chern 
on-ne
tion gives a solution to Hit
hin equations and integrating over X. This fun
tion arisesas the moment map for the Hamiltonian 
ir
le a
tion on the moduli spa
e obtained bymultiplying the Higgs �eld by an element of U(1). It was proved by Hit
hin [31, 32℄ that

f is proper, and this implies that f has a mimimun on ea
h 
onne
ted 
omponent ofMd.Using this fa
t, our problem essentially redu
es to 
hara
terizing the subvariety of minimaof the Hit
hin fun
tional and studying its 
onne
tedness properties.While we 
hara
terize the minima for every value of d satisfying the Milnor�Woodinequality (see Theorem 5.10), we only 
arry out the full programme for d = 0 and |d| =
n(g − 1), the extreme values of d. For d = 0, the subvariety of minima of the Hit
hinfun
tional onM0 
oin
ides with the set of Higgs bundles (V, β, γ) with β = γ = 0. This,in turn, 
an be identi�ed with the moduli spa
e of polystable ve
tor bundles of rank n anddegree 0. Sin
e this moduli spa
e is 
onne
ted by the results of Narasimhan�Seshadri [39℄,
M0 is 
onne
ted and hen
e R0 is 
onne
ted.The analysis for the maximal 
ase, |d| = n(g − 1), is far more involved and interesting.It turns out that in this 
ase one of the Higgs �elds β or γ for a semistable Higgs bundle
(V, β, γ) be
omes an isomorphism. Whether it is β or γ, a
tually depends on the signof the Toledo invariant. Sin
e the map (V, β, γ) 7→ (V ∗, γt, βt) de�nes an isomorphism
M−d ∼= Md, there is no loss of generality in assuming that 0 ≤ d ≤ n(g − 1). Supposethat d = n(g − 1). Then γ : V → V ∗ ⊗ K is an isomorphism (see Proposition 3.22).Sin
e γ is furthermore symmetri
, it equips V with a K-valued nondegenerate quadrati
form. In order to have a proper quadrati
 bundle, we �x a square root L0 = K1/2 ofthe 
anoni
al bunle, and de�ne W = V ∗ ⊗ L0. Then Q := γ ⊗ IL−1

0
: W ∗ → W is asymmetri
 isomorphism de�ning an orthogonal stru
ture on W , in other words, (W,Q) isan O(n,C)-holomorphi
 bundle. The K2-twisted endomorphism ψ : W →W ⊗K2 de�nedby ψ = (γ ⊗ IK⊗L0

) ◦ β ⊗ IL0
is Q-symmetri
 and hen
e (W,Q, ψ) de�nes what we 
all a

K2-twisted GL(n,R)-Higgs pair, from whi
h we 
an re
over the original Sp(2n,R)-Higgsbundle. The main result is the following (Theorem 4.4 below).Theorem 1.3. Let Mmax be the moduli spa
e of polystable Sp(2n,R)-Higgs bundles with
d = n(g−1), and letM′ be the moduli spa
e of polystable K2-twisted GL(n,R)-Higgs pairs.The map (V, β, γ) 7→ (W,Q, ψ) de�nes an isomorphism of 
omplex algebrai
 varieties

Mmax
∼=M′.



REPRESENTATIONS OF SURFACE GROUPS 5We refer to this isomorphism as the Cayley 
orresponden
e. This name is motivatedby the geometry of the bounded symmetri
 domain asso
iated to the Hermitian symmet-ri
 spa
e Sp(2n,R)/U(n). The Cayley transform de�nes a biholomorphism between thisdomain and a tube type domain de�ned over the symmetri
 
one GL(n,R)/O(n) � theSiegel upper half-spa
e. In fa
t, there is a similar 
orresponden
e to that given in Theo-rem 1.3 for every semisimple Lie group G whi
h, like Sp(2n,R), is the group of isometriesof a Hermitian symmetri
 spa
e of tube type (see [8℄ for a survey on this subje
t).A key point is that the Cayley 
orresponden
e brings to the surfa
e new topologi
alinvariants, hidden a priori, whi
h are naturally atta
hed to an Sp(2n,R)-Higgs bundlewith maximal Toledo invariant. These are the �rst and se
ond Stiefel-Whitney 
lasses
(w1, w2) of a redu
tion to O(n) of the O(n,C)-bundle de�ned by (W,Q). It turns out thatthere is a 
onne
ted 
omponent for ea
h possible value of (w1, w2), 
ontaning K2-twisted
GL(n,R)-Higgs pairs (W,Q, ψ) with ψ = 0. This a

ounts for 2.22g of the 3.22g 
onne
ted
omponents of Mmax. Thus it remains to a

ount for the 22g �extra� 
omponents. Asalready mentioned, the group Sp(2n,R) is the group of isometries of a Hermitian symmetri
spa
e, but it also has the property of being a split real form. In fa
t, up to �nite 
overings,it is the only Lie group with this property. In [32℄ Hit
hin shows that for every semisimplesplit real Lie group G, the moduli spa
e of redu
tive representations of π1(X) in G has atopologi
al 
omponent whi
h is isomorphi
 to RdimG(2g−2), and whi
h naturally 
ontainsTei
hmüller spa
e. Indeed, when G = SL(2,R), this 
omponent 
an be identi�ed withTei
hmüller spa
e, via the Riemann uniformization theorem. Sin
e Sp(2n,R) is split, themoduli spa
e for Sp(2n,R) must have a Hit
hin 
omponent. It turns out that there are
22g isomorphi
 Hit
hin 
omponents (this is a
tually true for arbitrary n). As follows fromHit
hin's 
onstru
tion, the K2-twisted Higgs pairs (W,Q, ψ) in the Hit
hin 
omponent allhave ψ 6= 0.From many points of view maximal representations are the most interesting ones. Theyhave been the obje
t of intense study in re
ent years, using methods from diverse bran
hesof geometry, and it has be
ome 
lear that they enjoy very spe
ial properties. In parti
ular,at least in many 
ases, maximal representations have a 
lose relationship to geometri
stru
tures on the surfa
e. The prototype of this philosophy is Goldman's theorem [25,27℄ that the maximal representations in SL(2,R) are exa
tly the Fu
hsian ones. In thefollowing, we brie�y mention some results of this kind.Using bounded 
ohomology methods, maximal representations in general Hermitian typegroups have been studied by Burger�Iozzi [11, 12℄ and Burger�Iozzi�Wienhard [14, 15,16℄. Among many other results, they have given a very general Milnor�Wood inequalityand they have shown that maximal representations are dis
rete, faithful and 
ompletelyredu
ible. One 
onsequen
e of this is that the restri
tion to redu
tive representations isunne
essary in the 
ase of the moduli spa
e Rmax of maximal representations. Building onthis work and the work of Labourie [36℄, Burger�Iozzi�Labourie�Wienhard [13℄ have shownthat maximal representations in Sp(2n,R) are Anosov (in the sense of [36℄). Furthermore,it has been shown that the a
tion of the mapping 
lass group on Rmax is proper, byWienhard [54℄ (for 
lassi
al simple Lie groups of Hermitian type), and by Labourie [35℄(for Sp(2n,R)), who also proves further geometri
 properties of maximal representationsin Sp(2n,R).From yet a di�erent perspe
tive, representations in the Tei
hmüller 
omponent have beenstudied in the work on higher Tei
hmüller theory of Fo
k�Gon
harov [21℄, using methods



6 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAof tropi
al geometry. In parti
ular, the fa
t that representations in the Tei
hmüller 
om-ponent for Sp(2n,R) are faithful and dis
rete also follows from their workThus, while Higgs bundle te
hniques are very e�
ient in the study of topologi
al prop-erties of the moduli spa
e (like 
ounting 
omponents), these other approa
hes have beenmore powerful in the study of spe
ial properties of individual representations. It wouldbe very interesting indeed to gain a better understanding of the relation between thesedistin
t methods.We des
ribe now brie�y the 
ontent of the di�erent se
tions of the paper.In Appendix A we review the general theory of L-twisted pairs and the Hit
hin�Kobayashi
orresponden
e over a 
ompa
t Riemann surfa
e X. By an L-twisted pair over X we meana pair (E,ϕ) 
onsisting of a holomorphi
 HC-prin
ipal bundle, where HC is a 
omplexredu
tive Lie group and ϕ is a holomorphi
 se
tion of E(B)⊗L, where E(B) is the ve
torbundle asso
iated to a 
omplex representation HC → GL(B) and L is a holomorphi
 linebundle over X.Appendix B deals with L-twisted G-Higgs pairs over a 
ompa
t Riemann surfa
e X.Let G be a redu
tive real Lie group with maximal 
ompa
t subgroup H ⊂ G, let L bea holomorphi
 line bundle over X and let g = h ⊕ m be the Cartan de
omposition of g.Then an L-twisted G-Higgs pair is a pair (E,ϕ), 
onsisting of a holomorphi
 HC-prin
ipalbundle E over X and a holomorphi
 se
tion ϕ of E(mC) ⊗ L. Here E(mC) is the mC-bundle asso
iated to E via the isotropy representation HC → GL(mC). These obje
ts area parti
ular 
ase of the general twisted pairs introdu
ed in Appendix A. We study howthe stability 
ondition stated in general in Appendix A simpli�es for L-twisted G-Higgspairs for various groups relevant to our study. This 
ertainly in
ludes G = Sp(2n,R), butalso other groups that naturally 
ontain Sp(2n,R), like Sp(2n,C), and SL(2n,C), as wellas GL(n,R), whi
h is the group of isometries of the 
one of the tube domain asso
iated to
Sp(2n,R).In Se
tion 2 we study non-abelian Hodge theory over a 
ompa
t Riemann surfa
e Xfor a general 
onne
ted semisimple Lie group G. We introdu
e G-Higgs bundles over X� these are simply K-twisted G-Higgs pairs, where K is the 
anoni
al line bundle over
X �, and study their deformations and their moduli spa
es. An important result is the
orresponden
e between the moduli spa
e of polystable G-Higgs bundles and the modulispa
e of solutions to the Hit
hin equations. While this is well-known when G is a
tually
omplex [31, 47, 48℄ or 
ompa
t [39, 41℄, a proof for the non-
ompa
t non-
omplex 
asefollows from [10℄ for stable G-Higgs bundles. In this paper, we prove the general 
ase ofa polystable G-Higgs bundle. The result is a 
onsequen
e of the more general Hit
hin�Kobayashi 
orresponden
e given in Theorem A.17.We then introdu
e the moduli spa
e of redu
tive representations of the fundamentalgroup of a 
ompa
t Riemann surfa
e in a Lie group G and, using Corlette's existen
e the-orem of harmoni
 metri
s [17℄, we establish the 
orresponden
e between this moduli spa
eand the moduli spa
e of polystable G-Higgs bundles when G is 
onne
ted and semisimple.In Se
tion 3, we spe
ialize the non-abelian Hodge theory 
orresponden
e of Se
tion 2to G = Sp(2n,R) � our 
ase of interest in this paper. Using te
hni
al results given inAppendix B, we prove basi
 fa
ts about the moduli spa
e of Sp(2n,R)-Higgs bundles,in
luding the Milnor�Wood inequality. To do this, we study and exploit the relationbetween the polystability of a Sp(2n,R)-Higgs bundles and the SL(2n,C)-Higgs bundlenaturally asso
iated to it.



REPRESENTATIONS OF SURFACE GROUPS 7In Se
tion 4 we study the Cayley 
orresponden
e between Sp(2n,R)-Higgs bundles withmaximal Toledo invariant and K2-twisted GL(n,R)-Higgs pairs.The rest of the paper is mostly devoted to the study of the 
onne
tedness propertiesof the moduli spa
e of Sp(2n,R)-Higgs bundles and, in parti
ular, to prove Theorem 8.3.In Se
tion 5 we introdu
e the Hit
hin fun
tional on the moduli spa
e of Sp(2n,R)-Higgsbundles and 
hara
terize its minima. We then use this and the Cayley 
orresponden
e ofSe
tion 4 to 
ount the number of 
onne
ted 
omponents of the moduli spa
e of Sp(2n,R)-Higgs bundles for d = 0 and |d| = n(g − 1). The proof of the 
hara
terization of theminima is split in two 
ases: the 
ase of minima in the smooth lo
us of the moduli spa
e,given in Se
tion 6 and the 
ase of the remaining minima, treated in Se
tion 7.The results of this paper have been announ
ed in several 
onferen
es over the last fouryears or so, while several preliminary versions of this paper have been 
ir
ulating. The mainresults, together with analogous results for other groups of Hermitian type have appearedin the review paper [8℄. The authors apologize for having taken so long in produ
ing this�nal version.A
knowledgements. The authors thank Steven Bradlow, Mar
 Burger, Bill Goldman, NigelHit
hin, Alessandra Iozzi, François Labourie, S. Ramanan, Domingo Toledo, and AnnaWienhard for numerous useful 
onversations and shared insights.2. G-Higgs bundles and surfa
e group representations2.1. G-Higgs bundles. Let G be a real redu
tive Lie group, let H ⊂ G be a maximal
ompa
t subgroup and let g = h⊕m be a Cartan de
omposition, so that the Lie algebrastru
ture on g satis�es
[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.The group H a
ts linearly on m through the adjoint representation, and this a
tion extendsto a linear holomorphi
 a
tion of HC on mC = m⊗ C � the isotropy representation.Let X be a 
ompa
t Riemann surfa
e and let K be its 
anoni
al line bundle.De�nition 2.1. A G-Higgs bundle over X is a pair (E,ϕ) 
onsisting of a prin
ipalholomorphi
 HC-bundle E over X and a holomorphi
 se
tion of E(mC)⊗K, where E(mC)is the mC-bundle asso
iated to E via the isotropy representation.In other words, a G-Higgs bundle is a K-twisted G-Higgs pair in the sense of Appen-dix B. Thus, as for any twisted G-Higgs pair, α-stability, semistability and polystabilityare de�ned for any α ∈ ih ∩ z, where z is the 
entre of hC. However, in order to relate

G-Higgs bundles to representations of the fundamental group of X (or 
ertain 
entral ex-tension of the fundamental group) in G, one requires α to lie also in the 
entre of g. Sin
ewe will be mostly 
on
erned with G-Higgs bundles for G semisimple, we will take α = 0,and we will simply talk about stability of a G-Higgs bundle, meaning 0-stability.When G is 
ompa
t m = 0 and hen
e a G-Higgs bundle is simply a holomorphi
 prin
ipal
GC-bundle. When G is 
omplex, if U ⊂ G is a maximal 
ompa
t subgroup, the Cartande
omposition of g is g = u + iu, where u is the Lie algebra of U . Then a G-Higgs bundle
(E,ϕ) 
onsists of a a holomorphi
G-bundle E and ϕ ∈ H0(X,E(g)⊗K), where E(g) is the
g-bundle asso
iated to E via the adjoint representation. These are the obje
ts introdu
edoriginally by Hit
hin [31℄ when G = SL(2,C).
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eforth, we shall assume that G is 
onne
ted. Then the topologi
al 
lassi�
ation of
HC-bundles E on X is given by a 
hara
teristi
 
lass c(E) ∈ π1(H

C) = π1(H) = π1(G).For a �xed d ∈ π1(G), the moduli spa
e of polystable G-Higgs bundles Md(G) isthe set of isomorphism 
lasses of polystable G-Higgs bundles (E,ϕ) su
h that c(E) = d.When G is 
ompa
t, the moduli spa
e Md(G) 
oin
ides with Md(G
C), the moduli spa
eof polystable GC-bundles with topologi
al invariant d.The moduli spa
eMd(G) has the stru
ture of a 
omplex analyti
 variety. This 
an beseen by the standard sli
e method (see, e.g., Kobayashi [34℄). Geometri
 Invariant Theory
onstru
tions are available in the literature for G 
ompa
t algebrai
 (Ramanathan [42℄)and for G 
omplex redu
tive algebrai
 (Simpson [49, 50℄). The 
ase of a real form of a
omplex redu
tive algebrai
 Lie group follows from the general 
onstru
tions of S
hmitt[44, 45℄. We thus have the following.Theorem 2.2. The moduli spa
eMd(G) is a 
omplex analyti
 variety, whi
h is algebrai
when G is algebrai
.2.2. Deformation theory of G-Higgs bundles. In this se
tion we re
all some standardfa
ts about the deformation theory of G-Higgs bundles. A 
onvenenient referen
e for thismaterial is Biswas�Ramanan [2℄.De�nition 2.3. Let (E,ϕ) be a G-Higgs bundle. The deformation 
omplex of (E,ϕ) isthe following 
omplex of sheaves:(2.3) C•(E,ϕ) : E(hC)

ad(ϕ)
−−−→ E(mC)⊗K.This de�nition makes sense be
ause φ is a se
tion of E(mC)⊗K and [mC, hC] ⊆ mC.The following result generalizes the fa
t that the in�nitesimal deformation spa
e of aholomorphi
 ve
tor bundle V is isomorphi
 to H1(End V ).Proposition 2.4. The spa
e of in�nitesimal deformations of a G-Higgs bundle (E,ϕ) isnaturally isomorphi
 to the hyper
ohomology group H1(C•(E,ϕ)).In parti
ular, if (E,ϕ) represents a non-singular point of the moduli spa
eMd(G) thenthe tangent spa
e at this point is 
anoni
ally isomorphi
 to H1(C•(E,ϕ)).For any G-Higgs bundle there is a natural long exa
t sequen
e

0→ H0(C•(E,ϕ))→ H0(E(hC))
ad(ϕ)
−−−→ H0(E(mC)⊗K)

→ H1(C•(E,ϕ))→ H1(E(hC))
ad(ϕ)
−−−→ H1(E(mC)⊗K)→ H2(C•(E,ϕ))→ 0.

(2.4)As an immediate 
onsequen
e we have the following result.Proposition 2.5. The in�nitesimal automorphism spa
e aut(E,ϕ) de�ned in Se
tion A.7is isomorphi
 to H0(C•(E,ϕ)).Let dι : hC → End(mC) be the derivative at the identity of the 
omplexi�ed isotropyrepresentation ι = Ad|HC : HC → Aut(mC) (
f. Se
tion B.1). Let ker dι ⊆ hC be its kerneland let E(ker dι) ⊆ E(hC) be the 
orresponding subbundle. Then there is an in
lusion
H0(E(ker dι)) →֒ H0(C•(E,ϕ)).De�nition 2.6. A G-Higgs bundle (E,ϕ) is said to be in�nitesimally simple if thein�nitesimal automorphism spa
e H0(C•(E,ϕ)) is isomorphi
 to H0(E(ker dι ∩ z)).
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lusion ker ι ∩ Z(HC) →֒ Aut(E, φ).De�nition 2.7. AG-Higgs bundle (E,ϕ) is said to be simple ifAut(E,ϕ) = ker ι∩Z(HC),where Z(HC) is the 
entre of HC.As a 
onsequen
e of Propositions 2.5 and A.7 we have the following.Proposition 2.8. Any stable G-Higgs bundle (E,ϕ) with ϕ 6= 0 is in�nitesimally simple.Remark 2.9. If ker dι = 0, then (E,ϕ) is in�nitesimally simple if and only if the vanishing
H0(C•(E,ϕ)) = 0 holds. A parti
ular 
ase of this situation is when the group G is a
omplex semisimple group: indeed, in this 
ase the isotropy representation is just theadjoint representation.Next we turn to the question of the vanishing of H2 of the deformation 
omplex. Inorder to deal with this question we shall use Serre duality for hyper
ohomology (see e.g.Theorem 3.12 in [33℄), whi
h says that there are natural isomorphisms(2.5) Hi(C•(E,ϕ)) ∼= H2−i(C•(E,ϕ)∗ ⊗K)∗,where the dual of the deformation 
omplex (2.3) is

C•(E,ϕ)∗ : E(mC)⊗K−1 −ad(ϕ)
−−−−→ E(hC).An important spe
ial 
ase of this is when G is a 
omplex group.Proposition 2.10. Assume that G is a 
omplex group. Then there is a natural isomor-phism

H2(C•(E,ϕ)) ∼= H0(C•(E,ϕ))∗.Proof. This is immediate from (2.5) and the fa
t that the the deformation 
omplex isdual to itself, ex
ept for a sign in the map whi
h does not in�uen
e the 
ohomology (
f.Se
tion 2.1):(2.6) C•(E,ϕ)∗ ⊗K : E(g)
−ad(ϕ)
−−−−→ E(g)⊗K.

�Remark 2.11. The isomorphism H1(C•(E,ϕ)) ∼= H1(C•(E,ϕ))∗ is also important: it givesrise to the natural 
omplex symple
ti
 stru
ture on the moduli spa
e of G-Higgs bundlesfor 
omplex groups G.We have the following key observation (
f. (2.6); again we are ignoring the irrelevant
hange of sign in the dual 
omplex).Proposition 2.12. Let G be a real group and let GC be its 
omplexi�
ation. Let (E,ϕ) bea G-Higgs bundle. Then there is an isomorphism of 
omplexes:
C•
GC(E,ϕ) ∼= C•

G(E,ϕ)⊕ C•
G(E,ϕ)∗ ⊗K,where C•

GC(E,ϕ) denotes the deformation 
omplex of (E,ϕ) viewed as a GC-Higgs bundle,and C•
G(E,ϕ) denotes the deformation 
omplex of (E,ϕ) viewed as a G-Higgs bundle.Corollary 2.13. With the same hypotheses as in the previous Proposition, there is anisomorphism

H0(C•
GC(E,ϕ)) ∼= H0(C•

G(E,ϕ))⊕H2(C•
G(E,ϕ))∗.



10 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProof. Immediate from the Proposition and Serre duality (2.5). �Proposition 2.14. Let G be a real semisimple group and let GC be its 
omplexi�
ation.Let (E,ϕ) be a G-Higgs bundle whi
h is stable viewed as a GC-Higgs bundle. Then thevanishing
H0(C•

G(E,ϕ)) = 0 = H2(C•
G(E,ϕ))holds.Proof. Sin
e G is semisimple, so is GC. Hen
e, in view of Remark 2.9, the result follows aton
e from Corollary 2.13 and Proposition 2.8. �The following result on smoothness of the moduli spa
e 
an be proved, for example,from the standard sli
e method 
onstru
tion referred to above.Proposition 2.15. Let (E,ϕ) be a stable G-Higgs bundle. If (E,ϕ) is simple and

H2(C•
G(E,ϕ)) = 0,then (E,ϕ) is a smooth point in the moduli spa
e. In parti
ular, if (E,ϕ) is a simple G-Higgs bundle whi
h is stable as a GC-Higgs bundle, then it is a smooth point in the modulispa
e.Suppose now that we are in the situation of Proposition 2.15. Then a lo
al uni-versal family exists (see [45℄) and hen
e the dimension of the 
omponent of the mod-uli spa
e 
ontaining (E,ϕ) equals the dimension of the in�nitesimal deformation spa
e

H1(C•
G(E,ϕ)). In view of Proposition 2.8, Remark 2.9 and Proposition 2.16, we also have

H0(C•
G(E,ϕ)) = H2(C•

G(E,ϕ)) = 0. So we have H1(C•
G(E,ϕ)) = −χ(C•

G(E,ϕ)). A re-markable fa
t on this equality is that, whereas the left hand side may depend on the 
hoi
eof (E, φ), the right hand side is independent of it, as we will see in the proposition below.We shall refer to −χ(C•
G(E,ϕ)) as the expe
ted dimension of the moduli spa
e.Proposition 2.16. Let G be semisimple. Then the expe
ted dimension of the moduli spa
eof G-Higgs bundles is (g − 1) dimGC.Proof. Let (E,ϕ) be any G-Higgs bundle. The long exa
t sequen
e (2.4) gives us

χ(C•
G(E,ϕ))− χ(E(hC)) + χ(E(mC)⊗K) = 0.Serre duality implies that χ(E(mC)⊗K) = χ(E(mC)) and from the Riemann�Ro
h formulawe therefore obtain

−χ(C•
G(E,ϕ)) = deg(E(mC)) + (g − 1) rk(E(mC))−

(
deg(E(hC)) + (1− g) rk(E(hC)).Any invariant pairing on gC (e.g. the Killing form) indu
es isomorphisms E(mC) ≃ E(mC)∗and E(hC) ≃ E(hC)∗. Hen
e deg(E(mC)) = deg(E(hC)) = 0, when
e the result. Inparti
ular, the value of −χ(C•

G(E,ϕ)) is independent of the 
hoi
e of G-Higgs bundle
(E,ϕ). �Remark 2.17. Note that the a
tual dimension of the moduli spa
e (if non-empty) 
an besmaller than the expe
ted dimension. This happens for example when G = SU(p, q) with
p 6= q and maximal Toledo invariant (this follows from the study of U(p, q)-Higgs bundlesin [6℄) � in this 
ase there are in fa
t no stable SU(p, q)-Higgs bundles.
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hin equations. Let G be 
onne
ted semisimple realLie group. Let (E,ϕ) be a G-Higgs bundle over a 
ompa
t Riemann surfa
e X. By aslight abuse of notation, we shall denote the C∞-obje
ts underlying E and ϕ by the samesymbols. In parti
ular, the Higgs �eld 
an be viewed as a (1, 0)-form: ϕ ∈ Ω1,0(E(mC)).Let τ : Ω1(E(gC))→ Ω1(E(gC)) be the 
ompa
t 
onjugation of gC 
ombined with 
omplex
onjugation on 
omplex 1-forms. Given a redu
tion h of stru
ture group to H in thesmooth HC-bundle E, we denote by Fh the 
urvature of the unique 
onne
tion 
ompatiblewith h and the holomorphi
 stru
ture on E.Theorem 2.18. There exists a redu
tion h of the stru
ture group of E from HC to Hsatisfying the Hit
hin equation
Fh − [ϕ, τ(ϕ)] = 0if and only if (E,ϕ) is polystable.Theorem 2.18 was proved by Hit
hin [31℄ for G = SL(2,C) and Simpson [47, 48℄ foran arbitrary semisimple 
omplex Lie group G. The proof for an arbitrary redu
tive realLie group G when (E,ϕ) is stable is given in [10℄, and the general polystable 
ase fol-lows as a parti
ular 
ase of the more general Hit
hin�Kobayashi 
orresponden
e given inTheorem A.17.From the point of view of moduli spa
es it is 
onvenient to �x a C∞ prin
ipal H-bundle EH with �xed topologi
al 
lass d ∈ π1(H) and study the moduli spa
e of so-lutions to Hit
hin's equations for a pair (A,ϕ) 
onsisting of an H-
onne
tion A and

ϕ ∈ Ω1,0(X,EH(mC)):(2.7) FA − [ϕ, τ(ϕ)] = 0
∂̄Aϕ = 0.Here dA is the 
ovariant derivative asso
iated to A and ∂̄A is the (0, 1) part of dA, whi
hde�nes a holomorphi
 stru
ture on EH . The gauge group H of EH a
ts on the spa
e ofsolutions and the moduli spa
e of solutions is

Mgauge
d (G) := {(A,ϕ) satisfying (2.7)}/H .Now, Theorem 2.18 
an be reformulated as follows.Theorem 2.19. There is a homeomorphism

Md(G) ∼=M
gauge
d (G)To explain this 
orresponden
e we interpret the moduli spa
e ofG-Higgs bundles in termsof pairs (∂̄E , ϕ) 
onsisting of a ∂̄-operator (holomorphi
 stru
ture) on the HC-bundle EHCobtained from EH by the extension of stru
ture group H ⊂ HC, and ϕ ∈ Ω1,0(X,EHC(mC))satisfying ∂̄Eϕ = 0. Su
h pairs are in 
orresponden
e with G-Higgs bundles (E,ϕ), where

E is the holomorphi
 HC-bundle de�ned by the operator ∂̄E on EHC and ∂̄Eϕ = 0 isequivalent to ϕ ∈ H0(X,E(mC) ⊗ K). The moduli spa
e of polystable G-Higgs bundles
Md(G) 
an now be identi�ed with the orbit spa
e

{(∂̄E, ϕ) : ∂̄Eϕ = 0, (∂̄E , ϕ) de�nes a polystable G-Higgs bundle}/H C,where H C is the gauge group of EHC, whi
h is in fa
t the 
omplexi�
ation of H . Sin
ethere is a one-to-one 
orresponden
e between H-
onne
tions on EH and ∂̄-operators on
EHC, the 
orresponden
e given in Theorem 2.19 
an be interpreted by saying that in the
H C-orbit of a polystable G-Higgs bundle (∂̄E0

, ϕ0) we 
an �nd another Higgs bundle
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(∂̄E , ϕ) whose 
orresponding pair (dA, ϕ) satis�es FA− [ϕ, τ(ϕ)] = 0, and this is unique upto H-gauge transformations.The in�nitesimal deformation spa
e of a solution (A,ϕ) to Hit
hin's equations 
an bedes
ribed as the �rst 
ohomology group of a 
ertain ellipti
 deformation 
omplex. To dothis, we follow Hit
hin [31, � 5℄. The linearized equations are:

dA(Ȧ)− [ϕ̇, τ(ϕ)]− [ϕ, τ(ϕ̇)] = 0,

∂̄Aϕ̇+ [Ȧ0,1, ϕ] = 0,for Ȧ ∈ Ω1(X,EH(h)) and ϕ̇ ∈ Ω1,0(X,EH(mC)). The in�nitesimal a
tion of
ψ ∈ Lie H = Ω0(X,EH(h))is

(A, φ) 7→ (dAψ, [φ, ψ]).Thus the deformation theory of Hit
hin's equations is governed by the (ellipti
) 
omplex
C•(A,ϕ) : Ω0(X,EH(h))

d0−→ Ω1(X,EH(h))⊕ Ω1,0(X,EH(mC))

d1−→ Ω2(X,EH(h))⊕ Ω1,1(X,EH(mC)),where the maps are
d0(ψ) = (dAψ, [ϕ, ψ])and

d1(ψ) = (dA(Ȧ)− [ϕ̇, τ(ϕ)]− [φ, τ(ϕ̇)], ∂̄Aϕ̇+ [Ȧ0,1, ϕ]).The fa
t that (A,ϕ) is a solution to the equations, together with the gauge invarian
e ofthe equations, guarantees that d1◦d0 = 0. Denote by H i(C•(A,ϕ)) the 
ohomology groupsof the gauge theory deformation 
omplex C•(A,ϕ).Let
Aut(A,ϕ) := {h ∈H : h∗A = A, and ι(h)(ϕ) = ϕ}.Here ι : H → Aut(m) is the isotropy representation. Clearly Z(H) ∩ ker ι ⊂ Aut(A,ϕ).De�nition 2.20. Let (A,ϕ) be a solution of (2.7). We say that (A,ϕ) is irredu
ible ifand only if Aut(A,ϕ) = Z(H) ∩ ker ι. We say that (A,ϕ) is in�nitesimally irredu
ibleif the Lie algebra of Aut(A,ϕ), whi
h is identi�ed with H0(C•(A,ϕ)) equals Z(h)∩ ker dι.Proposition 2.21. Assume that H0(C•(A,ϕ)) = H2(C•(A,ϕ)) = 0 and that (A,ϕ) isirredu
ible. ThenMgauge

d is smooth at [A,ϕ] and the tangent spa
e is
T[A,ϕ]M

gauge
d

∼= H1(C•(A,ϕ)).For a proper understanding of many aspe
ts of the geometry of the moduli spa
e ofHiggs bundles, one needs to 
onsider the moduli spa
e as the gauge theory moduli spa
e
Mgauge

d (G). On the other hand, the formulation of the deformation theory in terms ofhyper
ohomology is very 
onvenient. Fortunately, one has the following.Proposition 2.22. At a smooth point of the moduli spa
e, there is a natural isomorphismof in�nitesimal deformation spa
es
H1(C•(A,ϕ)) ∼= H1(C•(E,ϕ)),where the holomorphi
 stru
ture on the Higgs bundle (E,ϕ) is given by ∂̄A.



REPRESENTATIONS OF SURFACE GROUPS 13As in Donaldson�Kronheimer [20, � 6.4℄ this 
an be seen by using a Dolbeault resolu-tion to 
al
ulate H1(C•(E,ϕ)) and using harmoni
 representatives of 
ohomology 
lasses,via Hodge theory. For this reason we 
an freely apply the 
omplex deformation theorydes
ribed in Se
tion 2.2 to the gauge theory situation.The following result is not essential for the present paper but we in
lude it here for 
om-pleteness. It 
an be dedu
ed from the treatment of the Hit
hin�Kobayashi 
orresponden
egiven in Appendix A.Proposition 2.23. Under the 
orresponden
e given by Theorem 2.19, a stable G-Higgsbundle 
orresponds to an in�nitesimally irredu
ible solution to Hit
hin equations, while a
G-Higgs bundle whi
h is stable and simple is in 
orresponden
e with an irredu
ible solution.2.4. Surfa
e group representations. Let X be a 
losed oriented surfa
e of genus g andlet

π1(X) = 〈a1, b1, . . . , ag, bg |

g∏

i=1

[ai, bi] = 1〉be its fundamental group. Let G be a 
onne
ted redu
tive real Lie group. By a represen-tation of π1(X) in G we understand a homomorphism ρ : π1(X)→ G. The set of all su
hhomomorphisms, Hom(π1(X), G), 
an be naturally identi�ed with the subset of G2g 
on-sisting of 2g-tuples (A1, B1 . . . , Ag, Bg) satisfying the algebrai
 equation ∏g
i=1[Ai, Bi] = 1.This shows that Hom(π1(X), G) is a real analyti
 variety, whi
h is algebrai
 if G is alge-brai
.The group G a
ts on Hom(π1(X), G) by 
onjugation:

(g · ρ)(γ) = gρ(γ)g−1for g ∈ G, ρ ∈ Hom(π1(X), G) and γ ∈ π1(X). If we restri
t the a
tion to the subspa
e
Hom+(π1(X), g) 
onsisting of redu
tive representations, the orbit spa
e is Hausdor� (seeTheorem 11.4 in [43℄). By a redu
tive representation we mean one that 
omposedwith the adjoint representation in the Lie algebra of G de
omposes as a sum of irredu
iblerepresentations. If G is algebrai
 this is equivalent to the Zariski 
losure of the imageof π1(X) in G being a redu
tive group. (When G is 
ompa
t every representation isredu
tive.) De�ne the moduli spa
e of representations of π1(X) in G to be the orbit spa
e

R(G) = Hom+(π1(X), G)/G.One has the following (see e.g. Goldman [26℄).Theorem 2.24. The moduli spa
e R(G) has the stru
ture of a real analyti
 variety, whi
his algebrai
 if G is algebrai
 and is a 
omplex variety if G is 
omplex.Given a representation ρ : π1(X)→ G, there is an asso
iated �at G-bundle onX, de�nedas Eρ = X̃ ×ρ G, where X̃ → X is the universal 
over and π1(X) a
ts on G via ρ. Thisgives in fa
t an identi�
ation between the set of equivalen
e 
lasses of representations
Hom(π1(X), G)/G and the set of equivalen
e 
lasses of �at G-bundles, whi
h in turn isparametrized by the 
ohomology set H1(X,G). We 
an then assign a topologi
al invariantto a representation ρ given by the 
hara
teristi
 
lass c(ρ) := c(Eρ) ∈ π1(G) 
orrespondingto Eρ. To de�ne this, let G̃ be the universal 
overing group of G. We have an exa
tsequen
e

1 −→ π1(G) −→ G̃ −→ G −→ 1
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h gives rise to the (pointed sets) 
ohomology sequen
e(2.8) H1(X, G̃) −→ H1(X,G)
c
−→ H2(X, π1(G)).Sin
e π1(G) is abelian the orientation of X de�nes an isomorphism

H2(X, π1(G)) ∼= π1(G),and c(Eρ) is de�ned as the image of E under the last map in (2.8). Thus the 
lass
c(Eρ) measures the obstru
tion to lifting Eρ to a �at G̃-bundle, and hen
e to lifting ρto a representation of π1(X) in G̃. For a �xed d ∈ π1(G), the moduli spa
e of redu
tiverepresentations Rd(G) with topologi
al invariant d is de�ned as the subvariety(2.9) Rd(G) := {[ρ] ∈ R(G) | c(ρ) = d},where as usual [ρ] denotes the G-orbit G · ρ of ρ ∈ Hom+(π1(X), G).One 
an study deformations of a 
lass of representations [ρ] ∈ Rd(G) by means of group
ohomology (see [26℄). The Lie algebra g is endowed with the stru
ture of a π1(X)-moduleby means of the 
omposition

π1(X)
ρ
−→ G

Ad
−→ Aut(g).De�nition 2.25. Let ρ : π1(X)→ G be a representation of π1(X) in G. Let ZG(ρ) be the
entralizer in G of ρ(π1(X)). We say that ρ is irredu
ible if and only if it is redu
tiveand ZG(ρ) = Z(G), where Z(G) is the 
entre of G. We say that ρ is an in�nitesimallyirredu
ible representation if it is redu
tive and LieZG(ρ) = LieZ(G).One has the following basi
 fa
ts ([26℄).Proposition 2.26. (1) The Zariski tangent spa
e to Rd(G) at an equivalen
e 
lass [ρ]is isomorphi
 to the 
ohomology group H1(π1(X), gAd ◦ρ).(2) H0(π1(X), gAd ◦ρ) ∼= LieZG(ρ).(3) H2(π1(X), gAd ◦ρ) ∼= H0(π1(X), gAd ◦ρ)
∗From this one obtains the following ([26℄).Proposition 2.27. Let G be a semisimple Lie group and let ρ : π1(X)→ G be irredu
ible.Then the equivalen
e 
lass [ρ] is a smooth point in Rd(G).This is simply be
ause ZG(ρ) = Z(G) is �nite and hen
e

H0(π1(X), gAd ◦ρ) = H2(π1(X), gAd ◦ρ) = 0.An alternative way to study deformations of a representation is by using the 
orrespond-ing �at 
onne
tion. To explain this, let EG be a C∞ prin
ipal G-bundle over X with �xedtopologi
al 
lass d ∈ π1(G) = π1(H). Let D be a G-
onne
tion on EG and let FD be its
urvature. If D is �at, i.e. FD = 0, then the holonomy of D around a 
losed loop in X onlydepends on the homotopy 
lass of the loop and thus de�nes a representation of π1(X) in
G. This gives an identi�
ation1,

Rd(G) ∼= {Redu
tive G-
onne
tions D | FD = 0}/G ,1even when G is 
omplex algebrai
, this is merely a real analyti
 isomorphism, see Simpson [48, 49, 50℄
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onne
tion is redu
tive if the 
orresponding representation of
π1(X) in G is redu
tive, and G is the group of automorphisms of EG � the gauge group.We 
an now linearize the �atness 
ondition near a �at 
onne
tion D:

d

dt
F (D + bt)t=0 = D(b)for b ∈ Ω1(X,Ad(E)).Linearize the a
tion of the gauge group D 7→ g · D = gDg−1. For g(t) = exp(ψt) with

ψ ∈ Ω0(X,Ad(E)),
d

dt
(g(t) ·D)t=0 = D(ψ).Thus the in�nitesimal deformation spa
e is H1 of the 
omplex

0→ Ω0(X,E(g))
D
−→ Ω1(X,E(g))

D
−→ Ω2(X,E(g))→ 0.Note that FD = D2 = 0 means that this is in fa
t a 
omplex.2.5. Representations and G-Higgs bundles. We assume now that G is 
onne
ted andsemisimple. With the notation of the previous se
tions, we have the following.Theorem 2.28. Let G be a 
onne
ted semisimple real Lie group. There is a homeomor-phism Rd(G) ∼= Md(G). Under this homeomorphism, stable G-Higgs bundles 
orrespondto in�nitesimally irredu
ible representations, and stable and simple G-Higgs bundles 
or-respond to irredu
ible representations.Remark 2.29. On the open subvarieties de�ned by the smooth points of Rd andMd, this
orresponden
e is in fa
t an isomorphism of real analyti
 varieties.Remark 2.30. There is a similar 
orresponden
e when G is redu
tive but not semisimple.In this 
ase, it makes sense to 
onsider nonzero values of the stability parameter α. Theresulting Higgs bundles 
an be geometri
ally interpreted in terms of representations of theuniversal 
entral extension of the fundamental group of X, and the value of α pres
ribesthe image of a generator of the 
enter in the representation.The proof of Theorem 2.28 is the 
ombination of two existen
e theorems for gauge-theoreti
 equations. To explain this, let EG be, as above, a C∞ prin
ipal G-bundle over Xwith �xed topologi
al 
lass d ∈ π1(G) = π1(H). Every G-
onne
tion D on EG de
omposesuniquely as

D = dA + ψ,where dA is an H-
onne
tion on EH and ψ ∈ Ω1(X,EH(m)). Let FA be the 
urvature of
dA. We 
onsider the following set of equations for the pair (dA, ψ):(2.10) FA + 1

2
[ψ, ψ] = 0

dAψ = 0
d∗Aψ = 0.These equations are invariant under the a
tion of H , the gauge group of EH . A theoremof Corlette [17℄, and Donaldson [19℄ for G = SL(2,C), says the following.Theorem 2.31. There is a homeomorphism

{Redu
tive G-
onne
tions D | FD = 0}/G ∼= {(dA, ψ) satisfying (2.10)}/H .



16 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAThe �rst two equations in (2.10) are equivalent to the �atness of D = dA + ψ, andTheorem 2.31 simply says that in the G -orbit of a redu
tive �at G-
onne
tion D0 we 
an�nd a �at G-
onne
tion D = g(D0) su
h that if we write D = dA + ψ, the additional
ondition d∗Aψ = 0 is satis�ed. This 
an be interpreted more geometri
ally in terms ofthe redu
tion h = g(h0) of EG to an H-bundle obtained by the a
tion of g ∈ G on h0.The equation d∗Aψ = 0 is equivalent to the harmoni
ity of the π1(X)-equivariant map
X̃ → G/H 
orresponding to the new redu
tion of stru
ture group h.To 
omplete the argument, leading to Theorem 2.28, we just need Theorem 2.18 andthe following simple result.Proposition 2.32. The 
orresponden
e (dA, ϕ) 7→ (dA, ψ := ϕ − τ(ϕ)) de�nes a homeo-morphism

{(dA, ϕ) satisfying (2.7)}/H ∼= {(dA, ψ) satisfying (2.10)}/H .3. Sp(2n,R)-Higgs bundles3.1. Sp(2n,R)-Higgs bundles. Let X be a 
ompa
t Riemann surfa
e. The maximal
ompa
t subgroup of Sp(2n,R) is U(n). If V = Cn is the fundamental representation of
GL(n,C), then the isotropy representation spa
e is:

mC = S2V⊕ S2V∗.An Sp(2n,R)-Higgs bundle over X is thus a triple (V, β, γ) 
onsisting of a rank n holomor-phi
 ve
tor bundle V and holomorphi
 se
tions β ∈ H0(X,S2V⊗K) and γ ∈ H0(X,S2V ∗⊗
K), where K is the 
anoni
al line bundle of X.Let (Vi, ϕi) be Sp(2ni,R)-Higgs bundles and let n =

∑
ni. We 
an de�ne an Sp(2n,R)-Higgs bundle (V, ϕ) by setting

V =
⊕

Vi and ϕ =
∑

ϕiby using the 
anoni
al in
lusions H0(K ⊗ (S2Vi ⊕ S2V ∗
i )) ⊂ H0(K ⊗ (S2V ⊕ S2V ∗)). Weshall slightly abuse language and write (V, ϕ) =

⊕
(Vi, ϕi), referring to this as �the dire
tsum of the (Vi, ϕi)�.In Appendix A we introdu
e a very general notion of (semi-, poly-)stability for 
ertainkind of holomorphi
 obje
ts. Sp(2n,R)-Higgs bundles are instan
es of su
h kind of obje
ts.These notions are in general rather 
ompli
ated to study in 
on
rete terms but it turnsout that the general (semi-,poly-)stability 
onditions, when applied to Sp(2n,R)-Higgsbundles, 
an be sensibly simpli�ed (this is also the 
ase for many other kinds of obje
ts,and it might well be true that a general simpli�ed 
ondition exists for all G-Higgs bundles).The simpli�
ation of the (semi-)stability 
onditions for Sp(2n,R)-Higgs bundles are givenin Theorems B.2 and B.4 of Appendix B, with the parameter value α = 0 (re
all fromSe
tion 2.1 that we are �xing this value, sin
e it is the one relevant for the study ofrepresentations of surfa
e groups). Before giving a pre
ise statement we introdu
e somenotation. IfW is a ve
tor bundle andW ′,W ′′ ⊂W are subbundles, thenW ′⊗SW ′′ denotesthe subbundle of the se
ond symmetri
 power S2W whi
h is the image ofW ′⊗W ′′ ⊂W⊗Wunder the symmetrization map W ⊗W → S2W (of 
ourse this should be de�ned in sheaftheoreti
al terms to be sure that W ′⊗SW ′′ is indeed a subbundle, sin
e the interse
tion of

W ′⊗W ′′ and the kernel of the symmetrization map might 
hange dimension from one �ber



REPRESENTATIONS OF SURFACE GROUPS 17to the other). Also, we denote by W ′⊥ ⊂W ∗ the kernel of the restri
tion map W ∗ → W ′∗.Now the simpli�ed (semi-)stability 
ondition is given by the following proposition.Proposition 3.1. An Sp(2n,R)-Higgs bundle (V, φ) is stable if, for any �ltration of sub-bundles
0 ⊂ V1 ⊂ V2 ⊂ Vsu
h that(3.11) β ∈ H0(K ⊗ (S2V2 + V1 ⊗S V )), γ ∈ H0(K ⊗ (S2V ⊥

1 + V ⊥
2 ⊗S V

∗)),the following holds: if at least one of the subbundles V1 and V2 is proper, then the inequality(3.12) deg(V )− deg(V1)− deg(V2) > 0holds and, in any other 
ase,(3.13) deg(V )− deg(V1)− deg(V2) ≥ 0.The 
ondition for (V, ϕ) to be semistable is obtained by omitting the stri
t inequality (3.12).The following observation will be useful many times below.Remark 3.2. If 0 ⊂ V1 ⊂ V2 ⊂ V is a �ltration of ve
tor bundles then for any β ∈ H0(K ⊗
S2V ) and γ ∈ H0(K ⊗ S2V ∗) the 
ondition β ∈ H0(K ⊗ (S2V2 + V1 ⊗S V )) is equivalentto βV ⊥

2 ⊂ K ⊗ V1 and βV ⊥
1 ⊂ K ⊗ V2, and similarly γ ∈ H0(K ⊗ (S2V ⊥

1 + V ⊥
2 ⊗S V

∗)) isequivalent to γV1 ⊂ K ⊗ V ⊥
2 and γV2 ⊂ K ⊗ V ⊥

1 , where V ⊥
i is the kernel of the proje
tion

V ∗ → V ∗
i and we view β and γ as symmetri
 maps β : V ∗ → K ⊗ V and γ : V → K ⊗ V ∗.Thus, if we use a lo
al basis of V adapted to the �ltration 0 ⊆ V1 ⊆ V2 ⊆ V and the dualbasis of V ∗, then the matrix of γ is of the form




0 0 ∗
0 ∗ ∗
∗ ∗ ∗



 ,while the matrix of β has the form


∗ ∗ ∗
∗ ∗ 0
∗ 0 0


 .The deformation 
omplex (2.3) for an Sp(2n,R)-Higgs bundle (V, ϕ = β + γ) is(3.14) C•(V, ϕ) : End(V )

ad(ϕ)
−−−→ S2V ⊗K ⊕ S2V ∗ ⊗K

ψ 7→ (−βψt − ψβ, γψ + ψtγ)Proposition 3.3. An Sp(2n,R)-Higgs bundle (V, ϕ) is in�nitesimally simple if and onlyif H0(C•(V, ϕ)) = 0. Equivalently, (V, ϕ) is in�nitesimally simple if and only if there is anon-zero ψ ∈ H0(End(V )) su
h that
ad(ϕ)(ψ) = (−βψt − ψβ, γψ + ψtγ) = (0, 0).Proof. For Sp(2n,R)-Higgs bundles one has that ker(dι) = 0. Thus the �rst statementis immediate from De�nition 2.6. The equivalent statement now follows from the longexa
t sequen
e (2.4), re
alling that in this 
ase the deformation 
omplex (2.3) is given by(3.14). �



18 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProposition 3.4. An Sp(2n,R)-Higgs bundle (V, ϕ) is simple if and only if Aut(V, ϕ) =
{± Id}.Proof. Sin
e λ ∈ C∗ = Z(HC) a
ts on the isotropy representation mC = S2V ⊕ S2V∗ by
(β, γ) 7→ (λ2β, λ−2γ) we have ker ι∩Z(HC) = {±1}, so the statement follows dire
tly fromDe�nition 2.7. �Remark 3.5. Contrary to the 
ase of ve
tor bundles, stability of a Sp(2n,R)-Higgs bundledoes not imply that it is simple. To give an example of this phenomenon, take two di�erentsquare roots,M1 andM2, of K. De�ne V = M1⊕M2, then S2V ⊗K = O⊕M−1

1 M−1
2 ⊕O .Let γ = (1, 0, 1), β = 0 and set ϕ = (β, γ). Then (V, ϕ) is not simple. However, we shallshow that (V, ϕ) is stable. Sin
e V has rank 2, in any �ltration 0 ⊂ V1 ⊂ V2 ⊂ V somein
lusion is in fa
t an equality. Hen
e we have to verify the semistability 
ondition forthe 
ases listed in Table B.1 and the stability 
ondition (with stri
t inequality) for the
ases listed in the last three rows of the same Table. This is easy, using the fa
t that γis non-degenerate (note that for any proper V1 ⊂ V this means that γ 
annot belong to

H0(S2V ⊥
1 )). The phenomenon des
ribed by this example will be des
ribed in a systemati
way in Theorem 3.12 below.3.2. Stable and non-simple Sp(2n,R)-Higgs bundles. The goal of this se
tion is toobtain a 
omplete understanding of how a stable Sp(2n,R)-Higgs bundle 
an fail to besimple. The main result is Theorem 3.12.For this, we need to des
ribe some spe
ial Sp(2n,R)-Higgs bundles arising from G-Higgsbundles asso
iated to 
ertain real subgroups G ⊆ Sp(2n,R).The subgroup G = U(n). Observe that a U(n)-Higgs bundle is nothing but a holomorphi
ve
tor bundle V of rank n. The standard in
lusion υU(n) : U(n) →֒ Sp(2n,R) gives the
orresponden
e(3.15) V 7→ υU(n)

∗ V = (V, 0)asso
iating the Sp(2n,R)-Higgs bundle υU(n)
∗ V = (V, 0) to the holomorphi
 ve
tor bundle

V .Remark 3.6. Note that (V, 0) is never simple as an Sp(2n,R)-Higgs bundle, sin
e its auto-morphism group 
ontains the non-zero s
alars C∗.The subgroup G = U(p, q). In the following we assume that p, q ≥ 1. As is easily seen,a U(p, q)-Higgs bundle (
f. [6℄) is given by the data (Ṽ , W̃ , ϕ̃ = β̃ + γ̃), where Ṽ and W̃are holomorphi
 ve
tor bundles of rank p and q, respe
tively, β̃ ∈ H0(K ⊗ Hom(W̃ , Ṽ ))and γ̃ ∈ H0(K ⊗ Hom(Ṽ , W̃ )). Let n = p + q. The imaginary part of the standardinde�nite Hermitian metri
 of signature (p, q) on Cn is a symple
ti
 form, and thus thereis an in
lusion υU(p,q) : U(p, q) →֒ Sp(2n,R). At the level of G-Higgs bundles, this givesrise to the 
orresponden
e(3.16) (Ṽ , W̃ , ϕ̃ = β̃ + γ̃) 7→ υU(p,q)
∗ (Ṽ , W̃ , ϕ̃) = (V, ϕ = β + γ),where

V = Ṽ ⊕ W̃ ∗, β =

(
0 β̃

β̃ 0

) and γ =

(
0 γ̃
γ̃ 0

)
.



REPRESENTATIONS OF SURFACE GROUPS 19Remark 3.7. Again, we note that the Sp(2n,R)-Higgs bundle υU(p,q)
∗ (Ṽ , W̃ , ϕ̃) is not simple,sin
e it has the automorphism ( 1 0

0 −1 ).We shall need a few lemmas for the proof of Theorem 3.12.Lemma 3.8. Let (V, ϕ) be an Sp(2n,R)-Higgs bundle and assume that there is a non-trivial splitting (V, ϕ) = (Va ⊕ Vb, ϕa + ϕb) su
h that ϕν ∈ H0(K ⊗ (S2Vν ⊕ S2V ∗
ν )) for

ν = a, b. Assume that the Sp(2na,R)-Higgs bundle (Va, ϕa) is not stable. Then (V, ϕ) isnot stable.Proof. Sin
e (Va, ϕa) is not stable there is a �ltration 0 ⊂ Va1 ⊂ Va2 ⊂ Va su
h that
β ∈ H0(K ⊗ (S2Va2 + Va1 ⊗S V )), γ ∈ H0(K ⊗ (S2V ⊥

a1 + V ⊥
a2 ⊗S V

∗))and(3.17) deg(Va)− deg(Va1)− deg(Va1) ≤ 0.Consider the �ltration 0 ⊂ V1 ⊂ V2 ⊂ V obtained by setting
V1 = Va1, V2 = Va2 ⊕ Vb.Using Remark 3.2 one readily sees that this �ltration satis�es the 
onditions (3.11). Sin
e

deg(V )− deg(V1)− deg(V2) = deg(Va)− deg(Va1)− deg(Va1),it follows from (3.17) that (V, ϕ) is not stable. �Lemma 3.9. Let (V, ϕ) be an Sp(2n,R)-Higgs bundle and assume that there is a non-trivial splitting V = Va ⊕ Vb su
h that ϕ ∈ H0(K ⊗ (S2Va ⊕ S2V ∗
a )). In other words,

(V, ϕ) = (Va ⊕ Vb, ϕa + 0) with (Vb, 0) = υ
U(nb)
∗ Vb. Then (V, ϕ) is not stable.Proof. It is immediate from Lemma 3.8 and Remark B.5 that Vb is a stable ve
tor bundlewith deg(Vb) = 0. Hen
e

deg(V ) = deg(Va).Consider the �ltration 0 ⊂ V1 ⊂ V2 ⊂ V obtained by setting V1 = 0 and V2 = Va. Asbefore this �ltration satis�es (3.11). Therefore the 
al
ulation
deg(V )− deg(V1)− deg(V2) = deg(V )− deg(Va) = 0shows that (V, ϕ) is not stable. �Lemma 3.10. Let (V, ϕ) = υ

U(p,q)
∗ (Va, V

∗
b , ϕ̃) be an Sp(2n,R)-Higgs bundle arising from a

U(p, q)-Higgs bundle (Va, V
∗
b , ϕ̃) with p, q ≥ 1. Then (V, ϕ) is not stable.Proof. The Sp(2n,R)-Higgs bundle (V, φ) is given by

V = Va ⊕ Vb, β =

(
0 β̃

β̃ 0

) and γ =

(
0 γ̃
γ̃ 0

)
.Let V1 = V2 = Va and 
onsider the �ltration 0 ⊂ V1 ⊂ V2 ⊂ V. Again this �ltration satis�esthe 
onditions (3.11). Thus, if (V, ϕ) is stable, we have from (3.12)

deg(V )− 2 deg(Va) < 0.Similarly, 
onsidering V1 = V2 = Vb, we obtain
deg(V )− 2 deg(Vb) < 0,



20 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAso we 
on
lude that
deg(V ) = deg(Va) + deg(Vb) < deg(V ),whi
h is absurd.

�Lemma 3.11. Let (Ṽ , ϕ̃) be an Sp(2ñ,R)-Higgs bundle. Then the Sp(4ñ,R)-Higgs bundle
(Ṽ ⊕ Ṽ , ϕ̃+ ϕ̃) is not stable.Proof. Consider the automorphism f = 1√

2i
( 1 i

i 1 ) of V = Ṽ ⊕ Ṽ . Write β =
(
β̃ 0

0 β̃

) and
γ =

(
γ̃ 0
0 γ̃

). Then we have that
(V, ϕ) ∼= (Ṽ ⊕ Ṽ , f · β + f · γ),where

f · β = fβf t =

(
0 β̃

β̃ 0

) and f · γ = (f t)−1γf−1 =

(
0 γ̃
γ̃ 0

)
.We shall see that (Ṽ ⊕ Ṽ , f · β + f · γ) is not stable. To this end, 
onsider the �ltration

0 ⊂ V1 ⊂ V2 ⊂ Ṽ ⊕ Ṽ obtained by setting V1 = V2 = Ṽ . This satis�es (3.11). But, on theother hand,
deg(Ṽ ⊕ Ṽ )− deg(V1)− deg(V2) = 0so (Ṽ ⊕ Ṽ , f · β + f · γ) is not stable. �Theorem 3.12. Let (V, ϕ) be a stable Sp(2n,R)-Higgs bundle. If (V, ϕ) is not simple,then one of the following alternatives o

urs:(1) The vanishing ϕ = 0 holds and V is a stable ve
tor bundle of degree zero. In this
ase, Aut(V, ϕ) ∼= C∗.(2) There is a de
omposition, unique up to reordering, (V, ϕ) = (

⊕k
i=1 Vi,

∑k
i=1 ϕi) with

φi = βi+γi ∈ H0(K⊗ (S2Vi⊕S2V ∗
i )), su
h that ea
h (Vi, φi) is a stable and simple

Sp(2ni,R)-Higgs bundle. Furthermore, ea
h ϕi 6= 0 and (Vi, ϕi) 6∼= (Vj , ϕj) for
i 6= j. The automorphism group of (V, ϕ) is

Aut(V, ϕ) ∼= Aut(V1, ϕ1)× · · · × Aut(Vk, ϕk) ∼= (Z/2)k.Re
all that an example of the se
ond situation was des
ribed in Remark 3.5.Proof. First of all, we note that if ϕ = 0 then it is immediate from Remark B.5 thatalternative (1) o

urs.Next, 
onsider the 
ase ϕ 6= 0. Sin
e (V, ϕ) is not simple, there is an automorphism
σ ∈ Aut(V, ϕ) \ {±1}. If σ were a multiple of the identity, say σ = λ Id with λ ∈ C∗, thenit would a
t on ϕ = β + γ by β 7→ λ2β and γ 7→ λ−2γ. Sin
e ϕ 6= 0 this would for
e σto be equal to 1 or −1, in 
ontradi
tion with our 
hoi
e. Hen
e σ is not a multiple of theidentity. We know from Lemma A.18 that Aut(V, ϕ) is redu
tive. This implies that σ maybe 
hosen in su
h a way that there is a splitting V =

⊕
Vi in eigenbundles for σ su
h thatthe a
tion of σ on Vi is given by multipli
ation by some σi ∈ C∗. It follows that the a
tionof σ on S2V ⊕ S2V ∗ is given by(3.18) σ = σiσj : Vi ⊗ Vj → Vi ⊗ Vj and σ = σ−1
i σ−j

j : V ∗
i ⊗ V

∗
j → V ∗

i ⊗ V
∗
j .



REPRESENTATIONS OF SURFACE GROUPS 21If we denote by ϕij = βij + γij the 
omponent of ϕ in H0(K ⊗ (Vi ⊗ Vj ⊕ V ∗
i ⊗ V ∗

j ))(symmetrizing the tensor produ
t if i = j), then(3.19) σiσj 6= 1 =⇒ ϕij = 0.Suppose that ϕi0j0 6= 0 for some i0 6= j0. From (3.19) we 
on
lude that σi0σj0 = 1. Butthen σiσj0 6= 1 for i 6= i0 and σi0σj 6= 1 for j 6= j0. Hen
e, again by (3.19), ϕij0 = 0 = ϕi0jif i 6= i0 or j 6= j0. Thus (Vi0 , V
∗
j0
, ϕi0j0) is a U(p, q)-Higgs Bundle and we have a non-trivial de
omposition (V, ϕ) = (Va ⊕ Vb, ϕa + ϕb) with (Va, ϕa) = υ

U(p,q)
∗ (Vi0 , V

∗
j0
, ϕi0j0). ByLemma 3.10 the Sp(2na,R)-Higgs bundle (Va, ϕa) is not stable so, by Lemma 3.8, (V, ϕ) isnot stable. This 
ontradi
tion shows that ϕij = 0 for i 6= 0.It follows that ϕ =

∑
ϕi with φi ∈ H0(K ⊗ (S2Vi ⊕ S2V ∗

i )). By Lemma 3.8 ea
h of thesummands (Vi, ϕi) is a stable Sp(2n,R)-Higgs bundle and by Lemma 3.9 ea
h ϕi must benon-zero. Also, from (3.18), σ · βi = σ2
i βi and σ · γi = σ−2

i γi so we 
on
lude that the onlypossible eigenvalues of σ are 1 and −1. Thus the de
omposition (V, ϕ) =
⊕

(Vi, ϕi) has infa
t only two summands and, more importantly, σ2 = 1. This means that all non-trivialelements of Aut(V, ϕ) have order two and therefore Aut(V, ϕ) is abelian.Now, the summands (Vi, ϕi) may not be simple but, applying the pre
eding argu-ment indu
tively to ea
h of the (Vi, ϕi), we eventually obtain a de
omposition (V, ϕ) =
(
⊕

Vi,
∑
ϕi) where ea
h (Vi, ϕi) is stable and simple, and ϕi 6= 0. Sin
e Aut(V, ϕ) isabelian, the su

essive de
ompositions of V in eigenspa
es 
an in fa
t be 
arried out si-multaneously for all σ ∈ Aut(V, ϕ) \ {±1}. From this the uniqueness of the de
ompositionand the statement about the automorphism group of (V, ϕ) are immediate.Finally, Lemma 3.9 and Lemma 3.11 together imply that the (Vi, ϕi) are mutually non-isomorphi
. �3.3. Sp(2n,R)-, Sp(2n,C)- and SL(2n,C)-Higgs bundles: stability 
onditions. An

Sp(2n,R)-Higgs bundle 
an be viewed as a Higgs bundle for the larger 
omplex groups
Sp(2n,C) and SL(2n,C). The goal of this se
tion is to understand the relation betweenthe various 
orresponding stability notions. The main results are Theorems 3.13 and 3.14below.We have seen in Se
tion B.8 that an SL(m,C)-Higgs bundle is a pair (W,Φ) where W isa rankm holomorphi
 ve
tor bundle on the Riemann surfa
e X and Φ ∈ H0(K⊗End(W )).As was shown in Theorem B.10, (W,Φ) is stable if for any subbundle W ′ ⊂ W su
h that
Φ(W ′) ⊂ K ⊗W ′ we have degW ′ < 0 (and similarly for semistability).We have also seen, in Se
tion B.7, that an Sp(2n,C)-Higgs bundle is given by ((W,Ω),Φ),where (W,Ω) is a rank 2n holomorphi
 symple
ti
 ve
tor bundle (i.e., Ω is a holomorphi
symple
ti
 form on W ) and Φ ∈ H0(K ⊗ End(W )) is symple
ti
, i.e.,(3.20) Ω(Φu, v) + Ω(u,Φv) = 0for lo
al holomorphi
 se
tions u and v of W . Re
all from Theorem B.9 that ((W,Ω),Φ) isstable if and only if for any isotropi
 subbundle W ′ ⊂ W su
h that Φ(W ′) ⊂ K ⊗W ′ wehave degW ′ < 0 (and similarly for semistability).Given an Sp(2n,R)-Higgs bundle (V, ϕ) with ϕ = (β, γ) ∈ H0(K ⊗ (S2V ⊕ S2V ∗)) one
an asso
iate to it an Sp(2n,C)-Higgs bundle ((W,Ω),Φ) given by(3.21) W = V ⊕ V ∗, Φ =

(
0 β
γ 0

) and Ω
(
(v, ξ), (w, η)

)
= ξ(w)− η(v),
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al holomorphi
 se
tions v, w of V and ξ, η of V ∗ (i.e. Ω is the 
anoni
al symple
ti
stru
ture on V ⊕ V ∗).Sin
e Sp(2n,C) ⊂ SL(2n,C), every Sp(2n,C)-Higgs bundle ((W,Ω),Φ) gives rise to an
SL(2n,C)-Higgs bundle (W,Φ). If ((W,Ω),Φ) is obtained from an Sp(2n,R)-Higgs bundle
(V, ϕ) we denote the asso
iated SL(2n,C)-Higgs bundle by

H(V, ϕ) = (W,Φ) = (V ⊕ V ∗,

(
0 β
γ 0

)
).Theorem 3.13. Let (V, ϕ = (β, γ)) be an Sp(2n,R)-Higgs bundle and let (W,Φ) = H(V, ϕ)be the 
orresponding SL(2n,C)-Higgs bundle. Then(1) if (W,Φ) is stable then (V, ϕ) is stable;(2) if (V, ϕ) is stable and simple then (W,Φ) is stable unless there is an isomorphism

f : V
≃
−→ V ∗ su
h that βf = f−1γ, in whi
h 
ase (W,Φ) is polystable;(3) (W,Φ) is semistable if and only if (V, ϕ) is semistable.(4) (W,Φ) is polystable if and only if (V, ϕ) is polystable;In parti
ular, if deg V 6= 0 then (W,Φ) is stable if and only if (V, ϕ) is stable.For the statement of the following Theorem, re
all from Se
tion B.9 that a GL(n,R)-Higgs bundle is given by ((W,Q), ψ), where (W,Q) is rank n orthogonal bundle and

ψ ∈ H0(K ⊗ S2W ). The stability 
ondition for GL(n,R)-Higgs bundles is given in Theo-rem B.11.Theorem 3.14. Let (V, ϕ) be a stable and simple Sp(2n,R)-Higgs bundle. Then (V, ϕ) isstable as an Sp(2n,C)-Higgs bundle, unless there is a symmetri
 isomorphism f : V
≃
−→ V ∗su
h that βf = f−1γ. Moreover, if su
h an f exists, let ψ = β = f−1γf−1 ∈ H0(K⊗S2V ).Then the GL(n,R)-Higgs bundle ((V, f), ψ) is stable, even as a GL(n,C)-Higgs bundle.The proof of Theorem 3.13 is given below in Se
tion 3.4 and the proof of Theorem 3.14is given below in Se
tion 3.5.The following observation is not essential for our main line of argument. We in
lude itsin
e it might be of independent interest.Remark 3.15. Suppose we are in Case (2) of Theorem 3.13. De
ompose f = fs+fa : V
≃
−→ Vin its symmetri
 and anti-symmetri
 parts, given by fs = 1

2
(f + f t) and fa = 1

2
(f − f t).Let Va = ker(fs) and Vs = ker(fa). There is then a de
omposition V = Va ⊕ Vs and fde
omposes as

f =

(
fs 0
0 fa

)
: Vs ⊕ Va → V ∗

s ⊕ V
∗
a .Write γsa : Va → V ∗

s ⊗ K for the 
omponent of γ in H0(K ⊗ V ∗
a ⊗ V ∗

s ) and similarlyfor the other mixed 
omponents of β and γ. Sin
e f intertwines β and γ, one has that
γas = faβasfs. Hen
e

γsa = γtas = f tsβ
t
asf

t
a = −fsβsafa = −γsa.It follows that γsa = 0 and similarly for the other mixed terms. Thus there is a de
om-position (V, ϕ) = (Vs ⊕ Va, ϕs + ϕa). If (V, ϕ) is simple then one of the summands mustbe trivial. The 
ase when (V, ϕ) = (Vs, ϕs) is the one 
overed in Theorem 3.14. In theother 
ase, when (V, ϕ) = (Va, ϕa), the antisymmetri
 map f de�nes a symple
ti
 form on

V . If we let ψ = βf = f−1γ, one easily 
he
ks that ψ is symple
ti
 (
f. (3.20)). Thus,
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ase, (V, φ) 
omes in fa
t from an Sp(n,C)-Higgs bundle ((V, f), ψ). This is a sta-ble Sp(n,C)-Higgs bundle, sin
e (V, ψ) is a stable GL(n,C)-Higgs bundle (
f. the proof ofTheorem 3.14 below).3.4. Proof of Theorem 3.13. The proof of the theorem is split into several lemmas.We begin with the following lemma whi
h proves that Higgs bundle stability of H(V, ϕ)implies stability of (V, ϕ).Lemma 3.16. Let (V, ϕ = (β, γ)) be an Sp(2n,R)-Higgs bundle, and let
Φ =

(
0 β
γ 0

)
: V ⊕ V ∗ → K ⊗ (V ⊕ V ∗).The pair (V, ϕ) is semistable if and only if for any pair of subbundles A ⊂ V and B ⊂ V ∗satisfying B⊥ ⊂ A, A⊥ ⊂ B and Φ(A⊕B) ⊂ K ⊗ (A⊕B) we have deg(A⊕ B) ≤ 0.The pair (V, ϕ) is stable if and only if it is semistable and for any pair of subbundles

A ⊂ V and B ⊂ V ∗, at least one of whi
h is proper, and satisfying B⊥ ⊂ A (equivalently,
A⊥ ⊂ B) and Φ(A⊕B) ⊂ K ⊗ (A⊕ B), the inequality deg(A⊕ B) < 0 holds.Proof. Suppose that A ⊂ V and B ⊂ V ∗ satisfy the 
onditions of the lemma. Then setting
V2 := A and V1 := B⊥ we obtain a �ltration 0 ⊂ V1 ⊂ V2 ⊂ V whi
h, thanks to Remark 3.2,satis�es (3.11).Conversely, given a �ltration 0 ⊂ V1 ⊂ V2 ⊂ V for whi
h (3.11) holds, we get subbundles
A := V2 ⊂ V and B := V ⊥

1 ⊂ V ∗ satisfying the 
onditions of the lemma. Finally, we have
deg(A⊕ B) = deg(V ⊥

1 ⊕ V2) = deg V1 + deg V2 − deg V,so the lemma follows from Theorem B.4. (For the 
ase of stability, note that at least oneof V1 and V2 is a proper subbundle of V if and only if at least one of A ⊂ V and B ⊂ V ∗is a proper subbundle.) �Remark 3.17. In the proof we have used the following formula: if F ⊂ E is an in
lusionof ve
tor bundles, then degF⊥ = degF − degE. To 
he
k this, observe that there is anexa
t sequen
e 0 → F⊥ → E∗ → F ∗ → 0, and apply the additivity of the degree w.r.t.exa
t sequen
es together with degE∗ = − degE and deg F ∗ = − degF .The following lemma resumes the proof of equivalen
e between Higgs bundle stabilityand stability when V is not isomorphi
 to V ∗.Lemma 3.18. Suppose that (V, ϕ) is semistable, and de�ne Φ: V ⊕ V ∗ → K ⊗ (V ⊕ V ∗)as previously. Then any subbundle 0 6= W ′ ( V ⊕ V ∗ su
h that Φ(W ′) ⊂ K ⊗W ′ satis�es
degW ′ ≤ 0. Furthermore, if (V, ϕ) is stable and simple, one 
an get equality only if thereis an isomorphism f : V → V ∗ su
h that βf = f−1γ, and in this 
ase (W,Φ) = H(V, ϕ) ispolystable.Proof. Fix a subbundle W ′ ⊂ V ⊕ V ∗ satisfying Φ(W ′) ⊂ K ⊗W ′. We prove the lemmain various steps.1. Denote by p : V ⊕V ∗ → V and q : V ⊕V ∗ → V ∗ the proje
tions, and de�ne subsheaves
A = p(W ′) and B = q(W ′). It follows from ΦW ′ ⊂ K ⊗ W ′ that βB ⊂ K ⊗ A and
γA ⊂ K ⊗ B (for example, using that Φp = qΦ and Φq = pΦ). Sin
e both β and γ are
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 we dedu
e that βA⊥ ⊂ K ⊗ B⊥ and γB⊥ ⊂ K ⊗ A⊥ as well. It follows fromthis that if we de�ne subsheaves
A0 = A +B⊥ ⊂ V and B0 = B + A⊥ ⊂ V ∗then we have B⊥

0 ⊂ A0, A⊥
0 ⊂ B0 and Φ(A0 ⊕B0) ⊂ K ⊗ (A0 ⊕ B0).We 
an apply Lemma 3.16 also to subsheaves by repla
ing any subsheaf of V or V ∗by its saturation, whi
h is now a subbundle of degree not less than that of the subsheaf.Hen
e we dedu
e that(3.22) degA0 + degB0 = deg(A+B⊥) + deg(B + A⊥) ≤ 0,and equality holds if and only if A +B⊥ = V and B + A⊥ = V ∗.Now we 
ompute (using repeatedly the formula in Remark 3.17)

deg(A+B⊥) = degA+ degB⊥ − deg(A ∩ B⊥)

= degA+ degB − deg V ∗ − deg((A⊥ +B)⊥)

= degA+ degB − deg V ∗ − deg(A⊥ +B) + deg V ∗

= degA+ degB − deg(A⊥ +B).Consequently degA+ degB = deg(A+B⊥) + deg(A⊥ +B), so (3.22) implies that(3.23) degA+ degB ≤ 0,with equality if and only if A+B⊥ = V and B + A⊥ = V ∗.2. Let now A′ = W ′ ∩ V and B′ = W ′ ∩ V ∗. Using again that Φ(W ′) ⊂ K ⊗W ′ we provethat βB′ ⊂ K ⊗ A′ and γA′ ⊂ K ⊗ B′. Now, the same reasoning as above (
onsidering
(A′ + B′⊥)⊕ (B′ + A′⊥) and so on) proves that(3.24) degA′ + degB′ ≤ 0,with equality if and only if A′ +B′⊥ = V and A′⊥ +B′ = V ∗.3. Observe that there are exa
t sequen
es of sheaves

0→ B′ →W ′ → A→ 0 and 0→ A′ →W ′ → B → 0,from whi
h we obtain the formulae
degW ′ = degA+ degB′ and degW ′ = degB + degA′.Adding up and using (3.23) together with (3.24) we obtain the desired inequality

degW ′ ≤ 0.4. Finally we 
onsider the 
ase when (V, ϕ) is stable and simple. Suppose that degW ′ = 0.Then we have equality both in (3.23) and in (3.24). Hen
e, A + B⊥ = V , A⊥ + B = V ∗,
A′ +B′⊥ = V and A′⊥ +B′ = V ∗. But A⊥ +B = (A∩B⊥)⊥ and A′⊥ +B′ = (A′ ∩B′⊥)⊥,so we dedu
e that

A⊕ B⊥ = V and A′ ⊕ B′⊥ = V.If one of these de
ompositions were nontrivial then V would not be simple, in 
ontradi
tionwith our assumptions. Consequently we must have A = V , B⊥ = 0 (be
ause W ′ 6= 0) andsimilarly A′ = 0, B′⊥ = V ∗ (be
ause W ′ 6= V ⊕ V ∗). This implies that the proje
tions
p : W ′ → A and q : W ′ → B indu
e isomorphisms u : W ′ ≃ V and v : W ′ ≃ V ∗. Finally,de�ning f := v ◦ u−1 : V → V ∗ we �nd an isomorphism whi
h satis�es βf = f−1γ be
ause
ΦW ′ ⊂ K ⊗W ′.
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ase (W,Φ) = H(V, ϕ) is stri
tly polystable just observe that
W ′ = {(u, fu) | u ∈ V } and de�ne W ′′ = {(u,−fu) | u ∈ V }. It is then straightforwardto 
he
k that V ⊕V ∗ = W ′⊕W ′′, that ΦW ′ ⊂ K⊗W ′ and that ΦW ′′ ⊂ K⊗W ′′. Finallynote that the Higgs bundle (W ′,Φ) is stable: any Φ-invariant subbundle W0 ⊂W ′ is also a
Φ-invariant subbundle of (V ⊕ V ∗,Φ). Hen
e, if degW0 = 0 the argument of the previousparagraph shows that W0 has to have the same rank as V , so W0 = W ′. Analogously, onesees that (W ′′,Φ) is a stable Higgs bundle. �Lemma 3.19. An Sp(2n,R)-Higgs bundle (V, ϕ) is semistable if and only if H(V, ϕ) issemistable.Proof. Both Lemmas 3.16 and 3.18 are valid if we substitute all stri
t inequalities by in-equalities (and of 
ourse remove the last part in the statement of Lemma 3.18). Combiningthese two modi�ed lemmas we get the desired result. �Lemma 3.20. An Sp(2n,R)-Higgs bundle (V, ϕ = (β, γ)) is polystable if and only if
H(V, ϕ) is polystable.Proof. If (V, ϕ) is polystable then Lemmas 3.16 and 3.18 imply that H(V, ϕ) is polystable.Now assume that (W,Φ) = H(V, ϕ) is polystable, so that W =

⊕N
i=1Wi with ΦWi ⊂

K ⊗Wi and every (Wi,Φ|Wi
) is stable with degWi = 0.1. We 
laim that for any subbundle U ⊂ W satisfying degU = 0 and Φ(U) ⊂ K ⊗ Uthere is an isomorphism ψ : W → W whi
h 
ommutes with Φ and a set I ⊂ {1, . . . , N}su
h that U = ψ(

⊕
i∈IWi). To prove the 
laim we use indu
tion on N (the 
ase N = 1being obvious). Let W≥2 =

⊕
i≥2Wi and denote by p≥2 : W → W≥2 the proje
tion. Thenwe have an exa
t sequen
e

0→W1 ∩ U → U → p≥2(U)→ 0.Sin
e both W1 ∩ U and p≥2(U) are invariant under Φ, by polystability their degrees mustbe ≤ 0. And sin
e a

ording to the exa
t sequen
e above the sum of their degrees mustbe 0, the only possibility is that
degW1 ∩ U = 0 and deg p≥2(U) = 0.Now we apply the indu
tion hypothesis to the in
lusion p≥2(U) ⊂ W≥2 and dedu
e thatthere is an isomorphism ψ2 : W≥2 → W≥2 
ommuting with Φ and a subset I2 ⊂ {2, . . . , N}su
h that

p≥2(U) = ψ2(
⊕

i∈I2

Wi).Sin
e degW1 ∩U = 0 and W1 is stable, only two things 
an happen. Either W1 ∩U = W1or W1 ∩ U = 0. In the �rst 
ase we have
U = W1 ⊕

⊕

i∈I2

ψ(Wi),so putting I = {1} ∩ I2 and ψ = diag(1, ψ2) the 
laim is proved. If instead W1 ∩ U = 0then there is a map ξ : p≥2(U)→W1 su
h that
U = {(ξ(v), v) ∈W1 ⊕ p≥2}.
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e U is Φ-invariant we dedu
e that ξ must 
ommute with Φ. If we now extend ξ to W≥2by de�ning ξ(ψ2(Wj)) = 0 for any j ∈ {2, . . . , N} \ I2 then the 
laim is proved by setting
I = I2 and

ψ =

(
1 ξ ◦ ψ2

0 ψ2

)
.2. De�ne for any W ′ ⊂W the subsheaves R(W ′) = p(W ′)⊕q(W ′) (re
all that p : W → Vand q : W → V ∗ are the proje
tions) and r(W ′) = (W ′∩V )⊕(W ′∩V ∗). Reasoning as in the�rst step of the proof of Lemma 3.18 we dedu
e that if W ′ is Φ-invariant then both R(W ′)and r(W ′) are Φ invariant, so in parti
ular we must have degR(W ′) ≤ 0 and deg r(W ′) ≤ 0.In 
ase degW ′ = 0 these inequalities imply degR(W ′) = deg r(W ′) = 0 (using the exa
tsequen
es 0→W ′ ∩ V ∗ →W ′ → p(W ′)→ 0 and 0→W ′ ∩ V →W ′ → q(W ′)→ 0).Assume that there is some summand in {W1, . . . ,WN}, say W1, su
h that 0 6= r(W1)or R(W1) 6= W . Suppose, for example, that W ′ := R(W1) 6= W (the other 
ase issimilar). Let A = p(W1) and B = q(W1), so that W ′ = A ⊕ B. By the observationabove and the 
laim proved in 1 we know that there is an isomorphism ψ : W → Wwhi
h 
ommutes with Φ and su
h that, if we substitute {Wi}1≤i≤N by {ψ(Wi)}1≤i≤N andwe reorder the summands if ne
essary, then we may write W ′ = W1 ⊕ · · · ⊕Wk for some

k < N . Now let W ′′ = Wk+1⊕ · · ·⊕WN . We 
learly have W = W ′⊕W ′′, so the in
lusionof W ′′ ⊂ W = V ⊕ V ∗ 
omposed with the proje
tion V ⊕ V ∗ → V/A ⊕ V ∗/B = W/W ′indu
es an isomorphism. Consequently we have V = A ⊕ W ′′ ∩ V . Let us rename for
onvenien
e V1 := A and V2 := W ′′ ∩ V . Then, using the fa
t that ea
h Wi is Φ-invariantwe dedu
e that we 
an split both β and γ as
β = (β1, β2) ∈ H

0(K ⊗ S2V1)⊕H
0(K ⊗ S2V2),

γ = (γ1, γ2) ∈ H
0(K ⊗ S2V ∗

1 )⊕H0(K ⊗ S2V ∗
2 ).Hen
e, if we put ϕi = (βi, γi) for i = 1, 2 then we may write

(V, ϕ) = (V1, ϕ1)⊕ (V2, ϕ2).3. Our strategy is now to apply re
ursively the pro
ess des
ribed in 2. Observe that if
N ≥ 3 then for at least one i we have R(Wi) 6= W , be
ause there must be a summandwhose rank is stri
tly less that the rank of V . Hen
e the proje
tion of this summand to Vis not exhaustive.Consequently, we 
an apply the pro
ess and split V in smaller and smaller pie
es, untilwe arrive at a de
omposition

(V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vj, ϕj)su
h that we 
an not apply 2 to any H(Vi, ϕi) For ea
h (Vi, ϕi) there are two possibilities.Either H(Vi, ϕi) is stable, in whi
h 
ase (Vi, ϕi) is stable (by Lemma 3.16), or H(Vi, ϕi)splits in two stable Higgs bundles W ′
i ⊕W

′′
i whi
h satisfy:

R(W ′
i ) = R(W ′′

i ) = W and r(W ′
i ) = r(W ′′

i ) = 0.But in this 
ase it is easy to 
he
k that (Vi, ϕi) is also stable.By the pre
eeding lemma, (V, ϕ) is semistable. Suppose it is not stable. Then there is a�ltration 0 ⊂ V1 ⊂ V2 ⊂ V su
h that Φ(V2⊕V ⊥
1 ) ⊂ K⊗ (V2⊕V ⊥

1 ) and W ′ := V2⊕V ⊥
1 = 0has degree degW ′ = 0.
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⊕

i≥2Wi, and let p2 : W → W≥2 denote the proje
tion. We have an exa
tsequen
e
0→W ′ ∩W1 →W ′ → p2(W

′)→ 0.It is easy to 
he
k that Φ(W ′ ∩ W1) ⊂ K ⊗ (W ′ ∩ W1) and that Φ(p2(W
′)) ⊂ K ⊗

p2(W
′). Sin
e both W1 and and W≥2 are polystable, we must have degW ′ ∩ W1 ≤ 0and deg p2(W

′) ≤ 0. Finally, sin
e degW ′ = 0, the exa
t sequen
e above implies that
degW ′ ∩W1 = 0 and deg p2(W

′) = 0. Now W1 is stable, so W ′ ∩W1 
an only be either
0 or W1. Reasoning indu
tively with p2(W

′) ⊂ W≥2 in pla
e of W ′ ⊂ W we dedu
e thatthere must be some I ⊂ {1, . . . , k} su
h that
W ′ =

⊕

i∈I
Wi.Sin
e ea
h (Wi,Φ|Wi

) is stable, it is easy to 
he
k (for example using indu
tion on N)that one must have deg V2 ⊕ V ⊥
1 = Wj for some j. This easily implies that V2 = V ∩Wjand if we de�ne

V ′ =
⊕

i6=j
p(Wj)then V = V ′ ⊕ V2. Applying the same pro
ess to V ′ and V2 we arrive at the 
on
lusionthat (V, ϕ) is polystable. �3.5. Proof of Theorem 3.14. An Sp(2n,C)-Higgs bundle ((W,Ω),Φ) is stable if the

SL(2n,C)-Higgs bundle (W,Φ) is stable. Thus the result is immediate from Theorem 3.13,unless we are in Case (2) of that Theorem. In that 
ase, we have seen in the last paragraphof the proof of Lemma 3.18 that(1) There is an isomorphism f as stated, ex
ept for the symmetry 
ondition.(2) There is an isomorphism V ⊕ V ∗ = W ′⊕W ′′, where W ′ = {(u, f(u)) | u ∈ V } and
W ′′ = {(u,−f(u)) | u ∈ V }, and W ′ and W ′′ are Φ-invariant subbundles of W .(3) The SL(2n,C)-Higgs bundle (W,Φ) is stri
tly polystable, de
omposing as the dire
tsum of stable GL(n,C)-Higgs bundles:(3.25) (W,Φ) = (W ′,Φ′)⊕ (W ′′,Φ′′).Note also that (W ′,Φ′) ≃ (W ′′,Φ′′).Now, from Theorem B.9 we have that for the Sp(2n,C)-Higgs bundle ((W,Ω),Φ) to bestri
tly semistable, it must have an isotropi
 Φ-invariant subbundle of degree zero. Butthe de
omposition (3.25) shows that the only degree zero Φ-invariant subbundles are W ′and W ′′. The subbundle W ′ is isotropi
 if and only if, for all lo
al se
tions u, v of V , wehave

Ω((u, f(u), (v, f(v)) = 0 ⇐⇒ 〈u, f(v)〉 = 〈v, f(u)〉,that is, if and only if f is symmetri
. Analogously, W ′′ is isotropi
 if and only if f issymmetri
. The �rst part of the 
on
lusion follows.For the se
ond part, 
onsider the GL(n,R)-Higgs bundle ((V, f), βf). This is stable asa GL(n,C)-Higgs bundle be
ause (V, βf) ≃ (W ′,Φ′), whi
h is stable. Thus, in parti
ular,
((V, f), βf) is stable as a GL(n,R)-Higgs bundle (see Theorem B.11). �
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e of Sp(2n,R)-Higgs bundles. Thetopologi
al invariant atta
hed to an Sp(2n,R)-Higgs bundle (V, β, γ) is an element in thefundamental group of U(n). Sin
e π1(U(n)) ∼= Z, this is an integer, whi
h 
oin
ides withthe degree of V .We have the following Higgs bundle in
arnation of the Milnor�Wood inequality (1.1)(see [29, 6℄).Proposition 3.21. Let (V, β, γ) be a semistable Sp(2n,R)-Higgs bundle and let d =
deg(V ). Then

d ≤ rank(γ)(g − 1)(3.26)
−d ≤ rank(β)(g − 1),(3.27)This is proved by �rst using the equivalen
e between the semistability of (V, β, γ) andthe SL(2n,C)-Higgs bundle (W,Φ) asso
iated to it, and then applying the semistabilitynumeri
al 
riterion to spe
ial Higgs subbundles de�ned by the kernel and image of Φ.As a 
onsequen
e of Proposition 3.21 we have the following.Proposition 3.22. Let (V, β, γ) be a semistable Sp(2n,R)-Higgs bundle and let d =

deg(V ). Then
|d| ≤ n(g − 1).Furthermore,

(1) d = n(g − 1) holds if and only if γ : V → V ∗ ⊗K is an isomorphism;
(2) d = −n(g − 1) holds if and only if β : V ∗ → V ⊗K is an isomorphism.Re
all from our general dis
ussion in Se
tion 2 thatMd(Sp(2n,R)) denotes the modulispa
e of Sp(2n,R)-Higgs bundles (V, β, γ) with deg(V ) = d. For brevity we shall hen
eforthwrite simplyMd for this moduli spa
e.Combining Theorem 2.2 with Proposition 2.16 we have the following.Proposition 3.23. The moduli spa
e Md is a 
omplex algebrai
 variety. Its expe
teddimension is (g − 1)(2n2 + n).One has the following immediate duality result.Proposition 3.24. The map (V, β, γ) 7→ (V ∗, γt, βt) gives an isomorphismMd

∼=M−d.As a 
orollary of Proposition 3.22, we obtain the following.Proposition 3.25. The moduli spa
eMd is empty unless
|d| ≤ n(g − 1).3.7. Smoothness and polystability of Sp(2n,R)-Higgs bundles. We study now thesmoothness properties of the moduli spa
e. As a 
orollary of Proposition 2.15 and Theo-rem 3.14 we have the following.Proposition 3.26. Let (V, ϕ) be an Sp(2n,R)-Higgs bundle whi
h is stable and simple andassume that there is no symmetri
 isomorphism f : V

≃
−→ V ∗ intertwining β and γ. Then

(V, ϕ) represents a smooth point of the moduli spa
e of polystable Sp(2n,R)-Higgs bundles.



REPRESENTATIONS OF SURFACE GROUPS 29So, a stable Sp(2n,R)-Higgs bundle (V, ϕ) inMd with d 6= 0 
an only fail to be a smoothpoint of the moduli spa
e if it is not simple � this gives rise to an orbifold-type singularity� or if, in spite of being simple, there is an isomorphism V ≃ V ∗ intertwining β and γ.Of 
ourse, this 
an only happen if d = deg V = 0. Generally, if (V, ϕ) is polystable, butnot stable it is also a singular point ofMd.We shall need the following analogue of Proposition 3.26 for U(n)-, U(p, q)- and GL(n,R)-Higgs bundlesProposition 3.27. (1) A stable U(n)-Higgs bundle represents a smooth point in themoduli spa
e of U(n)-Higgs bundles.(2) A stable U(p, q)-Higgs bundle represents a smooth point of the moduli spa
e of
U(p, q)-Higgs bundles.(3) A GL(n,R)-Higgs bundle whi
h is stable as a GL(n,C)-Higgs bundle represents asmooth point in the moduli spa
e of GL(n,R)-Higgs bundles.Proof. (1) A stable U(n)-Higgs bundles is nothing but a stable ve
tor bundle, so this is
lassi
al.(2) A stable U(p, q)-Higgs bundle is also stable as GL(p + q,C)-Higgs bundle (see [6℄).Thus the result follows from Proposition 2.15 and the fa
t that a GL(p+q,C)-Higgs bundleis simple.(3) This holds by the same argument as in (2). �It will be 
onvenient to make the following de�nition for GL(n,R)-Higgs bundles, analo-gous to the way we asso
iate Sp(2n,R)-Higgs bundles to ve
tor bundles and U(p, q)-Higgsbundles in (3.15) and (3.16), respe
tively (
f. Theorem 3.14). Given a GL(n,R)-Higgs bun-dle ((W,Q), ψ), let f : W → W ∗ be the symmetri
 isomorphism asso
iated to Ω. De�nean asso
iated Sp(2n,R)-Higgs bundle(3.28) (V, ϕ) = υGL(n,R)

∗ ((W,Q), ψ)by setting
V = W, β = ψ and γ = fψf.Sin
e no 
onfusion is likely to o

ur, in the following we shall slightly abuse language,saying simply that υGL(n,R)

∗ ((W,Q), ψ) is a GL(n,R)-Higgs bundle. Similarly we shall saythat Sp(2n,R)-Higgs bundles (V, ϕ) obtained from the 
onstru
tions (3.15) and (3.16) are
U(n)-Higgs bundles and U(p, q)-Higgs bundles, respe
tively. With this understood, we 
anstate our stru
ture theorem on polystable Sp(2n,R)-Higgs bundles from Se
tion B.6 asfollows.Proposition 3.28. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle. Then there is ade
omposition

(V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vk, ϕk),unique up to reordering, su
h that ea
h (Vi, ϕi) is a stable Gi-Higgs bundle, where Gi isone of the following groups: Sp(2ni,R), U(ni) or U(pi, qi).Theorem 3.29. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle. Then there is a de
om-position (V, ϕ) = (V1, ϕ1) ⊕ · · · ⊕ (Vk, ϕk), unique up to reordering, su
h that ea
h of the
Sp(2ni,R)-Higgs bundles (Vi, ϕi) is one of the following:(1) A stable and simple Sp(2ni,R)-Higgs bundle.



30 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA(2) A stable U(pi, qi)-Higgs bundle with ni = pi + qi.(3) A stable U(ni)-Higgs bundle.(4) A GL(ni,R)-Higgs bundle whi
h is stable as a GL(ni,C)-Higgs bundle.Ea
h (Vi, ϕi) is a smooth point in the moduli spa
e of Gi-Higgs bundles, where Gi is the
orresponding real group Sp(2ni,R), U(pi, qi), U(ni) or GL(ni,R).Proof. This follows from Propositions 3.26, 3.27 and 3.28 and Theorems 3.12 and 3.14 �Remark 3.30. The existen
e of the de
omposition of a polystable Sp(2n,R)-Higgs bundle
(V, ϕ) given in Proposition 3.28 
an also be seen in a more down to earth way, as we nowbrie�y outline. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle and let (W,Φ) = H(V, ϕ)be the 
orresponding SL(2n,C)-Higgs bundle. By Theorems 3.13 and B.10 we have that(3.29) (W,Φ) =

⊕
(Wi,Φi),where (Wi,Φi) are stable GL(ni,C)-Higgs bundles. We 
an 
ontrol the shape of the sum-mands (Wi,Φi) by 
onsidering the subbundles A⊕B des
ribed in Lemma 3.16. By 
onsid-ering a maximal destabilizing W ′ = A⊕B ⊆ E and analyzing the indu
ed stable quotient

W ′′ = (V/A)⊕V ∗/B with the indu
ed Higgs �eld, one sees that (Wi,Φi) is in fa
t isomor-phi
 to H(Vi, ϕi), where (Vi, ϕi) is of one of the three types U(ni), Sp(2ni,R), and U(pi, qi).The di�erent types 
orrespond to whether (V/A)∗ and V ∗/B are isomorphi
 or not.4. Maximal degree Sp(2n,R)-Higgs bundles and the Cayley
orresponden
e4.1. Cayley 
orresponden
e. In this se
tion we shall des
ribe the Sp(2n,R) modulispa
e for the extreme value |d| = n(g − 1). In fa
t, for the rest of this se
tion we shallassume that d = n(g − 1). This involves no loss of generality, sin
e, by Proposition 3.24,
(V, ϕ) 7→ (V ∗, ϕt) gives an isomorphism between the Sp(2n,R) moduli spa
es for d and −d.The main result is Theorem 4.4, whi
h we refer to as the Cayley 
orresponden
e. This isstated as Theorem 1.3 in the Introdu
tion, where the reason for the name is also explained.When γ is an isomorphism, the stability 
ondition for Sp(2n,R)-Higgs bundles, givenby Theorem B.4 (with α = 0), simpli�es further. Here is a key observation:Proposition 4.1. Let (V, γ, β) be an Sp(2n,R)-Higgs bundle and assume that γ : V →
V ∗ ⊗ K is an isomorphism. If 0 ⊆ V1 ⊆ V2 ⊆ V is a �ltration su
h that γ ∈ H0(K ⊗

(S2V ⊥
1 + V ⊥

2 ⊗S V
∗)), then V2 = V

⊥γ

1 .Proof. This follows from the interpretation of the 
ondition on γ given in Remark 3.2. �Proposition 4.2. Let (V, β, γ) be an Sp(2n,R)-Higgs bundle and assume that γ : V →
V ∗ ⊗ L is an isomorphism. Let β̃ = (β ⊗ 1) ◦ γ : V → V ⊗ L2. Then (V, β, γ) is stable ifand only if for any V1 ⊂ V su
h that V1 ⊆ V

⊥γ

1 (i.e., V1 is isotropi
 with respe
t to γ) and
β̃(V1) ⊆ V1 ⊗ L2, the 
ondition

µ(V1) < g − 1is satis�ed.Proof. Note that β̃ is symmetri
 with respe
t to γ (viewed as an K-valued quadrati
 formon V ). From Remark 3.2 one sees that β ∈ H0(K ⊗ (S2V2 + V1 ⊗S V )) if and only if
β̃ preserves the �ltration 0 ⊆ V1 ⊆ V2 ⊆ V . But from Lemma 4.1 we have V2 = V

⊥γ

1 .
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e β̃ preserves V1 if and only if it preserves V2 (here one uses that β̃ is symmetri
 withrespe
t to γ). Given this 
orresponden
e between the subobje
ts, one 
an easily translatethe stability 
ondition. �Let (V, β, γ) be an Sp(2n,R)-Higgs bundle with d = n(g−1) su
h that γ ∈ H0(K⊗S2V ∗)is an isomorphism. Let L0 = K1/2 be a �xed square root of K, and de�ne W = V ∗ ⊗ L0.Then Q := γ ⊗ IL−1
0

: W ∗ → W is a symmetri
 isomorphism de�ning an orthogonalstru
ture onW , in other words, (W,Q) is an O(n,C)-holomorphi
 bundle. The K2-twistedendomorphism ψ : W → W ⊗ K2 de�ned by ψ = (γ ⊗ IK⊗L0
) ◦ β ⊗ IL0

is Q-symmetri
and hen
e (W,Q, ψ) de�nes a K2-twisted GL(n,R)-Higgs pair, from whi
h we 
an re
overthe original Sp(2n,R)-Higgs bundle.Theorem 4.3. Let (V, β, γ) be a Sp(2n,R)-Higgs bundle with d = n(g − 1) su
h that γis an isomorphism. Let (W,Q, ψ) be the 
orresponding K2-twisted GL(n,R)-Higgs pair.Then (V, β, γ) is semistable (resp. stable, polystable) if and only if (W,Q, ψ) is semistable(resp. stable, polystable).Proof. This follows from the simpli�ed stability 
onditions given in Theorem B.11 andProposition 4.2, using the translation W1 = V ∗
1 ⊗ L0. Similarly for semistability andpolystability. �Theorem 4.4. Let Mmax be the moduli spa
e of polystable Sp(2n,R)-Higgs bundles with

d = n(g−1) and letM′ be the moduli spa
e of polystable K2-twisted GL(n,R)-Higgs pairs.The map (V, β, γ) 7→ (W,Q, ψ) de�nes an isomorphism of 
omplex algebrai
 varieties
Mmax

∼=M′.Proof. Let (V, β, γ) be a semistable Sp(2n,R)-Higgs bundle with d = n(g − 1). By Propo-sition 3.22, γ is an isomorphism and hen
e the map (V, β, γ) 7→ (W,Q, ψ) is well de�ned.The result follows now from Theorem 4.3 and the existen
e of lo
al universal families (see[45℄). �4.2. Invariants of GL(n,R)-Higgs pairs. To aK2-twisted GL(n,R)-Higgs pair (W,Q, ψ)one 
an atta
h topologi
al invariants 
orresponding to the �rst and se
ond Stiefel-Whitney
lasses of a redu
tion to O(n) of the O(n,C) bundle de�ned by (W,Q). The �rst 
lass
w1 ∈ H1(X,Z2) ∼= Z

2g
2 measures the obstru
tion for the O(n)-bundle to have an ori-entation, i.e. to the existen
e of a redu
tion to a SO(n) bundle, while the se
ond one

w2 ∈ H2(X,Z2) ∼= Z2 measures the obstru
tion to lifting the O(n)-bundle to a Pin(n)-bundle, where
1→ Z2 → Pin(n)→ O(n)→ 1.If we de�ne

M′
w1,w2

:= {(W,Q, ψ) ∈M′ su
h that w1(W ) = w1 and w2(W ) = w2},we have that(4.30) M′ =
⋃

w1,w2

M′
w1,w2

.We thus have, via the isomorphism given by Theorem 4.4, that the moduli spa
eMmaxis partitioned in disjoint 
losed subvarieties 
orresponding to �xing (w1, w2).
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hin fun
tional5.1. The Hit
hin fun
tional. In order to de�ne this fun
tional, we 
onsider the modulispa
e of Sp(2n,R)-Higgs bundles (V, ϕ) from the gauge theory point of view, i.e., we usethe identi�
ation ofMd with the moduli spa
e Mgauge
d of solutions (A,ϕ) to the Hit
hinequations given by Theorem 2.19. There is an a
tion of S1 on Md via multipli
ationof ϕ by s
alars: (A,ϕ) 7→ (A, eiθϕ). Restri
ted to the smooth lo
us Ms

d this a
tion ishamiltonian with symple
ti
 moment map −f , where the Hit
hin fun
tional f is de�nedby(5.31) f :Md → R,

(A,ϕ) 7→ 1
2
‖ϕ‖2 = 1

2
‖β‖2 + 1

2
‖γ‖2.Here ‖·‖ is the L2-norm obtained by using the Hermitian metri
 in V and integrating over

X. The fun
tion f is well de�ned on the whole moduli spa
e (not just on the smoothlo
us). It was proved by Hit
hin [31, 32℄ that f is proper and therefore it has a minimumon every 
losed subspa
e ofM =
⋃
dMd. Thus we have the following result.Proposition 5.1. Let M′ ⊆M be any 
losed subspa
e and let N ′ ⊆M′ be the subspa
eof lo
al minima of f onM′. If N ′ is 
onne
ted then so isM′. �The following observation was also made by Hit
hin [32℄.Proposition 5.2. The Hit
hin fun
tional is additive with respe
t to dire
t sum of Sp(2n,R)-Higgs bundles, in other words,

f(
⊕

(Vi, ϕi)) =
∑

f(Vi, ϕi).Let (V, ϕ) represent a smooth point of Md. Then the moment map 
ondition showsthat the 
riti
al points of f are exa
tly the �xed points of the 
ir
le a
tion. These 
an beidenti�ed as follows (
f. [31, 32, 48℄).Proposition 5.3. An Sp(2n,R)-Higgs bundle (V, ϕ) represents a �xed point of the 
ir
lea
tion on Md if and only if it is a 
omplex variation of Hodge stru
ture (also 
alled aHodge bundle): this means that there is a de
omposition in holomorphi
 subbundles
V =

⊕
Fifor real indi
es, or weights, i su
h that, attributing weight −i to F ∗

i , ϕ = (β, γ) has weightone with respe
t to this de
omposition; more expli
itly this means that
γ : Fi → F ∗

−i−1 ⊗K and β : F ∗
i → F−i+1 ⊗K.

�
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omposition V =
⊕

Fi of Proposition 5.3 gives rise to 
orresponding de
omposi-tions
End(V )k =

⊕

i−j=k
Fi ⊗ F

∗
j ,(5.32)

(S2V ⊗K)k+1 =
⊕

i+j=k+1
i<j

Fi ⊗ Fj ⊗K ⊕ S
2Fk+1

2

⊗K,(5.33)
(S2V ∗ ⊗K)k+1 =

⊕

−i−j=k+1
i<j

F ∗
i ⊗ F

∗
j ⊗K ⊕ S

2F ∗
− k+1

2

⊗K.(5.34)The map ad(ϕ) in the deformation 
omplex (2.3) has weight 1 with respe
t to these de-
ompositions, so that we 
an de�ne 
omplexes(5.35) C•
k(V, ϕ) : End(V )k

ad(ϕ)
−−−→ (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1,for any k. The deformation 
omplex (2.3) de
omposes a

ordingly as

C•(V, ϕ) =
⊕

C•
k(V, ϕ).We shall also need the positive weight sub
omplex(5.36) C•

−(V, ϕ) =
⊕

k>0

C•
k(V, ϕ).It 
an be shown (see, e.g., [23, �3.2℄) that H1(C•
k(V, ϕ)) is the weight −k-subspa
e of

H1(C•(V, ϕ)) for the in�nitesimal 
ir
le a
tion. Thus H1(C•
−(V, ϕ)) is the positive weightspa
e for the in�nitesimal 
ir
le a
tion.Proposition 5.4. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whose isomorphism
lass is �xed under the 
ir
le a
tion.(1) Assume that (V, ϕ) is simple and stable as an Sp(2n,C)-Higgs bundle. Then (V, ϕ)represents a lo
al minimum of f if and only if H1(C•
−(V, ϕ)) = 0.(2) Suppose that there is a family (Vt, ϕt) of polystable Sp(2n,R)-Higgs bundles, para-metrized by t in the open unit disk D, deforming (V, ϕ) (i.e., su
h that (V0, ϕ0) =

(V, ϕ)) and that the 
orresponding in�nitesimal deformation is a non-zero elementof H1(C•
−(V, ϕ)). Then (V, ϕ) is not a lo
al minimum of f onMd.Proof. (1) From Proposition 2.15, when the hypotheses are satis�ed, (V, ϕ) represents asmooth point of the moduli spa
e. Then one 
an use the moment map 
ondition on f toshow that H1(C•
k(V, ϕ)) is the eigenvalue −k subspa
e of the Hessian of f (
f. [23, �3.2℄;this goes ba
k to Frankel [22℄, at least). This proves (1).(2) Take a 
orresponding family of solutions to Hit
hin's equations. One 
an then provethat the se
ond variation of f along this family is negative in 
ertain dire
tions (see Hit
hin[32, � 8℄). �5.2. A 
ohomologi
al 
riterion for minima. The following result was proved in [6,Proposition 4.142 and Remark 4.16℄. It is the key to obtaining the 
hara
terization of theminima of the Hit
hin fun
tional f .2a 
orre
ted proof 
an be found in [9, Lemma 3.11℄



34 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProposition 5.5. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whose isomorphism
lass is �xed under the 
ir
le a
tion. Then for any k we have χ(C•
k(V, ϕ)) ≤ 0 and equalityholds if and only if

ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism.Corollary 5.6. Let (V, ϕ) be a simple Sp(2n,R)-Higgs bundle whi
h is stable as an Sp(2n,C)-Higgs bundle. If (V, ϕ) is �xed under the 
ir
le a
tion then it represents a lo
al minimumof f if and only if the map
ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism for all k > 0.Proof. We have the vanishing H0(C•

k(V, ϕ)) = H2(C•
k(V, ϕ)) = 0 for all k > 0 from Propo-sition 2.14. Hen
e dim H1(C•

−(V, ϕ)) = −χ(C•
−(V, ϕ)). Now the result is immediate fromProposition 5.5 and (1) of Proposition 5.4. �5.3. Minima of the Hit
hin fun
tional. In order to des
ribe the minima, it is 
onve-nient to de�ne the following subspa
es ofMd.De�nition 5.7. For ea
h d, de�ne the following subspa
e ofMd.

Nd = {(V, β, γ) ∈Md | β = 0 or γ = 0}.Remark 5.8. It is easy to see that polystability of (V, ϕ) implies that, in fa
t,
Nd = {(V, β, γ) | β = 0} for d > 0,
Nd = {(V, β, γ) | γ = 0} for d < 0,
Nd = {(V, β, γ) | β = γ = 0} for d = 0.Note, in parti
ular, that for d = 0 the vanishing of one of the se
ions β or γ implies thevanishing of the other one.Proposition 5.9. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle with β = 0 or γ = 0.Then (V, ϕ) represents the absolute minimum of f on Md. Thus Nd is 
ontained in thesubspa
e of lo
al minima of f onMd.Proof. This 
an be seen in a way similar to the proof of [6, Proposition 4.5℄. �Theorem 5.10. Let (V, β, γ) be a polystable Sp(2n,R)-Higgs bundle and assume that n ≥

3. Then (V, β, γ) represents a minimum of the Hit
hin fun
tional if and only if one of thefollowing situations o

urs:(1) (V, β, γ) belongs to Nd.(2) The degree d = −n(g − 1) with n = 2q + 1 odd, and there exists a square root L of
K su
h that the bundle V is of the form

V =

q⊕

λ=−q
L−1K−2λ.
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t to this de
omposition of V and the 
orresponding de
omposition of V ∗,the maps β and γ are of the form:
β =




0 · · · 0 1
... . .

.
. .
.

0

0 1 . .
. ...

1 0 · · · 0




and γ =




0 · · · 0 0
... . .

.
. .
.

1

0 0 . .
. ...

0 1 · · · 0


where, in the matrix for β, we denote by 1 the 
anoni
al se
tion of

Hom((L−1K−2λ)∗, L−1K2λ)⊗K ∼= Oand analogously for γ.(3) The degree d = −n(g− 1) with n = 2q+2 even, and there exists a square root L of
K su
h that the bundle V is of the form

V =

q+1⊕

λ=−q
LK−2λ.With respe
t to this de
omposition of V and the 
orresponding de
omposition of V ∗,the maps β and γ are of the form given above.(4) The degree d = n(g−1) and the dual Sp(2n,R)-Higgs bundle (V ′, β ′, γ′) = (V ∗, γt, βt)is of the form given in (2) or (3) above.De�nition 5.11. If (V, β, γ) is a minimum whi
h does not belong to Nd we say that it isa quiver type minimum.Remark 5.12. The 
ases n = 1 and n = 2 are spe
ial and were treated in [31℄ and [29℄,respe
tively (
f. (1) of Corollary 6.6 and Remark 6.7).Proof of Theorem 5.10. This proof relies on the results of Se
tions 6 and 7 below.Consider �rst the 
ase of simple Sp(2n,R)-Higgs bundles (V, ϕ) whi
h are stable as

Sp(2n,C)-Higgs bundles. In this 
ase, the analysis of the minima is based on Corollary 5.6and is 
arried out in Se
tion 6 below. The main result is Theorem 6.8, whi
h says thatTheorem 5.10 holds for su
h (V, ϕ).Next, 
onsider a polystable Sp(2n,R)-Higgs bundle (V, ϕ) whi
h is not simple and stableas an Sp(2n,C)-Higgs bundle. Then the de
omposition (V, ϕ) =
⊕

(Vi, ϕi) given in thestru
ture Theorem 3.29 is non-trivial. The main result of Se
tion 7, Proposition 7.1, saysthat if su
h a (V, ϕ) is a lo
al minimum then it belongs to Nd, i.e., β = 0 or γ = 0. This
on
ludes the proof. �6. Minima in the smooth lo
us of the moduli spa
eIn this se
tion we 
onsider simple Sp(2n,R)-Higgs bundles (V, φ) whi
h are stable as
Sp(2n,C)-Higgs bundles. Thus, by Proposition 2.15, they belong to the smooth lo
us ofthe moduli spa
eMd. In Theorem 6.8 below we prove that the statement of Theorem 5.10holds in this 
ase.Our results are based on a 
areful analysis of the stru
ture of Sp(2n,R)-Higgs bundles
(V, φ) satisfying the 
riterion of Corollary 5.6.
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tion we give a des
ription of simple Sp(2n,R)-Higgsbundles, whi
h are 
omplex variations of Hodge stru
ture (
f. Proposition 5.3).Lemma 6.1. Let (V, β, γ) be an Sp(2n,R)-Higgs bundle and suppose there are splittings
V = Va ⊕ Vb and V ∗ = V ∗

c ⊕ V
∗
d , at least one of whi
h is non-trivial, and satisfying

β(V ∗
c ) ⊂ Va ⊗K, γ(Va) ⊂ Vc ⊗K, β(V ∗

d ) ⊂ Vb ⊗K, γ(Vb) ⊂ Vd ⊗K.Then (V, β, γ) is not simple.Proof. Suppose the splitting V = Va⊕Vb is non-trivial and, with respe
t to this de
ompo-sition, let
σ = (1,−1) ∈ Aut(V )Then, 
learly, σ �xes ϕ = (β, γ) and hen
e σ ∈ Aut(V, ϕ). Therefore (V, ϕ) is not simple(
f. Proposition 3.4). An analogous argument works when the splitting V ∗ = V ∗

c ⊕ V
∗
d isnon-trivial. �Now assume that the Sp(2n,R)-Higgs bundle (V, ϕ) = (V, β, γ) is a Hodge bundle, i.e.,

V =
⊕

Fi, β : F ∗
i → F−i+1 ⊗K and γ : Fi → F ∗

−i−1 ⊗K, as des
ibed in Proposition 5.3,and let
Fi = Fi ⊕ F

∗
−ibe the weight i subspa
e of V ⊕ V ∗. Then ϕ has 
omponents

ϕi : Fi → Fi+1 ⊗K.Let i0 and i1 be the smallest and largest weights 
orresponding to non-zero weight spa
es,respe
tively:
i0 = min{i | Fi 6= 0},

i1 = max{i | Fi 6= 0}.Lemma 6.2. If (V, ϕ) = (V, β, γ) is simple and a 
omplex variation of Hodge stru
ture,then(1) any weight i for whi
h Fi 6= 0 di�ers from i0 by an integer,(2) the map ϕi : Fi → Fi+1 ⊗K is non-vanishing for i = i0, i0 + 1, . . . , i1 − 1, and(3) only one of the bundles in the de
omposition Fi = Fi ⊕ F ∗
−i is non-zero for i =

i0, i0 + 1, . . . , i1 − 1.Proof. (1) Let
E ′ =

⊕

i−n∈Z

Fi and E ′′ =
⊕

i−n 6∈Z

Fiand de�ne splittings V = Va ⊕ Vb and V ∗ = V ∗
c ⊕ V

∗
d by the requirement that

E ′ = Va ⊕ V
∗
c and E ′′ = Vb ⊕ V

∗
d .Clearly these splittings satisfy the 
onditions of Lemma 6.1 and hen
e, sin
e (V, β, γ) issimple, we 
on
lude that E ′′ = 0.(2) If ϕj = 0 for some j, we 
an let

E ′ =
⊕

i0≤i≤j
Fi and E ′′ =

⊕

j+1≤i≤i1

Fi,and we obtain a 
ontradi
tion with simpli
ity of (V, β, γ), using Lemma 6.1, as in the proofof (1).
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an organize the bundles Fi and F ∗
i and the maps between them in the diagram(6.37) Fi0 γ

##HHH
HH

HH
HH

Fi0+1 γ

""FFFFFFFFF
· · ·

F ∗
−i0

vvvv
β

;;vvvv

F ∗
−i0−1

xxx
β

<<xxxxx

· · ·

,

where the maps are twisted by K, i.e., Fi γ // F ∗
−i−1 should be interpreted to mean thatwe have a map Fi

γ // F ∗
−i−1 ⊗K , and analogously for β. From this it is 
lear that, ifwe de�ne

Va =
⊕

Fi0+2i Vb =
⊕

Fi0+1+2i

V ∗
c =

⊕
F ∗
−i0−1+2i V ∗

d =
⊕

F ∗
−i0+2i,and let E ′ = Va ⊕ V ∗

c and E ′′ = Vb ⊕ V ∗
d then, again using Lemma 6.1, simpli
ity impliesthat E ′ = 0 or E ′′ = 0. Sin
e the bundles Fi are just the dire
t sums of the bundlesappearing in ea
h 
olumn in the diagram (6.37) above, this 
on
ludes the proof. �Proposition 6.3. If (V, ϕ) = (

⊕
Fi, β, γ) is simple and a Hodge bundle, we have eitherthe diagram(6.38) Fi1 Fi1−2

γ
����

��
��

��
�

Fi0+1

. . .

F ∗
1−i1

β

[[888888888

F ∗
3−i1

β

]];;;;;;;;;

F ∗
−i0

β

]]:::::::::or the diagram(6.39) Fi1−1

γ
����

��
��

��
�

Fi1−3

γ
����

��
��

��
�

Fi0

γ
����

��
��

��
�

. . .

F ∗
−i1 F ∗

2−i1

β

]];;;;;;;;;

F ∗
−i0+1,where ea
h of the maps is non-zero. Here the maps are twisted by K, i.e., Fi

γ // F ∗
−i−1should be interpreted to mean that we have a map Fi

γ // F ∗
−i−1 ⊗K , and analogouslyfor β.Proof. Immediate from Lemma 6.2. �Remark 6.4. Re
all from Proposition 3.24 that, for ea
h d, there is an isomorphismMd

∼=
−→

M−d, given by the duality (V, β, γ) 7→ (V ∗, γt, βt). Under this duality the situations (6.38)and (6.39) 
orrespond (in fa
t, as we shall see, the former situation 
orresponds to d < 0,whereas the latter 
orresponds to d > 0). Hen
eforth we shall assume, for de�niteness,that we are in the situation (6.38) of Proposition 6.3.
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ation of the 
riterion for minima. In this se
tion we 
ombine the des
rip-tion of the 
omplex variations of Hodge stru
ture given in Proposition 6.3 and the 
riteriongiven in Corollary 5.6 to determine the minima of the Hit
hin fun
tional 
orresponding tosimple Sp(2n,R)-Higgs bundles whi
h are stable as Sp(2n,C)-Higgs bundles.Let
m = i0 + 1 and M = i1be the smallest and largest weight, respe
tively, appearing in the de
omposition V =

⊕
Fi.Then we 
an write(6.40) V =

p⊕

λ=0

FM−2λ,where
p = (M −m)/2, M = p+

1

2
and m = −p +

1

2
.Note also that m = 1−M .Theorem 6.5. Let (V, β, γ) be a Hodge bundle of the type des
ribed in (6.38) of Proposi-tion 6.3. Assume that β 6= 0 and γ 6= 0. Then the map

ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism for all k > 0 if and only if the following holds:(i) For any 0 ≤ λ ≤ p the rank of FM−2λ is 1;(ii) for any 0 ≤ λ ≤ p− 1 the pie
e of β in
FM−2λ ⊗ Fm+2λ ⊗K ⊂ S2V ⊗Knever vanishes;(iii) for any 1 ≤ λ ≤ p− 1 the pie
e of γ in

F ∗
M−2λ ⊗ F

∗
m+2λ−2 ⊗K ⊂ S2V ∗ ⊗Knever vanishes.An analogous statement holds for Hodge bundles of the type des
ribed in (6.39) of Propo-sition 6.3.Proof. The assumption β 6= 0 and γ 6= 0 means that in the de
omposition (6.40) we have

p ≥ 1. If we take the pie
e in degree k = 2p of the map ad(ϕ), we get
A := ad(ϕ)2p : FM ⊗ F

∗
m → S2FM ⊗K,whi
h by assumption is an isomorphism. Computing the ranks ri = rk(Fi), we dedu
e

rMrm =
rM(rM + 1)

2
.To prove that rM = rm = 1, we assume the 
ontrary and show that this leads to a
ontradi
tion. If rM > 1 then by the formula above we must have rm < rM . Let b be thepie
e of β in FM ⊗ Fm ⊗K ⊂ (S2V ⊗K)2p. Then the map A sends any e ∈ FM ⊗ F ∗

m to
A(e) = eb+ be∗.The �rst summand denotes the 
omposition of maps

F ∗
M

b
−→ Fm

e
−→ FM
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ond summand
F ∗
M

e∗
−→ F ∗

m
b
−→ FM .Take a basis u1, . . . , urM of FM whose �rst rm elements are a basis of b(F ∗

m), and take on
F ∗
M the dual basis. If we write the matri
es of eb and be∗ with respe
t to these basis, onereadily 
he
ks that the (rM − rm) × (rM − rm) blo
k in the bottom left of both matri
esvanishes. Consequently, an element in S2FM represented by a symmetri
 matrix whoseentry at the bottom left 
orner is nonzero 
annot belong to the image of A. Hen
e A isnot an isomorphism, in 
ontradi
tion to our assumption, so we dedu
e that

rM = rm = 1.One also dedu
es that the se
tion b ∈ H0(FM ⊗ Fm ⊗ K) never vanishes. This provesstatements (i) and (ii) when λ = 0 or p.Observation. The following observation will be useful: if e ∈ Fi ⊗ F ∗
j ⊂ End(V ), thenany nonzero pie
e of ad(ϕ)(e) in the de
omposition (5.33) belongs to a summand of theform Fi ⊗ Fu ⊗ K, and any nonzero pie
e in (5.34) belongs to a summand of the form

F ∗
j ⊗ F

∗
v ⊗K (in both 
ases the symmetrization should be understood if the two indi
es
oin
ide). This follows from the fa
t that ad(ϕ)(e) is the sum of 
ompositions of e withanother map (either on the right and on the left). Hen
e ea
h summand in ad(ϕ)(e) mustshare with e at least the domain or the target.Now let us take any k = 2p− 2λ ≥ 1, su
h that λ ≥ 1, so that 1 ≤ λ ≤ p− 1. Then wehave(6.41) End(V )2p−2λ = FM ⊗ F

∗
m+2λ ⊕ FM−2 ⊗ F

∗
m+2λ−2 ⊕ · · · ⊕ FM−2λ ⊗ F

∗
m.We 
laim that there is no nonzero blo
k in (S2V ∗⊗K)2p−2λ+1 of the form F ∗

m+2λ⊗F
∗
v ⊗K.Indeed, for that one should take v = −(2p− 2λ+ 1)− (m+ 2λ) = −M − 1, but F−M−1 =

0, be
ause −M − 1 < m. On the other hand, (S2V ∗ ⊗ K)2p−2λ+1 
ontains the blo
k
FM ⊗ FM−2λ ⊗K and no other blo
k involving FM . Hen
e we must have

ad(ϕ)k(FM ⊗ F
∗
m+2λ) ⊂ FM ⊗ FM−2λ ⊗K.Taking ranks and using the fa
t that ad(ϕ)k is inje
tive, we dedu
e that

rm+2λ ≤ rM−2λ.Sin
e 1 ≤ λ ≤ p− 1⇐⇒ 1 ≤ p− λ ≤ p− 1, we automati
ally dedu
e that
rm+2p−2λ ≤ rM−2p+2λ.But m+ 2p = M , so we 
on
lude that(6.42) rm+2λ = rM−2λ.Let us distinguish two possibilities.Case (1). Suppose that λ = 2l + 1 is odd. Then we have

S2F ∗
m+λ−1 ⊗K ⊂ (S2V ∗ ⊗K)2p−2λ+1,and the observation above implies that

ad(ϕ)−1
2p−2λ(S

2F ∗
m+λ−1 ⊗K) ⊂ FM−λ−1 ⊗ F

∗
m+λ−1.The argument given above for λ = 0 proves now that the pie
e of γ in

F ∗
M−λ−1 ⊗ F

∗
m+λ−1 ⊗Knever vanishes.
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S2FM−λ ⊗K ⊂ (S2V ⊗K)2p−2λ+1,and the observation above implies that

ad(ϕ)−1
2p−2λ(S

2FM−λ ⊗K) ⊂ FM−λ ⊗ F
∗
m+λ.The argument given above for λ = 0 proves now that the pie
e of β in

FM−λ ⊗ Fm+λ ⊗Knever vanishes.These arguments prove statements (ii) and (iii).We are now going to prove that for any 1 ≤ λ ≤ p/2 the ranks rM−2λ = rm+2λ = 1 usingindu
tion. Fix su
h a λ and assume that for any 0 ≤ l < λ we have rM−2l = rm+2l = 1(when l = 0 we already know this is true). Sin
e 2p− 2λ ≥ 1 we must have(6.43) rk End(V )2p−2λ = rk(S2V ⊗K ⊕ S2V ∗ ⊗K)2p−2λ+1.Using indu
tion we 
an 
ompute the left hand side:
rk End(V )2p−2λ = rMrm+2λ + rM−2rm+2λ−2 + · · ·+ rM−2λ+2rm+2 + rM−2λrm

= rm+2λ + rM−2λ + (λ− 1).We now distinguish again two 
ases.Case (1). Suppose that λ = 2l + 1 is odd. Then we 
ompute
rk(S2V )2p−2λ+1 = rMrM−2λ + rM−2rM−2λ+2 + · · ·+ rM−λ+1rM−λ−1

= rM−2λ + land
rk(S2V ∗)2p−2λ+1 =rmrm+2λ−2 + rm+2rm+2λ−4 + · · ·+ rm+λ−3rm+λ+1

+

(
rm+λ−1 + 1

2

)
= l + 1.Comparing the two 
omputations it follows from (6.43) that

rm+2λ = 1,and using (6.42) we dedu
e that
rM−2λ = 1.Case (2). Now suppose that λ = 2l is even. Then we have

rk(S2V )2p−2λ+1 =rMrM−2λ + rM−2rM−2λ+2 + · · ·+ rM−λ+2rM−λ−2

+

(
rM−λ

2

)
= rM−2λ + land

rk(S2V ∗)2p−2λ+1 = rmrm+2λ−2 + rm+2rm+2λ−4 + · · ·+ rm+λ−2rm+λ

= l.Comparing again the two 
omputations we dedu
e that
rm+2λ = rM−2λ = 1.This �nishes the proof of statement (i) and thus the proof of the Theorem. �



REPRESENTATIONS OF SURFACE GROUPS 41Corollary 6.6. Let (V, β, γ) be a Hodge bundle of the type des
ribed in (6.38) of Proposi-tion 6.3. Assume that β 6= 0 and γ 6= 0 and that the map
ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism for all k > 0. Then the following holds.(1) If n = 2 then F 3

2
⊗ F− 1

2
⊗K ∼= C.(2) If n = 2q + 1 ≥ 3 is odd then β : F ∗

1

2
−2λ

∼=
→ F 1

2
+2λK for any integer −q ≤ λ ≤ q. Inparti
ular, there exists a square root L of K su
h that for any integer −q ≤ λ ≤ qwe have

FM−2(q−λ)
∼= Fm+2(λ+q)

∼= F 1

2
+2λ
∼= L−1 ⊗K−2λ,and the bundle V is of the form

V =

q⊕

λ=−q
L−1K−2λ.(3) If n = 2q+2 ≥ 4 then γ : F− 1

2

∼=
→ F ∗

− 1

2

K and β : F ∗
− 1

2
−2λ

∼=
→ F− 1

2
+2λK for any integer

−q ≤ λ ≤ q + 1. In parti
ular, there exists a square root L of K su
h that for anyinteger −q ≤ λ ≤ q + 1 we have
F− 1

2
+2λ
∼= L⊗K−2λ ∼= FM−2(q+1−λ)

∼= Fm+2(λ+q),and the bundle V is of the form
V =

q+1⊕

λ=−q
LK−2λ.(4) For any n ≥ 2, the degree of V is deg V = n(1− g).(5) For any n ≥ 2, an Sp(2n,R)-Higgs bundle of the form des
ribed in (1)�(3) above isstable as an SL(2n,C)-Higgs bundle, and thus also as an Sp(2n,C)-Higgs bundle.Analogous statements hold for Hodge bundles of the type des
ribed in (6.39) of Proposi-tion 6.3. In parti
ular, in this 
ase the degree of V is deg V = n(g − 1) (
f. Remark 6.4).Remark 6.7. In the 
ase n = 1 it is not possible for (V, ϕ) to be a Hodge bundle with β 6= 0and γ 6= 0.Proof of Corollary 6.6. First we observe that, sin
e the Fi are all line bundles, we have

n = p + 1, M = p+ 1
2
and m = −p + 1

2
.(1) In this 
ase we have n = 2, p = 1, M = 3/2, m = −1/2. Then, taking λ = 0 in (ii)of Theorem 6.5 we get F 3

2
⊗ F− 1

2
⊗K ∼= C.(2) In this 
ase we have n = p+ 1 = 2q + 1 so that M = 2q + 1/2 and m = −2q + 1/2.Hen
e, using (ii) and (iii) of Theorem 6.5, we 
an des
ribe the stru
ture of the maps β and
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γ in the following diagram:

•
M

•
M−2

γ

77· · · •
1/2

β

��

γ 66
•

−3/2 · · · •
m+2

β

vv
•
m

β

xx
,

where an arrow •
i

β // •
j means that there is an isomorphism β : F ∗

i → Fj ⊗ K (andthus j = −i + 1); similarly, an arrow •
i

γ // •
j means that there is an isomorphism

γ : Fi → F ∗
j ⊗K. In parti
ular, we see that the isomorphism β : F ∗

1

2

∼=
→ F 1

2
⊗K means that

F 1

2

∼= L−1 for a square root L of K. This proves the 
ase λ = 0 of (2). Now repeatedappli
ation of (ii) and (iii) of Theorem 6.5 proves the general 
ase. Note that this argument
an be phrased as saying that the graph above is 
onne
ted and its only 
losed loop is theone at 1/2: thus the remaining Fi are uniquely determined by F 1

2
.(3) In this 
ase we have n = p + 1 = 2q + 2 so that M = 2q + 3/2 and m = −2q − 1/2and, as above, we have a diagram

•
M

•
M−2

γ

77· · · •
3/2

•
−1/2
γ QQ

β
xx

· · · •
m+2

β

vv
•
m

β

xx
.The argument is now analogous to the previous 
ase.(4) Easy from the formulas for V given in (2) and (3).(5) Let (V, ϕ) be of the kind des
ribed in (1)�(3), and 
onsider the asso
iated SL(2n,C)-Higgs bundle (V ⊕V ∗,Φ) = H(V, ϕ). The Φ-invariant subbundles of V ⊕V ∗ are of the form⊕

i≥i0(Fi ⊕ F
∗
−i). From the given des
ription, it is easy to 
he
k that su
h a subbundle,when proper and non-zero, has degree stri
tly negative. �Finally, we use the analysis 
arried out so far to determine the minima of the Hit
hinfun
tional on the lo
us of the moduli spa
e 
orresponding to simple Sp(2n,R)-Higgs bun-dles whi
h are stable as Sp(2n,C)-Higgs bundles.Theorem 6.8. Let (V, β, γ) be a simple Sp(2n,R)-Higgs bundle whi
h is stable as an

Sp(2n,C)-Higgs bundle.(1) If |d| < n(g − 1) then (V, β, γ) represents a minimum of the Hit
hin fun
tional ifand only if it belongs to Nd.(2) If |d| = n(g − 1) and n ≥ 3 then (V, β, γ) represents a minimum of the Hit
hinfun
tional if and only if one of the following situations o

urs:(i) the Sp(2n,R)-Higgs bundle (V, β, γ) belongs to Nd;



REPRESENTATIONS OF SURFACE GROUPS 43(ii) the Sp(2n,R)-Higgs bundle (V, β, γ) is of the type des
ribed in (2) or (3) ofCorollary 6.6. In this 
ase we say that (V, β, γ) is a quiver type minimum.Proof. If (V, β, γ) belongs to Nd then we know from Proposition 5.9 that it represents aminimum. And, if (V, β, γ) is of the type des
ribed in (2) or (3) of Corollary 6.6, thenCorollary 5.6 and Theorem 6.5 show that it represents a minimum.On the other hand, if (V, β, γ) is a minimum whi
h does not belong to Nd, then Corol-lary 5.6, Theorem 6.5 and Corollary 6.6 show that it is of the type des
ribed in (2) or (3)of Corollary 6.6. �7. Minima on the entire moduli spa
e7.1. Main result and strategy of proof. In Se
tion 6 we 
hara
terized the minimaof the Hit
hin fun
tional on the lo
us of Md 
orresponding to simple Sp(2n,R)-Higgsbundles (V, ϕ) whi
h are stable as Sp(2n,C)-Higgs bundles. In this se
tion we provide theremaining results required to extend this 
hara
terization to the whole moduli spa
e, thus
ompleting the proof of Theorem 5.10. As explained in the proof of that Theorem, what isrequired is to rule out 
ertain type of potential minima of the Hit
hin fun
tional. In ea
h
ase this is done by using (2) of Proposition 5.4. The main result of this Se
tion is thefollowing.Proposition 7.1. Let (V, ϕ = β + γ) be a polystable Sp(2n,R)-Higgs bundle and assumethat the de
omposition (V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vk, ϕk) of Theorem 3.29 is non-trivial. If
(V, ϕ) is a lo
al minimum of the Hit
hin fun
tional then either β = 0 or γ = 0.Proof. The starting point is the stru
ture Theorem 3.29. Re
all that this des
ribes apolystable Sp(2n,R)-Higgs bundle as a dire
t sum(7.44) (V, ϕ) =

⊕
(Vi, ϕi),where ea
h Sp(2n,R)-Higgs bundle (Vi, ϕi) 
omes from aGi-Higgs bundle whi
h is a smoothpoint in its respe
tive moduli spa
e. If (V, ϕ) is a minimum, then Proposition 5.2 impliesthat ea
h (Vi, ϕi) is a minimum on the 
orresponding moduli spa
e of Gi-Higgs bundles.Consider ea
h of the possible Gi's in turn.The 
ase Gi = Sp(2ni,R). This is the 
ase 
overed by Theorem 6.8. (Ex
ept for the
ase ni = 2, whi
h will require spe
ial attention.)The 
ase Gi = U(ni). In this 
ase ϕi = 0 for any Gi-Higgs bundle, as we have alreadyseen.The 
ase Gi = U(pi, qi). In this 
ase, the minima of the Hit
hin fun
tional were deter-mined in [6℄. There it is shown that a U(pi, qi)-Higgs bundle (Ṽi, W̃i, β̃ + γ̃) is a minimumif and only if β̃ = 0 or γ̃ = 0. Hen
e (Vi, ϕi) = υ

U(pi,qi)
∗ (Ṽi, W̃i, β̃ + γ̃) (
f. (3.16)) is aminimum if and only if βi = 0 or γi = 0The 
ase Gi = GL(ni,R). The moduli spa
e of su
h Higgs bundles was studied in [7℄.Using the results of that paper we show in Lemma 7.8 below that a Sp(2ni,R)-Higgs bundle

(Vi, ϕi) 
oming from a GL(ni,R)-Higgs bundle is a minimum if and only if ϕi = 0.A quiver type minimum (V, ϕ) is simple and stable as a Sp(2n,C)-Higgs bundle by (5)of Corollary 6.6. Thus, to 
on
lude the proof of the Proposition, it remains to show thatif (V, ϕ) is a minimum and the de
omposition (7.44) is non-trivial, then it belongs to Nd,
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oming from Gi-Higgs bundles,it therefore su�
es to show that (V, ϕ) is not a minimum when the de
omposition (7.44)falls in one of the following 
ases:(1) There is a (Vi, ϕi) in Ndi
with βi 6= 0 and a (Vj , ϕj) in Ndj

with γj 6= 0.(2) There is a (Vi, ϕi) whi
h is a quiver type minimum and a (Vj , ϕj) whi
h lies in Ndi
.(3) There are (distin
t) (Vi, ϕi) and (Vj , ϕj) whi
h are quiver type minima.In order to a

omodate the possibility ni = 2, the quiver type minima must here beunderstood to in
lude all minima with β 6= 0 and γ 6= 0 (
f. (1) of Corollary 6.6). The
ase ni = 1 is in
luded sin
e su
h minima must have β = 0 or γ = 0 (
f. Remark 6.7).Note that, by Proposition 5.2, in fa
t it su�
es to 
onsider the 
ase when k = 2 in (7.44).With this in mind, the results of Lemmas 7.2, 7.4 and 7.6 below 
on
lude the proof. �7.2. Deforming a sum of minima in Nd.Lemma 7.2. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whi
h de
omposes as adire
t sum (V, ϕ) = (V ′, ϕ′) ⊕ (V ′′, ϕ′′) with ϕ′ = (β ′, γ′) and ϕ′′ = (β ′′, γ′′). Supposethat β ′ = 0, γ′ 6= 0, β ′′ 6= 0 and γ′′ = 0. Suppose additionally that (V ′, ϕ′) and (V ′′, ϕ′′)are stable Sp(2n,R)-Higgs bundles or stable U(p, q)-Higgs bundles. Then (V, ϕ) is not aminimum of f onMd. The same is true if β ′ 6= 0, γ′ = 0, β ′′ = 0 and γ′′ 6= 0.Proof. We prove the Lemma by applying the 
riterion in (2) of Proposition 5.4. As a �rststep, we identify the 
omplex C•

− de�ned in (5.36), and for that we need to know theweights of ea
h pie
e V ′, V ′′. Re
all that the weight of ϕ′, ϕ′′ is always 1.(1) Sin
e γ′ : V ′ → V ′∗K, the weight on V ′∗ is 1 + λ′ = −λ′, where λ′ is the weight on
V ′. Thus λ′ = −1/2.(2) Similarly, the weight on V ′′ is λ′′ = 1/2.From this it follows immediately that the 
omplex C•

− is given by
C•

− : Hom(V ′, V ′′)→ 0,so that
H1(C•

−) = H1(Hom(V ′, V ′′)).Re
all from Remark 5.8 that d′ = deg(V ′) ≥ 0 and d′′ ≤ 0 so, by Riemann�Ro
h,
H1(Hom(V ′, V ′′)) 6= 0.This proves that C•

− has nonzero �rst hyper
ohomology. To �nish the argument we need tointegrate any element of H1(C•
−) to a deformation of (V, ϕ) through polystable Sp(2n,R)-Higgs bundles.Chose any3 nonzero element a ∈ H1(Hom(V ′, V ′′)). Denote by D the open unit disk.De�ne V′ = D × V ′ and V′′ = D × V ′′, whi
h we view as ve
tor bundles over X ×D. Wedenote by γ′D : V′ → V′∗ ⊗K (here K denotes the pullba
k to X ×D) the extension of γ′whi
h is 
onstant on the D dire
tion, and we de�ne similarly β ′′

D : V′′∗ → V′′ ⊗K. Takethe extension
0→ V′′ → V→ V′ → 03when one of (V ′, ϕ′) and (V ′′, ϕ′′) is a U(p, q)-Higgs bundle, this 
hoi
e is not 
ompletely arbitrary, 
f.the proof of Lemma 7.3 below.
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lassi�ed by
a⊗ 1 ∈ H1(Hom(V′,V′′)) = H1(X; Hom(V ′, V ′′))⊗H0(D; C).The restri
tion of this to X × {t} is the extension(7.45) 0→ V ′′ → Vt → V ′ → 0
lassi�ed by ta ∈ H1(Hom(V ′, V ′′)). De�ne γD : V→ V∗ ⊗K as the 
omposition

V −→ V′ γ′D−→ V′∗ ⊗K → V∗ ⊗K,where the �rst arrow 
omes from the exa
t sequen
e de�ning V and the third one 
omesfrom dualising the same exa
t sequen
e and tensoring by the pullba
k of K. Similarly,de�ne βD : V∗ → V⊗K as the 
omposition
V∗ −→ V′′∗ β′′

D−→ V′′ ⊗K → V⊗K.The resulting triple (V, βD, γD) is a family of symple
ti
 Higgs bundles parametrized bythe disk, whose restri
tion to the origin 
oin
ides with (V, ϕ), and whi
h integrates theelement a in the deformation 
omplex.It remains to show that ea
h member of the family (V, βD, γD) is a polystable Sp(2n,R)-Higgs bundle. This is done in Lemma 7.3 below. We have thus proved that (V, ϕ) is not alo
al minimum. �Lemma 7.3. The Sp(2n,R)-Higgs bundle (Vt, ϕt = βt + γt) on X, obtained by restri
tingto X × {t} the family (V, βD, γD) 
onstru
ted in the proof of Lemma 7.2, is polystable.Proof. It will be 
onvenient to use the stability 
ondition for Sp(2n,R)-Higgs bundles asgiven in Lemma 3.16. Thus, if (Vt, ϕt) is not stable, there are subbundles A ⊂ Vt and
B ⊂ V ∗

t su
h that γt(A) ⊂ B ⊗K and βt(B) ⊂ A⊗K, and with deg(A⊕ B) = 0. Sin
e
X is a Riemann surfa
e, the kernel of the restri
tion to A of the sheaf map Vt → V ′′ islo
ally free and 
orresponds to a subbundle A′ ⊂ A. The quotient A′′ := A/A′ then gives asubbundle A′′ ⊂ V ′′ so that we have a 
ommutative diagram with exa
t rows and 
olumns:
(7.46) 0 0 0y

y
y

0 −−−→ A′′ −−−→ A −−−→ A′ −−−→ 0y
y

y

0 −−−→ V ′′ −−−→ Vt −−−→ V ′ −−−→ 0.Similarly, we obtain subbundles B′′ ⊂ V ′′∗ and B′ ⊂ V ′∗ and a diagram:
(7.47) 0 0 0y

y
y

0 ←−−− B′ ←−−− B ←−−− B′′ ←−−− 0y
y

y

0 ←−−− V ′∗ ←−−− Vt ←−−− V ′′∗ ←−−− 0.
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he
ks that B′,⊥ ⊂ A′ and B′′,⊥ ⊂ A′′. By de�nition of γt, the diagram
0 −−−→ V ′ −−−→ Vt −−−→ V ′′ −−−→ 0yγ′

yγt

0 ←−−− V ′∗ ←−−− Vt ←−−− V ′′∗ ←−−− 0.
ommutes. Thus, sin
e γt(A) ⊂ B ⊗ K, we have that γ′(A′) ⊂ B′ ⊗ K. Similarly,
β ′′(B′′) ⊂ A′′⊗K. It follows that the pair of subbundles A′ ⊂ V ′ and B′ ⊂ V ′∗ destabilizes
(V ′, ϕ′) and that the pair of subbundles A′′ ⊂ V ′′ and B′′ ⊂ V ′′∗ destabilizes (V ′′, ϕ′′).Consider now the 
ase in whi
h both (V ′, ϕ′) and (V ′′, ϕ′′) are stable Sp(2n,R)-Higgsbundles. Then we must have A′⊕B′ = V ′⊕ V ′∗ or A′⊕B′ = 0 and similarly for A′′⊕B′′.The only 
ase in whi
h the original destabilizing subbundle A⊕B ⊂ Vt⊕V ∗

t is non-trivialis when A′⊕B′ = V ′⊕V ′∗ and A′′⊕B′′ = 0 (or vi
e-versa). But, in this 
ase, V ′ ∼= A′ ∼= Aand hen
e (7.46) shows that the non-trivial extension (7.45) splits, whi
h is a 
ontradi
tion.Hen
e there is no non-trivial destabilizing pair of subbundles of (Vt, ϕt), whi
h is thereforestable.It remains to deal with 
ase in whi
h one, or both, of (V ′, ϕ′) and (V ′′, ϕ′′) are stable
U(p, q)-Higgs bundles. The remaining 
ases being similar, for de�niteness we 
onsiderthe 
ase in whi
h (V ′′, ϕ′′) is a stable Sp(2n′′,R)-Higgs bundle and (V ′, ϕ′) is a stable
U(n′

1, n
′
2)-Higgs bundle, i.e.,

V ′ = V ′
1 ⊕ V

′
2 , ϕ′ = γ′ ∈ H0(V ′

1 ⊗ V
′
2 ⊗K).In addition to the 
ases 
onsidered above, we now also need to 
onsider the 
ase when

A′⊕B′ is non-trivial, say A′⊕B′ = V ′
1 ⊕V

′
2
∗. There are now two possibilities for A′′⊕B′′:either it is zero or it equals V ′′ ⊕ V ′′∗; we leave the �rst (simpler) 
ase to the reader and
onsider the se
ond one. In this 
ase, the element

a = a1 + a2 ∈ H
1(Hom(V ′, V ′′) = H1(Hom(V ′

1 , V
′′))⊕H1(Hom(V ′

2 , V
′′))
hosen in the proof of Lemma 7.2 above must be taken su
h that both a1 and a2 arenon-zero (this is possible by Riemann�Ro
h). Thus, for i = 1, 2 we have a 
ommutativediagram

0 −−−→ V ′′ −−−→ Vti −−−→ V ′
i −−−→ 0∥∥∥

y
y

0 −−−→ V ′′ −−−→ Vt −−−→ V ′
1 ⊕ V

′
2 −−−→ 0of non-trivial extensions, where the two verti
al maps on the right are in
lusions. This,together with (7.47) for B′ = V ′

2
∗ and B′′ = V ′′∗, gives rise to the 
ommutative diagram

0 −−−→ V ′
2
∗ −−−→ B −−−→ V ′′∗ −−−→ 0y

y
∥∥∥

0 −−−→ V ′
1
∗ ⊕ V ′

2
∗ −−−→ V ∗

t −−−→ V ′′∗ −−−→ 0y
y

∥∥∥

0 −−−→ V ′
2
∗ −−−→ V ∗

t2
−−−→ V ′′∗ −−−→ 0.The 
omposites of the verti
al maps on the left and on the right are isomorphisms. Hen
ethe 
omposite of the middle verti
al maps is also an isomorphism and this provides a
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0→ V ′

1
∗
→ V ∗

t → V ∗
t2
→ 0.Denote the splitting maps in the dual split extension by

i : V ′
1 → Vt and p : Vt → Vt2 .We now have a diagram

0 −−−→ V ′′ −−−→ Vt1 −−−→ V ′
1 −−−→ 0∥∥∥

y
y

0 −−−→ V ′′ −−−→ Vt −−−→ V ′
1 ⊕ V

′
2 −−−→ 0∥∥∥

yp
y

0 −−−→ V ′′ −−−→ Vt2 −−−→ V ′
2 −−−→ 0,where the verti
al maps on the right are the natural in
lusion and proje
tion, respe
tively.Using the existen
e of the splitting map i : V ′

1 → Vt and the in
lusion Vt2 → Vt one readilysees that this diagram 
ommutes. This �nally gives us the 
ommutative diagram
0 −−−→ 0 −−−→ Vt/Vt1

∼=
−−−→ V ′

2 −−−→ 0∥∥∥
y

∥∥∥

0 −−−→ V ′′ −−−→ Vt2 −−−→ V ′
2 −−−→ 0,whi
h shows that the sequen
e at the bottom is split, a 
ontradi
tion. �7.3. Deforming a sum of a quiver type minimum and a minimum in Nd.Lemma 7.4. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whi
h de
omposes as adire
t sum (V, ϕ) = (V ′, ϕ′)⊕ (V ′′, ϕ′′) with ϕ′ = (β ′, γ′) and ϕ′′ = (β ′′, γ′′). Suppose that(1) (V ′, ϕ′) is a quiver type minimum,(2) (V ′′, ϕ′′) is a minimum with β ′′ = 0 or γ′′ = 0 whi
h is a stable G′′-Higgs bundlefor G′′ one of the following groups: Sp(2n′′,R), U(p′′, q′′), U(n′′) or GL(n′′,R).Then (V, ϕ) is not a minimum of f onMd.Proof. Consider for de�niteness the 
ase in whi
h (V ′, ϕ′) is a quiver type minimum with

deg(V ′) = n′(1 − g) and (V ′′, ϕ′′) has γ′′ = 0 and β ′′ 6= 0. The 
ase in whi
h β ′′ = 0 and
γ′′ 6= 0 
an be treated along the same lines as the present 
ase, so we will not give thedetails. The 
ase in whi
h (V ′, ϕ′) is a quiver type minimum with deg(V ′) = n′(g − 1) isobtained by symmetry. Note that some degenerate 
ases 
an o

ur, namely:(1) (V ′, ϕ′) is a quiver type minimum with rk(V ′) = 2 (
f. (1) of Corollary 6.6).(2) (V ′′, ϕ′′) has β ′′ = γ′′ = 0.With respe
t to Case (1), all we need for the arguments below is that β : F ∗

3

2

∼=
−→ F− 1

2
⊗K isan isomorphism, whi
h is guaranteed by (1) of Corollary 6.6. In what 
on
erns Case (2),slight modi�
ations are required in the arguments given below; we leave these to the reader.With these introdu
tory remarks out of the way, Corollary 6.6 tells us that V ′ de
om-poses as a dire
t sum of line bundles V ′ = Fm ⊕ · · · ⊕ FM and that restri
ting β ′ we get
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β ′ : F ∗

m
≃
−→ FM ⊗K.Our �rst task is to identify nonzero elements in the �rst hyper
ohomology of C•

−. A goodpla
e to look for them is in the hyper
ohomology of the pie
e of highest weight in thedeformation 
omplex, whi
h is(7.48) V ′′∗ ⊗ FM ⊕ V
′′ ⊗ F ∗

m → V ′′ ⊗ FM ⊗K.This morphism 
annot be an isomorphism, be
ause the ranks do not mat
h. Thus Propo-sition 5.5 implies that H1 of this 
omplex is non-vanishing.In the hyper
ohomology long exa
t sequen
e (
f. (2.4)) of the 
omplex (7.48), the map
H0(V ′′∗ ⊗ FM ⊕ V

′′ ⊗ F ∗
m) = H0(V ′′∗ ⊗ FM)⊕H0(V ′′ ⊗ F ∗

m)→ H0(V ′′ ⊗ FM ⊗K)is always onto be
ause the map f : H0(V ′′ ⊗ F ∗
m) → H0(V ′′ ⊗ FM ⊗ K) is indu
ed bytensoring β ′ : F ∗

m → FM ⊗K (whi
h is an isomorphism) with the identity map V ′′ → V ′′,so f is also an isomorphism. Hen
e the image of H0(V ′′ ⊗ FM ⊗ K) → H1 is zero, andthis by exa
tness implies that H1 → H1(V ′′∗ ⊗ FM ⊕ V ′′ ⊗ F ∗
m) is inje
tive. We now wantto 
hara
terize the image of this in
lusion. Tensoring the Higgs �elds β ′′ and β ′ with theindentity on FM and V ′′ respe
tively, we get maps

β ′′ : V ′′∗ ⊗ FM → V ′′ ⊗ FM ⊗K,and
β ′ : V ′′ ⊗ F ∗

m
≃
−→ V ′′ ⊗ FM ⊗K.Now the map ζ in the long exa
t sequen
e

H1 → H1(V ′′∗ ⊗ FM ⊕ V
′′ ⊗ F ∗

m)
ζ
−→ H1(V ′′ ⊗ FM ⊗K)→ H2
an be intepreted as follows: given elements (δ, ǫ) ∈ H1(V ′′∗ ⊗ FM)⊕H1(V ′′ ⊗ F ∗

m),
ζ(δ, ǫ) = −β ′′(δ)− β ′(ǫ) ∈ H1(V ′′ ⊗ FM ⊗K).Hen
e we may take a nonzero pair (δ, η) satisfying β ′′(δ) + β ′(ǫ) = 0 and 
orresponding toa nonzero element in the hyper
ohomology of the 
omplex (7.48). We next prove that thedeformation along (δ, η) is unobstru
ted, by giving an expli
it 
onstru
tion of a family ofHiggs bundles (Vt, βt, γt) parameterized by t ∈ C and restri
ting to (V ′ ⊕ V ′′, ϕ′ + ϕ′′) at

t = 0.Pi
k Dolbeault representatives aδ ∈ Ω0,1(V ′′∗ ⊗ FM) and aǫ ∈ Ω0,1(F ∗
m ⊗ V

′′) of δ and ǫ.We are going to 
onstru
t a pair (Wt, νt) satisfying the following.
• There is a C∞ isomorphism of ve
tor bundles Wt ≃ FM ⊕ V ′′⊕Fm with respe
t towhi
h the ∂̄ operator of Wt 
an be written as

∂̄Wt =




∂̄FM

taδ t2γ
0 ∂̄V ′′ taǫ
0 0 ∂̄Fm



 = ∂̄0 + ta1 + t2a2,where γ ∈ Ω0,1(F ∗
m ⊗ FM) will be spe
i�ed later,

• νt is a holomorphi
 se
tion of H0(S2Wt ⊗K) of the form
νt = β ′ + β ′′ + tν1.
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ondition ∂̄Wtνt = 0 translates into
∂̄0(β

′ + β ′′) = 0,

∂̄1ν1 + a1(β
′ + β ′′) = 0,

a1ν1 + a2(β
′ + β ′′) = 0.The �rst equation is automati
ally satis�ed. As for the se
ond equation note that

a1(β
′ + β ′′) = β ′′(aδ) + β ′(aǫ) ∈ Ω1,1(V ′′ ⊗S FM).Sin
e by hypothesis the Dolbeault 
ohomology 
lass represented by β ′′(aδ)+β ′(aǫ) is equalto zero, we may 
hose a value of ν1 ∈ Ω0,1(V ′′ ⊗S FM) solving the se
ond equation. Itremains to 
onsider the third equation. Note that a2β

′′ = 0 and that a2β
′ = γ(β ′) ∈

Ω1,1(FM ⊗FM ). Sin
e β ′ is an isomorphism, for any η ∈ Ω1,1(FM ⊗FM ) there exist some γsu
h that γ(β ′) = η. Taking η = −a1ν1, we obtain a value of γ solving the third equationabove.It follows from the 
onstru
tion that there are short exa
t sequen
es of holomorphi
bundles
0→ FM → Wt → Zt → 0, 0→ V ′′ → Zt → Fm → 0.Dualizing both sequen
es we have in
lusions F ∗

m → Z∗
t and Z∗

t → W ∗
t whi
h 
an be
omposed to get an in
lusion(7.49) F ∗

m → W ∗
t .Now let

Vt = Wt ⊕
⊕

m<λ<M

Fλ.To �nish the 
onstru
tion of the family of Higgs bundles we have to de�ne holomorphi
maps
βt : V ∗

t → Vt ⊗K, γt : Vt → V ∗
t ⊗Kde�ning se
tions inH0(S2Vt⊗K) andH0(S2V ∗

t ⊗K) respe
tively. The following 
onditionsare in fa
t satis�ed by a unique 
hoi
e of maps (βt, γt):
• the restri
tion of βt to Wt is equal to νt,
• the restri
tion of βt to⊕m<λ<M Fλ is equal to β ′,
• the restri
tion of γt to Wt is equal to 0,
• the restri
tion of γt to FM ⊂ Vt is 0,
• the restri
tion of γt to FM−2 ⊂ Vt is the 
omposition of γ′ : FM−2 → F ∗

m ⊗K withthe in
lusion (7.49) tensored by the identity on K,
• the restri
tion of γt to⊕m<λ<M−2 Fλ is equal to γ′.The proof of the lemma is 
ompleted by using Lemma 7.5. �Lemma 7.5. The Sp(2n,R)-Higgs bundle (Vt, ϕt), obtained by restri
ting the family 
on-stru
ted in the proof of Lemma 7.4 to X × {t}, is polystable.Proof. Analogous to the proof of Lemma 7.3. �



50 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA7.4. Deforming a sum of two quiver type minima.Lemma 7.6. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whi
h de
omposes as adire
t sum (V, ϕ) = (V ′, ϕ′)⊕ (V ′′, ϕ′′) with ϕ′ = (β ′, γ′) and ϕ′′ = (β ′′, γ′′). Suppose thatboth (V ′, ϕ′) and (V ′′, ϕ′′) are quiver type minima. Then (V, ϕ) is not a minimum of f on
Md.Proof. Suppose we have two minima whi
h are quiver pairs (minimal degree)

V ′ = F ′
m′ ⊕ · · · ⊕ F ′

M ′ =
⊕

F ′
λ and V ′′ = F ′′

m′′ ⊕ · · · ⊕ F ′′
M ′′ =

⊕
F ′′
µ .All morphisms β ′, β ′′, γ′, γ′′ are isomorphisms. We want to deform V ′ ⊕ V ′′.The same ideas as before tell us (looking at the negative deformation 
omplex) that weshould look at the pie
e of the exa
t sequen
e of maximal weight, whi
h is

C• : F ′∗
m′ ⊗ F ′′

M ′′ ⊕ F ′′∗
m′′ ⊗ F ′

M ′ → F ′
M ′ ⊗ F ′′

M ′′ ⊗K.De�ne V ′′
0 := F ′′

m′′ ⊕ F ′′
M ′′ . The restri
tion of the β ′′ to V ′′

0 de�nes an isomorphism
β ′′

0 : V ∗
0 → V ′′

0 ⊗K,so we 
an apply exa
tly the same 
onstru
tion as before, repla
ing V ′′ by V ′′
0 , and obtaina deformation Wtδ,tǫ of the bundle

F ′
m′ ⊕ F ′

M ′ ⊕ V ′′
0 = F ′

m′ ⊕ F ′
M ′ ⊕ F ′′

m′′ ⊕ F ′′
M ′′ .A very important point, however, is that now the extension 
lasses of the bundles Wδ and

Wǫ are more restri
ted, sin
e they belong respe
tively to the groups H1(F ′′∗
m′′ ⊗ F ′

M ′) and
H1(F ′∗

m′ ⊗ F ′′
M ′′). In parti
ular, to de�ne Wtǫ the line bundle F ′

m′ only merges with F ′′
M ′′ ,and not with F ′′

m′′ . This implies that there is a map(7.50) Wtǫ → F ′′
m′′whi
h deforms the proje
tion V ′′

0 → F ′′
m′′ .We leave all the remaining F ′

λ and F ′′
µ untou
hed. There are only two maps whi
h haveto be deformed (apart from the β's whi
h are internal in Wδ,ǫ). These are

γ′ : F ′
m′ → F ′∗

M ′−2 ⊗K and γ′′ : F ′′
m′′ → F ′′∗

M ′′−2 ⊗K.The �rst one 
an be deformed to a map
γ′δ,ǫ : Wtδ,tǫ → F ′∗

M ′−2 ⊗Kexa
tly as in the previous se
tion. As for γ′′, we 
ombine the proje
tion Wtδ,tǫ →Wtǫ withthe map in (7.50) and with γ′′ to obtain the desired deformation
Wtδ,tǫ → F ′′∗

M ′′−2 ⊗K.Lemma 7.7 below 
ompletes the proof. �Lemma 7.7. The Sp(2n,R)-Higgs bundle (Vt, ϕt), obtained by restri
ting the family 
on-stru
ted in the proof of Lemma 7.6 to X × {t}, is polystable.Proof. Analogous to the proof of Lemma 7.3. �



REPRESENTATIONS OF SURFACE GROUPS 517.5. GL(n,R)-Higgs bundles. In this se
tion, we will assume that
(V, ϕ) = υGL(n,C)

∗ ((W,Q), ψ)is an Sp(2n,R)-Higgs bundle asso
iated to a GL(n,R)-Higgs bundle ((W,Q), ψ). Re
allthat d = deg(V ) = 0 in this 
ase.Lemma 7.8. Let (V, ϕ) be the Sp(2n,R)-Higgs bundle asso
iated to a GL(n,R)-Higgsbundle ((W,Q), ψ) as in (3.28). If (V, ϕ) is a minimum of f onM0 then ϕ = 0.Proof. In [7℄ it is shown that there are two types of minima on the moduli spa
e GL(n,R)-Higgs bundles ((W,Q), ψ). The �rst type has ψ = 0. The se
ond type 
orresponds to theminimum on the Hit
hin�Tei
hmüller 
omponent and has non-vanishing Higgs �eld. Theyare of the form:
W = F−m ⊕ · · · ⊕ Fmfor line bundles Fi, indexed by integers for n = 2m+1 odd and half-integers for n = 2m+1even. More pre
isely, Fi ∼= K−i su
h that, in parti
ular, Fi ∼= F ∗

−i. With respe
t to thisde
omposition of W ,
Q =




0 · · · · · · 0 1
... . .

.
0

... 1
...

0 . .
. ...

1 0 · · · · · · 0




and ψ =




0 · · · · · · · · · 0
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0



.

We shall apply the 
riterion in (2) of Proposition 5.4 to show that υGL(n,C)
∗ ((W,Q), ψ) isnot a minimum of the Hit
hin fun
tional for su
h ((W,Q), ψ).Re
all that V = W , β = ψf−1 and γ = fψ, where f : V → V ∗ is the symmetri
isomorphism asso
iated to Q. Hen
e the 
omponents of β and γ are the 
anoni
al se
tions

β : F ∗
i → F−i+1 ⊗K and γ : Fi → F ∗

−i−1 ⊗K.Sin
e ϕ has weight one, the weight of Fi is i (
f. Proposition 5.3). It follows that thehighest weight pie
e of the 
omplex C•
− de�ned in (5.36) is

C•
2m : Hom(F−m, Fm)→ 0.Hen
e

H1(C•
2m) = H1(Hom(F−m, Fm)) = H1(K−2m),whi
h is non-vanishing. Take a non-zero a ∈ H1(Hom(F−m, Fm)). Let D be the open unitdisk and let Fj be the pull-ba
k of Fj to X ×D. Let(7.51) 0→ Fm →Wa → F−m → 0be the extension with 
lass

a⊗ 1 ∈ H1(Hom(F−m,Fm)) ∼= H1(X; Hom(F−m, Fm))⊗H0(D; C).Then Va = Wa ⊕
⊕

i<m Fi is a family deforming V whi
h is tangent to a at t = 0 ∈ D.To obtain the required deformation of (V, ϕ) it thus remains to de�ne the Higgs �eld
ϕD ∈ H0(S2Va ⊗ K) deforming ϕ. The only pie
es of ϕ whi
h do not automati
allylift are the ones involving F−m and Fm, i.e., β ∈ H0(Hom(F ∗

−m+1, Fm) ⊗ K) and γ ∈



52 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA
H0(Hom(F−m, F

∗
m−1) ⊗ K). In order to lift β, 
learly we should de�ne βD to be the
omposition

F∗
−m+1

β
−→ Fm →Wa,where the last map is indu
ed from the inje
tion in (7.51). A similar 
onstru
tion givesthe lift γD of γ. We have thus 
onstr
uted a family (Va, βD, γD) whi
h is tangent to

a ∈ H1(C•
2m(V, ϕ)) for t = 0 ∈ D. Hen
e Lemma 7.9 below 
ompletes the proof. �Lemma 7.9. The Sp(2n,R)-Higgs bundle (Vt, ϕt), obtained by restri
ting (Va, βD, γD)
onstru
ted in the proof of Lemma 7.8 above to X × {t}, is polystable.Proof. Analogous to the proof of Lemma 7.3. �8. Counting 
omponents: main results8.1. Conne
ted 
omponents ofMd for d = 0 and |d| = n(g−1). With the des
riptionof the minima of the Hit
hin fun
tional given in Theorem 5.10 at our disposal we are nowin a position to 
omplete the 
ount of 
onne
ted 
omponents of the moduli spa
e in thesituation of d = 0 and |d| = n(g − 1).Proposition 8.1. The quiver type minima belong to a Hit
hin�Tei
hmüller 
omponent ofthe moduli spa
e. In parti
ular, they are stable and simple and 
orrespond to smooth pointsof the moduli spa
e.Proof. This is immediate from the des
ription of the Sp(2n,R)-Higgs bundles of the Hit
hin�Tei
hmüller 
omponent given in [32℄. �Proposition 8.2. Assume that d = −n(g − 1) and let (V, β, γ) be a quiver type minimumfor the Hit
hin fun
tional. Let L0 be a �xed square root of the 
anoni
al bundle, givingrise to the Cayley 
orresponden
e isomorphism M−n(g−1)

∼=
−→ M′ of Theorem 4.4, via

V 7→ W ⊗ L0. Then the following holds.(1) The se
ond Stiefel�Whitney 
lass w2(W ) ∈ H2(X,Z2) vanishes.(2) If n is odd, the �rst Stiefel�Whitney 
lass w1(W ) 
orresponds to the two-torsionpoint L−1L0 in the Ja
obian of X under the standard identi�
ation J2
∼= H1(X,Z2).(3) If n is even, the �rst Stiefel�Whitney 
lass w1(W ) ∈ H1(X,Z2) vanishes.Proof. Easy (similar to the arguments given in [32℄ for G = SL(n,R)). �Theorem 8.3. Let X be a 
ompa
t oriented surfa
e of genus g. Let Md be the modulispa
e of polystable Sp(2n,R)-Higgs bundles of degree d. Let n ≥ 3. Then(1) M0 is non-empty and 
onne
ted;(2) M±n(g−1) has 3.22g non-empty 
onne
ted 
omponents.Proof. (1) When d = 0, we have from Theorem 5.10 that the subspa
e of minima of theHit
hin fun
tional onM0 is N0. It is immediate from Theorem 3.13 that N0 is isomorphi
to the moduli spa
e of poly-stable ve
tor bundles of degree zero. This moduli spa
e is wellknown to be non-empty and 
onne
ted and hen
eM0 is non-empty and 
onne
ted.
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omposition (4.30) given by theCayley 
orresponden
e gives a de
omposition(8.52) M−n(g−1) =
⋃

w1,w2

Mw1,w2
,whereMw1,w2


orresponds toM′
w1,w2

under the Cayley 
orresponden
e.For ea
h possible value of (w1, w2), there may be one or more 
orresponding Hit
hin-Tei
hmüller 
omponents 
ontained in Mw1,w2
(
f. Proposition 8.2); denote by M̃w1,w2the 
omplement to these. Sin
e minima in N−n(g−1) (i.e. with γ = 0) 
learly do notbelong to Hit
hin�Tei
hmüller 
omponents, we see that the subspa
e of minima of M̃w1,w2
onsists of those (V, β, γ) whi
h have γ = 0. Thus, under the Cayley 
orresponden
e,this subspa
e of minima is identi�ed with the moduli spa
e of poly-stable O(n,C)-bundleswith the given Stiefel�Whitney 
lasses (w1, w2). The moduli spa
e of prin
ipal bundles fora 
onne
ted group and �xed topologi
al type is known to be 
onne
ted by Ramanathan[41, Proposition 4.2℄. However, sin
e O(n,C) is not 
onne
ted the result of Ramanathan
annot be applied dire
tly. But, all that is required for his argument is that semistabilityis an open 
ondition and thus, in fa
t the moduli spa
e in question is 
onne
ted (
f. [40℄).It follows that the subspa
e of minima on M̃w1,w2
is 
onne
ted and, hen
e, this spa
e itselfis 
onne
ted by Proposition 5.1. Additionally, ea
h M̃w1,w2

is non-empty (see, e.g., [40℄).Therefore, there is one 
onne
ted 
omponent M̃w1,w2
for ea
h of the 22g+1 possible valuesof (w1, w2). Adding to this the 22g Hit
hin�Tei
müller 
omponents gives a total of 3.22g
onne
ted 
omponents, as stated.This a

ounts for all the 
onne
ted 
omponents of M−n(g−1) sin
e there are no otherminima of the Hit
hin fun
tional. �8.2. Representations and Sp(2n,R)-Higgs bundles. Let R := R(Sp(2n,R)) be themoduli spa
e of redu
tive representations of π1(X) in Sp(2n,R). Sin
e U(n) ⊂ Sp(2n,R)is a maximal 
ompa
t subgroup, we have

π1(Sp(2n,R)) ∼= π1(U(n)) ∼= Z,and the topologi
al invariant atta
hed to a representation ρ ∈ R is hen
e an element
d = d(ρ) ∈ Z. This integer is 
alled the Toledo invariant and 
oin
ides with the �rstChern 
lass of a redu
tion to a U(n)-bundle of the �at Sp(2n,R)-bundle asso
iated to ρ.Fixing the invariant d ∈ Z we 
onsider, as in (2.9),

Rd := {ρ ∈ R su
h that d(ρ) = d}.Proposition 8.4. The transformation ρ 7→ (ρt)
−1 in R indu
es an isomorphism of themoduli spa
es Rd and R−d.As shown in Turaev [53℄ (
f. also Domi
�Toledo [18℄, the Toledo invariant d of a repre-sentation satis�es the Milnor�Wood type inequality(8.53) |d| ≤ n(g − 1).As a 
onsequen
e we have the following.Proposition 8.5. The moduli spa
e Rd is empty unless

|d| ≤ n(g − 1).
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ial 
ase of Theorem 2.28 we have the following.Proposition 8.6. The moduli spa
es Rd andMd are homeomorphi
.From Proposition 8.6 and Theorem 8.3 we have the main result of this paper regardingthe 
onne
tedness properties of R given by the following.Theorem 8.7. Let X be a 
ompa
t oriented surfa
e of genus g. Let Rd be the modulispa
e of redu
tive representations of π1(X) in Sp(2n,R). Let n ≥ 3. Then(1) R0 is non-empty and 
onne
ted;(2) R±n(g−1) has 3.22g non-empty 
onne
ted 
omponents.Appendix A. Stability of twisted pairs and Hit
hin�Kobayashi
orresponden
eA.1. Standard paraboli
 subgroups. Here we set up some notations about paraboli
subgroups , whi
h will be used when stating a general notion of (poly, semi)-stability (seeChapter IV in [4℄ for more details). First some basi
 notation.
H − a 
ompa
t and 
onne
ted Lie group
HC − the 
omplexi�
ation of H

h− the Lie algebra of H
hC − the Lie algebra of HC

hC

s = [hC, hC]− the semisimple part of hC

z ⊂ a− the 
enter of hC

T ⊂ H − a maximal torus
t ⊂ h− the Lie algebra of T

a ⊂ hC − the 
omplexi�
ation of t

〈·, ·〉 − an invariant C-bilinear pairing on hC extending the Killing form on hC

s

R ⊂ c∗ = HomC(c,C)− the roots of hC

s

hδ ⊂ hC − the root spa
e 
orresponding to δ ∈ R
∆ ⊂ R− a 
hoi
e of simple roots.De�ning c = a ∩ hC

s we have a = z⊕ c and moreover
hC = z⊕ c⊕

⊕

δ∈R
hδ.For any A ⊂ ∆ de�ne RA to be the set of roots δ =
∑

β∈∆mββ ∈ R with mβ ≥ 0 for all
β ∈ A (so if A = ∅ then RA = R). Then

pA = z⊕ c⊕
⊕

δ∈RA

hδis a Lie subalgebra of hC. Denote by PA ⊂ HC the 
onne
ted subgroup whose Lie algebrais pA. The group PA is a paraboli
 subgroup of HC, and any paraboli
 subgroup of HC is
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onjugate to PA for some A. De�ne similarly R0
A as the set of roots δ =

∑
β∈∆mββ with

mβ = 0 for all β ∈ A. The ve
tor spa
e(A.54) lA = z⊕ c⊕
⊕

δ∈R0
A

hδis a Lie subalgebra of pA. Let LA be the 
onne
ted subgroup with Lie algebra lA. Then
LA is a Levi subgroup of PA, i.e., a maximal redu
tive subgroup of PA. Finally,(A.55) uA =

⊕

δ∈RA\R0
A

hδis also a Lie subalgebra of pA, and the 
onne
ted Lie group UA ⊂ PA with Lie algebra uAis the unipotent radi
al of PA. UA is a normal subgroup of PA and the quotient PA/UA isnaturally isomorphi
 to LA so we have(A.56) PA = LAUA.A.2. Chara
ters of paraboli
 subgroups. Let Z be the 
enter of HC, and let Γ =
Ker(exp : z → Z). Then zR = Γ ⊗Z R ⊂ z is the Lie algebra of the maximal 
ompa
tsubgroup of Z. Let z∗

R
= HomR(zR, iR) and let Λ = {λ ∈ z∗

R
| λ(Γ) ⊂ 2πiZ}. Let

{λδ}δ∈∆ ⊂ c∗ be the set of fundamental weights of hC

s , i.e., the duals with respe
t to theKilling form of the 
oroots {2δ/〈δ, δ〉}δ∈∆. We extend any λ ∈ Λ to a morphism of 
omplexLie algebras λ : z ⊕ cA → C by setting λ|z = 0, and similarly for any δ ∈ A we extend
λδ : cA → C to λδ : z⊕ cA → C by setting λδ|z = 0.Let Z◦

A be the identity 
omponent of the 
enter of LA, and let LssA be the maximal
onne
ted semisimple Lie subgroup of LA (i.e., the 
onne
ted subgroup whose Lie algebrais [lA, lA]. De�ne
Z◦ss(LA) := Z◦

A ∩ L
ss
A .The produ
t map Z◦

A × LssA → LA indu
es an isomorphism LA ≃ Z◦
A ×Z◦ss(LA) L

ss
A , andproje
tion to the �rst fa
tor gives a map LA → Z◦

A/Z
◦ss(LA). Composing this proje
tionwith the quotient map PA → PA/UA ≃ LA we obtain a morphism of Lie groups

πA : PA → Z◦
A/Z

◦ss(LA).Let zA ⊂ lA be the Lie algebra of Z◦
A. Let cA =

⋂
β∈∆\A Ker λβ if A 6= ∆ and let cA = c if

A = ∆. Then we have
zA = z⊕ cA.This follows from the fa
t that for any δ, δ′ ∈ R we have [hδ, hδ′ ] = hδ+δ′ if δ + δ′ 6= 0 and

[hδ, h−δ] = (Kerλδ)
⊥ (see Theorem 2 in Chapter VI of [46℄).Lemma A.1. There exists some positive integer n (depending on the fundamental group of

LA) su
h that for any λ ∈ Λ and any δ ∈ A the morphisms of Lie algebras nλ : z⊕ cA → Cand nλδ : z⊕ cA → C exponentiate to morphisms of Lie groups
exp(nλ) : Z◦

A/Z
◦ss(LA)→ C×, exp(nλδ) : Z◦

A/Z
◦ss(LA)→ C×.Composing the morphisms given by the previous lemma with the morphism PA we getfor any λ ∈ Λ and δ ∈ A morphisms of Lie groups

κnλ : PA → C×, κnδ : PA → C×.



56 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAA.3. Antidominant 
hara
ters of pA. An antidominant 
hara
ter of pA is any ele-ment of z∗ ⊕ c∗A of the form χ = z +
∑

δ∈A nδλδ, where z ∈ z∗
R
and ea
h nδ is a nonpositivereal number. If for ea
h δ ∈ A we have nδ < 0 then we say that χ is stri
tly antidomi-nant. The restri
tion of the invariant form 〈, 〉 to z⊕ cA is nondegenerate, so it indu
es anisomorphism z∗⊕c∗A ≃ z⊕cA. For any antidominant 
hara
ter χ we de�ne sχ ∈ z⊕cA ⊂ z⊕cto be the element 
orresponding to χ via the previous isomorphism. One 
he
ks that sχbelongs to ih. The following lemma implies that one 
an re
over from sχ the paraboli
subgroup PA and all related obje
ts.Lemma A.2. Let s ∈ ih and de�ne the sets

ps := {x ∈ hC | Ad(ets)(x) is bounded as t→∞} ⊂ hC,

ls := {x ∈ hC | [x, s] = 0 } ⊂ hC,

Ps := {g ∈ HC | etsge−ts is bounded as t→∞} ⊂ HC,

Ls := {g ∈ HC | Ad(g)(s) = s } ⊂ HC.The following properties hold:(1) Both ps and ls are Lie subalgebras of hC and Ps and Ls are subgroups of HC.Furthermore Ps and Ls are 
onne
ted.(2) Let χ be an antidominant 
hara
ter of PA. There are in
lusions pA ⊂ psχ, lA ⊂ lsχ,
PA ⊂ Psχ and LA ⊂ Lsχ, with equality if χ is stri
tly antidominant.(3) For any s ∈ ih there exists h ∈ H and a standard paraboli
 subgroup PA su
h that
Ps = hPAh

−1 and Ls = hLAh
−1. Furthermore, there is an antidominant 
hara
ter

χ of PA su
h that s = hsχh
−1.Proof. That ls, ps are subalgebras and Ls, Ps are subgroups is immediate from the de�ni-tions. Let Ts be the 
losure of {eits | t ∈ R}. Then Ls is the 
entralizer of the torus Ts in

HC, so by Theorem 13.2 in [3℄ is 
onne
ted. To prove that Ps is also 
onne
ted, note thatif g belongs to Ps, so that etsge−ts is bounded as t→∞, then the limit of πs(g) := etsge−tsas t→∞ exists and belongs to Ls. Note by the way that the resulting map πs : Ps → Lsis a morphism of Lie groups whi
h 
an be identi�ed with the proje
tion Ps → Ps/Us ≃ Ls,where
Us = {g ∈ HC | etsge−ts 
onverges to 1 as t→∞} ⊂ Psis the unipotent radi
al of Us. So if g ∈ Ps then the map γ : [0,∞) → HC de�ned as

γ(t) = etsge−ts extends to give a path from g to Ls, and sin
e Ls is 
onne
ted it followsthat Ps is also 
onne
ted. This proves (1). Let now χ = z+
∑

β∈∆ nβλβ be an antidominant
hara
ter of PA. Let δ =
∑

β∈∆mββ be a root and let u ∈ hδ. We have [sχ, u] = 〈sχ, δ〉u =

〈χ, δ〉u = (
∑

β∈∆mβnβ〈β, β〉/2)u. Hen
e Ad(etsχ)(u) = (
∑

β∈∆ exp(tnβmβ〈β, β〉/2))u, sothis remains bounded as t → ∞ if mβ ≥ 0 for any β su
h that nβ ≤ 0. This impliesthat pA ⊂ ps and lA ⊂ ls and that the in
lusions are equalities when χ is stri
tly domi-nant. The analogous statements for PA, LA, Ps, Ls follow from this, be
ause the subgroups
PA, LA, Ps, Ls are 
onne
ted. Hen
e (2) is proved. To prove (3) take a maximal torus Ts
ontaining {eits | t ∈ R} and 
hoose h ∈ H su
h that h−1Tsh = T and Ad(h−1)(s) belongsto the Weyl 
hamber in t 
orresponding to the 
hoi
e of ∆ ⊂ R. Then use (2). �Lemma A.3. Let P ⊂ HC be any paraboli
 subgroup, 
onjugate to PA. Let χ be anantidominant 
hara
ter of pA. There exists an element sP,χ ∈ ih, depending smoothly on
P , whi
h is 
onjugate to sχ and su
h that P ⊂ PsP,χ

, with equality if and only if χ is stri
tlyantidominant.
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−1 for some g ∈ HC. From the well known equalityHC/PA =

H/(PA∩H) = H/(LA∩H) we dedu
e that there exists some h ∈ H su
h that P = hPAh
−1.Then we set sP,χ = hsχh

−1. This is well de�ned be
ause h is unique up to multipli
ationon the right by elements of LA ∩H , and these elements 
ommute with sχ. �A.4. Prin
ipal bundles and paraboli
 subgroups. If E is aHC-prin
ipal holomorphi
bundle over X and M is any set on whi
h HC a
ts on the left, we denote by E(M) thetwisted produ
t E ×HC M , de�ned as the quotient of E ×M by the equivalen
e relation
(eh,m) ∼ (e, hm) for any e ∈ E, h ∈ HC and m ∈ M . The se
tions ϕ of E(M) are innatural bije
tion with the maps φ : E →M satisfying ϕ(eh) = h−1ϕ(e) for any e ∈ E and
h ∈ HC (we 
all su
h maps antiequivariant). Furthermore, φ is holomorphi
 if and only if
ϕ is holomorphi
.If M is a ve
tor spa
e (resp. 
omplex variety) and the a
tion of HC on M is linear(resp. holomorphi
) then E(M) is a ve
tor bundle (resp. holomorphi
 �bration). In thissituation, for any 
omplex line bundle L → X we 
an form a ve
tor bundle E(M) ⊗ Lwhi
h 
an be identi�ed with EL(M), where EL denotes the prin
ipal HC × C× bundle
EL = {(e, l) ∈ E ×X L | l 6= 0} and we form the asso
iated produ
t by making (h, λ) ∈
HC×C× a
t on m ∈M as λhm. Consequently, the se
tions of E(M)⊗L 
an be identi�edwith antiequivariant maps EL →M .Let B be a Hermitian ve
tor spa
e and let ρ : H → U(B) be a unitary representation.The morphism ρ extends to a holomorphi
 representation of HC in GL(B), whi
h wedenote also by ρ. Suppose that PA ⊂ HC is the paraboli
 subgroup 
orresponding to asubset A ⊂ ∆ and let χ be an antidominant 
hara
ter. De�ne

B−
χ = {v ∈ B | ρ(etsχ)v remains bounded as R ∋ t→∞}.This is a 
omplex subspa
e of B and by (2) in Lemma A.2 it is invariant under the a
tionof PA. De�ne also

B0
χ = {v ∈ B | ρ(etsχ)v = v for any t } ⊂ B−

χ .This is a 
omplex subspa
e of B−
χ and, using again (2) in Lemma A.2, we dedu
e that B0

χis invariant under the a
tion of LA.Suppose that σ is a holomorphi
 se
tion of E(HC/PA). Sin
e E(HC/PA) ≃ E/PA
anoni
ally and the quotient E → E/PA has the stru
ture of a PA-prin
ipal bundle, thepullba
k Eσ := σ∗E is a PA-prin
ipal bundle over X, and we 
an identify 
anoni
ally
E ≃ Eσ×PA

HC as prin
ipal HC-bundles (hen
e, σ gives a redu
tion of the stru
ture groupof E to PA). Equivalently, we 
an look at Eσ as a holomorphi
 subvariety Eσ ⊂ E invariantunder the a
tion of PA ⊂ HC and inheriting a stru
ture of prin
ipal bundle. It follows that
E(B) ≃ Eσ ×PA

B, so the ve
tor bundle Eσ ×PA
B−
χ 
an be identi�ed with a holomorphi
subbundle

E(B)−σ,χ ⊂ E(B).Now suppose that σL is a holomorphi
 se
tion of Eσ(PA/LA). This se
tion indu
es,exa
tly as before, a redu
tion of the stru
ture group of Eσ from PA to LA. So we obtainfrom σL a prin
ipal LA bundle EσL
and an isomorphism Eσ ≃ EσL

×LA
PA. Hen
e E(B) ≃

EσL
×LA

B, and we 
an thus identify the ve
tor bundle EσL
×LA

B0
χ with a holomorphi
subbundle

E(B)0
σL,χ
⊂ E(B)−σ,χ.



58 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERALet us write χ = z +
∑

δ∈A nδλδ, with z ∈ z∗
R
, and z = z1λ1 + · · · + zrλr, where

λ1, . . . , λr ∈ Λ and the zj are real numbers. Let n be an integer as given by Lemma A.1.Using the 
hara
ters κnλ, κnδ : PA → C× de�ned in Subse
tion A.2 we 
an 
onstru
t fromthe prin
ipal PA bundle Eσ line bundles Eσ ×κnλ
C and Eσ ×κnδ

C. We de�ne the degreeof the bundle E with respe
t to the redu
tion σ and the antidominant 
hara
ter χ to bethe real number:(A.57) deg(E)(σ, χ) :=
1

n

(
∑

j

zj deg(Eσ ×κnλj
C) +

∑

δ∈A
nδ deg(Eσ ×κnδ

C)

)
.This expression is independent of the 
hoi
e of the λj 's and the integer n.Although this will play no role in our results, we now stop to give another de�nitionof the degree in terms of the 
urvature of 
onne
tions, in the spirit of Chern�Weil theory.De�ne HA = H ∩ LA and hA = h ∩ lA. Then HA is a maximal 
ompa
t subgroup of LA,so the in
lusions HA ⊂ LA is a homotopy equivalen
e. Sin
e the in
lusion LA ⊂ PA is alsoa homotopy equivalen
e, given a redu
tion σ of the stru
ture group of E from HC to PAone 
an further restri
t the stru
ture group of E to HA in a unique way up to homotopy.Denote by E ′

σ the resulting HA prin
ipal bundle. Let πA : pA → z⊕ cA be the di�erentialof the proje
tion πA de�ned in Subse
tion A.2. Let χ = z+
∑

δ∈A nδλδ be an antidominant
hara
ter. De�ne κχ = (z+
∑

δ nδλδ)◦πA ∈ p∗
A. Let hA ⊂ lA ⊂ pA be the Lie algebra ofHA.Then κχ(hA) ⊂ iR. Choose a 
onne
tion A on E ′

σ and denote by FA ∈ Ω2(X,E′
σ ×Ad hA)its 
urvature. Then κχ(FA) is a 2-form on X with values in iR, and we have

deg(E)(σ, χ) :=
i

2π

∫

X

κχ(FA).A.5. Stability of L-twisted pairs. Let L be a holomorphi
 line bundle over X. Wede�ne an L-twisted pair to be a pair of the form (E,ϕ), where E is a holomorphi
 HC-prin
ipal bundle over X and ϕ is a holomorphi
 se
tion of E(B) ⊗ L. When it does notlead to 
onfusion we say that (E,ϕ) is a pair, instead of a L-twisted pairs.Let α ∈ izR ⊂ z. We say that (E,ϕ) is:
• α-semistable if: for any paraboli
 subgroup PA ⊂ HC, any antidominant 
har-a
ter χ for PA, and any holomorphi
 se
tion σ ∈ Γ(E(HC/PA)) su
h that ϕ ∈

H0(E(B)−σ,χ ⊗ L), we have
deg(E)(σ, χ)− 〈α, χ〉 ≥ 0.

• α-stable if it is α-semistable and furthermore: for any PA, χ and σ as above, su
hthat ϕ ∈ H0(E(B)−σ,χ ⊗ L) and su
h that A 6= ∅ and χ /∈ z∗
R
, we have

deg(E)(σ, χ)− 〈α, χ〉 > 0.

• α-polystable if it is α-semistable and for any PA, χ and σ as above, su
h that
ϕ ∈ H0(E(B)−σ,χ ⊗ L), PA 6= HC and χ is stri
tly antidominant, and su
h that

deg(E)(σ, χ)− 〈α, χ〉 = 0,there is a holomorphi
 redu
tion of the stru
ture group σL ∈ Γ(Eσ(PA/LA)),where Eσ denotes the prin
ipal PA-bundle obtained from the redu
tion σ of thestru
ture group. Furthermore, under these hypothesis ϕ is required to belong to
H0(E(B)0

σL,χ
⊗ L) ⊂ H0(E(B)−σ,χ ⊗ L).
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es of group HC and representation HC → GL(B) the last
ondition in the de�nition of polystability is redundant (for example, HC = GL(n,C)with its fundamental representation on Cn). This does not seem to be general fa
t, butwe do not have any example whi
h illustrates that the 
ondition ϕ ∈ H0(E(B)0
σL,χ
⊗ L)is not a 
onsequen
e of the α-semistability of (E,ϕ) and the existen
e of σL whenever

deg(E)(σ, χ) = 〈α, χ〉 and ϕ ∈ H0(E(B)−σ,χ ⊗ L).A.6. The stability 
ondition in terms of �ltrations. In order to obtain a workablenotion of α-(poly,semi)stability it is desirable to have a more 
on
rete way to des
ribe, forany holomorphi
 HC-prin
ipal bundle E,
• the redu
tions of the stru
ture group of E to paraboli
 subgroups P ⊂ HC, andthe (stri
tly or not) antidominant 
hara
ters of P ,
• the subbundle E(B)−σ,χ ⊂ E(B),
• the degree deg(E)(σ, χ) de�ned in (A.57),
• redu
tions to Levi fa
tors of paraboli
 subgroups and the 
orresponding ve
torbundle E(B)0

σL,χ
⊂ E(B)−σ,χ.We now dis
uss how to obtain in some 
ases su
h 
on
rete des
riptions, beginning withthe notion of degree. In [10℄ the degree deg(E)(σ, χ) is de�ned in terms of a so-
alledauxiliary representation (see �2.1.2 in [10℄) and 
ertain linear 
ombinations of degrees ofsubbundles. The following lemma implies that de�nition (A.57) 
ontains the one given in[10℄ as a parti
ular 
ase. Suppose that ρW : H → U(W ) is a representation on a Hermitianve
tor spa
e, and denote the holomorphi
 extension HC → GL(W ) with the same symbol

ρW . Let (Ker ρW )⊥ ⊂ hC be the orthogonal with respe
t to invariant pairing on hC of thekernel of ρW : hC → gl(W ), and let π : hC → (Ker ρW )⊥ be the orthogonal proje
tion.Lemma A.5. Take some element s ∈ ih. Then ρW (s) diagonalizes with real eigenvalues
λ1 < · · · < λk. Let Wj = Ker(λj IdW −ρW (s)) and de�ne W≤i =

⊕
j≤iWj.(1) The subgroup PW,s ⊂ HC 
onsisting of those g su
h that ρW (g)(W≤i) ⊂ W≤i forany i is a paraboli
 subgroup, whi
h 
an be identi�ed with Pπ(s). Let χ ∈ (z⊕ c)∗ bea 
hara
ter su
h that sχ = s. Then χ is stri
tly antidominant for PW,s.(2) Suppose that for any a, b ∈ (Ker ρW )⊥ we have 〈a, b〉 = Tr ρW (a)ρW (b). Let u ∈

(Ker ρW )⊥ be any element, and write ρW (u) =
∑
ρW (u)ij the de
omposition inpie
es ρW (u)ij ∈ Hom(Wi,Wj). Then(A.58) 〈χ, u〉 = Tr(ρW (s)ρW (u)) = λk Tr ρW (u) +

k−1∑

i=1

(λi − λi+1) Tr ρW (u)ii.(3) Suppose that ρW satis�es the 
onditions of (2). Let E be a holomorphi
 HC-prin
ipal bundle and let W = E(W ) be the asso
iated holomorphi
 ve
tor bundle.Let σ be a redu
tion of the stru
ture group of E to a paraboli
 subgroup P and anlet χ be an antidominant 
hara
ter of P . The endomorphism ρW (sχ) diagonalizeswith 
onstant eigenvalues, giving rise to a de
omposition W =
⊕k

j=1Wj, where
ρW (sχ) restri
ted to Wj is multipli
ation by λj ∈ R. Suppose that λ1 < · · · < λk.For ea
h i the subbundle W≤i =

⊕
j≤iWj ⊂ W is holomorphi
. We have:

deg(E)(σ, χ) = λk degW +

k−1∑

i=1

(λi − λi+1) degW≤i.
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omputations. (3) followsfrom (2). �Remark A.6. Condition (2) of the lemma is satis�ed when W = h, endowed with theinvariant metri
, and ρW : hC → EndW is the adjoint representation, sin
e the invariantmetri
 on h is supposed to extend the Killing pairing in the semisimple part hs.To 
larify the other ingredients in the de�nition of (poly,semi)stability, we put ourselvesin the situation where HC is a 
lassi
al group, so that there is the so-
alled fundamentalrepresentation ρ : HC → GL(N,C) with N depending on HC. Suppose that E is an
HC-prin
ipal bundle, and denote by V the ve
tor bundle asso
iated to E and ρ. One 
andes
ribe pairs (σ, χ) 
onsisting of a redu
tion σ of the stru
ture group of E to a paraboli
subgroup P ⊂ HC and an antidominant 
hara
ter χ of P in terms of �ltrations of ve
torbundles(A.59) V = (0 ( V1 ( · · · ( Vk−1 ( Vk = V ),and in
reasing sequen
es of real numbers (usually 
alled weights)(A.60) λ1 ≤ · · · ≤ λk,whi
h are arbitrary if HC = GL(n,C), and whi
h satisfy otherwise:

• if HC = O(n,C) then, for any i, Vk−i = V ⊥
i = {v ∈ V | 〈v, Vi〉 = 0}, where 〈, 〉denotes the bilinear pairing given by the orthogonal stru
ture (we impli
itly de�ne

V0 = 0), and λk−i+1 + λi = 0.
• if HC = Sp(2n,C) then, for any i, Vk−i = V ⊥

i = {v ∈ V | ω(v, Vi) = 0}, where ω isthe symple
ti
 form on V (as before, V0 = 0), and furthermore λk−i+1 + λi = 0.The resulting 
hara
ter χ is stri
tly antidominant if all the inequalities in (A.60) are stri
t.Given positive integers p, q de�ne the ve
tor bundle V p,q = V ⊗p⊗(V ∗)⊗q. For any 
hoi
eof redu
tion and antidominant 
hara
ter (σ, χ) spe
i�ed by a �ltration (A.59) and weights(A.60) we de�ne
(V p,q)−σ,χ =

∑

λi1
+···+λip≤λj1

+···+λjq

Vi1 ⊗ · · · ⊗ Vip ⊗ V
⊥
j1
⊗ · · · ⊗ V ⊥

jq ⊂ V p,q,where V ⊥
j = {v ∈ V ∗ | 〈v, Vj〉 = 0} and 〈, 〉 is the natural pairing between V and V ∗. Sin
e

HC is a 
lassi
al group, there is an in
lusion of representations
B ⊂ (ρ⊗p1 ⊗ (ρ∗)⊗q1)⊕ · · · ⊕ (ρ⊗pr ⊗ (ρ∗)⊗qr),so that the ve
tor bundle E(B) is 
ontained in V p1,q1 ⊕ · · · ⊕ V pr,qr . One then has

E(B)−σ,χ = E(B) ∩ ((V p1,q1)−σ,χ ⊕ · · · ⊕ (V pr ,qr)−σ,χ).Suppose that the invariant pairing 〈, 〉 on the Lie algebra hC is de�ned using the funda-mental representation as 〈x, y〉 = Tr ρ(x)ρ(y). This 
learly satis�es the 
ondition of (2) ofLemma A.5, so by (3) in the same lemma we have
deg(E)(σ, χ) = λk deg V +

k−1∑

i=1

(λi − λi+1) deg Vi.We now spe
ify what it means to have a redu
tion to a Levi fa
tor of a paraboli
subgroup, as appears in the de�nition of polystability. Assume that (σ, χ) is a pair spe
i�edby (A.59) and (A.60), so that σ de�nes a redu
tion of the stru
ture group of E to a
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 subgroup P ⊂ HC, and that ϕ ∈ H0(L⊗ E(B)−σ,χ) and deg(E)(σ, χ) = 0. If thepair (E,ϕ) is α-polystable all these assumptions imply the existen
e of a further redu
tion
σL of the stru
ture group of HC from P to a Levi fa
tor L ⊂ P ; this is given expli
itly byan isomorphism of ve
tor bundles

V ≃ GrV := V1 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1.WhenHC = GL(n,C) su
h isomorphism is arbitrary. WhenHC is O(n,C) (resp. Sp(2n,C)),it is also assumed that the pairing of an element of Vj/Vj−1 with an element of Vi/Vi−1,using the s
alar produ
t (resp. symple
ti
 form), is always zero unless j + i = k + 1. We�nally des
ribe the bundle E(B)0
σL,χ

in this situation. Let
(GrV

p,q)0
σL,χ

=
∑

λi1
+···+λip=λj1

+···+λjq

(Vi1/Vi1−1)⊗· · ·⊗(Vip/Vip−1)⊗(V ⊥
j1 /V

⊥
j1+1)⊗· · ·⊗(V ⊥

jq /V
⊥
jq+1).Then

E(B)0
σL,χ

= E(B) ∩ ((GrV
p1,q1)0

σL,χ
⊕ · · · ⊕ (GrV

pr,qr)0
σL,χ

).A.7. In�nitesimal automorphism spa
e. For any pair (E,ϕ) we de�ne the in�nitesi-mal automorphism spa
e of (E,ϕ) as
aut(E,ϕ) = {s ∈ H0(E(hC)) | ρ(s)(ϕ) = 0},where we denote by ρ : hC → End(B) the morphism of Lie algebras indu
ed by ρ. Wesimilarly de�ne the semisimple in�nitesimal automorphism spa
e of (E,ϕ) as

autss(E,ϕ) = {s ∈ aut(E,ϕ) | s(x) is semisimple for any x ∈ X }.Proposition A.7. Suppose that (E,ϕ) is a α-polystable pair. Then (E,ϕ) is α-stable ifand only if autss(E,ϕ) ⊂ H0(E(z)). Furthermore, if (E,ϕ) is α-stable then we also have
aut(E,ϕ) ⊂ H0(E(z)).Proof. Suppose that (E,ϕ) is α-polystable and that autss(E,ϕ) = H0(E(z)). We provethat (E,ϕ) is α-stable by 
ontradi
tion. If (E,ϕ) were not α-stable, then there wouldexist a paraboli
 subgroup PA ( HC, a holomorphi
 redu
tion σ ∈ Γ(E/PA), a stri
tlyantidominant 
hara
ter χ su
h that deg(E)(σ, χ)− 〈α, χ〉 = 0, and a further holomorphi
redu
tion σL ∈ Γ(Eσ/LA) to the Levi LA (here Eσ is the prin
ipal PA bundle given by σ,satisfying Eσ ×PA

HC ≃ E) su
h that ϕ ∈ H0(E(B)0
σL,χ
⊗ L). Sin
e the adjoint a
tion of

LA on hC �xes sχ, there is an element
sσ,χ ∈ H0(EσL

(hC)) ≃ H0(E(hC))whi
h 
oin
ides �berwise with sχ. On the other hand sχ is semisimple be
ause it belongsto ih. The 
ondition that ϕ ∈ H0(E(B)0
σL,χ
⊗ L) implies that ρ(sσ,χ)(ϕ) = 0, so sσ,χ ∈

autss(E,ϕ). And the 
ondition that PA 6= HC implies that sχ /∈ z. This 
ontradi
ts theassumption that autss(E,ϕ) = H0(E(z)), so (E,ϕ) is α-stable.Now suppose that (E,ϕ) is α-stable. We want to prove that aut(E,ϕ) = H0(E(z)). Let
ξ ∈ aut(E,ϕ). Sin
e ξ is a se
tion of E ×HC hC, it 
an be viewed as an antiequivariantholomorphi
 map ψ : E → hC. The bundle E is algebrai
 (to prove this, take a faithfulrepresentation HC → GL(n,C) and use the fa
t that any holomorphi
 ve
tor bundle overan algebrai
 
urve is algebrai
), so by Chow's theorem ψ is algebrai
. Hen
e ψ indu
esan algebrai
 map ϕ : X → hC//HC, where hC//HC denotes the a�ne quotient, whi
h is
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e X is proper, ϕ is 
onstant, hen
e it is 
ontained in a unique �ber
Y := π−1(y) ⊂ hC, where π : hC → hC//HC is the quotient map.By a standard results on a�ne quotients, there is a unique 
losed HC orbit O ⊂ Y ,and by a theorem of Ri
hardson the elements in O are all semisimple. Consider the map
σ : Y → O whi
h sends any y ∈ Y to ys, where y = ys + yn is the Jordan de
ompositionof y (see for example [4℄). We 
laim that this map is algebrai
 (note that the Jordande
omposition, when de�ned on the whole Lie algebra hC, is not even 
ontinuous). Toprove the 
laim �rst 
onsider the 
ase hC = gl(n,C). Then Y ⊂ gl(n,C) is the set of n×nmatri
es with 
hara
teristi
 polynomial equal to some �xed polynomial, say ∏(x− λi)mi ,with λi 6= λj for i 6= j. By the Chinese remainder theorem there exists a polynomial
P ∈ C[t] su
h that P ≡ λi mod (t−λi)mi and P ≡ 0 mod t. Then the map σ : Y → O isgiven by σ(A) = P (A), whi
h is 
learly algebrai
. The 
ase of a general hC 
an be redu
edto the previous one using the adjoint representation ad : hC → End(hC) ≃ gl(dim hC,C).By 
onstru
tion σ is equivariant, so it indu
es a proje
tion pE : H0(E(Y ))→ H0(E(O)).We de�ne ξs = pE(ξ) and ξn = ξ − ξs. Note that the de
omposition ξ = ξs + ξn issimply the �berwise Jordan de
omposition of an element of the Lie algebra as the sum of asemisimple element plus a nilpotent one. We 
laim that both ξs and ξn belong to aut(E, φ).To prove this we have to 
he
k that ρ(ξs)(φ) = ρ(ξn)(φ) = 0. But ρ(ξ) = ρ(ξs) + ρ(ξn)is �berwise the Cartan de
omposition of ρ(ξ), sin
e Cartan de
omposition 
ommutes withLie algebra representations. In addition, if f = fs + fn is the Cartan de
omposition of anendomorphism f of a �nite dimensional ve
tor spa
e V and v ∈ V satis�es fv = 0, then
fsv = fnv = 0, as the reader 
an 
he
k putting f in Jordan form. This proves the 
laim.We want to prove that ξs ∈ H0(E(z)) and that ξn = 0. We will need for that thefollowing lemma.Lemma A.8. Let s ∈ hC be a semisimple element. There exists some h ∈ HC su
h that:(1) if we write u = Ad(h−1)(s) = h−1sh = ur + iui with ur, ui ∈ h, then [ur, ui] = 0;(2) there exists an element a ∈ h su
h that

Ker ad(s) = Ad(h)(Ker ad(ur) ∩Ker ad(ui)) = Ad(h) Ker ad(a).Proof. Using the de
omposition hC = h⊕ ih we de�ne a real valued s
alar produ
t on hC asfollows: given ur + iui, vr + ivi ∈ hC we set 〈ur + iui, vr + ivi〉R := −〈ur, vr〉 − 〈ui, vi〉. Thebilinear pairing 〈, 〉 restri
ted to h is negative de�nite, so the pairing 〈, 〉R is positive de�niteon the whole hC and hen
e the fun
tion ‖ ·‖2 : hC → R de�ned by ‖s‖2 := 〈s, s〉R is proper.Let Os be the adjoint orbit of s. Sin
e s is semisimple, Os is a 
losed subset of hC, and hen
ethe fun
tion ‖ · ‖2 : Os → R attains its minimum at some point u = ur + iui ∈ Os. That
u minimizes ‖ · ‖2 on its adjoint orbit means that for any v ∈ hC we have 〈u, [v, u]〉R = 0,sin
e we 
an identify TuOs = {[v, u] | v ∈ hC}. Now we develop for any v = vr + ivi, usingthe biinvarian
e of 〈, 〉 and Ja
obi rule:

0 = 〈ur + iui, [ur + iui, vr + ivi]〉R

= 〈ur + iui, ([ur, vr]− [ui, vi]) + i([ui, vr] + [ur, vi])〉R

= −〈ur, [ur, vr]− [ui, vi]〉 − 〈ui, [ui, vr] + [ur, vi]〉

= 〈ur, [ui, vi]〉 − 〈ui, [ur, vi]〉

= −2〈[ui, ur], vi〉.
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e this holds for any 
hoi
e of v, it follows that [ui, ur] = 0. So the endomorphisms
ad(ui) and ad(ur) 
ommute and hen
e diagonalize in the same basis with purely imaginaryeigenvalues (be
ause they respe
t the pairing 〈·, ·〉R). Hen
e Ker ad(u) = Ker ad(ur+iui) =
Ker(ad(ur) + iad(ui)) = Ker ad(ur) ∩Ker ad(ui). Sin
e ur and ui 
ommute, they generatea torus Tu ⊂ H . Take h su
h that u = Ad(h−1)(s) and 
hoose a ∈ h su
h that the 
losureof {eta | t ∈ R} is equal to Tu. Then Ker ad(a) = Ker ad(ur) ∩ Ker ad(ui), so the resultfollows. �We now prove that ξs is 
entral. Let u = ur + iui = h−1ysh be the element given bythe previous lemma su
h that [ur, ui] = 0. Let ψs : E → hC be the antiequivariant map
orresponding to ξs ∈ H0(E(hC)), whose image 
oin
ides with the adjoint orbit Os. De�ne
E0 = {e ∈ E | ψs(e) = u} ⊂ E. Then E0 de�nes a redu
tion of the stru
ture group of Eto the 
entralizer of u, whi
h we denote by HC

0 = {g ∈ HC | Ad(g)(u) = u}. De�ne thesubgroups P± = {g ∈ HC | e±ituige∓tiui is bounded as t→∞ } ⊂ HC. By (3) in LemmaA.2, P± are paraboli
 subgroups and Lui
= P+ ∩ P− = {g ∈ HC | Ad(g)(ui) = ui} is a
ommon Levi subgroup of P+ and P−. By (1) in Lemma A.2, HC

0 is a 
onne
ted subgroupof HC, so by the same argument as in the end of the proof of Lemma A.8 we 
an identify
HC

0 with {g ∈ HC | Ad(g)(ui) = ui, Ad(g)(ur) = ur}. This implies that HC

0 ⊂ Lui
, hen
e

E0 indu
es a redu
tion σ+ (resp. σ−) of the stru
ture group of E to P+ (resp. P−).One the other hand, if χ 
orresponds to iui via the isomorphism (z⊕ c)∗ ≃ z⊕ c (so that
sχ = iui), then χ is antidominant for P+ and −χ is antidominant for P−.Let φ : EL → B be the antiequivariant map 
orresponding to ϕ. Sin
e ρ(ξs)(ϕ) = 0we have ρ(u)φ(e) = 0 for any e ∈ E0. Let v ∈ B be any element. Sin
e ui and ur
ommute, the ve
tors ρ(eitui)v are uniformly bounded as t→∞ if and only if the ve
tors
ρ(etur)ρ(eitui)v = ρ(etu)v are bounded. It follows that ϕ belongs both to H0(E(B)−σ+,χ⊗L)and to H0(E(B)−σ−,−χ ⊗ L). Applying the α-stability 
ondition we dedu
e that

degE(σ+, χ)− 〈α, χ〉 ≥ 0, and degE(σ−,−χ)− 〈α,−χ〉 ≥ 0.These inequalities, together with degE(σ+, χ) − 〈α, χ〉 = −(degE(σ−,−χ) − 〈α,−χ〉),imply that degE(σ, χ)− 〈α, χ〉 = 0. Sin
e we assume that (E,ϕ) is α-stable, su
h a thing
an only happen if χ, and hen
e any element in the image of ψs, is 
entral.Finally, we prove that ξn = 0 pro
eeding by 
ontradi
tion. Sin
e the set of nilpotentelements hC

n ⊂ hC 
ontains �nitely many adjoint orbits, whi
h are lo
ally 
losed in theZariski topology, and sin
e ξn is algebrai
, there exists a Zariski open subset U ⊂ X andan adjoint orbit On ⊂ hC

n su
h that ξn(x) ∈ On for any x ∈ U . Assume that ξn(x) 6= 0 for
x ∈ U (otherwise ξn vanishes identi
ally). Consider for any x ∈ U the weight �ltration ofthe a
tion of ad(ξn(x)) on E(hC)x:

· · · ⊂W−k
x ⊂W−k+1

x ⊂ · · · ⊂W k−1
x ⊂W k

x ⊂ . . . ,whi
h is uniquely de�ned by the 
onditions: ad(ξn(x))(W
j
x) ⊂W j−2

x , ad(ξn(x))
j+1(W j

x) = 0and the indu
ed map on graded spa
es Gr ad(ξn(x))
j : GrW j

x → GrW−j
x is an isomor-phism. As x moves along U the spa
es W j

x give rise to an algebrai
 �ltration of ve
torbundles · · · ⊂W−k
U ⊂ W−k+1

U ⊂ · · · ⊂ W k−1
U ⊂ W k

U ⊂ · · · ⊂ E(hC)|U . By the properness ofthe Grassmannian of subspa
es of hC these ve
tor bundles extend to ve
tor bundles de�nedon the whole X(A.61) · · · ⊂ W−k ⊂W−k+1 ⊂ · · · ⊂W k−1 ⊂W k ⊂ · · · ⊂ E(hC)
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ed map between graded bundles Gr ad(ξn)
j : GrW j → GrW−j is an isomor-phism away from �nitely many points. This implies that(A.62) deg GrW j ≤ deg GrW−j.By Ja
obson�Morozov's theorem the weight �ltration (A.61) indu
es a redu
tion σ of thestru
ture group of E to a paraboli
 subgroup P ⊂ HC (the so-
alled Ja
obson�Morozov'sparaboli
 subgroup asso
iated to the nilpotent elements in the image of ξn|U), and thereexists an antidominant 
hara
ter χ of P su
h that ad(sχ) preserves the weight �ltrationand indu
es on the graded pie
e GrW j the map given by multipli
ation by j.The subbundle E(B)−σ,χ ⊗ L ⊂ E(B) ⊗ L 
an be identi�ed with the pie
e of degree

0 in the weight �ltration on E(B) ⊗ L indu
ed by the nilpotent endomorphism ρ(ξn).Sin
e ρ(ξn)(φ) = 0, we have φ ∈ H0(E(B)−σ,χ ⊗ L) (the kernel of a nonzero nilpotentendomorphism is in
luded in the pie
e of degree zero of the weight �ltration). Hen
e, by
α-stability, deg(E)(σ, χ) − 〈α, χ〉 has to be positive. On the other hand, the 
hara
ter χ
an be 
hosen to be perpendi
ular to z, so by (3) in Lemma A.5 we have

degE(σ, χ)− 〈α, χ〉 =
∑

j∈Z

j deg GrW j .By (A.62) this is ≤ 0, thus 
ontradi
ting the stability of (E,ϕ). �A.8. Jordan�Hölder redu
tion. In this subse
tion we asso
iate to ea
h α-polystablepair (E,ϕ) an α-stable pair. This is a

omplished by pi
king an appropriate subgroup
H ′ ⊂ H (de�ned as the 
entralizer of a torus in H) and by 
hoosing a redu
tion of thestru
ture group of E to H ′C. The resulting new pair is 
alled the Jordan�Hölder redu
tionof (E,ϕ). It is 
onstru
ted using a re
ursive pro
edure in whi
h 
ertain 
hoi
es are made,and the main result of this subse
tion (see Proposition A.12) is the proof that the resultingredu
tion is 
anoni
al up to isomorphism.Let G′ ⊂ G be an in
lusion of 
omplex 
onne
ted Lie subgroup with Lie algebras g′ ⊂
g. Assume that the normalizer NG(g′) of g′ in G is equal to G′. Suppose that E is aholomorphi
 prin
ipal G-bundle.Lemma A.9. The holomorphi
 redu
tions of the stru
ture group of E to G′ are in bije
tionwith the holomorphi
 subbundles F ⊂ E(g) of Lie subalgebras satisfying this property:for any x ∈ X and trivialization Ex ≃ G, the �ber Fx, whi
h we identify toa subspa
e of g via the indu
ed trivialization E(g)x ≃ g, is 
onjugate to g′.Proof. Let d = dim g′ and let Grd(g) denote the Grassmannian of 
omplex d-subspa
es in-side g. Let Og′ = {Ad(h)(g′) | h ∈ G} ⊂ Grd(g). By assumption there is a biholomorphism
Og′ ≃ G/G′. Furthermore, the set of ve
tor bundles F ⊂ E(g) satisfying the 
ondition ofthe lemma is in bije
tion with the holomorphi
 se
tions of E(Og′), so the result follows. �We now apply this prin
iple to a parti
ular 
ase. Let P ⊂ HC be a paraboli
 subgroup,let L ⊂ P be a Levi subgroup and let U ⊂ P be the unipotent radi
al. Denote u = LieU ,
p = LieP and l = LieL. The adjoint a
tion of P on p preserves u and using the standardproje
tion P → P/U ≃ L (see Se
tion A.1 and re
all that P is isomorphi
 to PA for some
hoi
e of A) we make P a
t linearly on l via the adjoint a
tion. Hen
e P a
ts linearly onthe exa
t sequen
e 0 → u → p → l → 0. We 
laim that NP (l) = L. To 
he
k this weidentify P (up to 
onjugation) with some PA, then use (A.54) and (A.55) together with
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tivity of the exponential map uA → UA to dedu
e that no nontrivial element of
U normalizes l, and �nally use the de
omposition P = LU .Lemma A.10. Suppose that Eσ is a holomorphi
 prin
ipal P -bundle. The redu
tions ofthe stru
ture group of Eσ from P to L ⊂ P are in bije
tion with the splittings of the exa
tsequen
e of holomorphi
 ve
tor bundles(A.63) 0→ Eσ(u)→ Eσ(p)→ Eσ(l)→ 0given by holomorphi
 maps Eσ(l)→ Eσ(p) whi
h are �berwise morphisms of Lie algebras.Proof. Sin
e NP (l) = L, we may use Lemma A.9 with G = P and G′ = L. The subalgebras
g′ ⊂ p whi
h are 
onjugate to p are the same as the images of se
tions l→ p of the exa
tsequen
e 0 → u → p → l → 0 whi
h are morphisms of Lie algebras. Hen
e the ve
torsubbundles F ⊂ E(p) satisfying the requirements of Lemma A.9 
an be identi�ed with theimages of maps E(l) → E(p) whi
h give a se
tion of the sequen
e (A.63) and whi
h are�berwise a morphism of Lie algebras. �Suppose that (E,ϕ) is a α-polystable pair whi
h is not α-stable. By Proposition A.7there exists a semisimple non 
entral in�nitesimal automorphism s ∈ autss(E,ϕ). Thesplitting hC = z ⊕ hC

s (re
all that hC

s = [hC, hC] is the semisimple part) is invariant underthe adjoint a
tion of HC (whi
h is 
onne
ted by assumption) hen
e we have H0(E(hC)) =
H0(E(z)) ⊕ H0(E(hC

s )) so proje
ting to the se
ond summand we 
an assume that s ∈
H0(E(hC

s )).As shown in the proof of Proposition A.7, the image of s is 
ontained in an adjoint orbitin hC whi
h 
ontains an element u = ur+ iui su
h that ur, ui are 
ommuting elements of h.Let a ∈ hs = [h, h] be an in�nitesimal generator of the torus generated by ur and ui and let
HC

1 be the 
omplexi�
ation of H1 := ZH(a) = {h ∈ H | Ad(h)(a) = a}. Let ψs : E → hCbe the antiequivariant map 
orresponding to the se
tion s. Then
E1 = {e ∈ E | ψs(e) = u} ⊂ Eis a HC

1 -prin
ipal bundle, whi
h de�nes a redu
tion of the stru
ture group of E. We saythat the pair (E1, H
C

1 ) is the redu
tion of (E,HC) indu
ed by s and u.De�ne B1 = {v ∈ B | ρ(a)(v) = 0}. The restri
tion of ρ to H1 preserves B1, so wehave a subbundle E1(B1) ⊂ E1(B) ≃ E(B). Let φ : EL → B be the antiequivariantmap indu
ing the se
tion ϕ ∈ H0(E(B) ⊗ L) (see Subse
tion A.4). By the de�nition ofthe in�nitesimal automorphisms, for any (e, l) ∈ EL
1 we have ρ(ψs(e))φ(e, l) = 0. Now

ρ(ψs(e)) = ρ(ur + iui) = ρ(ur) + iρ(ui). Sin
e ρ restri
ted to H is Hermitian, ρ(ur) and
ρ(ui) have purely imaginary eigenvalues, and sin
e [ρ(ur), ρ(ui)] = 0 it follows that

ρ(ψs(e))φ(e, l) = 0 ⇐⇒ ρ(ur)φ(e, l) = ρ(ui)φ(e, l) = 0 ⇐⇒ ρ(a)φ(e, l) = 0for any (e, l) ∈ EL. This implies that φ(EL
1 ) ⊂ B1, and 
onsequently ϕ lies in the subbundle

E1(B1) ⊗ L ⊂ E(B) ⊗ L. To stress this fa
t we rename ϕ with the symbol ϕ1. To sumup: assuming that (E,ϕ) is α-polystable but not α-stable we have obtained a subgroup
H1 = ZH(a) ⊂ H , a H1-invariant subspa
e B1 ⊂ B, and a new pair (E1, ϕ1), where E1 isa HC

1 prin
ipal bundle and ϕ1 ∈ H0(E1(B1) ⊗ L). We denote the Lie algebras of H1 andits 
omplexi�
ation by h1 and hC

1 .Proposition A.11. The pair (E1, B1) is α-polystable.
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e H1 is the 
entralizer of a and α belongs to the 
enter of hC, we have α ∈ hC

1 .Hen
e the statement of the proposition makes sense. We �rst prove that (E1, B1) is α-semistable. Let P1 ⊂ HC

1 be a standard paraboli
 subgroup. By (2) in Lemma A.2 thereis some s ∈ ih1 (satisfying s = sχ for an appropriate antidominant 
hara
ter χ of P1) su
hthat P1 = {g ∈ HC

1 | e
tsge−ts is bounded as t→∞ }. Sin
e ih1 ⊂ ih it makes sense tode�ne P = {g ∈ HC | etsge−ts is bounded as t→∞ }, whi
h is a paraboli
 subgroup of

HC, and 
learly P1 ⊂ P . Hen
e, any redu
tion σ1 of the stru
ture group of E1 to P1, say
(E1)σ1

⊂ E1, gives automati
ally a redu
tion σ of the stru
ture group of E to P , spe
i�edby Eσ = (E1)σ1
×P1

P ⊂ (E1)σ1
×P1

HC = E. Furthermore, any antidominant 
hara
ter
χ ∈ ih of P1 is an antidominant 
hara
ter of P , and there is an equality deg(E1)(σ1, χ) =
deg(E)(σ, χ). Finally, if the se
tion ϕ1 belongs to H0(E1(B1)

−
σ1,χ
⊗L), then it also belongsto H0(E(B)−σ,χ ⊗ L). All this implies that (E1, ϕ1) is α-semistable.To prove that (E1, ϕ1) is α-polystable it remains to show that if the redu
tion σ1 and χhave been 
hosen so that deg(E1)(σ1, χ)−〈α, χ〉 = 0, then there is a holomorphi
 redu
tion

σL1
of the stru
ture group of (E1)σ1

to the Levi L1 = {g ∈ HC
1 | Ad(g)(s) = s} su
h that(A.64) ϕ1 ∈ H0(E(B1)

0
σL1

,χ ⊗ L).De�ne L = {g ∈ HC | Ad(g)(s) = s}, whi
h is a Levi subgroup of P , let U1 ⊂ P1 and
U ⊂ P be the unipotent radi
als, and denote the 
orresponding Lie algebras by u1 = LieU1,
p1 = LieP1, l1 = LieL1, u = LieU , p = LieP , l = LieL. By Lemma A.10 it su�
es to
he
k that there exists a bundle morphism w1 : (E1)σ1

(l1)→ (E1)σ1
(p1) given �berwise bymorphisms of Lie algebras, de�ning a splitting of the exa
t sequen
e(A.65) 0→ (E1)σ1

(u1)→ (E1)σ1
(p1)→ (E1)σ1

(l1)→ 0.Let T ⊂ H be the 
losure of {eta | t ∈ R}, whi
h is a torus. Denote by T∨ = Hom(T, S1)the group of 
hara
ters of T . We have de
ompositions
u =

⊕

η∈T∨

uη, p =
⊕

η∈T∨

pη, l =
⊕

η∈T∨

lη,and sin
e the elements of HC

1 �x a, the a
tion of HC

1 on u, p and l respe
ts the splittingsabove. It follows that we have a 
ommutative diagram with exa
t rows
0 // Eσ(u) //

≃
��

Eσ(p) //

≃
��

Eσ(l)

≃
��

// 0

0 // (E1)σ1(u) // (E1)σ1
(p) // (E1)σ1

(l) // 0

0 //
⊕

η∈T∨(E1)σ1(uη) //
⊕

η∈T∨(E1)σ1
(pη) //

⊕
η∈T∨(E1)σ1

(lη) // 0Taking in the bottom row the summands 
orresponding to the trivial 
hara
ter η = 0 (the
onstant representation T → {1} ∈ S1) we get the exa
t sequen
e (A.65). By hypothesisthe pair (E,ϕ) is α-polystable, so there is a se
tion v : Eσ(l) → Eσ(p) of the top row,given �berwise by morphisms of Lie algebras. Using the isomorphisms and equalities inthe diagram, this gives rise to a se
tion
w :

⊕

η∈T∨

(E1)σ1
(lη)→

⊕

η∈T∨

(E1)σ1
(pη)



REPRESENTATIONS OF SURFACE GROUPS 67of the bottom row. Then w = (wηµ)η,µ∈T∨ , where wηµ : (E1)σ1
(lη) → (E1)σ1

(pµ), andone 
he
ks that w1 := w00 is �berwise a morphism of Lie algebras and that it gives thedesired splitting of the sequen
e (A.65). To 
he
k (A.64) we pro
eed as follows. Firstnote that sχ belongs both to the 
enter of l1 and l, hen
e it de�nes holomorphi
 se
tions
sσ1,χ ∈ H0((E1)σ1

(l1)) and sσ,χ ∈ H0(Eσ(l)). Condition (A.64) is equivalent to(A.66) ρ(w1(sσ1,χ))(ϕ) = 0(note that (E1)σ1
(p1) is a subbundle of (E1)σ1

(hC
1 ) ≃ E1(h

C
1 ), hen
e it a
ts �berwise on

E(B)⊗L). To prove this equality, we use again the hypothesis that (E,ϕ) is α-polystable,whi
h implies that ϕ ∈ H0(E(B)−σL,χ
⊗ L), where σL is the redu
tion spe
i�ed by w. Thisis equivalent to ρ(w(sσ,χ))(ϕ) = 0, and this implies (A.66) be
ause sχ ∈ l0 ⊂

⊕
η∈T∨ lη. �Let (E,ϕ) be a α-polystable pair. Iterating the pro
edure des
ribed in the previoussubse
tion as many times as possible we obtain a sequen
e of groups H = H0 ⊃ H1 ⊃ H2 ⊃

. . . and elements aj ∈ (hj−1)s = [hj−1, hj−1] su
h that Hj = ZHj−1
(aj), ve
tor subspa
es

B = B0 ⊃ B1 ⊃ B2 ⊃ . . . , and α-polystable pairs (E,ϕ) = (E0, ϕ0), (E1, ϕ1), . . . , where
Ej is a HC

j -prin
ipal bundle over X and 
ontained in Ej−1, and ϕj ∈ H0(Ej(Bj)⊗L). Sin
e
dimHj < dimHj−1, this pro
ess has to eventually stop at some pair, say (Er, ϕr), whi
hwill ne
essarily be α-stable. We say that (Er, ϕr, Hr, Br) is the Jordan�Hölder redu
tionof (E,ϕ,H,B). To justify this terminology we need to prove that the 
onstru
tion isindependent of the 
hoi
es made in the pro
ess. Note that the elements in the sequen
e
{a0, a1, . . . , al} all belong to the initial Lie algebra h and they 
ommute pairwise. Hen
ethey generate a torus T ⊂ H , the 
losure of the set {exp

∑
tjaj | t0, . . . , tl ∈ R}, and Hlis the 
entralizer in H of T(E,ϕ). With this in mind, the following proposition implies theuniqueness of the Jordan�Hölder redu
tion.Let Hs ⊂ H be the 
onne
ted Lie subgroup whose Lie algebra is hs = [h, h].Proposition A.12. Let (E,ϕ) be a α-polystable pair. Suppose that T ′, T ′′ ⊂ Hs are tori,and de�ne H ′ (resp. H ′′) to be the 
entralizer in H of T ′ (resp. T ′′). Let B′ (resp. B′′)be the �xed point set of the a
tion of T ′ (resp. T ′′) on B, and assume that there areredu
tions E ′ ⊂ E (resp. E ′′ ⊂ E) of the stru
ture group of E to H ′C (resp. H ′′C). Let

φ : EL → B the equivariant map 
orresponding to ϕ. Assume that φ(E ′L) ⊂ B′ ⊗ L and
φ(E ′′L) ⊂ B′′ ⊗ L. Denote by ϕ′ ∈ H0(E ′(B′)⊗ L) and ϕ′′ ∈ H0(E ′′(B′′)⊗ L) the indu
edse
tions. Finally, suppose that both (E ′, ϕ′) and (E ′′, ϕ′′) are α-stable. Then there is some
g ∈ HC su
h that H ′C = g−1(H ′′C)g, E ′ = E ′′g, T ′C = g−1(T ′′C)g and B′ = ρ(g−1)B′′.Before proving Proposition A.12 we state and prove two auxiliary lemmas.Lemma A.13. Let u′, u′′ ∈ h and let s′, s′′ ∈ H0(E(hC)) be se
tions su
h that s′(x) (resp.
s′′(x)) is 
onjugate to iu′ (resp. iu′′) for any x ∈ X. Let (E ′, H ′C) (resp. (E ′′, H ′′C)) bethe redu
tions of (E,HC) indu
ed by s′ and iu′ (resp. s′′ and iu′′).(1) Assume that [s′, s′′] = 0. Let h′′C be the Lie algebra of H ′′C. Then we 
an naturallyidentify s′ with a se
tion of E ′′(h′′C).(2) Let z′′ be the 
enter of h′′C. If s′ ∈ H0(E ′′(z′′)) then there is some h ∈ HC su
h that

E ′′ ⊂ E ′h as subsets of E.Proof. Let ψ′, ψ′′ : E → hC be the antiequivariant maps 
orresponding to s′, s′′. The
ondition [s′, s′′] = 0 implies that for any e ∈ E the elements ψ′(e), ψ′′(e) ∈ hC 
ommute.Sin
e E ′′ = (ψ′′)−1(iu′′), this implies that, for any e ∈ E ′′, ψ′(e) 
ommutes with iu′′, so
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ψ′(e) belongs to h′′C. This proves (1). We now prove (2). First observe that, being a
entralizer of a semisimple element in hC, H ′′C is 
onne
ted (see e.g. Theorem 13.2 in[3℄). Hen
e, the adjoint a
tion of H ′′C on h′′C �xes any element in z′′. Take some element
e ∈ E ′′. By hypothesis, there is some h ∈ HC su
h that ψ′(e) = Ad(h−1)(iu′), so e ∈ E ′h.The 
ondition s′ ∈ H0(E ′′(z′′)) implies that ψ′(e) ∈ z′′ so, by the previous observation, forany g ∈ H ′′C we have ψ′(eg) = Ad(g−1) Ad(h−1)(iu′) = Ad(h−1)(iu′), hen
e eg ∈ E ′h. Itfollows that E ′′ ⊂ E ′h. �For any u ∈ h we denote by Tu ⊂ H the torus generated by u, i.e., the 
losure of
{exp tu | t ∈ R}, and TC

u denotes the 
omplexi�
ation of Tu.Lemma A.14. Let u′, u′′ ∈ hs = [h, h] and let H ′C (resp. H ′′C) be the 
omplexi�
ation ofthe 
entralizer ZH(u′) (resp. ZH(u′′)). If there is some g ∈ HC su
h that H ′C = g−1(H ′′C)gthen TC

u′ = g−1TC

u′′g.Proof. The 
enter of h′C is z⊕Lie TC

u′, and the sum is dire
t be
ause u′ is assumed to belongto hs. Similarly, the 
enter of h′′C is z⊕ LieTC

u′′ . Sin
e HC is 
onne
ted, its adjoint a
tionon z is trivial, and hen
e taking the 
enter of the Lie algebra in ea
h side of the equality
TC

u′ = g−1TC

u′′g we dedu
e that LieTC

u′ = g−1(LieTC

u′′)g. This implies the equality betweenthe 
omplexi�ed tori. �We now prove Proposition A.12.Proof. Let u′, u′′ ∈ hs satisfy T ′ = Tu′ and T ′′ = Tu′′ . The existen
e of redu
tions of E tothe 
entralizers of u′ and u′′ gives rise to se
tions s′, s′′ ∈ autss(E,ϕ) ⊂ H0(E(hC)) su
hthat s′(x) (resp. s′′(x)) is 
onjugate to is′ (resp. is′′) for any x ∈ X.If [s′, s′′] = 0 then by (1) Lemma A.13 we 
an view s′ ∈ autss(E ′′, ϕ′′) and s′′ ∈
autss(E ′, ϕ′). Sin
e by assumption (E ′′, ϕ′′) and (E ′, ϕ′) are α-stable, by Proposition A.7 wededu
e that s′ is 
entral in the 
entralizer of s′′ and vi
e-versa. By (2) in Lemma A.13 thereexist g, h ∈ HC su
h that E ′ ⊂ E ′′g and E ′′ ⊂ E ′h. This implies that E ′ ⊂ E ′′g ⊂ E ′hg,but E ′ ⊂ E ′hg 
learly implies that E ′ = E ′hg, whi
h 
ombined with the previous 
hainof in
lusions gives E ′ = E ′′g. It then follows that H ′C = g−1(H ′′C)g. By Lemma A.14 wehave TC

s′ = g−1TC

s′′g. Finally, sin
e the �xed point set of TC

s′ a
ting on B 
oin
ides with the�xed point set of Ts′ (and similarly for TC

s′′) we have B′ = ρ(g−1)B′′.Suppose now that [s′, s′′] 6= 0. There are holomorphi
 splittings(A.67) E(hC) = E1 ⊕ · · · ⊕Ep = F1 ⊕ · · · ⊕ Fqsu
h that ad(s′)|Ej
= λj IdEj

and ad(s′′)|Fk
= µk IdFk

, where the real numbers λ1 < · · · < λp(resp. µ1 < · · · < µq) are the eigenvalues of ad(is′) (resp. ad(is′′)). De�ne for any
j the subbundles F≤j =

⊕
k≤j Fk ⊂ E(hC) and E≤j =

⊕
k≤j Ek ⊂ E(hC). Denote by

πk : E(hC) → Ek the proje
tion using the de
omposition (A.67). Let E≤k (resp. Ek, F≤j ,
Fj) be the sheaf of lo
al holomorphi
 se
tions of E≤k (resp. Ek, F≤j , Fj). De�ne for any
j the sheaf

F
♯
≤j =

p⊕

k=1

πk(E≤k ∩F≤j).This is a subsheaf of the sheaf asso
iated to E(hC), and we denote by F ♯
≤j ⊂ E(hC) thesubbundle obtained by taking the saturation of F

♯
≤j .
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es a holomorphi
 redu
tion σ′′ ∈ Γ(E(HC/P )) of thestru
ture group of E to P = Piu′′.Lemma A.15. The �ltration F ♯
≤1 ⊂ · · · ⊂ F ♯

≤q = E(hC) also indu
es a redu
tion σ♯ of thestru
ture group of E to P .Proof. For any t ∈ R there is a natural �berwise a
tion of ets′ on E(HC/P ), whi
h allowsto de�ne ets′σ′′ ∈ Γ(E(HC/P )). For the reader's 
onvenien
e, we re
all how this is de�ned.For any x ∈ X we 
an identify σ′′(x) with an antiequivariant map ξσ′′ : Ex → HC/P (here
HC a
ts on the left of HC/P ). Similarly, s′(x) 
orresponds to a map ψ : Ex → hC whi
his antiequivariant and hen
e satis�es, for any f ∈ Ex and g ∈ HC,(A.68) etψ(fg) = g−1etψ(f)g.Then ets′σ′′(x) 
orresponds to the antiequivariant map ξets′σ′′ : Ex → HC/P de�ned as

ξets′σ′′(f) = etψ(f)ξσ′′(f) = ξσ′′(fe
−tψ(f)).That ξets′σ′′ is antiequivariant follows from (A.68). For ea
h x the a
tion of ets′(x) de�neson the �ber Ex(HC/P ) a de
omposition in Zariski lo
ally 
losed subvarieties {Cx,i}, theS
hubert 
ells. Ea
h Cx,i 
orresponds to a 
onne
ted 
omponent Cx,i ⊂ Ex(H

C/P ) ofthe �xed point set of the a
tion of {ets′(x) | t ∈ R} on Ex(HC/P ), and Cx,i is the set of
z ∈ Ex(HC/P ) su
h that ets′(x)z 
onverges to Cx,i as t→∞. Sin
e s′ is algebrai
 and, forany x, s′(x) is 
onjugate to the same element iu′, ea
h Ci =

⋃
x∈X Cx,i is a Zariski lo
ally
losed subvariety of E(HC/P ). Sin
e σ′′ is an algebrai
 se
tion of E(HC/P ), there is aZariski open subset U ⊂ X su
h that σ′′|U is 
ontained in a unique 
ell Cj ⊂ E(HC/P ).Then for any x ∈ U the limit σ♯x := limt→∞ ets

′

σ′′(x) ∈ Cx,j ⊂ Cj is well de�ned, and the�ltration {F ♯
≤j,x} 
orresponds to σ♯x. As x moves along U the elements σ♯x des
ribe analgebrai
 se
tion σ♯U ∈ Γ(U ;E(HC/P )). Finally, F ♯

≤j results from extending the redu
tion
σ♯U to an algebrai
 se
tion σ♯ ∈ Γ(E(HC/P )), whi
h exists and is unique thanks to theproperness of the �ag variety HC/P . �Let χ be the antidominant 
hara
ter of P 
orresponding to u′′, so that sχ = iu′′.Lemma A.16. We have ϕ ∈ H0(E(B)−

σ♯,χ
⊗ L).Proof. Let U ⊂ X denote, as in the pre
eeding lemma, a nonempty Zariski open subsetsu
h that for any x ∈ U we have σ♯(x) = limt→∞ ets

′

σ′′(x). By 
ontinuity, it su�
es toprove that for any x ∈ U(A.69) ϕ(x) ∈ E(B)−
σ♯,χ
⊗ L.The ve
tor ϕ(x) 
orresponds to an antiequivariant map φ : EL

x → B, whereas σ♯ 
orre-sponds to an antiequivariant map ξσ♯ : Ex → HC/P . De�ne P ♯
x = ξ−1

σ♯ (P ) ⊂ Ex. Then P ♯
xis an orbit of the a
tion of P on Ex on the right (whi
h 
an also be obtained by identi-fying E(HC/P ) with the quotient E/P ). And (A.69) is equivalent to requiring that φ(x)restri
ted to (P ♯

x)
L is 
ontained in B−

χ . De�ne for any real t the map ξσt : Ex → HC/Pas ξσt(f) = ξσ′′(fe
−tψ(f)), where ψ : Ex → hC is the antiequivariant map 
orresponding to

s′. Let also P t
x be ξ−1

σt (P ). By the previous lemma, we have ξσ♯ = limt→∞ ξσt , so we have
P ♯
x = limt→∞ P t

x as orbits of Ex/P . By 
ontinuity, it su�
es to 
he
k that for any t therestri
tion of φ(x) to (P t
x)
L is 
ontained in B−

χ .
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e s′, s′′ ∈ aut(E,ϕ), we have(A.70) ρ(ets
′

)(ϕ) = ϕand we also have ϕ ∈ H0(E(B)−σ′′,χ ⊗ L). De�ning P ′′
x = ξ−1

σ′′ (P ) this implies that(A.71) φ(g, l) ∈ B−
χ for any g ∈ P ′′

x and l ∈ Lx.Assume that f ∈ P t
x and l ∈ Lx. Then ξσt(f) = ξσ′′(fe

−tψ(f)) ∈ P , so fe−tψ(f) ∈ P ′′
x .Hen
e

φ(f, l) = φ(fe−tψ(f), l) ∈ B−
χ ,where the equality follows from (A.70) and the in
lusion follows from (A.71). This provesthat φ(x) maps (P t

x)
L inside B−

χ , so we are done. �Hen
e we 
an apply the α-polystability 
ondition, whi
h in view of Lemma A.5 andRemark A.6 reads(A.72) deg(E)(σ♯, χ) = µq deg F ♯
≤q +

q−1∑

j=1

(µj − µj+1) degF ♯
≤j ≥ 0(the 〈α, χ〉 term vanishes be
ause we assume that s′′ is orthogonal to the 
enter of h). Onthe other hand, sin
e s′′ ∈ autss(E,ϕ), the same arguments as in the proof of PropositionA.7 imply that(A.73) deg(E)(σ′′, χ) = µq degF≤q +

q−1∑

j=1

(µj − µj+1) degF≤j = 0.An easy 
omputation shows that deg F
♯
≤j = deg F≤j, whereas in general deg F

♯
≤j ≤ degF ♯

≤jwith equality if and only if F
♯
≤j = (F ♯

≤j)
∨∨, so that in general

degF≤j ≤ deg F ♯
≤j.Sin
e deg F≤q = deg F

♯
≤q = degF ♯

≤q (be
ause F≤q is equal to the sheaf asso
iated to
E(hC)) and µj − µj+1 < 0 for any 1 ≤ j ≤ q − 1, we have

deg(E)(σ′′, χ) ≥ deg(E)(σ♯, χ),whi
h 
ombined (A.72) and (A.73) yields deg(E)(σ′′, χ) = deg(E)(σ♯, χ) = 0. By theprevious 
omments, this equality implies F
♯
≤j = (F ♯

≤j)
∨∨ for any j, so that F

♯
≤j is thesheaf of lo
al holomorphi
 se
tions of a subbundle F ♯

≤j ⊂ E(hC). This has the following
onsequen
e: if we de�ne F
♯
l =

⊕
k πk(Fl ∩ E≤k), then F

♯
l is also the sheaf of se
tionsof a subbundle F ♯

l ⊂ E(hC) and we have F ♯
≤j =

⊕
l≤j F

♯
l . In parti
ular, we obtain ade
omposition E(hC) =

⊕
l≤q F

♯
l . Let s♯ =

∑
j µj IdF ♯

j
∈ H0(E(hC)). Then we have

[s′, s♯] = 0 and furthermore s♯ ∈ autss(E,ϕ). These two properties imply that s♯ ∈
autss(E ′, ϕ′), so by Proposition A.7 s♯ is 
entral in the 
entralizer of s′. Similarly s′ is
entral in the 
entralizer of s♯, so we 
an pro
eed as in the �rst 
ase and dedu
e thestatement of the theorem with s′′ repla
ed by s♯. Reversing the roles of s′ and s′′ we obtainthe theorem. �



REPRESENTATIONS OF SURFACE GROUPS 71A.9. Hit
hin-Kobayashi 
orresponden
e. Choose a Hermitian metri
 hL, on the 
om-plex line bundle L, and denote by FL ∈ Ω2(X; iR) the 
urvature of the 
orresponding Chern
onne
tion. Suppose that Eh ⊂ E de�nes a redu
tion of the stru
ture group of E from
HC to H . Then the ve
tor bundle E(B) = E ×HC B 
an be 
anoni
ally identi�ed with
Eh×HB, and hen
e inherits a Hermitian stru
ture (obtained from the Hermitian stru
tureon B, whi
h is preserved by H). So for any ϕ ∈ H0(E(B)⊗ L) it makes sense to de�ne

µh(ϕ) := ρ∗
(
−

i

2
ϕ⊗ ϕ∗h,hL

)
.Here we identify iϕ⊗ϕ∗h,hL with a skew symmetri
 se
tion of End(E(B)⊗L)∗ = End(E(B))∗,hen
e a se
tion of Eh(u(B))∗. The map ρ∗ : Eh(u(B))∗ → Eh(h)∗ is indu
ed by the dualof the in�nitesimal a
tion of h on B. Using the isomorphism h∗ ≃ h given by the nonde-generate pairing 〈·, ·, 〉 we view µh(ϕ) as a se
tion of Eh(h).Theorem A.17. . Let (E,ϕ) be a α-polystable pair. There exists a redu
tion h of thestru
ture group of E from HC to H, given by a subbundle Eh ⊂ E, su
h that(A.74) Λ(Fh + FL) + µh(ϕ) = −iα,where Fh ∈ Ω2(X;Eh(h)) denotes the 
urvature of the Chern 
onne
tion on E with respe
tto h and Λ : Ω2(X) → Ω0(X) is the adjoint of wedging with the volume form on X.Furthermore, if (E,ϕ) is α-stable then h is unique. Conversely, if (E,ϕ) is a pair whi
hadmits a solution to equation (A.74), then (E,ϕ) is α-polystable.Proof. Suppose �rst of all that (E,ϕ) is α-stable. Then by Proposition A.7 we have

autss(E,ϕ) = H0(E(z)), so (E,ϕ) is simple in the sense of De�nition 3.8 in [10℄. Hen
ewe 
an apply Theorem 4.1 of [10℄ to dedu
e the existen
e and uniqueness of h. (Re
allthat the notion of α-stability given in the present paper 
oin
ides with the one in [10℄thanks to (3) in Lemma A.5.) If (E,ϕ) is α-polystable but not stable, then we 
onsiderthe Jordan�Hölder redu
tion (E ′, ϕ′, H ′, B′) of (E,ϕ,H,B). Now the pair (E ′, ϕ′) is simpleand we 
an pro
eed as before to get a redu
tion h′ of the stru
ture group of E ′ from H ′Cto H ′ satisfying (A.74). But h′ also de�nes a redu
tion of the stru
ture group of E from
HC to H , by de�ning Eh := Eh′ ×H′ H ⊂ Eh′ ×H′ HC = E. For this 
hoi
e of h, equation(A.74) still holds.The proof of the 
onverse is standard. One �rst proves that if (E,ϕ) admits a solution tothe equations then (E,ϕ) is α-semistable (see for example [10℄). To prove α-polystabilityone 
an use the same strategy as in the Hit
hin�Kobayashi 
orresponden
e for ve
torbundles. Namely, assume that h ∈ E(HC/H) de�nes a redu
tion of the stru
ture group to
H , in su
h a way that equation (A.74) is satis�ed. Assume also that P ⊂ HC is a paraboli
subgroup, that there is a holomorphi
 redu
tion σ of the stru
ture group of E to P , anantidominant 
hara
ter χ of P su
h that ϕ is 
ontained in E(B)−σ,χ ⊗ L and su
h that(A.75) deg(E)(σ, χ)− 〈α, χ〉 = 0.We want to prove that there is a further redu
tion σL of the stru
true group of E from Pto L and that ϕ is 
ontained in E(B)0

σL,χ
⊗ L.Let Eh ⊂ E be the prin
ipal H bundle spe
i�ed by h. The redu
tion σ 
orresponds toan antiequivariant map ξ : E → HC/P , so that ξ(f) is a paraboli
 subgroup of HC for ea
h

f ∈ E. Then, using the 
onstru
tion given in Lemma A.3 we de�ne an H-antiequivariant
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orresponds to ase
tion of Eh(ih), whi
h we denote by
sh,σ,χ ∈ Eh(ih).For details on the following notions the reader 
an 
onsult [38℄. Let E be the C∞ H-prin
ipal bundle underlying Eh, and let A be the set of 
onne
tions on E. Ea
h elementof A ∈ A de�nes a holomorphi
 stru
ture ∂A on E. Let also S be the spa
e of smoothse
tions of E×HB⊗L, and let G be the gauge group of E. The spa
e A ×S has a naturalstru
ture of in�nite dimensional symple
ti
 manifold, with respe
t to whi
h the a
tion of

G is Hamiltonian and (A, φ) 7→ µ(A, φ) := Λ(Fh+FL)+µh(ϕ)+ iα 
an be identi�ed with amoment map for this a
tion (see Se
tion 4 in [38℄). Furthermore, −ish,σ,χ 
an be identi�edwith an element in the Lie algebra of the gauge group G .We will now apply the notions of maximal weight λ and the fun
tion λt (see Se
tion 2.3in [38℄). Let A ∈ A be the element giving rise to the ∂-operator whi
h 
orresponds tothe holomorphi
 stru
ture E. A simple 
omputation tells that (A.75) is equivalent to themaximal weight of −ish,σ,χ on (∂A, ϕ) being zero:
λ((∂A, ϕ),−ish,σ,χ) = lim

t→∞
λt((∂A, ϕ),−ish,σ,χ) = 0.Equation (A.74) is equivalent to the vanishing of the moment map of the a
tion of G atthe pair (∂A, φ). Hen
e we have λ0((∂A, ϕ),−ish,σ,χ) = 0, and sin
e λt((∂A, ϕ),−ish,σ,χ)is nonde
reasing as a fun
tion of t it follows that λt((∂A, ϕ),−ish,σ,χ) = 0 for any t. Thisimplies that etsh,σ,χ �xes the pair (∂A, ϕ). That ∂A is �xed implies that sh,σ,χ indu
es aholomorphi
 redu
tion σL of the stru
ture group of E to L, and that ϕ is �xed impliesthat ϕ is 
ontained in E(B)−σ,χ ⊗ L. �A.10. Automorphism groups of polystable pairs. In this se
tion we in
lude a resultwhi
h is required for the proof of Theorem 3.12. We also �nd it interesting by itselfand think it might be of use in other 
ontext. Let (E,ϕ) be an L-twisted pair. Let

Aut(E,ϕ) denote the holomorphi
 automorphisms of (E,ϕ), i.e., the holomorphi
 gaugetransformations g : E → E su
h that φ ◦ gL = φ, where φ : EL → B is the antiequivariantmap 
orresponding to ϕ and gL : E ×X L→ E ×X L is the transformation a
ting as g inthe E fa
tor and the identity in the L fa
tor.The group Aut(E,ϕ) 
arries a natural stru
ture of Lie group with Lie algebra equal to
aut(E, φ).Lemma A.18. Let (E,ϕ) be an α-polystable pair. Then Aut(E,ϕ) is a redu
tive Liegroup.Proof. If (E,ϕ) is α-polystable, then by Theorem A.17 there exists a redu
tion h ∈
Γ(E(HC/H)) of the stru
ture group satisfying equation (A.74). By the arguments inthe proof of Theorem A.17 this 
an be interpreted as the vanishing of the moment mapof the a
tion of G (the gauge group of Eh) on A × S at the point (A,ϕ), where A isthe Chern 
onne
tion of E and h. It follows (see for example Proposition 1.6 in [51℄) that
Aut(E, φ) is the 
omplexi�
ation of Aut(E, φ) ∩ G . Any g ∈ Aut(E, φ) ∩ G preservessimultaneously the 
omplex stru
ture of E and the redu
tion h, hen
e it also preservesthe Chern 
onne
tion A. But the group of gauge transformations in G preserving a given
onne
tion 
an be identi�ed with a 
losed subgroup of the automorphisms of the �ber of
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Eh at any given point, and 
onsequently is a 
ompa
t Lie group. Hen
e Aut(E, φ) ∩ G isa 
ompa
t Lie group, so by the previous argument Aut(E, φ) is redu
tive. �Appendix B. Twisted G-Higgs pairs and simplified stabilityB.1. Twisted G-Higgs pairs. Let G be a real redu
tive Lie group, let H ⊂ G be amaximal 
ompa
t subgroup and let g = h⊕m be a Cartan de
omposition, so that the Liealgebra stru
ture on g satis�es

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.The group H a
ts linearly on m through the adjoint representation, and this a
tion extendsto a linear holomorphi
 a
tion of HC on mC = m⊗C (this is the isotropy representation).Furthermore, the Killing form on g indu
es on mC a Hermitian stru
ture whi
h is preservedby the a
tion of H .Let X be a 
ompa
t Riemann surfa
e and let L be a holomorphi
 line bundle on X.We de�ne an L-twisted G-Higgs pair to be a pair (E,ϕ), where E is a holomorphi
 HC-prin
ipal bundle over X and ϕ is a holomorphi
 se
tion of E(mC)⊗ L. Here E(mC) is the
mC-bundle asso
iated to E via the isotropy representation. Let z be the 
entre of hC and let
α ∈ ih ∩ z. The notions of α-stability, semistability and polystability given in Se
tion A.5apply naturally to L-twisted G-Higgs pairs. A polystable L-twisted G-Higgs pair satis�esthe following.Proposition B.1. Let (E,ϕ) be an L-twisted G-Higgs pair whi
h is α-polystable but not
α-stable. Then the Jordan�Hölder redu
tion of (E,ϕ) is an L-twisted G′-Higgs pair forsome redu
tive subgroup G′ ⊂ G.Proof. Re
all from Se
tion A.8 that in the Jordan�Hölder redu
tion (E ′, ϕ′, H ′, (mC)′) of
(E,ϕ,H,mC) the subgroup H ′ ⊂ H is de�ned as the 
entralizer of a torus T ⊂ H and that
(mC)′ is the �xed point set of T a
ting on mC. So it su�
es to prove that the Lie algebrastru
ture on h⊕m indu
es a stru
ture of Cartan pair on (h′, (mC)′ ∩m). The a
tion of Ton h and m indu
es de
ompositions

h =
⊕

η∈T∨

hη and m =
⊕

η∈T∨

mη,where T∨ denotes the group of 
hara
ters of T (for whi
h we use additive notation). Thenone has, as usual,
[hη, hµ] ⊂ hη+µ, [hη,mµ] ⊂ mη+µ, [mη,mµ] ⊂ hη+µfor any pair of 
hara
ters η, µ ∈ T∨. Taking η = µ = 0 and observing that h′ = h0 and

(mC)′ ∩m = m0, it follows that
[h′, h′] ⊂ h′, [h′, (mC)′ ∩m] ⊂ (mC)′ ∩m, [(mC)′ ∩m, (mC)′ ∩m] ⊂ h′,so that h′, (mC)′ ∩m) is 
ertainly a Cartan pair.We 
an make a more pre
ise statement: de�ning G′ as the 
entralizer of T inside G wehave proved that the Jordan�Hölder redu
tion of (E,ϕ) is an L-twisted G′-Higgs bundle.

�



74 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAB.2. L-twisted Sp(2n,R)-Higgs pairs. Let G = Sp(2n,R). The maximal 
ompa
t sub-group of G is H = U(n) and hen
e HC = GL(n,C). Now, if V = Cn is the fundamentalrepresentation of GL(n,C), then the isotropy representation spa
e is:
mC = S2V⊕ S2V∗.An L-twisted Sp(2n,R)-Higgs pair is thus a pair 
onsisting of a rank n holomorphi
 ve
torbundle V over X and a se
tion

ϕ = (β, γ) ∈ H0(L⊗ S2V ⊕ L⊗ S2V ∗).Let α be a real number. Following Se
tions A.5 and A.6 (see also [10℄), (V, ϕ) is said tobe α-semistable if for any �ltration by holomorphi
 subbundles
V = (0 ( V1 ( V2 ( · · · ( Vk = V ),the following 
ondition holds. For any sequen
e of real numbers λ = (λ1 ≤ λ2 ≤ · · · ≤ λk)de�ne the subbundle

N(V , λ) =
∑

λi+λj≤0

L⊗ Vi ⊗S Vj ⊕
∑

λi+λj≥0

L⊗ V ⊥
i−1 ⊗S V

⊥
j−1 ⊂ L⊗ (S2V ⊕ S2V ∗),where, if V ′, V ′′ are subbundles of V , V ′ ⊗S V ′′ denotes the subbundle of S2V indu
ed by

V ′⊗V ′′ under the proje
tion V ⊗V → S2V . (This is the same as the bundle L⊗E(B)−σ,χof Appendix A; we use the notation N(V , λ) for 
onvenien
e.) De�ne also
d(V , λ, α) = λk(deg Vk − αnk) +

k−1∑

j=1

(λj − λj+1)(deg Vj − αnj),where nj = rkVj (this expression is equal to deg(E)(σ, χ) − 〈α, χ〉). Then, if ϕ ∈
H0(N(V , λ)), we must have(B.76) d(V , λ, α) ≥ 0.The pair (V, ϕ) is α-stable if it is α-semistable and furthermore, for any 
hoi
e of Vand λ for whi
h there is a j < k su
h that λj < λj+1, whenever ϕ ∈ H0(N(V , λ)), we have(B.77) d(V , λ, α) > 0.It is well known that when ϕ = 0, the α-(semi)stability is equivalent to α = µ(V ) (where
µ(V ) = deg V/ rkV is the slope of V ) and V being (semi)stable. The next two theoremsgive a generalization of this fa
t for general ϕ, providing a mu
h simpler (semi)stability
ondition for quadrati
 pairs. It is important to noti
e that in the statement of the the-orems, the in
lusions in the �ltration of V are not ne
essarily stri
t, in 
ontrast to theoriginal de�nition. The proofs of these theorems will be given in Subse
tions B.4 and B.5.Theorem B.2. Let (V, ϕ) be an L-twisted Sp(2n,R)-Higgs pair. The pair (V, ϕ) is α-semistable if and only if for any �ltration of holomorphi
 subbundles 0 ⊂ V1 ⊂ V2 ⊂ Vsu
h that(B.78) ϕ = (β, γ) ∈ H0(L⊗ ((S2V2 + V1 ⊗S V )⊕ (S2V ⊥

1 + V ⊥
2 ⊗S V

∗)))we have(B.79) deg V − deg V2 − deg V1 ≥ α(n− n2 − n1),where n = rkV .
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overs the 
ase ϕ = 0, as we shallnow explain. If 0 = V1 = V2, then the 
ondition (B.78) is equivalent to β = 0 and theinequality (B.79) reads deg V ≥ αn. If V1 = V2 = V , then (B.78) is equivalent to γ = 0and the inequality (B.79) says that deg V ≤ αn. Consequently, if ϕ = (β, γ) = 0, then
α-semistability implies α = deg V/ rkV = µ(V ). In this 
ase, taking V1 = 0 and V2 ⊂ Vany subbundle, the 
ondition (B.79) is equivalent to µ(V2) ≤ µ(V ), so V is semistable. Onthe other hand one 
an 
he
k that if V is semistable and α = µ(V ), then the 
ondition(B.79) is satis�ed for any �ltration 0 ⊂ V1 ⊂ V2 ⊂ V .Theorem B.4. Let (V, ϕ) be an L-twisted Sp(2n,R)-Higgs pair. The pair (V, ϕ) is α-stable if and only if the following 
ondition is satis�ed. For any �ltration of holomorphi
subbundles 0 ⊂ V1 ⊂ V2 ⊂ V su
h that

ϕ ∈ H0(L⊗ ((S2V2 + V1 ⊗S V )⊕ (S2V ⊥
1 + V ⊥

2 ⊗S V
∗)))the following holds: if at least one of the subbundles V1 and V2 is proper (that is, non-zeroand di�erent from V ) then

deg V − deg V2 − deg V1 > α(n− n2 − n1),(where n = rkV ), and in any other 
ase
deg V − deg V2 − deg V1 ≥ α(n− n2 − n1).Remark B.5. Arguing as in Remark B.3 we dedu
e from the previous theorem that if ϕ = 0,then (V, 0) is α-stable if and only if α = deg V/ rkV and V is a stable ve
tor bundle.B.3. Some results on 
onvex sets. LetW be an n dimensional ve
tor spa
e over R. Wedenote the 
onvex hull of any subset S ⊂W by CH(S) ⊂W. Let h1, h2, . . . , hl be elementsof the dual spa
e W ∗. We assume that l ≥ n and that the �rst n elements h1, . . . , hn area basis of W ∗. De�ne for any h ∈ W ∗ the set
{h ≤ a} = {v ∈W | h(v) ≤ a} ⊂W,and de�ne {h = a} ⊂W similarly.Consider the 
onvex subset of W

C =
⋂

i

{hi ≤ 0}(here and below if no range is spe
i�ed for the index then it is supposed to be the wholeset {1, . . . , l}).Remark B.6. The fa
t that {h1, . . . , hl} span W ∗ is equivalent to the 
ondition that Cdoes not 
ontain any positive dimensional ve
tor subspa
e of W . Indeed, if h ∈ W ∗ and
Z ⊂W is a subspa
e 
ontained in {h ≤ 0}, then Z is 
ontained in {h = 0}. Consequentlyany ve
tor subspa
e of W 
ontained in C has to lie in ⋂i{hi = 0} = 0.Lemma B.7. C = CH(∂C).Proof. For any α ≤ 0 de�ne Cα = C ∩ {h1 + · · ·+ hn = α}. Sin
e for any x ∈ C we have
hi(x) ≤ 0 and furthermore h1, . . . , hn is a basis of W ∗, we dedu
e that Cα is 
ompa
t.Hen
e Cα = CH(∂Cα). Now, take any x ∈ C and set α = h1(x) + · · · + hn(x). Then
x ∈ Cα = CH(∂Cα) ⊂ CH(∂C). This proves the in
lusion C ⊂ CH(∂C). The otherin
lusion follows from the fa
t that C is 
onvex. �
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⋃
i Ci, where Ci = {hi = 0} ∩ C. On the other hand, for any i the
olle
tion of elements h1, . . . , hl indu
e elements h′1, . . . , h′l on the dual of {hi = 0} whi
hobviously span. Hen
e we may apply again the lemma to Ci and dedu
e that Ci = CH(∂Ci).Pro
eeding re
ursively, we dedu
e that C is the 
onvex hull of the union of the sets

CI =
⋂

i∈I
{hi = 0} ∩ Cwhere I runs over the 
olle
tion of subets of {1, . . . , l} satisfying(B.80) |I| = n− 1 and the ve
tors {hi | i ∈ I} are linearly independent.Ea
h su
h subset CI is a hal�ine.Lemma B.8. Fix a basis e1, . . . , en of W , and denote by e∗1, . . . , e∗n the dual basis. Assumethat any hi 
an be written either as e∗a − e∗b or ±(e∗a + e∗b) for some indi
es a, b dependingon i. Then for any I satisfying (B.80) there are disjoint subsets P,N ⊂ {1, . . . , n} so thatde�ning the element cI =

∑
i∈P ei −

∑
j∈N ej we have CI = R≥0cI .Proof. Pi
k some I satisfying (B.80), so that CI =

⋂
i∈I{hi = 0} is one dimensional, andlet cI ∈W be an element su
h that CI = R≥0cI . Write cI =

∑
λjej and take some nonzero

λ ∈ {λ1, . . . , λn}. De�ne Pλ = {j | λj = λ} and Nλ = {j | λj = −λ}. We want to provethat for any j /∈ Pλ ∪Nλ, λj = 0. Suppose the 
ontrary. Then
c′I =

∑

j∈Pλ∪Nλ

2λjej +
∑

j /∈Pλ∪Nλ

λjejdoes not belong to RcI . However, for any pair of indi
es a, b we 
learly have
(e∗a − e

∗
b)cI = 0 =⇒ (e∗a − e

∗
b)c

′
I = 0 and (e∗a + e∗b)cI = 0 =⇒ (e∗a + e∗b)c

′
I = 0.This implies by our assumption that c′I ∈ ⋂i∈I{hi = 0} = CI , in 
ontradi
tion with thefa
t that CI is one dimensional. �B.4. Proof of Theorem B.2. As already mentioned, when ϕ = 0 the pair (V, 0) is α-semistable if and only if α = µ(V ) and V is semistable. Thus, by Remark B.3, it su�
esto 
onsider the 
ase ϕ 6= 0. Let V be any �ltration of V , and de�ne

Λ(V , ϕ) = {λ ∈ Rk | λ1 ≤ · · · ≤ λk, ϕ ∈ N(V , λ)}.The pair (V, ϕ) is α-semistable if for any λ ∈ Λ(V , ϕ) we have
d(V , λ, α) ≥ 0.But d(V , λ, α) is 
learly a linear fun
tion on λ, so to 
he
k stability it su�
ies to verifythat d(V , λ, α) ≥ 0 for any λ belonging to a set Λ′ ⊂ Rk whose 
onvex hull is Λ(V , ϕ).De�ne for any i, j the subbundles

Di,j = Vi ⊗S Vj + Vi−1 ⊗S V + V ⊗S Vj−1 ⊂ S2Vand
D∗
i,j = V ⊥

i−1 ⊗S V
⊥
j−1 + V ⊥

i ⊗S V
∗ + V ∗ ⊗S V

⊥
j ⊂ S2V ∗.A tuple λ1 ≤ · · · ≤ λk belongs to Λ(V , ϕ) if and only if these two 
onditions holds:

• for any i, j su
h that β is 
ontained in H0(L ⊗ Di,j) but is not 
ontained in thesum H0(L⊗Di−1,j) +H0(L⊗Di,j−1), we have λi + λj ≤ 0.
• for any i, j su
h that γ is 
ontained in H0(L⊗D∗

i,j) but is not 
ontained in the sum
H0(L⊗D∗

i+1,j) +H0(L⊗D∗
i,j+1), we have λi + λj ≥ 0.
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e Λ(V , ϕ) ⊂ Rk is the interse
tion of halfspa
es of the form {λi − λi+1 ≤ 0} and,
{λa + λb ≤ 0} (for at least one pair (a, b), if β 6= 0) or {λc + λd ≥ 0} (for at leastone pair (c, d), if γ 6= 0). Sin
e the only nonzero ve
tor subspa
e in
luded in the set
Λ = {λ1 ≤ · · · ≤ λk} is the line generated by (1, . . . , 1) and the set Λ(V , ϕ) is 
ontainedand Λ and furthermore satis�es at least one equation of the form λa+λb ≥ 0 or λc+λd ≤ 0,it follows that Λ(V , ϕ) does not 
ontain any nonzero ve
tor subspa
e.So by the arguments in the previous subse
tion Λ(V , ϕ) is the 
onvex hull of a 
ol-le
tion of half lines of the form R≥0λI , and by Lemma B.8 we 
an assume that the
oordinates of λI are 0 and ±1. But if λI ∈ Λ(V , ϕ) we ne
essarily must have cI =
(−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1), say a 
opies of −1, b of 0 and k − (a + b) of 1. Consider�rst the 
ase when 0 < a < a+ b < k. De�ne now the �ltration

V
′ = (0 ( Va ( Va+b ( V ).One 
an easily 
he
k that

d(V , λI , α) = d(V ′, (−1, 0, 1), α) = deg V − deg Va − deg Va+b − α(n− na − na+b),and that N(V , λ) = L⊗ ((S2Va+b + Va ⊗S V )⊕ (S2V ⊥
a + V ⊥

a+b ⊗S V
∗)).Next we need to 
onsider the 
ases where one or more of the inequalities in the 
ondition

0 < a < a + b < k be
omes an equality, in whi
h 
ase some of the in
lusions in 0 ( Va (
Va+b ( V will not be stri
t. Sin
e in the semistability 
ondition one has to 
onsiderstri
t in
lusions, a priori we should 
onsider separately ea
h 
ase (so for example, if 0 <
a < a + b = k, we 
onsider the �ltration 0 ( Va ( V with weights λ = (−1, 0), andso on). In the following table we list the possible degenerations (apart from the 
ase
a = a + b = k = 0, whi
h is impossible sin
e k ≥ 1) and the 
orresponding form of the
onditions ϕ ∈ H0(N(V , λ)) and d(V , λ, α) ≥ 0.Degeneration ϕ ∈ H0(N(V , λ)) d(V , λ, c) ≥ 0
0 = a < a+ b = k always satis�ed always satis�ed
0 = a = a+ b < k β = 0 deg V ≥ αn
0 < a = a+ b = k γ = 0 deg V ≤ αn
0 < a < a+ b = k γ ∈ H0(L⊗ S2V ⊥

a ) deg Va ≤ αna
0 < a = a+ b < k ϕ ∈ H0(L⊗ (Va ⊗ V ⊕ V ⊥

a ⊗ V
∗)) deg V − 2 deg Va ≥ α(n− 2na)

0 < a < a+ b < k β ∈ H0(L⊗ S2Va+b) deg V − deg Va+b ≥ α(n− na+b)Table B.1. Semistability 
onditions for degenerate �ltrationsInspe
ting ea
h of these 
ases in turn we see that they 
orrespond to instan
es of the α-semistability 
ondition stated in the Theorem with some in
lusions not being stri
t. Morepre
isely, in ea
h 
ase the subbundle N(V , λ) turns out to 
oin
ide with L ⊗ ((S2Va+b +
Va ⊗S V )⊕ (S2V ⊥

a + V ⊥
a+b ⊗S V

∗)), and the degree d(V , λ, α) is equal to deg V − deg Va −
deg Va+b − α(n− na − na+b).B.5. Proof of Theorem B.4. The proof is exa
tly like that of Theorem B.2, ex
ept thatwe have to distinguish the 
ases in whi
h stability implies stri
t inequality. We assume that
ϕ 6= 0. Following the notation of Subse
tion B.5, these are the 
ases in whi
h λ 
ontainsat least two di�erent values. If λI = (−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1) 
ontains a 
opies of
−1, b 
opies of 0 and k − (a + b) 
opies of 1, admitting that some of the numbers a, b or
k − (a + b) is equal to 0, the 
ondition that λI 
ontains at least two di�erent numbers is



78 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAequivalent to asking that at least one of the bundles Va and Va+b is a proper subbundle of
V (this happens in the last three rows of Table B.1). Using the fa
t that N(V , c) is thepositive span of ve
tors of the form λI (be
ause ϕ 6= 0), the theorem follows.B.6. Polystable Sp(2n,R)-Higgs pairs. Let α be a real number. A

ording to Se
-tions A.5 and A.6, a twisted Sp(2n,R)-Higgs pair (V, ϕ) with ϕ = (β, γ) ∈ H0(L⊗ S2V ⊕
L⊗S2V ∗) is said to be α-polystable if it is semistable and for any �ltration by holomor-phi
 stri
t subbundles

V = (0 ( V1 ( V2 ( · · · ( Vk = V ),and sequen
e of stri
tly in
reasing real numbers λ = (λ1 < · · · < λk) su
h that ϕ ∈
H0(N(V , λ)) and d(V , λ, α) = 0 there is a splitting of ve
tor bundles

V ≃ V1 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1with respe
t to whi
h
β ∈ H0(

⊕

λi+λj=0

L⊗ Vi/Vi−1 ⊗S Vj/Vj−1)and
γ ∈ H0(

⊕

λi+λj=0

L⊗ (Vi/Vi−1)
∗ ⊗S (Vj/Vj−1)

∗).This implies that if (V, ϕ) is α-polystable but not α-stable, then it 
an be de
omposed asthe sum of a polystable ve
tor bundle, L-twisted U(p, q)-Higgs pairs (arising from pairs
0 6= λi = −λj with i 6= j), and lower rank twisted symple
ti
 Higgs pairs (arising in 
asethere is some λi = 0). Furthermore, by the results in Se
tion A.8 ea
h of these pie
esis α-polystable, so the pro
edure 
an be repeated until one rea
hes a de
omposition allof whose pie
es are α-stable. Again by the results in Se
tion A.8, su
h de
omposition isunique up to isomorphism, and is in fa
t the Jordan-Hölder redu
tion of (V, ϕ).B.7. L-twisted Sp(2n,C)-Higgs pairs. Consider now the 
ase G = Sp(2n,C). A maxi-mal 
ompa
t subgroup of G is H = Sp(2n) and hen
e HC 
oin
ides with Sp(2n,C). Now,if W = C2n is the fundamental representation of Sp(2n,C) and ω denotes the standardsymple
ti
 form on W, the isotropy representation spa
e is

mC = sp(W) = sp(W, ω) := {ξ ∈ End(W) | ω(ξ·, ·) + ω(·, ξ·) = 0} ⊂ End W,so it 
oin
ides with the adjoint representation of Sp(2n,C) on its Lie algebra. An L-twisted
Sp(2n,C)-Higgs pair is thus a pair 
onsisting of a rank 2n holomorphi
 symple
ti
 ve
torbundle (W,Ω) over X (so Ω is a holomorphi
 se
tion of Λ2W ∗ whose restri
tion to ea
h�ber of W is nondegenerate) and a se
tion

Φ ∈ H0(L⊗ sp(W )),where sp(W ) is the ve
tor bundle whose �ber over x is given by sp(Wx,Ωx).De�ne for any �ltration by holomorphi
 subbundles
W = (0 = W0 ( W1 ( W2 ( · · · ( Wk = W )satisfying Wk−i = W⊥Ω

i for any i (here ⊥Ω denotes the perpendi
ular with respe
t to Ω)the set
Λ(W) = {(λ1, λ2, . . . , λk) ∈ Rk | λi ≤ λi+1 and λk−i+1 + λi = 0 for any i }.



REPRESENTATIONS OF SURFACE GROUPS 79For any λ ∈ Λ(W) de�ne the following subbundle of L⊗ EndW :
N(W, λ) = L⊗ sp(W ) ∩

∑

λi≥λj

L⊗ End(Wi,Wj).De�ne also
d(W, λ) =

k−1∑

j=1

(λj − λj+1) degWj(note that sin
e W 
arries a symple
ti
 stru
ture we have W ≃ W ∗ and hen
e degW =
degWk = 0).Following again Se
tions A.5 and Se
tion A.6, the pair ((W,Ω),Φ) is said to be

• semistable if for any �ltration W as above and any λ ∈ Λ(W) su
h that Φ ∈
H0(N(W, λ)), the following inequality holds: d(W, λ) ≥ 0.
• stable if it is semistable and furthermore, for any 
hoi
e of �ltration W and λ ∈

Λ(W) whi
h is not identi
ally zero (so for whi
h there is a j < k su
h that λj <
λj+1), and su
h that Φ ∈ H0(N(W, λ)), we have d(W, λ) > 0.
• polystable if it is semistable and for any �ltration W as above and λ ∈ Λ(W)satisfying λi < λi+1 for ea
h i, ψ ∈ H0(N(W, λ)) and d(W, λ) = 0, there is anisomorphism

W ≃W1 ⊕W2/W1 ⊕ · · · ⊕Wk/Wk−1su
h that the pairing via Ω any element of the summand Wi/Wi−1 with an ele-ment of the summand Wj/Wj−1 is zero unless i + j = k + 1; furthermore, via theisomorphism above,
Φ ∈ H0(

⊕

i

L⊗ Hom(Wi/Wi−1,Wi/Wi−1)).We now prove an analog of Theorems B.2 and B.4, whi
h implies that the de�nition of(semi)stability whi
h we have given 
oin
ides with the usual one in the literature. Re
allthat if (W,Ω) is a symple
ti
 ve
tor bundle, a subbundle W ′ ⊂ W is said to be isotropi
if the restri
tion of Ω to W ′ is identi
ally zero.Theorem B.9. An L-twisted Sp(2n,C)-Higgs pair ((W,Ω),Φ) is semistable if and onlyif for any isotropi
 subbundle W ′ ⊂ W su
h that Φ(W ′) ⊂ L ⊗W ′ we have degW ′ ≤ 0.Furthermore, ((W,Ω),Φ) is stable if for any nonzero and stri
t isotropi
 subbundle 0 6=
W ′ ⊂W su
h that Φ(W ′) ⊂ L⊗W ′ we have degW ′ < 0. Finally, ((W,Ω),Φ) is polystableif it is semistable and for any nonzero and stri
t isotropi
 subbundle W ′ ⊂ W su
h that
Φ(W ′) ⊂ L⊗W ′ and degW ′ = 0 there is another isotropi
 subbundle W ′′ ⊂W su
h that
Φ(W ′′) ⊂ L⊗W ′′ and W = W ′ ⊕W ′′.Proof. The proof follows the same ideas as the proofs of Theorems B.2 and B.4, so we justgive a sket
h. Take an L-twisted Sp(2n,C)-Higgs pair ((W,Ω),Φ), and assume that forany isotropi
 subbundle W ′ ⊂ W su
h that Φ(W ′) ⊂ L ⊗W ′ we have degW ′ ≤ 0. Wewant to prove that ((W,Ω),Φ) is semistable. Choose any �ltration W = (0 ( W1 ( W2 (

· · · ( Wk = W ) satisfying Wk−i = W⊥Ω

i for any i. We have to understand the geometry ofthe 
onvex set
Λ(W,Φ) = {λ ∈ Λ(W) | Φ ∈ N(W, λ)} ⊂ Rk.



80 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERADe�ne for that J = {j | Φ(Wj) ⊂ L ⊗ Wj} = {j1, . . . , jr}. One 
he
ks easily that if
λ = (λ1, . . . , λk) ∈ Λ(W) then(B.81) λ ∈ Λ(W,Φ)⇐⇒ λa = λb for any ji ≤ a ≤ b ≤ ji+1.We 
laim that the set of indi
es J is symmetri
:(B.82) j ∈ J ⇐⇒ k − j ∈ J .To 
he
k this it su�
es to prove that Φ(Wj) ⊂ L⊗Wj implies that Φ(W⊥Ω

j ) ⊂ L⊗W⊥Ω

j .Suppose that this is not true, so that for some j we have ΦWj ⊂ L ⊗ Wj and thereexists some w ∈ W⊥Ω

j su
h that Φw /∈ L ⊗W⊥Ω

j . Then there exists v ∈ Wj su
h that
Ω(v,Φw) 6= 0. However, sin
e Φ ∈ H0(L⊗ sp(W )), we must have Ω(v,Φw) = −Ω(Φv, w),and the latter vanishes be
ause by assumption Φv belongs to Wj . So we have rea
hed a
ontradi
tion.Let J ′ = {j ∈ J | 2j ≤ k} and de�ne for any j ∈ J ′ the ve
tor

Lj = −
∑

c≤j
ec +

∑

d≥k−j+1

ed,where e1, . . . , ek is the 
anoni
al basis of Rk. It follows from (B.81) and (B.82) that Λ(W,Φ)is the positive span of the ve
tors {Lj | j ∈ J ′}. Consequently, we have
d(W, λ) ≥ 0 for any λ ∈ Λ(W,Φ) ⇐⇒ d(W, Lj) ≥ 0 for any j .One 
omputes d(W, Lj) = − degWk−j−degWj . On the other hand, sin
e we have an exa
tsequen
e 0 → Wk−j → W ∗ → W ∗

j → 0 (the inje
tive arrow is given by the pairing with
Ω) we have 0 = degW ∗ = degWk−j + degW ∗

j , so degWk−j = degWj and 
onsequently
d(W, Lj) ≥ 0 is equivalent to degWj ≤ 0, whi
h holds by assumption. Hen
e ((W,Ω),Φ)is semistable.The 
onverse statement, namely, that if ((W,Ω),Φ) is semistable then for any isotropi
subbundle W ′ ⊂ W su
h that Φ(W ′) ⊂ L ⊗ W ′ we have degW ′ ≤ 0 is immediate byapplying the stability 
ondition of the �ltration 0 ⊂W ′ ⊂W ′⊥Ω ⊂W .Finally, the proof of the se
ond statement on stability is very similar to 
ase of semista-bility, so we omit it. The statement on polystability is also straightforward. �B.8. L-twisted SL(n,C)-Higgs pairs. If G = SL(n,C) then the maximal 
ompa
t sub-group of G is H = SU(n) and hen
e HC 
oin
ides with SL(n,C). Now, if W = Cn is thefundamental representation of SL(n,C), the isotropy representation spa
e is given by thetra
eless endomorphisms of W

mC = sl(W) = {ξ ∈ End(W) | Tr ξ = 0} ⊂ End W,so it 
oin
ides again with the adjoint representation of SL(n,C) on its Lie algebra. An
L-twisted SL(n,C)-Higgs pair is thus a pair 
onsisting of a rank n holomorphi
 ve
torbundle W over X endowed with a trivialization detW ≃ O and a holomorphi
 se
tion

Φ ∈ H0(L⊗ End0W ),where End0W denotes the bundle of tra
eless endomorphisms of W .De�ne for any �ltration by holomorphi
 subbundles
W = (0 = W0 ( W1 ( W2 ( · · · ( Wk = W )
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onvex set
Λ(W) = {(λ1, λ2, . . . , λk) ∈ Rk | λi ≤ λi+1 for any i and ∑

i

rkWi(λi − λi+1) = 0}.For any λ ∈ Λ(W) de�ne the following subbundle of L⊗ EndW :
N(W, λ) = L⊗ End0W ∩

∑

λi≥λj

L⊗ End(Wi,Wj).De�ne also
d(W, λ) =

k−1∑

j=1

(λj − λj+1) degWj(sin
e detW is trivial we have degW = degWk = 0).Following again Se
tions A.5 and A.6, (W,Φ) is said to be:
• semistable if for any �ltrationW and λ ∈ Λ(W) su
h that Φ ∈ H0(N(W, λ)), wehave d(W, λ) ≥ 0.
• stable if it is semistable and furthermore, for any 
hoi
e of �ltration W and λ ∈

Λ(W) whi
h is not identi
ally zero (so for whi
h there is a j < k su
h that λj <
λj+1), and su
h that Φ ∈ H0(N(W, λ)), we have d(W, λ) > 0.
• polystable if it is semistable and for any �ltration W as above and λ ∈ Λ(W)satisfying λi < λi+1 for ea
h i, ψ ∈ H0(N(W, λ)) and d(W, λ) = 0, there is anisomorphism

W ≃W1 ⊕W2/W1 ⊕ · · · ⊕Wk/Wk−1with respe
t to whi
h
Φ ∈ H0(

⊕

i

L⊗ Hom(Wi/Wi−1,Wi/Wi−1)).Again we have a result as Theorem B.9 implying that the present notions of (semi)stability
oin
ide with the usual ones.Theorem B.10. An L-twisted SL(n,C)-Higgs pair (W,Φ) is semistable if and only if forany subbundle W ′ ⊂ W su
h that Φ(W ′) ⊂ L ⊗W ′ we have degW ′ ≤ 0. Furthermore,
(W,Φ) is stable if for any nonzero and stri
t subbundleW ′ ⊂W su
h that Φ(W ′) ⊂ L⊗W ′we have degW ′ < 0. Finally, (W,Φ) is polystable if it is semistable and for ea
h subbundle
W ′ ⊂W su
h that Φ(W ′) ⊂ L⊗W ′ and degW ′ = 0 there is another subbundle W ′′ ⊂Wsatisfying Φ(W ′′) ⊂ L⊗W ′′ and W = W ′ ⊕W ′′.The proof of Theorem B.10 is very similar to that of Theorem B.9, so we omit it.B.9. L-twisted GL(n,R)-Higgs pairs. We study now L-twisted G-Higgs pairs for G =
GL(n,R). When L = K2, these will be related to maximal degree Sp(2n,R)-Higgs bundles.A maximal 
ompa
t subgroup of GL(n,R) is H = O(n) and hen
e HC = O(n,C). Now,if W is the standard n-dimensional 
omplex ve
tor spa
e representation of O(n,C), thenthe isotropy representation spa
e is:

mC = S2W.



82 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAAn L-twisted GL(n,R)-Higgs pair over X is thus a pair ((W,Q), ψ) 
onsisting of aholomorphi
 O(n,C)-bundle, i.e. a rank n holomorphi
 ve
tor bundle W over X equippedwith a non-degenerate quadrati
 form Q, and a se
tion
ψ ∈ H0(L⊗ S2W ).Note that when ψ = 0 a twisted GL(n,R)-Higgs pair is simply an orthogonal bundle.Sin
e the 
entre of o(n) is trivial, α = 0 is the only possible value for whi
h stabilityof an L-twisted GL(n,R)-Higgs pair is de�ned. The stability 
ondition is formulated asfollows.For any �ltration of ve
tor bundles

W = (0 = W0 ( W1 ( W2 ( · · · ( Wk = W )of satisfying Wj = W
⊥Q

k−j (here W⊥Q

k−j denotes the orthogonal 
omplement of Wk−j withrespe
t to Q) de�ne
Λ(W) = {(λ1, λ2, . . . , λk) ∈ Rk | λi ≤ λi+1 and λi + λk−i+1 = 0 for any i }.De�ne for any λ ∈ Λ(W) the following bundle.

N(W, λ) =
∑

λi+λj≤0

L⊗Wi ⊗S Wj .Also we de�ne
d(W, λ) =

k−1∑

j=1

(λj − λj+1) degWj(note that the quadrati
 form Q indu
es an isomorphism W ≃ W ∗ so degW = degWk =
0).A

ording to Se
tions A.5 and A.6, an L-twisted GL(n,R)-Higgs pair (W,Q, ψ) is saidto be

• semistable if for all �ltrations W as above and all λ ∈ Λ(W) su
h that ψ ∈
H0(N(W, λ)), we have d(W, λ) ≥ 0,
• stable if it is semistable and for any 
hoi
e of �ltrationW and nonzero λ ∈ Λ(W)su
h that ψ ∈ H0(N(W, λ)), we have d(W, λ) > 0,
• polystable if it is semistable and for any �ltration W as above and λ ∈ Λ(W)satisfying λi < λi+1 for ea
h i, ψ ∈ H0(N(W, λ)) and d(W, λ) = 0, there is anisomorphism

W ≃W1 ⊕W2/W1 ⊕ · · · ⊕Wk/Wk−1su
h that pairing via Q any element of the summand Wi/Wi−1 with an elementof the summand Wj/Wj−1 is zero unless i + j = k + 1; furthermore, via thisisomorphism,
ψ ∈ H0(

⊕

λi+λj=0

L⊗ (Wi/Wi−1)⊗S (Wj/Wj−1)).There is a simpli�
ation of the stability 
ondition for orthogonal pairs analogous toTheorem B.2 and Theorem B.4.



REPRESENTATIONS OF SURFACE GROUPS 83Theorem B.11. The L-twisted GL(n,R)-Higgs pair ((W,Q), ψ) is semistable if and onlyif for any isotropi
 subbundle W ′ ⊂ W su
h that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L) theinequality degW ′ ≤ 0 holds. Furthermore, ((W,Q), ψ) is stable if it is semistable and forany isotropi
 stri
t subbundle 0 6= W ′ ⊂ W su
h that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L)we have degW ′ < 0 holds. Finally, ((W,Q), ψ) is polystable if it is semistable and for anyisotropi
 stri
t subbundle 0 6= W ′ ⊂ W su
h that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L) and
degW ′ = 0 there is another isotropi
 subbundle W ′′ ⊂ W su
h that ψ ∈ H0(S2W ′′⊥Q ⊕
W ′′ ⊗S W ⊗ L) and W = W ′ ⊕W ′′.Proof. The proof is analogous to the proofs of Theorems B.2 and B.4. Take an L-twisted
GL(n,R)-Higgs pair ((W,Q), ψ), and assume that for any isotropi
 subbundle W ′ ⊂ Wsu
h that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L) the inequality degW ′ ≤ 0 holds. We alsoassume that ψ is nonzero, for otherwise the result follows from the usual 
hara
terizationof (semi)stability for SO(n,C)-prin
ipal bundles due to Ramanathan (see [41℄). We wantto prove that ((W,Q), ψ) is semistable. Choose any �ltrationW = (0 ( W1 ( W2 ( · · · (
Wk = W ) satisfying Wk−i = W⊥Ω

i for any i. Consider the 
onvex set
Λ(W, ψ) = {λ ∈ Λ(W) | ψ ∈ N(W, λ)} ⊂ Rk.De�ne for any i, j the subbundle

Di,j = Wi ⊗S Wj +Wi−1 ⊗S W +W ⊗S Wj−1 ⊂ S2W.A tuple λ = (λ1, . . . , λk) ∈ Λ(W) belongs to Λ(W, ψ) if and only if:for any i, j su
h that ψ is 
ontained in H0(L⊗Di,j) but is not 
ontained inthe sum H0(L⊗Di−1,j) +H0(L⊗Di,j−1), we have λi + λj ≤ 0.Hen
e Λ(W, ψ) is the interse
tion of Λ(W) with the set of points in Rk satisfying a 
olle
tionof inequalities of the form λa+λb ≤ 0 and λc+λd ≥ 0 (the latter follow from the restri
tions
λi+λk−i+1 = 0). Sin
e Λ(W) does not 
ontain any line, a fortiori Λ(W, ψ) neither does, so(using Lemma B.8) Λ(W, ψ) is the 
onvex hull of a set of half lines {R≥0Li | i ∈ I}, where
Li = (−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1) 
ontains i 
opies of −1 and i 
opies of 1. Consequently,we have

d(W, λ) ≥ 0 for any λ ∈ Λ(W, ψ) ⇐⇒ d(W, Li) ≥ 0 for any i ∈ I .It follows from the de�nition that N(W, Li) = Wi⊗SW +S2Wk−i and sin
e Wk−i = W
⊥Q

ithe 
ondition Li ∈ Λ(W, ψ) 
an be translated into the 
ondition
ψ ∈ H0(S2W

⊥Q

i ⊕Wi ⊗S W ⊗ L).One 
omputes d(W, Li) = − degWk−i−degWi. On the other hand, sin
e we have an exa
tsequen
e 0 → Wk−i → W ∗ → Wi∗ → 0 (the inje
tive arrow is given by the pairing withthe quadrati
 form Q) we have 0 = degW ∗ = degWk−i + degW ∗
i , so degWk−i = degWiand 
onsequently d(W, Li) ≥ 0 is equivalent to degWi ≤ 0, whi
h holds by assumption.Hen
e ((W,Q), ψ) is semistable.The 
onverse statement, namely, that if ((W,Q), ψ) is semistable then for any isotropi
subbundle W ′ ⊂ W su
h that Φ(W ′) ⊂ L ⊗ W ′ we have degW ′ ≤ 0 is immediate byapplying the stability 
ondition of the �ltration 0 ⊂W ′ ⊂W ′⊥Q ⊂W .Finally, the proof of the se
ond statement on stability is very similar to the 
ase ofsemistability, so we omit it. The statement on polystability is also straightforward. �
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⊥Q
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