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REPRESENTATIONS OF SURFACE GROUPS
IN REAL SYMPLECTIC GROUPS

OSCAR GARCIA-PRADA, PETER B. GOTHEN, AND IGNASI MUNDET I RIERA

ABSTRACT. In this paper we study the moduli space of representations of a surface group
(i.e., the fundamental group of a closed oriented surface) in the real symplectic group
Sp(2n,R). The moduli space is partitioned by an integer invariant, called the Toledo in-
variant. This invariant is bounded by a Milnor—Wood type inequality. Our main result is a
count of the number of connected components of the moduli space of maximal representa-
tions, i.e. representations with maximal Toledo invariant. Our approach uses non-abelian
Hodge theory through the correspondence of the moduli space of representations with
the moduli space of polystable Sp(2n, R)-Higgs bundles. A key step is provided by the
discovery of new discrete invariants of maximal representations. These new invariants
arise from an identification, in the maximal case, of the moduli space of Sp(2n, R)-Higgs
bundles with a moduli space of twisted Higgs bundles for the group GL(n,R). In two
appendices we develop a Hitchin—-Kobayashi correspondence in the generality required for
the application of Higgs bundle theory to the problem at hand. This includes a general
study of the notion of polystability for G-Higgs bundles for a real reductive Lie group G.
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1. INTRODUCTION

In this paper we study representations of the fundamental group of a compact oriented
surface X in Sp(2n,R) — the group of linear transformations of R?*" which preserve the
standard symplectic form. By a representation we mean a homomorphism from 7 (X) to
Sp(2n,R). Given a representation of m;(X) in Sp(2n, R) there is an integer, often referred
to as the Toledo invariant, associated to it. This integer can be obtained geometrically
by considering the flat Sp(2n,R)-bundle corresponding to the representation and taking
a reduction of the structure group of the underlying smooth vector bundle to U(n) —
a maximal compact subgroup of Sp(2n,R). The degree of the resulting U(n)-bundle is
the Toledo invariant (this is well defined because Sp(2n,R)/U(n) is contractible, so all
reductions of the structure group from Sp(2n,R) to U(n) are homotopic and hence define
isomorphic complex vector bundles). As shown by Turaev [53] the Toledo invariant d of a
representation satisfies the inequality

(1.1) ] <n(g—1),

where ¢ is the genus of the surface. When n = 1, one has Sp(2, R) = SL(2,R), the Toledo
invariant coincides with the Euler class of the SL(2, R)-bundle, and (1.1) is the classical
inequality of Milnor 37| which was later generalized by Wood |55]. We shall follow custom
and refer to (1.1) as as the Milnor-Wood inequality.

Given two representations, a basic question to ask is whether one can be continuously
deformed into the other. Put in a more precise way, we are asking for the connected
components of the space of representations

Hom(m (X), Sp(2n, R)).

As shown in [24], this space has the same number of connected components as the moduli
space, or character variety,

R(m(X),Sp(2n,R)) = Hom™ (7 (X), Sp(2n,R))/ Sp(2n, R)
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of reductive representations p: m(X) — Sp(2n,R), modulo the natural equivalence given
by the action of Sp(2n,R) by overall conjugation. The notation “Hom™” refers to reductive
representations, i.e., those whose image has reductive Zariski closure. Replacing Hom by
Hom™ is justified by the fact that the quotient space Hom™ (7, (X), Sp(2n, R))/ Sp(2n, R)
is Hausdorff, whereas Hom™ (7, (X), Sp(2n,R))/ Sp(2n, R) is not Hausdorff in general (see
Theorem 11.4 in [43]).

The Toledo invariant descends to the quotient so, for any d satisfying (1.1), we can define
Ra(m(X),Sp(2n,R)) C R(m(X), Sp(2n,R))

to be the subspace of representations with Toledo invariant d. For ease of notation, for the
remaining part of the Introduction, we shall write R4 for R4(m(X), Sp(2n,R)) and R for
R(m(X),Sp(2n,R)). Since the Toledo invariant varies continuously with the representa-
tion, the subspace R4 is a union of connected components, and our basic problem is that
of counting the number of connected components of R, for d satisfying (1.1). This has
been done for n = 1 by Goldman |25, 28| and Hitchin [31], and for n = 2 in |29] (in the
cases d = 0 and |d| = 2g — 2) and [24] (in the cases |d| < 2¢g — 2). In this paper we count
the number of connected components of R4 for n > 2 when d = 0 and |d| = n(g—1) — the
maximal value allowed by the Milnor-Wood inequality. Our main result is the following
(Theorem 8.7 below).

Theorem 1.1. Let X be a compact oriented surface of genus g. Let Ry be the moduli
space of reductive representations of m (X) in Sp(2n,R) with Toledo invariant d. Let
n > 3. Then

(1) Ry is non-empty and connected;
(2) Rain(g—1) has 3.2% non-empty connected components.

The main tool we employ to count connected components is the theory of Higgs bundles,
as pioneered by Hitchin |31] for SL(2,R) = Sp(2, R). In the following we outline the main
features of the theory which make it relevant to our problem — much more detail will be
provided in the body of the paper. We fix a complex structure on X endowing it with a
structure of a compact Riemann surface, which we will denote, abusing notation, also by X.
An Sp(2n,R)-Higgs bundle over X is a triple (V| 3,~) consisting of a rank n holomorphic
vector bundle V' and holomorphic sections 3 € H*(X, S?V®K) and v € H°(X, S>’V*®K),
where K is the canonical line bundle of X. The sections 3 and v are often referred to as
Higgs fields. Looking at X as an algebraic curve, algebraic moduli spaces for Sp(2n, R)-
Higgs bundle exist as a consequence of the work of Schmitt |44, 45|. Fixing d € Z, we
denote by M, the moduli space of Sp(2n,R)-Higgs bundles on X with degV = d. As
usual, one must introduce an appropriate stability condition (with related conditions of
poly- and semistability) in order to have good moduli spaces. Thus M, parametrizes
isomorphism classes of polystable Sp(2n, R)-Higgs bundles. A basic result of non-abelian
Hodge theory, growing out of the work of Corlette [17], Donaldson [19], Hitchin [31] and
Simpson [47, 48, 49, 50|, is the following (Theorem 2.28 below).

Theorem 1.2. The moduli spaces Rq and My are homeomorphic.

An essential part of the proof of this Theorem follows from a Hitchin-Kobayashi cor-
respondence between polystable Sp(2n, R)-Higgs bundles and solutions to certain gauge
theoretic equations, known as Hitchin’s equations, for a triple (A, 3,+). Here A is a smooth
unitary connection on a smooth complex vector bundle of rank n and degree d, and 3 and
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~ are smooth counterparts to the holomorphic sections defined above. Under the corre-
spondence, A is the Chern connection on the the holomorphic bundle V' introduced above
endowed with a suitable Hermitian metric which is an analogue for Higgs bundles of the
Hermite—Einstein metric. In the generality required for stable Sp(2n,R)-Higgs bundles,
the Hitchin—Kobayashi correspondence is provided by the general theory of [10]. However,
in that paper no proper attention was given to the case of polystable (non-stable) pairs in
general, and we take the opportunity to fill this gap in the present paper.

Using the homeomorphism R, = My, our problem is reduced to studying the connect-
edness properties of M . This is done by using the Hitchin functional. This is a proper
non-negative function which is defined on M, using the solution to Hitchin’s equations,
as follows:

12) fi Mg — R,
' (A, 8,7) = glIBI* + 3 l01%
Here [|-|| is the L?-norm obtained by using the Hermitian metric in V' whose Chern con-

nection gives a solution to Hitchin equations and integrating over X. This function arises
as the moment map for the Hamiltonian circle action on the moduli space obtained by
multiplying the Higgs field by an element of U(1). It was proved by Hitchin [31, 32| that
f is proper, and this implies that f has a mimimun on each connected component of M,.
Using this fact, our problem essentially reduces to characterizing the subvariety of minima
of the Hitchin functional and studying its connectedness properties.

While we characterize the minima for every value of d satisfying the Milnor-Wood
inequality (see Theorem 5.10), we only carry out the full programme for d = 0 and |d| =
n(g — 1), the extreme values of d. For d = 0, the subvariety of minima of the Hitchin
functional on M, coincides with the set of Higgs bundles (V, 3,v) with 5 =~ = 0. This,
in turn, can be identified with the moduli space of polystable vector bundles of rank n and
degree 0. Since this moduli space is connected by the results of Narasimhan—Seshadri [39],
M, is connected and hence Ry is connected.

The analysis for the mazimal case, |d| = n(g — 1), is far more involved and interesting,.
It turns out that in this case one of the Higgs fields 3 or « for a semistable Higgs bundle
(V,3,7) becomes an isomorphism. Whether it is 5 or v, actually depends on the sign
of the Toledo invariant. Since the map (V,(3,v) — (V* ~% ") defines an isomorphism
M_; = My, there is no loss of generality in assuming that 0 < d < n(g — 1). Suppose
that d = n(g — 1). Then v : V — V* ® K is an isomorphism (see Proposition 3.22).
Since 7 is furthermore symmetric, it equips V' with a K-valued nondegenerate quadratic
form. In order to have a proper quadratic bundle, we fix a square root Ly = K2 of
the canonical bunle, and define W = V* ® Ly. Then @ = v ® ILal :W* — Wis a
symmetric isomorphism defining an orthogonal structure on W, in other words, (W, Q) is
an O(n, C)-holomorphic bundle. The K?2-twisted endomorphism v : W — W ® K2 defined
by ¥ = (v ® Iker,) 0 B ® I, is @-symmetric and hence (W, Q, ) defines what we call a
K?-twisted GL(n, R)-Higgs pair, from which we can recover the original Sp(2n, R)-Higgs
bundle. The main result is the following (Theorem 4.4 below).

Theorem 1.3. Let M,.x be the moduli space of polystable Sp(2n, R)-Higgs bundles with
d=n(g—1), and let M’ be the moduli space of polystable K?-twisted GL(n, R)-Higgs pairs.
The map (V, B,7v) — (W, Q, 1) defines an isomorphism of complex algebraic varieties

Mmax = M/-
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We refer to this isomorphism as the Cayley correspondence. This name is motivated
by the geometry of the bounded symmetric domain associated to the Hermitian symmet-
ric space Sp(2n,R)/ U(n). The Cayley transform defines a biholomorphism between this
domain and a tube type domain defined over the symmetric cone GL(n,R)/ O(n) — the
Siegel upper half-space. In fact, there is a similar correspondence to that given in Theo-
rem 1.3 for every semisimple Lie group G which, like Sp(2n,R), is the group of isometries
of a Hermitian symmetric space of tube type (see [8] for a survey on this subject).

A key point is that the Cayley correspondence brings to the surface new topological
invariants, hidden a priori, which are naturally attached to an Sp(2n,R)-Higgs bundle
with maximal Toledo invariant. These are the first and second Stiefel-Whitney classes
(w1, we) of a reduction to O(n) of the O(n, C)-bundle defined by (W, Q). It turns out that
there is a connected component for each possible value of (w;,ws), contaning K>-twisted
GL(n, R)-Higgs pairs (W, Q, ) with ¢ = 0. This accounts for 2.2% of the 3.2% connected
components of My,,.. Thus it remains to account for the 229 “extra” components. As
already mentioned, the group Sp(2n, R) is the group of isometries of a Hermitian symmetric
space, but it also has the property of being a split real form. In fact, up to finite coverings,
it is the only Lie group with this property. In [32| Hitchin shows that for every semisimple
split real Lie group G, the moduli space of reductive representations of m;(X) in G has a
topological component which is isomorphic to R¥™&(29-2) “and which naturally contains
Teichmiiller space. Indeed, when G = SL(2,R), this component can be identified with
Teichmiiller space, via the Riemann uniformization theorem. Since Sp(2n,R) is split, the
moduli space for Sp(2n,R) must have a Hitchin component. It turns out that there are
229 isomorphic Hitchin components (this is actually true for arbitrary n). As follows from
Hitchin’s construction, the K2-twisted Higgs pairs (W, Q, ) in the Hitchin component all
have 1) # 0.

From many points of view maximal representations are the most interesting ones. They
have been the object of intense study in recent years, using methods from diverse branches
of geometry, and it has become clear that they enjoy very special properties. In particular,
at least in many cases, maximal representations have a close relationship to geometric
structures on the surface. The prototype of this philosophy is Goldman’s theorem [25,
27| that the maximal representations in SL(2,R) are exactly the Fuchsian ones. In the
following, we briefly mention some results of this kind.

Using bounded cohomology methods, maximal representations in general Hermitian type
groups have been studied by Burger-lozzi [11, 12| and Burger—lozzi-Wienhard [14, 15,
16]. Among many other results, they have given a very general Milnor-Wood inequality
and they have shown that maximal representations are discrete, faithful and completely
reducible. One consequence of this is that the restriction to reductive representations is
unnecessary in the case of the moduli space Rax of maximal representations. Building on
this work and the work of Labourie [36], Burger-lozzi-Labourie-Wienhard [13]| have shown
that maximal representations in Sp(2n, R) are Anosov (in the sense of |36]). Furthermore,
it has been shown that the action of the mapping class group on Ry.x is proper, by
Wienhard [54] (for classical simple Lie groups of Hermitian type), and by Labourie [35]
(for Sp(2n,R)), who also proves further geometric properties of maximal representations
in Sp(2n, R).

From yet a different perspective, representations in the Teichmiiller component have been
studied in the work on higher Teichmiiller theory of Fock-Goncharov |21], using methods
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of tropical geometry. In particular, the fact that representations in the Teichmiiller com-
ponent for Sp(2n,R) are faithful and discrete also follows from their work

Thus, while Higgs bundle techniques are very efficient in the study of topological prop-
erties of the moduli space (like counting components), these other approaches have been
more powerful in the study of special properties of individual representations. It would
be very interesting indeed to gain a better understanding of the relation between these
distinct methods.

We describe now briefly the content of the different sections of the paper.

In Appendix A we review the general theory of L-twisted pairs and the Hitchin-Kobayashi
correspondence over a compact Riemann surface X. By an L-twisted pair over X we mean
a pair (E, ) consisting of a holomorphic H®-principal bundle, where H® is a complex
reductive Lie group and ¢ is a holomorphic section of E(B)® L, where E(B) is the vector
bundle associated to a complex representation H® — GL(B) and L is a holomorphic line
bundle over X.

Appendix B deals with L-twisted G-Higgs pairs over a compact Riemann surface X.
Let G be a reductive real Lie group with maximal compact subgroup H C G, let L be
a holomorphic line bundle over X and let g = h & m be the Cartan decomposition of g.
Then an L-twisted G-Higgs pair is a pair (E, @), consisting of a holomorphic H®-principal
bundle £ over X and a holomorphic section ¢ of E(m%) ® L. Here F(m®) is the m®-
bundle associated to F via the isotropy representation H® — GL(m®). These objects are
a particular case of the general twisted pairs introduced in Appendix A. We study how
the stability condition stated in general in Appendix A simplifies for L-twisted G-Higgs
pairs for various groups relevant to our study. This certainly includes G = Sp(2n, R), but
also other groups that naturally contain Sp(2n,R), like Sp(2n,C), and SL(2n,C), as well
as GL(n,R), which is the group of isometries of the cone of the tube domain associated to
Sp(2n, R).

In Section 2 we study non-abelian Hodge theory over a compact Riemann surface X
for a general connected semisimple Lie group GG. We introduce G-Higgs bundles over X
— these are simply K-twisted G-Higgs pairs, where K is the canonical line bundle over
X —, and study their deformations and their moduli spaces. An important result is the
correspondence between the moduli space of polystable G-Higgs bundles and the moduli
space of solutions to the Hitchin equations. While this is well-known when G is actually
complex [31, 47, 48] or compact [39, 41], a proof for the non-compact non-complex case
follows from [10] for stable G-Higgs bundles. In this paper, we prove the general case of
a polystable G-Higgs bundle. The result is a consequence of the more general Hitchin—
Kobayashi correspondence given in Theorem A.17.

We then introduce the moduli space of reductive representations of the fundamental
group of a compact Riemann surface in a Lie group G and, using Corlette’s existence the-
orem of harmonic metrics [17], we establish the correspondence between this moduli space
and the moduli space of polystable G-Higgs bundles when G is connected and semisimple.

In Section 3, we specialize the non-abelian Hodge theory correspondence of Section 2
to G = Sp(2n,R) — our case of interest in this paper. Using technical results given in
Appendix B, we prove basic facts about the moduli space of Sp(2n,R)-Higgs bundles,
including the Milnor-Wood inequality. To do this, we study and exploit the relation
between the polystability of a Sp(2n,R)-Higgs bundles and the SL(2n,C)-Higgs bundle
naturally associated to it.
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In Section 4 we study the Cayley correspondence between Sp(2n, R)-Higgs bundles with
maximal Toledo invariant and K%-twisted GL(n, R)-Higgs pairs.

The rest of the paper is mostly devoted to the study of the connectedness properties
of the moduli space of Sp(2n, R)-Higgs bundles and, in particular, to prove Theorem 8.3.
In Section 5 we introduce the Hitchin functional on the moduli space of Sp(2n,R)-Higgs
bundles and characterize its minima. We then use this and the Cayley correspondence of
Section 4 to count the number of connected components of the moduli space of Sp(2n, R)-
Higgs bundles for d = 0 and |d| = n(g — 1). The proof of the characterization of the
minima is split in two cases: the case of minima in the smooth locus of the moduli space,
given in Section 6 and the case of the remaining minima, treated in Section 7.

The results of this paper have been announced in several conferences over the last four
years or so, while several preliminary versions of this paper have been circulating. The main
results, together with analogous results for other groups of Hermitian type have appeared
in the review paper [8|. The authors apologize for having taken so long in producing this
final version.

Acknowledgements. The authors thank Steven Bradlow, Marc Burger, Bill Goldman, Nigel
Hitchin, Alessandra lozzi, Francois Labourie, S. Ramanan, Domingo Toledo, and Anna
Wienhard for numerous useful conversations and shared insights.

2. G-HIGGS BUNDLES AND SURFACE GROUP REPRESENTATIONS

2.1. G-Higgs bundles. Let GG be a real reductive Lie group, let H C G be a maximal
compact subgroup and let g = h & m be a Cartan decomposition, so that the Lie algebra
structure on g satisfies

b, Ch,  [h,m]Cm,  [mm]Ch

The group H acts linearly on m through the adjoint representation, and this action extends
to a linear holomorphic action of H® on m® = m ® C — the isotropy representation.

Let X be a compact Riemann surface and let K be its canonical line bundle.

Definition 2.1. A G-Higgs bundle over X is a pair (F, ) consisting of a principal
holomorphic H bundle E over X and a holomorphic section of F(m®)® K, where E(m®)
is the m®-bundle associated to F via the isotropy representation.

In other words, a G-Higgs bundle is a K-twisted G-Higgs pair in the sense of Appen-
dix B. Thus, as for any twisted G-Higgs pair, a-stability, semistability and polystability
are defined for any a € ih N 3, where 3 is the centre of h*. However, in order to relate
G-Higgs bundles to representations of the fundamental group of X (or certain central ex-
tension of the fundamental group) in G, one requires « to lie also in the centre of g. Since
we will be mostly concerned with G-Higgs bundles for G semisimple, we will take o = 0,
and we will simply talk about stability of a G-Higgs bundle, meaning 0-stability.

When G is compact m = 0 and hence a G-Higgs bundle is simply a holomorphic principal
G®-bundle. When G is complex, if U C G is a maximal compact subgroup, the Cartan
decomposition of g is g = u + iu, where u is the Lie algebra of U. Then a G-Higgs bundle
(E, ¢) consists of a a holomorphic G-bundle F and ¢ € H*(X, F(g)®K), where E(g) is the
g-bundle associated to E via the adjoint representation. These are the objects introduced
originally by Hitchin [31] when G = SL(2, C).
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Henceforth, we shall assume that G is connected. Then the topological classification of
HCbundles E on X is given by a characteristic class ¢(E) € m(H®) = m(H) = m(G).
For a fixed d € m(G), the moduli space of polystable G-Higgs bundles M (G) is
the set of isomorphism classes of polystable G-Higgs bundles (E, ¢) such that ¢(E) = d.
When G is compact, the moduli space My(G) coincides with My(G), the moduli space
of polystable GC-bundles with topological invariant d.

The moduli space My(G) has the structure of a complex analytic variety. This can be
seen by the standard slice method (see, e.g., Kobayashi [34]). Geometric Invariant Theory
constructions are available in the literature for G compact algebraic (Ramanathan [42])
and for G' complex reductive algebraic (Simpson [49, 50]). The case of a real form of a
complex reductive algebraic Lie group follows from the general constructions of Schmitt
[44, 45]. We thus have the following.

Theorem 2.2. The moduli space My(G) is a complex analytic variety, which is algebraic
when G s algebraic.

2.2. Deformation theory of G-Higgs bundles. In this section we recall some standard
facts about the deformation theory of G-Higgs bundles. A convenenient reference for this
material is Biswas—Ramanan [2].

Definition 2.3. Let (E, ) be a G-Higgs bundle. The deformation complex of (E, ) is

the following complex of sheaves:
(2.3) C*(E,¢): E(h®) Y pim®) K.

This definition makes sense because ¢ is a section of E(m®) ® K and [m®, h] C m®.

The following result generalizes the fact that the infinitesimal deformation space of a
holomorphic vector bundle V' is isomorphic to H*(End V).

Proposition 2.4. The space of infinitesimal deformations of a G-Higgs bundle (E, p) is
naturally isomorphic to the hypercohomology group HY(C*(E, p)).

In particular, if (E, ¢) represents a non-singular point of the moduli space M4(G) then
the tangent space at this point is canonically isomorphic to H'(C*(E, ¢)).
For any G-Higgs bundle there is a natural long exact sequence
py O~ ECE) — HYER) =2 BB & K)
— H'(C*(E, ¢) — H'(B(h%) “2 H'(E(m®) @ K) — HX(C*(E, p)) = 0.

As an immediate consequence we have the following result.

Proposition 2.5. The infinitesimal automorphism space aut(E, @) defined in Section A.7
is isomorphic to H'(C*(E, ¢)).

Let di: B — End(m®) be the derivative at the identity of the complexified isotropy
representation ¢ = Adjyc: H® — Aut(m®) (cf. Section B.1). Let kerde C §© be its kernel
and let E(kerd:) C E(H%) be the corresponding subbundle. Then there is an inclusion
HO(E(kerdi)) — H°(C*(E, ¢)).

Definition 2.6. A G-Higgs bundle (E, ) is said to be infinitesimally simple if the
infinitesimal automorphism space H°(C®(FE, ¢)) is isomorphic to H°(E(ker dv N 3)).
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Similarly, we have an inclusion ker : N Z(H®) — Aut(E, ¢).

Definition 2.7. A G-Higgs bundle (E, ¢) is said to be simple if Aut(FE, ¢) = ker :NZ(HC),
where Z(H®) is the centre of H®.

As a consequence of Propositions 2.5 and A.7 we have the following.
Proposition 2.8. Any stable G-Higgs bundle (E, ) with ¢ # 0 is infinitesimally simple.

Remark 2.9. If ker dv = 0, then (E, @) is infinitesimally simple if and only if the vanishing
H°(C*(E,¢)) = 0 holds. A particular case of this situation is when the group G is a
complex semisimple group: indeed, in this case the isotropy representation is just the
adjoint representation.

Next we turn to the question of the vanishing of H? of the deformation complex. In
order to deal with this question we shall use Serre duality for hypercohomology (see e.g.
Theorem 3.12 in [33]), which says that there are natural isomorphisms

(2.5) H'(C*(E,¢)) 2 H*7(C*(E, ¢)" ® K",
where the dual of the deformation complex (2.3) is

C*(E,¢)": Em®) @ K~ =2, p(pC).

An important special case of this is when G is a complex group.

Proposition 2.10. Assume that G is a complex group. Then there is a natural isomor-
phism
H(C*(E, ¢)) = H(C*(E, ¢))".

Proof. This is immediate from (2.5) and the fact that the the deformation complex is
dual to itself, except for a sign in the map which does not influence the cohomology (cf.
Section 2.1):

d(e)

(2.6) C*(E,p)* ® K: E(g) — E(g) ® K.

U
Remark 2.11. The isomorphism H'(C*(E, ¢)) = H'(C*(E, p))* is also important: it gives

rise to the natural complex symplectic structure on the moduli space of G-Higgs bundles
for complex groups G.

We have the following key observation (cf. (2.6); again we are ignoring the irrelevant
change of sign in the dual complex).

Proposition 2.12. Let G be a real group and let G© be its complezification. Let (E,p) be
a G-Higgs bundle. Then there is an isomorphism of complexes:

where Coc(E, ) denotes the deformation complex of (E, @) viewed as a G*-Higgs bundle,
and C&(E, ) denotes the deformation complex of (E, ) viewed as a G-Higgs bundle.

Corollary 2.13. With the same hypotheses as in the previous Proposition, there is an
1somorphism
H(Cee (B, 9)) = H(CE(E, ¢)) @ H (CE(E, ¢))".
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Proof. Immediate from the Proposition and Serre duality (2.5). O

Proposition 2.14. Let G be a real semisimple group and let GC be its complexification.
Let (E, ) be a G-Higgs bundle which is stable viewed as a G®-Higgs bundle. Then the
vanishing

HY(C&(E, ) =0 =H*(C&(E, »))
holds.

Proof. Since G is semisimple, so is G¢. Hence, in view of Remark 2.9, the result follows at
once from Corollary 2.13 and Proposition 2.8. 0J

The following result on smoothness of the moduli space can be proved, for example,
from the standard slice method construction referred to above.

Proposition 2.15. Let (E, @) be a stable G-Higgs bundle. If (E, ) is simple and
H*(CE (B, ¢)) = 0,

then (E, @) is a smooth point in the moduli space. In particular, if (E, ) is a simple G-
Higgs bundle which is stable as a GC-Higgs bundle, then it is a smooth point in the moduli
space.

Suppose now that we are in the situation of Proposition 2.15. Then a local uni-
versal family exists (see [45]) and hence the dimension of the component of the mod-
uli space containing (F, ) equals the dimension of the infinitesimal deformation space
H' (C&(E, ¢)). In view of Proposition 2.8, Remark 2.9 and Proposition 2.16, we also have
HO(CE(E, ¢)) = HX(CE(E, ¢)) = 0. So we have H'(CE(E, ¢)) = —X(C&(E, ¢)). A re-
markable fact on this equality is that, whereas the left hand side may depend on the choice
of (E, ¢), the right hand side is independent of it, as we will see in the proposition below.
We shall refer to —x(C&(E, ¢)) as the expected dimension of the moduli space.

Proposition 2.16. Let G be semisimple. Then the expected dimension of the moduli space
of G-Higgs bundles is (g — 1) dim G©.

Proof. Let (E, ) be any G-Higgs bundle. The long exact sequence (2.4) gives us
X(C&(E, ¢)) = x(B(H7)) + x(E(m®) @ K) = 0.

Serre duality implies that x(E(m®)®K) = x(E(m®)) and from the Riemann—Roch formula
we therefore obtain

~X(C&(E,¢)) = deg(E(m")) + (g — 1) tk(E(m®)) — (deg(E(h%)) + (1 — g) tk(E(h")).

Any invariant pairing on g© (e.g. the Killing form) induces isomorphisms E(m®) ~ E(m®)*
and E(h®) ~ E(h®)*. Hence deg(E(m®)) = deg(E(h%)) = 0, whence the result. In
particular, the value of —x(C&(E,¢)) is independent of the choice of G-Higgs bundle
(E, ). O

Remark 2.17. Note that the actual dimension of the moduli space (if non-empty) can be
smaller than the expected dimension. This happens for example when G = SU(p, ¢) with
p # q and maximal Toledo invariant (this follows from the study of U(p, ¢)-Higgs bundles
in [6]) — in this case there are in fact no stable SU(p, ¢)-Higgs bundles.
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2.3. G-Higgs bundles and Hitchin equations. Let G be connected semisimple real
Lie group. Let (F,¢) be a G-Higgs bundle over a compact Riemann surface X. By a
slight abuse of notation, we shall denote the C'*°-objects underlying £ and ¢ by the same
symbols. In particular, the Higgs field can be viewed as a (1,0)-form: ¢ € QY°(E(m®)).
Let 7: QY(E(g%)) — Q*(E(g%)) be the compact conjugation of g© combined with complex
conjugation on complex 1-forms. Given a reduction h of structure group to H in the
smooth H®-bundle E, we denote by F}, the curvature of the unique connection compatible
with h and the holomorphic structure on FE.

Theorem 2.18. There exists a reduction h of the structure group of E from H® to H
satisfying the Hitchin equation

Fy — [Qpﬂ-(@)] =0
if and only if (E, ) is polystable.

Theorem 2.18 was proved by Hitchin [31| for G = SL(2,C) and Simpson |47, 48] for
an arbitrary semisimple complex Lie group G. The proof for an arbitrary reductive real
Lie group G when (E,¢) is stable is given in [10], and the general polystable case fol-
lows as a particular case of the more general Hitchin—-Kobayashi correspondence given in

Theorem A.17.

From the point of view of moduli spaces it is convenient to fix a C* principal H-
bundle Ey with fixed topological class d € m(H) and study the moduli space of so-
lutions to Hitchin’s equations for a pair (A, ) consisting of an H-connection A and
0 € WX, Ep(m©)):

FA - [9077—(()0)] =0
(2.7) Do = 0,
Here d4 is the covariant derivative associated to A and d4 is the (0,1) part of d4, which
defines a holomorphic structure on Ey. The gauge group 7 of Ey acts on the space of
solutions and the moduli space of solutions is

MEE(Q) = {(A, ¢) satistying (2.7)}/72.
Now, Theorem 2.18 can be reformulated as follows.

Theorem 2.19. There is a homeomorphism

Ma(G) = MG™(G)

To explain this correspondence we interpret the moduli space of G-Higgs bundles in terms
of pairs (Jg, ) consisting of a d-operator (holomorphic structure) on the H®-bundle E ;e
obtained from E by the extension of structure group H C H®, and ¢ € QV0(X, Eyc(m®))
satisfying g = 0. Such pairs are in correspondence with G-Higgs bundles (E, ¢), where
E is the holomorphic H®-bundle defined by the operator g on Epc and Ogp = 0 is
equivalent to p € H°(X, E(m®) ® K). The moduli space of polystable G-Higgs bundles
M4(G) can now be identified with the orbit space

{(0p,¢) : Opp=0, (Op,¢) defines a polystable G-Higgs bundle}/#C,

where J#C is the gauge group of Eyc, which is in fact the complexification of #. Since
there is a one-to-one correspondence between H-connections on Ey and O-operators on
Ejc, the correspondence given in Theorem 2.19 can be interpreted by saying that in the
A C-orbit of a polystable G-Higgs bundle (Jg,, o) we can find another Higgs bundle
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(Og, p) whose corresponding pair (d4, @) satisfies Fy — [¢, 7(p)] = 0, and this is unique up
to H-gauge transformations.

The infinitesimal deformation space of a solution (A, ) to Hitchin’s equations can be
described as the first cohomology group of a certain elliptic deformation complex. To do
this, we follow Hitchin [31, § 5|. The linearized equations are:

da(A) = [, 7(0)] = [0, 7(£)] = O,
Oagp + A", 6] =0,
for A € Q'(X,Eg(h)) and ¢ € Q°(X, Ey(m®)). The infinitesimal action of
Y € Lies# = QY (X, Ex(h))
is
(A, 8) = (dat), [, ¥]).
Thus the deformation theory of Hitchin’s equations is governed by the (elliptic) complex

C*(A4.9): (X, En(h)) > Q' (X, Ep(h)) & Q"(X, Eg(m®))
= (X, Ep(h) © 2V (X, En (),
where the maps are
do(v) = (dath, [0, ¥])
and ' B '
di(¢) = (da(A) = [¢. 7(9)] = [0, 7()], 0ag + [A™, ¢]).
The fact that (A, ) is a solution to the equations, together with the gauge invariance of

the equations, guarantees that d;ody = 0. Denote by H'(C*(A, ¢)) the cohomology groups
of the gauge theory deformation complex C*(A, ).

Let
Aut(A, @) :={he : h"A=A, and (h)(p) = ¢}.

Here  : H — Aut(m) is the isotropy representation. Clearly Z(H) Nker: C Aut(A, ¢).
Definition 2.20. Let (A, ¢) be a solution of (2.7). We say that (A, ¢) is irreducible if

and only if Aut(A,p) = Z(H) Nkert. We say that (A, ¢) is infinitesimally irreducible
if the Lie algebra of Aut(A, ), which is identified with H°(C*(A, ¢)) equals Z(h) Nker dv.

Proposition 2.21. Assume that H(C*(A,)) = H*(C*(A,¢)) = 0 and that (A,p) is
irreducible. Then M is smooth at [A, ] and the tangent space is

Tia MG = H' (C*(A, ¢)).

For a proper understanding of many aspects of the geometry of the moduli space of
Higgs bundles, one needs to consider the moduli space as the gauge theory moduli space
ME™(G). On the other hand, the formulation of the deformation theory in terms of
hypercohomology is very convenient. Fortunately, one has the following.

Proposition 2.22. At a smooth point of the moduli space, there is a natural isomorphism
of infinitesimal deformation spaces

H'(C*(A, p)) =H(C*(E, p)),
where the holomorphic structure on the Higgs bundle (E, @) is given by 0.
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As in Donaldson-Kronheimer |20, § 6.4] this can be seen by using a Dolbeault resolu-
tion to calculate H'(C®(E, ¢)) and using harmonic representatives of cohomology classes,
via Hodge theory. For this reason we can freely apply the complex deformation theory
described in Section 2.2 to the gauge theory situation.

The following result is not essential for the present paper but we include it here for com-
pleteness. It can be deduced from the treatment of the Hitchin-Kobayashi correspondence
given in Appendix A.

Proposition 2.23. Under the correspondence given by Theorem 2.19, a stable G-Higgs
bundle corresponds to an infinitesimally irreducible solution to Hitchin equations, while a
G-Higgs bundle which is stable and simple is in correspondence with an irreducible solution.

2.4. Surface group representations. Let X be a closed oriented surface of genus g and
let

g
mU(X) = (ar, by, ..., ag, by | Jlas, 0] = 1)
i=1

be its fundamental group. Let G be a connected reductive real Lie group. By a represen-
tation of 7 (X) in G we understand a homomorphism p: m(X) — G. The set of all such
homomorphisms, Hom(m (X ), @), can be naturally identified with the subset of G*9 con-
sisting of 2g-tuples (Ay, By ..., Ay, By) satisfying the algebraic equation [[{_,[A4;, B;] = 1.
This shows that Hom(m (X),G) is a real analytic variety, which is algebraic if G is alge-
braic.

The group G acts on Hom(m(X), G) by conjugation:

(g-p)(v) = gp(v)g~"

for g € G, p € Hom(m (X),G) and v € m(X). If we restrict the action to the subspace
Hom™ (m1(X), g) consisting of reductive representations, the orbit space is Hausdorff (see
Theorem 11.4 in [43]). By a reductive representation we mean one that composed
with the adjoint representation in the Lie algebra of G decomposes as a sum of irreducible
representations. If G is algebraic this is equivalent to the Zariski closure of the image
of m(X) in G being a reductive group. (When G is compact every representation is
reductive.) Define the moduli space of representations of m(X) in G to be the orbit space

R(G) = Hom™ (1, (X), G)/G.
One has the following (see e.g. Goldman [26]).

Theorem 2.24. The moduli space R(G) has the structure of a real analytic variety, which
is algebraic if G is algebraic and is a complex variety if G is comple.

Given a representation p: m1(X) — G, there is an associated flat G-bundle on X, defined
as B, = X x, G, where X — X is the universal cover and 71(X) acts on G via p. This
gives in fact an identification between the set of equivalence classes of representations
Hom(m(X),G)/G and the set of equivalence classes of flat G-bundles, which in turn is
parametrized by the cohomology set H'(X,G). We can then assign a topological invariant
to a representation p given by the characteristic class ¢(p) := ¢(E,) € m(G) corresponding
to E,. To define this, let G be the universal covering group of G. We have an exact
sequence

1 —m@) —G—G—1
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which gives rise to the (pointed sets) cohomology sequence
(2.8) HY(X,G) — H'(X,G) -5 H*(X,m(Q)).

Since m1(G) is abelian the orientation of X defines an isomorphism
H*(X,m(G)) = m(G),

and c(E,) is defined as the image of E under the last map in (2.8). Thus the class
c(E,) measures the obstruction to lifting E, to a flat G-bundle, and hence to lifting p

to a representation of m1(X) in G. For a fixed d € m1(G), the moduli space of reductive
representations Rq(G) with topological invariant d is defined as the subvariety

(2.9) Ra(G) := {lp] € R(G) | c(p) = d},
where as usual [p] denotes the G-orbit G - p of p € Hom™ (7,(X), G).

One can study deformations of a class of representations [p] € R4(G) by means of group
cohomology (see [26]). The Lie algebra g is endowed with the structure of a (X )-module
by means of the composition

m(X) -2 G 2% Aut(g).

Definition 2.25. Let p : m(X) — G be a representation of m(X) in G. Let Zg(p) be the
centralizer in G of p(m(X)). We say that p is irreducible if and only if it is reductive
and Zg(p) = Z(G), where Z(G) is the centre of G. We say that p is an infinitesimally
irreducible representation if it is reductive and Lie Zg(p) = Lie Z(G).

One has the following basic facts (|26]).

Proposition 2.26. (1) The Zariski tangent space to R4(G) at an equivalence class [p]
is isomorphic to the cohomology group H*(m1(X), gadop)-
(2) HO(T(l (X)> gAdop) = Lie ZG(p)
(3) H*(m1(X), gadop) = H(11(X), gadop)”

From this one obtains the following (|26]).

Proposition 2.27. Let G be a semisimple Lie group and let p : m(X) — G be irreducible.
Then the equivalence class [p] is a smooth point in R4(G).

This is simply because Zg(p) = Z(G) is finite and hence
HO(Wl(X),QAdOp) = H2(7T1(X)79Adop) =0.

An alternative way to study deformations of a representation is by using the correspond-
ing flat connection. To explain this, let Eg be a C'*° principal G-bundle over X with fixed
topological class d € m(G) = m(H). Let D be a G-connection on Eg and let Fpp be its
curvature. If D is flat, i.e. Fip = 0, then the holonomy of D around a closed loop in X only
depends on the homotopy class of the loop and thus defines a representation of 71 (X) in
G. This gives an identification',

Ra4(G) = {Reductive G-connections D | F'p = 0}/9,

leven when G is complex algebraic, this is merely a real analytic isomorphism, see Simpson [48, 49, 50]
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where, by definition, a flat connection is reductive if the corresponding representation of
m1(X) in G is reductive, and ¢ is the group of automorphisms of E; — the gauge group.
We can now linearize the flatness condition near a flat connection D:

d

for b € Q1(X, Ad(E)).
Linearize the action of the gauge group D +— ¢g- D = gDg~!. For g(t) = exp(«t) with
U € Q%X Ad(E)),
d
%(g(t) - D)i—o = D(¥).
Thus the infinitesimal deformation space is H! of the complex
0— Q°(X, E(g)) = (X, E(g)) 2 0*(X,E(g)) — 0.

Note that Fp = D? = 0 means that this is in fact a complex.

2.5. Representations and G-Higgs bundles. We assume now that G is connected and
semisimple. With the notation of the previous sections, we have the following.

Theorem 2.28. Let G be a connected semisimple real Lie group. There is a homeomor-
phism Rq(G) = My(G). Under this homeomorphism, stable G-Higgs bundles correspond
to infinitesimally irreducible representations, and stable and simple G-Higgs bundles cor-
respond to irreducible representations.

Remark 2.29. On the open subvarieties defined by the smooth points of R4y and M, this
correspondence is in fact an isomorphism of real analytic varieties.

Remark 2.30. There is a similar correspondence when G is reductive but not semisimple.
In this case, it makes sense to consider nonzero values of the stability parameter o. The
resulting Higgs bundles can be geometrically interpreted in terms of representations of the
universal central extension of the fundamental group of X, and the value of « prescribes
the image of a generator of the center in the representation.

The proof of Theorem 2.28 is the combination of two existence theorems for gauge-
theoretic equations. To explain this, let Eg be, as above, a C* principal G-bundle over X
with fixed topological class d € m(G) = m(H). Every G-connection D on Eg decomposes
uniquely as

D =ds+,

where d4 is an H-connection on Ey and ¢ € Q'(X,Eg(m)). Let F4 be the curvature of
d 4. We consider the following set of equations for the pair (d4,):

(2.10) dit) =0
& = 0.

These equations are invariant under the action of 7, the gauge group of Ey. A theorem
of Corlette [17], and Donaldson [19] for G = SL(2, C), says the following.

Theorem 2.31. There is a homeomorphism

{Reductive G-connections D | Fp =0}/9 = {(da,¢) satisfying (2.10)}/5€.
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The first two equations in (2.10) are equivalent to the flatness of D = d4 + 9, and
Theorem 2.31 simply says that in the ¥-orbit of a reductive flat G-connection Dy we can
find a flat G-connection D = g(Dy) such that if we write D = d4 + v, the additional
condition d%1 = 0 is satisfied. This can be interpreted more geometrically in terms of
the reduction h = g(hg) of E¢ to an H-bundle obtained by the action of g € ¥ on hy.
The equation d%1 = 0 is equivalent to the harmonicity of the 7 (X)-equivariant map

X — G/H corresponding to the new reduction of structure group h.

To complete the argument, leading to Theorem 2.28, we just need Theorem 2.18 and
the following simple result.

Proposition 2.32. The correspondence (da, ) — (da,v := ¢ — 7(p)) defines a homeo-
morphism

{(da, ) satisfying (2.7)}/ 7 = {(da,¥) satisfying (2.10)}/.

3. Sp(2n,R)-HIGGS BUNDLES

3.1. Sp(2n,R)-Higgs bundles. Let X be a compact Riemann surface. The maximal
compact subgroup of Sp(2n,R) is U(n). If V = C” is the fundamental representation of
GL(n,C), then the isotropy representation space is:

m® = SV ¢ S2V*.

An Sp(2n,R)-Higgs bundle over X is thus a triple (V, 3, ) consisting of a rank n holomor-
phic vector bundle V' and holomorphic sections 3 € H*(X, S?V®K) and v € H(X, S*V*®
K), where K is the canonical line bundle of X.

Let (V;, ;) be Sp(2n;, R)-Higgs bundles and let n = > n;. We can define an Sp(2n, R)-
Higgs bundle (V, @) by setting

V=@V and o= ¢

by using the canonical inclusions H°(K ® (S*V; & S?V*)) C HY(K @ (S*V @ S?V*)). We
shall slightly abuse language and write (V, ¢) = @(V;, ¢;), referring to this as “the direct
sum of the (V;, ¢;)”.

In Appendix A we introduce a very general notion of (semi-, poly-)stability for certain
kind of holomorphic objects. Sp(2n, R)-Higgs bundles are instances of such kind of objects.
These notions are in general rather complicated to study in concrete terms but it turns
out that the general (semi-,poly-)stability conditions, when applied to Sp(2n,R)-Higgs
bundles, can be sensibly simplified (this is also the case for many other kinds of objects,
and it might well be true that a general simplified condition exists for all G-Higgs bundles).
The simplification of the (semi-)stability conditions for Sp(2n, R)-Higgs bundles are given
in Theorems B.2 and B.4 of Appendix B, with the parameter value a« = 0 (recall from
Section 2.1 that we are fixing this value, since it is the one relevant for the study of
representations of surface groups). Before giving a precise statement we introduce some
notation. If W is a vector bundle and W', W"” C W are subbundles, then W/ ®¢W" denotes
the subbundle of the second symmetric power S?W which is the image of W/ @W" Cc WQW
under the symmetrization map W @ W — S?W (of course this should be defined in sheaf
theoretical terms to be sure that W’ ®¢ W is indeed a subbundle, since the intersection of
W'@W" and the kernel of the symmetrization map might change dimension from one fiber
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to the other). Also, we denote by W'+ C W* the kernel of the restriction map W* — W',
Now the simplified (semi-)stability condition is given by the following proposition.

Proposition 3.1. An Sp(2n,R)-Higgs bundle (V, ) is stable if, for any filtration of sub-

bundles
ocviclW,CcV
such that
(3.11) Be H(K®(S*Va+Vi®sV)), veH(K® SV +VitosV),
the following holds: if at least one of the subbundles Vi and Vs is proper, then the inequality
(3.12) deg(V) — deg(V1) — deg(Va) > 0
holds and, in any other case,
(3.13) deg(V) — deg(V7) — deg(Va) > 0.

The condition for (V, ) to be semistable is obtained by omitting the strict inequality (3.12).

The following observation will be useful many times below.

Remark 3.2. If 0 C V; C Vi, C V is a filtration of vector bundles then for any 8 € H(K ®
S%V) and v € H°(K ® S?V*) the condition 3 € H°(K ® (S?V, + Vi ®g V)) is equivalent
to BV;- € K ® V; and BVt C K @ Vs, and similarly v € HY(K @ (S?ViE + Vit @5 V*)) is
equivalent to vV, C K ® Vit and 4V, € K ® V5, where V.* is the kernel of the projection
V* — V* and we view 3 and 7 as symmetric maps : V' - K@V andy: V - K@ V™.
Thus, if we use a local basis of V' adapted to the filtration 0 C V; C V5, C V and the dual
basis of V*, then the matrix of v is of the form

0 0 =
0 = x|,
* %

while the matrix of 3 has the form

k* ok ok
E O 3

* 0 0

o

The deformation complex (2.3) for an Sp(2n, R)-Higgs bundle (V,p = 5+ ) is

ad(p)

C*(V,p): End(V) —= S2VR K® S*V*@ K
P (=Y =P8,y +P'y)
Proposition 3.3. An Sp(2n,R)-Higgs bundle (V, ) is infinitesimally simple if and only

if HO(C*(V, ¢)) = 0. Equivalently, (V,p) is infinitesimally simple if and only if there is a
non-zero v € HY(End(V)) such that

ad(p)(¥) = (=BY" — ¥B, v +4"y) = (0,0).

Proof. For Sp(2n,R)-Higgs bundles one has that ker(di) = 0. Thus the first statement
is immediate from Definition 2.6. The equivalent statement now follows from the long
exact sequence (2.4), recalling that in this case the deformation complex (2.3) is given by
(3.14). O

(3.14)
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Proposition 3.4. An Sp(2n,R)-Higgs bundle (V, ) is simple if and only if Aut(V,p) =
{x1d}.

Proof. Since A € C* = Z(H®) acts on the isotropy representation m® = S?V @ S2V* by
(8,7) — (A28, A7%y) we have ker : N Z(H®) = {+£1}, so the statement follows directly from
Definition 2.7. O

Remark 3.5. Contrary to the case of vector bundles, stability of a Sp(2n, R)-Higgs bundle
does not imply that it is simple. To give an example of this phenomenon, take two different
square roots, M; and My, of K. Define V = M, ® M, then S’V K = O®M;'M; ' © 0.
Let v = (1,0,1), 8 =0 and set ¢ = (3,7). Then (V, ) is not simple. However, we shall
show that (V) ¢) is stable. Since V has rank 2, in any filtration 0 C V; C Vo C V some
inclusion is in fact an equality. Hence we have to verify the semistability condition for
the cases listed in Table B.1 and the stability condition (with strict inequality) for the
cases listed in the last three rows of the same Table. This is easy, using the fact that ~
is non-degenerate (note that for any proper V) C V this means that 7 cannot belong to
H°(S?V;4)). The phenomenon described by this example will be described in a systematic
way in Theorem 3.12 below.

3.2. Stable and non-simple Sp(2n,R)-Higgs bundles. The goal of this section is to
obtain a complete understanding of how a stable Sp(2n,R)-Higgs bundle can fail to be
simple. The main result is Theorem 3.12.

For this, we need to describe some special Sp(2n, R)-Higgs bundles arising from G-Higgs
bundles associated to certain real subgroups G C Sp(2n,R).

The subgroup G = U(n). Observe that a U(n)-Higgs bundle is nothing but a holomorphic
vector bundle V of rank n. The standard inclusion v : U(n) < Sp(2n,R) gives the
correspondence

(3.15) V = o'™Y = (V,0)

associating the Sp(2n, R)-Higgs bundle My = (V,0) to the holomorphic vector bundle
V.

Remark 3.6. Note that (V,0) is never simple as an Sp(2n, R)-Higgs bundle, since its auto-
morphism group contains the non-zero scalars C*.

The subgroup G = U(p, q). In the following we assume that p,q > 1. As is easily seen,
a U(p, q)-Higgs bundle (cf. [6]) is given by the data (V, W, = 8+ 7), where V and W
are holomorphic vector bundles of rank p and g, respectively, § € H 'K ® Hom(W, f/'))
and ¥ € H°(K ® Hom(V,W)). Let n = p + ¢. The imaginary part of the standard
indefinite Hermitian metric of signature (p,q) on C" is a symplectic form, and thus there
is an inclusion vY®9: U(p,q) — Sp(2n,R). At the level of G-Higgs bundles, this gives
rise to the correspondence

(3.16) VW, p=0+7) — oYPDNV W, 5) = (V,p=8+7),

where 3
V=VaoWw, ﬁz(q ﬁ) and 7:(2 g)
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Remark 3.7. Again, we note that the Sp(2n, R)-Higgs bundle vy (V, W, ) is not simple,
since it has the automorphism (§ °).

We shall need a few lemmas for the proof of Theorem 3.12.

Lemma 3.8. Let (V,p) be an Sp(2n,R)-Higgs bundle and assume that there is a non-
trivial splitting (V, @) = (Vo ® Vi, 0a + ) such that ¢, € H'(K ® (S*V, @ S*V})) for
v = a,b. Assume that the Sp(2n,, R)-Higgs bundle (V,, pa) is not stable. Then (V, ©) is
not stable.
Proof. Since (V,, p,) is not stable there is a filtration 0 C V,; C Vo C V, such that
BeH K@ S+ VarsV)), veH (K@ (S*Vy+V;0sV7)
and
(3.17) deg(V,) — deg(Va) — deg(Var) < 0.
Consider the filtration 0 C V} C V5, C V obtained by setting
Vi=Va, Va=Veadl,.
Using Remark 3.2 one readily sees that this filtration satisfies the conditions (3.11). Since
deg(V) — deg(V1) — deg(V2) = deg(Va) — deg(Var) — deg(Var),
it follows from (3.17) that (V, ¢) is not stable. O

Lemma 3.9. Let (V,¢) be an Sp(2n,R)-Higgs bundle and assume that there is a non-
trivial splitting V. = V, & V, such that p € H°(K @ (S*V, & S*V>*)). In other words,
(V,0) = (Vo @ Vi, 0 + 0) with (Vy,0) = v ™V, Then (V, ) is not stable.

Proof. 1t is immediate from Lemma 3.8 and Remark B.5 that V}, is a stable vector bundle
with deg(V}) = 0. Hence

deg(V) = deg(V,).
Consider the filtration 0 C Vi3 C V4, C V obtained by setting V), = 0 and Vo, = V,. As
before this filtration satisfies (3.11). Therefore the calculation

deg(V) — deg(V1) — deg(V2) = deg(V') — deg(Va) =0
shows that (V) ¢) is not stable. O

Lemma 3.10. Let (V,¢) = oY (Va, V)5, @) be an Sp(2n,R)-Higgs bundle arising from a
U(p, q)-Higgs bundle (V,, V,*, @) with p,q > 1. Then (V, ) is not stable.

Proof. The Sp(2n,R)-Higgs bundle (V| ¢) is given by

v-viev, o=(5 ) wa 0=(] 7).

Let V; = V5, =V, and consider the filtration 0 C V} C Vo, C V. Again this filtration satisfies
the conditions (3.11). Thus, if (V, ¢) is stable, we have from (3.12)

deg(V') —2deg(V,) < 0.
Similarly, considering V; = V4, =V}, we obtain
deg(V) — 2deg(V3) <0,



20 0. GARCIA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA

so we conclude that
deg(V) = deg(V,) + deg(V;) < deg(V),
which is absurd.
O

Lemma 3.11. Let (V, @) be an Sp(271, R)-Higgs bundle. Then the Sp(4n, R)-Higgs bundle
(V@ V,p+ @) is not stable.

[=Re

Proof. Consider the automorphism f = %( Dof V= V@ V. Write § = <
v = ( ) Then we have that

Vip) = (VaV,f-B+f7),

a_ap_ (05 (it (07
fﬁ—fﬁf—(go and  f-v=(f)"7f =5 0)

We shall see that (V eV, f-B+f- 7) is not stable. To this end, consider the filtration
0CV,CVoC V@V obtained by setting V) = V5 = V. This satisfies (3.11). But, on the
other hand,

0
B) and

where

deg(V @ V) — deg(V1) — deg(Va) = 0
so (V@ V,f-B+f-7)isnot stable. O

Theorem 3.12. Let (V,p) be a stable Sp(2n,R)-Higgs bundle. If (V,p) is not simple,
then one of the following alternatives occurs:

(1) The vanishing ¢ = 0 holds and V' is a stable vector bundle of degree zero. In this
case, Aut(V, p) = C*.

(2) There is a decomposition, unique up to reordering, (V, ) = (@F_, Vi, or_ | @) with
b; = Bi+v; € H(K ® (S?V; ®S?V}*)), such that each (Vi, ¢;) is a stable and simple
Sp(2n;,R)-Higgs bundle. Furthermore, each ¢; # 0 and (Vi, ;) 2 (Vj, ;) for
i # j. The automorphism group of (V, ) is

Aut(V, ) = Aut(Vi, 1) x - x Aut(Vy, on) = (Z/2)".

Recall that an example of the second situation was described in Remark 3.5.

Proof. First of all, we note that if ¢ = 0 then it is immediate from Remark B.5 that
alternative (1) occurs.

Next, consider the case ¢ # 0. Since (V) is not simple, there is an automorphism
o€ Aut( ©) \ {£1}. If o0 were a multiple of the identity, say 0 = AId with A\ € C*, then
it would act on @ =f+vby B+ N3 and v +— A"2v. Since ¢ # 0 this would force o
to be equal to 1 or —1, in contradiction with our choice. Hence o is not a multiple of the
identity. We know from Lemma A.18 that Aut(V, ¢) is reductive. This implies that o may
be chosen in such a way that there is a splitting V' = @ V; in eigenbundles for o such that
the action of o on V; is given by multiplication by some o; € C*. It follows that the action
of o on S?V @ S?V* is given by

3.18 oc=00;:V,V; =V, @V and c=0 o VQV S V@V
IR j i j i j

(2
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If we denote by ¢;; = (i + 7i; the component of ¢ in H(K ®@ (V; ® V; & V;* @ V}))
(symmetrizing the tensor product if i = j), then

(319) 0i0; % 1 = Yij = 0.

Suppose that ¢;,;, 7 0 for some ig # jo. From (3.19) we conclude that o, 0;, = 1. But
then 0,0, # 1 for i # iy and o;,0; # 1 for j # jo. Hence, again by (3.19), @i, = 0 = @iy,
if i # ip or j # jo. Thus (Viy, Vi, 0ieje) is a U(p, ¢)-Higgs Bundle and we have a non-

trivial decomposition (V,p) = (V, @ Vi, gu + ¢3) with (Va, gu) = 077 (Viy, Vi, 94gj0)- By
Lemma 3.10 the Sp(2n,, R)-Higgs bundle (V,, ¢,) is not stable so, by Lemma 3.8, (V, ¢) is

not stable. This contradiction shows that ¢;; = 0 for ¢ # 0.

It follows that p = > ¢; with ¢; € H*(K ® (S?V; & S?V;*)). By Lemma 3.8 each of the
summands (V;, ;) is a stable Sp(2n, R)-Higgs bundle and by Lemma 3.9 each ¢; must be
non-zero. Also, from (3.18), o - 8; = 023; and o - y; = 0; *7; so we conclude that the only
possible eigenvalues of o are 1 and —1. Thus the decomposition (V, ¢) = @(V;, ;) has in
fact only two summands and, more importantly, 0> = 1. This means that all non-trivial
elements of Aut(V, ¢) have order two and therefore Aut(V, ) is abelian.

Now, the summands (V},¢;) may not be simple but, applying the preceding argu-
ment inductively to each of the (V;,p;), we eventually obtain a decomposition (V,¢) =
(@B Vi,>_ ¢:) where each (V;,¢;) is stable and simple, and ¢; # 0. Since Aut(V, ) is
abelian, the successive decompositions of V' in eigenspaces can in fact be carried out si-
multaneously for all o € Aut(V, )\ {£1}. From this the uniqueness of the decomposition
and the statement about the automorphism group of (V, ¢) are immediate.

Finally, Lemma 3.9 and Lemma 3.11 together imply that the (V;, p;) are mutually non-
isomorphic. O]

3.3. Sp(2n,R)-, Sp(2n,C)- and SL(2n,C)-Higgs bundles: stability conditions. An
Sp(2n, R)-Higgs bundle can be viewed as a Higgs bundle for the larger complex groups
Sp(2n,C) and SL(2n,C). The goal of this section is to understand the relation between
the various corresponding stability notions. The main results are Theorems 3.13 and 3.14
below.

We have seen in Section B.8 that an SL(m, C)-Higgs bundle is a pair (W, ®) where W is
a rank m holomorphic vector bundle on the Riemann surface X and ® € H°(K @ End(W)).
As was shown in Theorem B.10, (W, ®) is stable if for any subbundle W’ C W such that
P(W') € K@ W' we have deg W’ < 0 (and similarly for semistability).

We have also seen, in Section B.7, that an Sp(2n, C)-Higgs bundle is given by (W, Q), ®),
where (W, ) is a rank 2n holomorphic symplectic vector bundle (i.e., 2 is a holomorphic
symplectic form on W) and ® € H°(K ® End(W)) is symplectic, i.e.,

(3.20) Q(Qu,v) + Qu, Pv) =0

for local holomorphic sections u and v of W. Recall from Theorem B.9 that ((W,Q), ®) is
stable if and only if for any isotropic subbundle W’ C W such that ®(W') C K @ W' we
have deg W’ < 0 (and similarly for semistability).

Given an Sp(2n,R)-Higgs bundle (V, ) with ¢ = (3,7v) € H'(K ® (S?V @& S?V*)) one
can associate to it an Sp(2n, C)-Higgs bundle ((W,Q), ®) given by

G21)  WevVev q):(g g) and Q((0,€), (w,m)) = £(w) - n(v),
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for local holomorphic sections v,w of V and &, n of V* (i.e. 2 is the canonical symplectic
structure on V @ V*).

Since Sp(2n,C) C SL(2n,C), every Sp(2n,C)-Higgs bundle ((W, ), ®) gives rise to an
SL(2n, C)-Higgs bundle (W, ®). If ((W, ), ®) is obtained from an Sp(2n, R)-Higgs bundle
(V, ) we denote the associated SL(2n,C)-Higgs bundle by

H(v.p) =) = e (1 o).

Theorem 3.13. Let (V, ¢ = (3,7)) be an Sp(2n, R)-Higgs bundle and let (W, ®) = H(V, p)
be the corresponding SL(2n, C)-Higgs bundle. Then

(1) if (W, ®) is stable then (V, ) is stable;

(2) if (V. ) is stable and simple then (W, ®) is stable unless there is an isomorphism
f:V S V* such that Bf = f~'y, in which case (W, ®) is polystable;

(3) (W, ®) is semistable if and only if (V,p) is semistable.

(4) (W, ®) is polystable if and only if (V,p) is polystable;

In particular, if deg V' # 0 then (W, ®) is stable if and only if (V, ) is stable.

For the statement of the following Theorem, recall from Section B.9 that a GL(n,R)-
Higgs bundle is given by ((W,Q),), where (W, Q) is rank n orthogonal bundle and
Y € H°(K ® S?W). The stability condition for GL(n, R)-Higgs bundles is given in Theo-
rem B.11.

Theorem 3.14. Let (V,p) be a stable and simple Sp(2n, R)-Higgs bundle. Then (V,p) is

stable as an Sp(2n, C)-Higgs bundle, unless there is a symmetric isomorphism f:V =y
such that Bf = f~'y. Moreover, if such an f exists, let ) = 3 = f v ft € HY(K®S?V).
Then the GL(n,R)-Higgs bundle ((V, f), ) is stable, even as a GL(n,C)-Higgs bundle.

The proof of Theorem 3.13 is given below in Section 3.4 and the proof of Theorem 3.14
is given below in Section 3.5.

The following observation is not essential for our main line of argument. We include it
since it might be of independent interest.

Remark 3.15. Suppose we are in Case (2) of Theorem 3.13. Decompose f = fo+fo: V =V
in its symmetric and anti-symmetric parts, given by f, = 3(f + f*) and f, = 1(f — fY).
Let V, = ker(f;) and Vs = ker(f,). There is then a decomposition V' =V, @ V; and f
decomposes as

0 Jfa
Write vsq: Vo, — Vi ® K for the component of v in H*(K ® V ® V) and similarly
for the other mixed components of 3 and ~. Since f intertwines # and <, one has that
Yas = faﬁasfs- Hence

f‘:<f8 O)‘/;@‘/;_)‘/s*@‘/;*

Vsa = 723 = fi Zsf; = —fsBsafa = —Vsa-
It follows that v,, = 0 and similarly for the other mixed terms. Thus there is a decom-
position (V@) = (Vs ® Vi, s + wa). If (V, ) is simple then one of the summands must
be trivial. The case when (V,¢) = (Vi, ¢s) is the one covered in Theorem 3.14. In the

other case, when (V, p) = (V,, ¢,), the antisymmetric map f defines a symplectic form on
V. If we let ¢p = Bf = f~1v, one easily checks that 1 is symplectic (cf. (3.20)). Thus,
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in this case, (V, ¢) comes in fact from an Sp(n,C)-Higgs bundle ((V, f), ). This is a sta-
ble Sp(n, C)-Higgs bundle, since (V1)) is a stable GL(n, C)-Higgs bundle (cf. the proof of
Theorem 3.14 below).

3.4. Proof of Theorem 3.13. The proof of the theorem is split into several lemmas.
We begin with the following lemma which proves that Higgs bundle stability of H (V)
implies stability of (V, ¢).

Lemma 3.16. Let (V.o = (8,7)) be an Sp(2n,R)-Higgs bundle, and let
O ﬁ * *
o= v 0 VeV Ko (VeVr).

The pair (V, ) is semistable if and only if for any pair of subbundles A C'V and B C V*
satisfying B+ C A, A* C B and ®(A® B) C K @ (A ® B) we have deg(A @ B) < 0.

The pair (V,p) is stable if and only if it is semistable and for any pair of subbundles
A CV and B CV*, at least one of which is proper, and satisfying B+ C A (equivalently,
At C B) and ®(A® B) C K ® (A® B), the inequality deg(A & B) < 0 holds.

Proof. Suppose that A C V and B C V* satisfy the conditions of the lemma. Then setting
V, := Aand V; := B we obtain a filtration 0 C V; C V, C V which, thanks to Remark 3.2,
satisfies (3.11).

Conversely, given a filtration 0 C V4 C Vo C V for which (3.11) holds, we get subbundles
A=V, CV and B := Vit C V* satisfying the conditions of the lemma. Finally, we have

deg(A ® B) = deg(V;- @ V,) = deg Vi + deg Vo — deg V,

so the lemma follows from Theorem B.4. (For the case of stability, note that at least one
of V1 and V4 is a proper subbundle of V' if and only if at least one of A C V and B C V*
is a proper subbundle.) O

Remark 3.17. In the proof we have used the following formula: if F' C E is an inclusion
of vector bundles, then deg F* = deg F' — deg E/. To check this, observe that there is an
exact sequence 0 — F+ — E* — F* — 0, and apply the additivity of the degree w.r.t.
exact sequences together with deg E* = —deg E and deg F* = — deg F.

The following lemma resumes the proof of equivalence between Higgs bundle stability
and stability when V' is not isomorphic to V™.

Lemma 3.18. Suppose that (V, @) is semistable, and define &: Vo V* - K@ (V @ V*)
as previously. Then any subbundle 0 = W' C V & V* such that §(W') C K @ W' satisfies
deg W’ < 0. Furthermore, if (V,p) is stable and simple, one can get equality only if there
is an isomorphism f:V — V* such that 3f = f~1v, and in this case (W, ®) = H(V,p) is
polystable.

Proof. Fix a subbundle W/ C V @ V* satistying ®(W') ¢ K ® W’. We prove the lemma

in various steps.
1. Denote by p: VaV* - Vand q: V& V* — V* the projections, and define subsheaves

A = p(W’') and B = ¢(W’'). It follows from ®W’' C K @ W’ that fB C K ® A and
vA C K ® B (for example, using that ®p = ¢® and &g = p®P). Since both § and ~ are
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symmetric we deduce that A+ C K ® Bt and vBl C K ® A+ as well. It follows from
this that if we define subsheaves
Ay=A+BtcV and By=B+AtcVv®
then we have Bd‘ C Ao, A(J)‘ C By and @(Ao D Bo) CK® (AQ D BQ)

We can apply Lemma 3.16 also to subsheaves by replacing any subsheaf of V' or V*
by its saturation, which is now a subbundle of degree not less than that of the subsheaf.
Hence we deduce that

(3.22) deg Ag + deg By = deg(A + B*) + deg(B + A*) <0,
and equality holds if and only if A+ B+ =V and B + A+ = V*.
Now we compute (using repeatedly the formula in Remark 3.17)
deg(A + B') = deg A + deg B+ — deg(A N B*)

=deg A+ deg B — deg V* — deg((A* + B)*)

= deg A+ deg B — deg V* — deg(A* + B) + deg V™

= deg A + deg B — deg(A* + B).
Consequently deg A + deg B = deg(A + B*) + deg(A* + B), so (3.22) implies that
(3.23) deg A+ deg B <0,
with equality if and only if A+ B+ =V and B + A+ = V™.
2. Let now A’ =W'NV and B’ = W' NV*. Using again that ®(W’) C K ® W’ we prove
that B’ C K ® A" and vA" C K ® B’. Now, the same reasoning as above (considering
(A’ + B'"") @ (B’ + A™") and so on) proves that
(3.24) deg A" + deg B' <0,
with equality if and only if A’ 4+ B'* =V and A'" + B’ = V*.
3. Observe that there are exact sequences of sheaves

0—-B —-W —-A—-0 and 0—-A—-W —-B-—0,
from which we obtain the formulae
deg W' = deg A + deg B’ and deg W' = deg B + deg A’.
Adding up and using (3.23) together with (3.24) we obtain the desired inequality
deg W' < 0.

4. Finally we consider the case when (V] ¢) is stable and simple. Suppose that deg W' = 0.
Then we have equality both in (3.23) and in (3.24). Hence, A+ B+ =V, At + B =V*,
A4+B*=Vand A"+ B =V* But AL+ B=(ANB)' and A" + B = (AN B)*,
so we deduce that
AeB*=V and A @oBT=V

If one of these decompositions were nontrivial then V' would not be simple, in contradiction
with our assumptions. Consequently we must have A =V, B+ = 0 (because W' # 0) and
similarly A’ = 0, B+ = V* (because W' # V @ V*). This implies that the projections
p: W' — Aand ¢ : W — B induce isomorphisms v : W/ ~ V and v : W’ ~ V*. Finally,
defining f :=vou~!:V — V* we find an isomorphism which satisfies 3f = f~1v because
W' Cc K@ W'
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To prove that in this case (W, ®) = H(V, ) is strictly polystable just observe that
W' ={(u, fu) | u € V} and define W” = {(u, —fu) | w € V}. It is then straightforward
to check that Vo V* =W @ W”, that ®W' C K @ W' and that ®W” C K @ W”. Finally
note that the Higgs bundle (W', ®) is stable: any ®-invariant subbundle Wy C W is also a
d-invariant subbundle of (V @ V* ®). Hence, if deg Wy = 0 the argument of the previous
paragraph shows that Wy has to have the same rank as V', so Wy = W’. Analogously, one
sees that (W” @) is a stable Higgs bundle. O

Lemma 3.19. An Sp(2n,R)-Higgs bundle (V,p) is semistable if and only if H(V, ) is
semistable.

Proof. Both Lemmas 3.16 and 3.18 are valid if we substitute all strict inequalities by in-
equalities (and of course remove the last part in the statement of Lemma 3.18). Combining
these two modified lemmas we get the desired result. U

Lemma 3.20. An Sp(2n,R)-Higgs bundle (V,o = (5,7)) is polystable if and only if
H(V,p) is polystable.

Proof. If (V, ) is polystable then Lemmas 3.16 and 3.18 imply that H(V, ) is polystable.
Now assume that (W, ®) = H(V, ) is polystable, so that W = @f\;l W; with ®W; C
K @ W; and every (W;, ®|w,) is stable with deg W; = 0.
1. We claim that for any subbundle U C W satisfying degU = 0 and ®(U) C K @ U
there is an isomorphism ¢ : W — W which commutes with ® and a set I C {1,..., N}
such that U = ¢(€D,.; Wi). To prove the claim we use induction on N (the case N = 1
being obvious). Let Wso = @,~, W; and denote by psy : W — W, the projection. Then
we have an exact sequence -

0—-WiNU—U — pse(U) — 0.

Since both Wi N U and p>9(U) are invariant under ®, by polystability their degrees must
be < 0. And since according to the exact sequence above the sum of their degrees must
be 0, the only possibility is that

degW1NU =0 and degp>o(U) = 0.

Now we apply the induction hypothesis to the inclusion p>2(U) C Wy and deduce that
there is an isomorphism ¢ : Ws9 — Wss commuting with ® and a subset I», C {2,..., N}
such that

p22(U) = 1/12(@ Wz)

i€la
Since deg W7 NU = 0 and W} is stable, only two things can happen. Either W, NU = W,
or Wi NU = 0. In the first case we have

U=w &),
i€la
so putting I = {1} N I, and ¢ = diag(1,s) the claim is proved. If instead W73 N U = 0
then there is a map £ : p>2(U) — Wj such that

U={(&@),v) € W\ @ psa}.
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Since U is ®-invariant we deduce that & must commute with ®. If we now extend £ to Wss
by defining &(¢2(W;)) = 0 for any j € {2,..., N} \ I, then the claim is proved by setting

I =15 and
_ (1 &y
o=(o W)

2. Define for any W’ C W the subsheaves R(W') = p(W') @ q(W’) (recall that p : W — V/
and ¢ : W — V* are the projections) and r(W') = (W'NV)&(W'NV*). Reasoning as in the
first step of the proof of Lemma 3.18 we deduce that if W’ is ®-invariant then both R(WW)
and r(W’) are ® invariant, so in particular we must have deg R(W’) < 0 and deg r(W’) < 0.
In case deg W' = 0 these inequalities imply deg R(W') = degr(W’) = 0 (using the exact
sequences 0 —» W' NV* - W' — p(W') - 0and 0 - W' NV - W' — ¢(W') — 0).

Assume that there is some summand in {Wi,..., Wy}, say Wy, such that 0 # r(W;)
or R(Wy) # W. Suppose, for example, that W’ := R(W;) # W (the other case is
similar). Let A = p(W;) and B = ¢(W;), so that W = A @ B. By the observation
above and the claim proved in 1 we know that there is an isomorphism ¢ : W — W
which commutes with ® and such that, if we substitute {W;},<;<y by {(W;)}1<i<y and
we reorder the summands if necessary, then we may write W = W, @ --- @ W, for some
k< N. Now let W' =Wy, 1®---®Wy. We clearly have W = W' @ W”, so the inclusion
of W" C W =V @& V* composed with the projection V& V* - V/Ag V*/B = W/W'
induces an isomorphism. Consequently we have V.= A& W” N V. Let us rename for
convenience V; := A and V5 := W” N V. Then, using the fact that each W; is ®-invariant
we deduce that we can split both 5 and v as

B=(51,0) € H' (K ® 5*V;) ® H' (K @ S*V3),
v =(m,7%) € H'(K ® S*V{") @ H*(K ® S*Vy).
Hence, if we put p; = (0;, ;) for i = 1,2 then we may write
(Vig) = (Vi,01) @ (Va, 2).

3. Our strategy is now to apply recursively the process described in 2. Observe that if
N > 3 then for at least one i we have R(W;) # W, because there must be a summand
whose rank is strictly less that the rank of V. Hence the projection of this summand to V'
is not exhaustive.

Consequently, we can apply the process and split V' in smaller and smaller pieces, until
we arrive at a decomposition

Vi) = (Vi) & & (Vi ¢5)

such that we can not apply 2 to any H(V;, ¢;) For each (V;, ;) there are two possibilities.
Either H(V;, ¢;) is stable, in which case (V;, ¢;) is stable (by Lemma 3.16), or H(V;, ¢;)
splits in two stable Higgs bundles W/ & W/ which satisfy:

ROW) = ROW/) =W  and  r(W}) = r(W}) =0,

7
But in this case it is easy to check that (V;, ;) is also stable.

By the preceeding lemma, (V) is semistable. Suppose it is not stable. Then there is a
filtration 0 C Vi C Vo C V such that ®(Va Vi) C K@ (Va@ Vih) and W= Vo ViE =0
has degree deg W' = 0.
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Define W~y = @222 W;, and let p : W — W, denote the projection. We have an exact
sequence

0—W NW, — W — p(W') — 0.

It is easy to check that (W' NW;) € K @ (W' N W;) and that ®(p,(W')) C K ®
po(W’). Since both W, and and Ws, are polystable, we must have degW’' N W; < 0
and deg po(WW') < 0. Finally, since deg W' = 0, the exact sequence above implies that
deg W' N W; = 0 and deg po(W’') = 0. Now W is stable, so W' N W; can only be either
0 or W;. Reasoning inductively with po(W’') C Wss in place of W C W we deduce that
there must be some I C {1,...,k} such that

W =w..

iel

Since each (W, ®|y,) is stable, it is easy to check (for example using induction on N)
that one must have deg Vo @ Vi* = W, for some j. This easily implies that Vo = V N,
and if we define

V' =P p(;)
i#j
then V = V' @ V,. Applying the same process to V' and V5 we arrive at the conclusion
that (V) ) is polystable. O

3.5. Proof of Theorem 3.14. An Sp(2n,C)-Higgs bundle ((W, ), ®) is stable if the
SL(2n, C)-Higgs bundle (W, ®) is stable. Thus the result is immediate from Theorem 3.13,
unless we are in Case (2) of that Theorem. In that case, we have seen in the last paragraph
of the proof of Lemma 3.18 that

(1) There is an isomorphism f as stated, except for the symmetry condition.

(2) There is an isomorphism V& V* = W' @& W, where W’ = {(u, f(u)) | v € V'} and
W" ={(u,—f(u)) | ueV}, and W' and W" are ®-invariant subbundles of W.

(3) The SL(2n, C)-Higgs bundle (W, ®) is strictly polystable, decomposing as the direct
sum of stable GL(n, C)-Higgs bundles:

(3.25) (W, ®) = (W', &) & (W", "),
Note also that (W', &) ~ (W" &").

Now, from Theorem B.9 we have that for the Sp(2n, C)-Higgs bundle ((W,Q2), ®) to be
strictly semistable, it must have an isotropic ®-invariant subbundle of degree zero. But
the decomposition (3.25) shows that the only degree zero ®-invariant subbundles are W’
and W”. The subbundle W’ is isotropic if and only if, for all local sections u,v of V', we
have

Q(u, f(u), (v, f(v)) =0 <= (u, f(v)) = (v, f(u)),

that is, if and only if f is symmetric. Analogously, W” is isotropic if and only if f is
symmetric. The first part of the conclusion follows.
For the second part, consider the GL(n, R)-Higgs bundle ((V, f), 5f). This is stable as

a GL(n,C)-Higgs bundle because (V,5f) ~ (W', ®'), which is stable. Thus, in particular,
(V. f),Bf) is stable as a GL(n, R)-Higgs bundle (see Theorem B.11). O
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3.6. Milnor—Wood inequality and moduli space of Sp(2n,R)-Higgs bundles. The
topological invariant attached to an Sp(2n,R)-Higgs bundle (V, 3,7) is an element in the
fundamental group of U(n). Since 7 (U(n)) = Z, this is an integer, which coincides with
the degree of V.

We have the following Higgs bundle incarnation of the Milnor—-Wood inequality (1.1)
(see |29, 6]).

Proposition 3.21. Let (V,3,7) be a semistable Sp(2n,R)-Higgs bundle and let d =
deg(V'). Then

(3.26) d <rank(y)(g—1)
(3.27) —d < rank(8)(g — 1),

This is proved by first using the equivalence between the semistability of (V. 3,~) and
the SL(2n, C)-Higgs bundle (W, ®) associated to it, and then applying the semistability
numerical criterion to special Higgs subbundles defined by the kernel and image of ®.

As a consequence of Proposition 3.21 we have the following.

Proposition 3.22. Let (V,3,v) be a semistable Sp(2n,R)-Higgs bundle and let d =
deg(V). Then

] <n(g—1).
Furthermore,

(1) d=n(g — 1) holds if and only if v: V — V*® K is an isomorphism;
(2) d = —n(g — 1) holds if and only if 5: V* =V & K is an isomorphism.

Recall from our general discussion in Section 2 that My(Sp(2n,R)) denotes the moduli
space of Sp(2n, R)-Higgs bundles (V, 3, ) with deg(V') = d. For brevity we shall henceforth
write simply M for this moduli space.

Combining Theorem 2.2 with Proposition 2.16 we have the following.
Proposition 3.23. The moduli space My is a complex algebraic variety. Its expected
dimension is (g — 1)(2n% + n).

One has the following immediate duality result.

Proposition 3.24. The map (V,3,7) — (V*,4%, 3") gives an isomorphism Mg = M_4.

As a corollary of Proposition 3.22, we obtain the following.

Proposition 3.25. The moduli space My is empty unless
] <n(g—1).

3.7. Smoothness and polystability of Sp(2n,R)-Higgs bundles. We study now the
smoothness properties of the moduli space. As a corollary of Proposition 2.15 and Theo-
rem 3.14 we have the following.

Proposition 3.26. Let (V. ¢) be an Sp(2n, R)-Higgs bundle which is stable and simple and

assume that there is no symmetric isomorphism f:V = V* intertwining § and . Then
(V, ) represents a smooth point of the moduli space of polystable Sp(2n, R)-Higgs bundles.
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So, a stable Sp(2n, R)-Higgs bundle (V, ¢) in My with d # 0 can only fail to be a smooth
point of the moduli space if it is not simple — this gives rise to an orbifold-type singularity
— or if, in spite of being simple, there is an isomorphism V' ~ V* intertwining 5 and ~.
Of course, this can only happen if d = degV = 0. Generally, if (V) is polystable, but
not stable it is also a singular point of M.

We shall need the following analogue of Proposition 3.26 for U(n)-, U(p, q)- and GL(n, R)-
Higgs bundles

Proposition 3.27. (1) A stable U(n)-Higgs bundle represents a smooth point in the
moduli space of U(n)-Higgs bundles.
(2) A stable U(p, q)-Higgs bundle represents a smooth point of the moduli space of
U(p, q)-Higgs bundles.
(3) A GL(n,R)-Higgs bundle which is stable as a GL(n,C)-Higgs bundle represents a
smooth point in the moduli space of GL(n,R)-Higgs bundles.

Proof. (1) A stable U(n)-Higgs bundles is nothing but a stable vector bundle, so this is
classical.

(2) A stable U(p, ¢)-Higgs bundle is also stable as GL(p + ¢, C)-Higgs bundle (see [6]).
Thus the result follows from Proposition 2.15 and the fact that a GL(p+¢, C)-Higgs bundle
is simple.

(3) This holds by the same argument as in (2). O

It will be convenient to make the following definition for GL(n, R)-Higgs bundles, analo-
gous to the way we associate Sp(2n, R)-Higgs bundles to vector bundles and U(p, ¢)-Higgs
bundles in (3.15) and (3.16), respectively (cf. Theorem 3.14). Given a GL(n,R)-Higgs bun-
dle (W, Q),), let f: W — W* be the symmetric isomorphism associated to 2. Define
an associated Sp(2n, R)-Higgs bundle

(3.28) (V. @) = oD (W, Q), v)
by setting

V=W, f=¢ and y=[fif.
Since no confusion is likely to occur, in the following we shall slightly abuse language,
saying simply that USL("’R)((W, Q),v) is a GL(n, R)-Higgs bundle. Similarly we shall say
that Sp(2n, R)-Higgs bundles (V, ) obtained from the constructions (3.15) and (3.16) are
U(n)-Higgs bundles and U(p, q)-Higgs bundles, respectively. With this understood, we can
state our structure theorem on polystable Sp(2n,R)-Higgs bundles from Section B.6 as
follows.

Proposition 3.28. Let (V,p) be a polystable Sp(2n,R)-Higgs bundle. Then there is a
decomposition

unique up to reordering, such that each (V;, ;) is a stable G;-Higgs bundle, where G; is
one of the following groups: Sp(2n;, R), U(n;) or U(p;, ¢;).

Theorem 3.29. Let (V, ¢) be a polystable Sp(2n,R)-Higgs bundle. Then there is a decom-
position (V,p) = (Vi,01) @ -+ ® (Vi, k), unique up to reordering, such that each of the
Sp(2n;,R)-Higgs bundles (V;, ;) is one of the following:

(1) A stable and simple Sp(2n;, R)-Higgs bundle.
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(2) A stable U(p;, q;)-Higgs bundle with n; = p; + g;.
(3) A stable U(n;)-Higgs bundle.
(4) A GL(n;, R)-Higgs bundle which is stable as a GL(n;, C)-Higgs bundle.

Each (V;, ;) is a smooth point in the moduli space of G;-Higgs bundles, where G; is the
corresponding real group Sp(2n;, R), U(p;, ¢;), U(n;) or GL(n;, R).

Proof. This follows from Propositions 3.26, 3.27 and 3.28 and Theorems 3.12 and 3.14 [J

Remark 3.30. The existence of the decomposition of a polystable Sp(2n,R)-Higgs bundle
(V, @) given in Proposition 3.28 can also be seen in a more down to earth way, as we now
briefly outline. Let (V, ¢) be a polystable Sp(2n, R)-Higgs bundle and let (W, ®) = H(V, p)
be the corresponding SL(2n, C)-Higgs bundle. By Theorems 3.13 and B.10 we have that

(3.29) (W, @) = P;, @),

where (W;, ®;) are stable GL(n;, C)-Higgs bundles. We can control the shape of the sum-
mands (W;, ®;) by considering the subbundles A® B described in Lemma 3.16. By consid-
ering a maximal destabilizing W/ = A® B C E and analyzing the induced stable quotient
W" = (V/A)®V*/B with the induced Higgs field, one sees that (W, ®;) is in fact isomor-
phic to H(V;, ¢;), where (V;, ;) is of one of the three types U(n;), Sp(2n;,R), and U(p;, ¢;).
The different types correspond to whether (VV/A)* and V*/B are isomorphic or not.

4. MAXIMAL DEGREE Sp(2n,R)-HIGGS BUNDLES AND THE CAYLEY
CORRESPONDENCE

4.1. Cayley correspondence. In this section we shall describe the Sp(2n,R) moduli
space for the extreme value |d| = n(g — 1). In fact, for the rest of this section we shall
assume that d = n(g — 1). This involves no loss of generality, since, by Proposition 3.24,
(V, @) — (V*, ") gives an isomorphism between the Sp(2n, R) moduli spaces for d and —d.
The main result is Theorem 4.4, which we refer to as the Cayley correspondence. This is
stated as Theorem 1.3 in the Introduction, where the reason for the name is also explained.

When + is an isomorphism, the stability condition for Sp(2n,R)-Higgs bundles, given
by Theorem B.4 (with o = 0), simplifies further. Here is a key observation:

Proposition 4.1. Let (V,v,[3) be an Sp(2n,R)-Higgs bundle and assume that v: V —
V*® K is an isomorphism. If 0 C Vi C Vo C V is a filtration such that v € H°(K ®
(S2VE + Vit @5 V*)), then Vo = Vi,

Proof. This follows from the interpretation of the condition on vy given in Remark 3.2. [J

Proposition 4.2. Let (V,[3,v) be an Sp(2n,R)-Higgs bundle and assume that v: V —
V*® L is an isomorphism. Let § = (B1)oy: V=V &L%: Then (V,[3,7) is stable if
and only if for any Vi C V such that V; C Vlly (i.e., Vi is isotropic with respect to ) and
(Vi) C€ Vi ® L2, the condition

n(Vi) <g—1

15 satisfied.

Proof. Note that Bis symmetric with respect to v (viewed as an K-valued quadratic form
on V). From Remark 3.2 one sees that 3 € H(K ® (S*V, + V; ®g V)) if and only if

B preserves the filtration 0 C V; C V5, C V. But from Lemma 4.1 we have V5, = VIL”.
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Hence B preserves V] if and only if it preserves V5 (here one uses that B is symmetric with
respect to 7). Given this correspondence between the subobjects, one can easily translate
the stability condition. 0

Let (V, 3,7) be an Sp(2n, R)-Higgs bundle with d = n(g—1) such that v € H*(K®S52V*)
is an isomorphism. Let Ly = K2 be a fixed square root of K, and define W = V* @ L.
Then @ = v® [ Lt W* — W is a symmetric isomorphism defining an orthogonal
structure on W, in other words, (W, Q) is an O(n, C)-holomorphic bundle. The K?-twisted
endomorphism ¢ : W — W ® K? defined by ¢ = (v ® Ixgr,) © 3 ® I, is Q-symmetric
and hence (W, Q, ) defines a K2-twisted GL(n, R)-Higgs pair, from which we can recover
the original Sp(2n, R)-Higgs bundle.

Theorem 4.3. Let (V,[3,7) be a Sp(2n,R)-Higgs bundle with d = n(g — 1) such that
is an isomorphism. Let (W, Q, ) be the corresponding K?-twisted GL(n,R)-Higgs pair.
Then (V, 3,7) is semistable (resp. stable, polystable) if and only if (W, Q,1)) is semistable
(resp. stable, polystable).

Proof. This follows from the simplified stability conditions given in Theorem B.11 and
Proposition 4.2, using the translation W7 = V|* ® Ly. Similarly for semistability and
polystability. 0

Theorem 4.4. Let M.« be the moduli space of polystable Sp(2n,R)-Higgs bundles with
d=n(g—1) and let M’ be the moduli space of polystable K?-twisted GL(n, R)-Higgs pairs.
The map (V,B,7) — (W, Q, 1) defines an isomorphism of complex algebraic varieties

Mmax = MI-

Proof. Let (V,3,7) be a semistable Sp(2n, R)-Higgs bundle with d = n(g — 1). By Propo-
sition 3.22, 7 is an isomorphism and hence the map (V, 3,7) — (W, Q, ) is well defined.
The result follows now from Theorem 4.3 and the existence of local universal families (see
[45]). O

4.2. Invariants of GL(n, R)-Higgs pairs. To a K*-twisted GL(n, R)-Higgs pair (W, Q, v)
one can attach topological invariants corresponding to the first and second Stiefel-Whitney
classes of a reduction to O(n) of the O(n,C) bundle defined by (W, Q). The first class
wy € HY(X,Zy) = 73 measures the obstruction for the O(n)-bundle to have an ori-
entation, i.e. to the existence of a reduction to a SO(n) bundle, while the second one
wy € H?*(X,7Zy) = Zy measures the obstruction to lifting the O(n)-bundle to a Pin(n)-
bundle, where
1 — Zy — Pin(n) — O(n) — 1.

If we define

My = {(W,Q,¢) € M" such that w; (W) =w; and we(W) = ws},
we have that

(4.30) M= M

w1, w2 "
wi,w2

We thus have, via the isomorphism given by Theorem 4.4, that the moduli space M .
is partitioned in disjoint closed subvarieties corresponding to fixing (wy, wy).
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5. THE HITCHIN FUNCTIONAL

5.1. The Hitchin functional. In order to define this functional, we consider the moduli
space of Sp(2n,R)-Higgs bundles (V, ¢) from the gauge theory point of view, i.e., we use
the identification of M, with the moduli space M5 of solutions (A, ¢) to the Hitchin
equations given by Theorem 2.19. There is an action of S' on M, via multiplication
of ¢ by scalars: (A, ) — (4,e%p). Restricted to the smooth locus M this action is
hamiltonian with symplectic moment map — f, where the Hitchin functional f is defined
by

(5 31) f: Md — R,
' (A,0) = gllell® = 3l81% + 3l
Here ||-]| is the L?>-norm obtained by using the Hermitian metric in V and integrating over

X. The function f is well defined on the whole moduli space (not just on the smooth
locus). It was proved by Hitchin [31, 32| that f is proper and therefore it has a minimum
on every closed subspace of M = |J,; M,. Thus we have the following result.

Proposition 5.1. Let M’ C M be any closed subspace and let N' C M’ be the subspace
of local minima of f on M'. If N is connected then so is M'. O

The following observation was also made by Hitchin [32].

Proposition 5.2. The Hitchin functional is additive with respect to direct sum of Sp(2n, R)-
Higgs bundles, in other words,

FEDWVi ) =D f(Vi, ).

Let (V,¢) represent a smooth point of M,. Then the moment map condition shows
that the critical points of f are exactly the fixed points of the circle action. These can be
identified as follows (cf. [31, 32, 48]).

Proposition 5.3. An Sp(2n,R)-Higgs bundle (V, @) represents a fized point of the circle
action on My if and only if it is a complex variation of Hodge structure (also called a
Hodge bundle): this means that there is a decomposition in holomorphic subbundles

V=F

for real indices, or weights, i such that, attributing weight —i to F*, ¢ = (08,~) has weight

one with respect to this decomposition; more explicitly this means that

v F,—=F, @K and G:Ff—F 1 QK.

2
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The decomposition V' = € F; of Proposition 5.3 gives rise to corresponding decomposi-
tions

(5.32) End(V)y = @ Fio F,
i—j=k
(5.33) (SVeKyn= P FeoFeKo S Fepn © K,
i+j=k+1
1<J
(5.34) (V' @Kjn= @ FRF@K®SFm oK.
ikt ’
1<)
The map ad(y) in the deformation complex (2.3) has weight 1 with respect to these de-
compositions, so that we can define complexes

(5.35) 2V, 0): End(V) "9 (82V @ K @ S2V* © K )pss,

for any k. The deformation complex (2.3) decomposes accordingly as

C* (Vo) =P Cr(V. o).

We shall also need the positive weight subcomplex

(5.36) C* (Vo) =P Cr(Vi ).

k>0
It can be shown (see, e.g., |23, §3.2|) that H'(Cp(V,p)) is the weight —k-subspace of
H!(C*(V, ¢)) for the infinitesimal circle action. Thus H'(C®(V, ¢)) is the positive weight
space for the infinitesimal circle action.

Proposition 5.4. Let (V, ) be a polystable Sp(2n,R)-Higgs bundle whose isomorphism
class is fired under the circle action.

(1) Assume that (V, ) is simple and stable as an Sp(2n, C)-Higgs bundle. Then (V)
represents a local minimum of f if and only if H'(C*(V,¢)) = 0.

(2) Suppose that there is a family (Vi, o) of polystable Sp(2n, R)-Higgs bundles, para-
metrized by t in the open unit disk D, deforming (V, ) (i.e., such that (Vy, po) =
(V,)) and that the corresponding infinitesimal deformation is a non-zero element

of HY(C* (V, ). Then (V, ) is not a local minimum of f on M,.

Proof. (1) From Proposition 2.15, when the hypotheses are satisfied, (V, ¢) represents a
smooth point of the moduli space. Then one can use the moment map condition on f to
show that H'(Cg(V,¢)) is the eigenvalue —k subspace of the Hessian of f (cf. |23, §3.2];
this goes back to Frankel |22, at least). This proves (1).

(2) Take a corresponding family of solutions to Hitchin’s equations. One can then prove
that the second variation of f along this family is negative in certain directions (see Hitchin
[32, § 8]). [

5.2. A cohomological criterion for minima. The following result was proved in |6,
Proposition 4.14? and Remark 4.16|. It is the key to obtaining the characterization of the
minima of the Hitchin functional f.

2a corrected proof can be found in |9, Lemma 3.11]
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Proposition 5.5. Let (V, ) be a polystable Sp(2n,R)-Higgs bundle whose isomorphism
class is fized under the circle action. Then for any k we have x(Cp(V,)) < 0 and equality
holds if and only if

ad(p): End(V), — (S?VR K ® S*V*® K)i
18 an isomorphism.

Corollary 5.6. Let (V, @) be a simple Sp(2n, R)-Higgs bundle which is stable as an Sp(2n, C)-
Higgs bundle. If (V, ) is fized under the circle action then it represents a local minimum
of f if and only if the map

ad(p): End(V), — (S?VR K ® S*V*® K

15 an tsomorphism for all k > 0.

Proof. We have the vanishing H(Cp(V, p)) = H?(C2(V, ¢)) = 0 for all k& > 0 from Propo-
sition 2.14. Hence dimH!(C* (V, ¢)) = —x(C*(V,¢)). Now the result is immediate from
Proposition 5.5 and (1) of Proposition 5.4. O

5.3. Minima of the Hitchin functional. In order to describe the minima, it is conve-

nient to define the following subspaces of M.

Definition 5.7. For each d, define the following subspace of M.
Na={(V,B,7) € Ma|B=0or~y=0}

Remark 5.8. Tt is easy to see that polystability of (V, ¢) implies that, in fact,

Ng={(V.8,7) | B =0} for d > 0,
Na={(V,8,7) | v =0} for d <0,
Na={(V,8,7) | B=~=0} for d = 0.

Note, in particular, that for d = 0 the vanishing of one of the secions  or  implies the
vanishing of the other one.

Proposition 5.9. Let (V, ) be a polystable Sp(2n,R)-Higgs bundle with 5 =0 or v = 0.
Then (V, ) represents the absolute minimum of f on My. Thus Ny is contained in the
subspace of local minima of f on My.

Proof. This can be seen in a way similar to the proof of |6, Proposition 4.5|. OJ

Theorem 5.10. Let (V, 3,7) be a polystable Sp(2n,R)-Higgs bundle and assume that n >
3. Then (V,3,7v) represents a minimum of the Hitchin functional if and only if one of the
following situations occurs:

(1) (V,3,7) belongs to Ny.
(2) The degree d = —n(g — 1) with n = 2q+ 1 odd, and there ezists a square root L of
K such that the bundle V is of the form

V= é L' K

A=—q
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With respect to this decomposition of V and the corresponding decomposition of V*,
the maps 3 and ~ are of the form:

o -~ 0 1 O -+~ 0 0
6= O and v = 1
o 1 .- 0 0 ;
1 0 0 0 1 0

where, in the matriz for 3, we denote by 1 the canonical section of
Hom((L'K=2) L' K?) @ K~ O

and analogously for .
(3) The degree d = —n(g — 1) with n = 2q + 2 even, and there exists a square root L of
K such that the bundle V' is of the form

q+1

V=@ LK

A=—q

With respect to this decomposition of V and the corresponding decomposition of V*,
the maps 3 and v are of the form given above.

(4) The degree d = n(g—1) and the dual Sp(2n, R)-Higgs bundle (V', 3',7') = (V*,~4*, 5")
is of the form given in (2) or (3) above.

Definition 5.11. If (V,3,7) is a minimum which does not belong to Ny we say that it is
a quiver type minimum.

Remark 5.12. The cases n = 1 and n = 2 are special and were treated in [31| and [29],
respectively (cf. (1) of Corollary 6.6 and Remark 6.7).

Proof of Theorem 5.10. This proof relies on the results of Sections 6 and 7 below.

Consider first the case of simple Sp(2n,R)-Higgs bundles (V, ) which are stable as
Sp(2n, C)-Higgs bundles. In this case, the analysis of the minima is based on Corollary 5.6
and is carried out in Section 6 below. The main result is Theorem 6.8, which says that
Theorem 5.10 holds for such (V ¢).

Next, consider a polystable Sp(2n, R)-Higgs bundle (V, ) which is not simple and stable
as an Sp(2n, C)-Higgs bundle. Then the decomposition (V,¢) = @(V;, ;) given in the
structure Theorem 3.29 is non-trivial. The main result of Section 7, Proposition 7.1, says
that if such a (V) ¢) is a local minimum then it belongs to Ny, i.e., =0 or v = 0. This
concludes the proof. O]

6. MINIMA IN THE SMOOTH LOCUS OF THE MODULI SPACE

In this section we consider simple Sp(2n,R)-Higgs bundles (V,¢) which are stable as
Sp(2n, C)-Higgs bundles. Thus, by Proposition 2.15, they belong to the smooth locus of
the moduli space M. In Theorem 6.8 below we prove that the statement of Theorem 5.10
holds in this case.

Our results are based on a careful analysis of the structure of Sp(2n,RR)-Higgs bundles
(V, ¢) satisfying the criterion of Corollary 5.6.
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6.1. Hodge bundles. In this subsection we give a description of simple Sp(2n, R)-Higgs
bundles, which are complex variations of Hodge structure (cf. Proposition 5.3).

Lemma 6.1. Let (V,3,v) be an Sp(2n,R)-Higgs bundle and suppose there are splittings
V=V, &V, and V* =V DV}, at least one of which is non-trivial, and satisfying

BV cVaw K, (Vo) cVe®K, BV CcVHheK, v CViek.
Then (V, 3,7) is not simple.

Proof. Suppose the splitting V' =V, &V}, is non-trivial and, with respect to this decompo-
sition, let

o=(1,-1) € Aut(V)
Then, clearly, o fixes ¢ = ((3,7) and hence o € Aut(V, ). Therefore (V, ) is not simple
(cf. Proposition 3.4). An analogous argument works when the splitting V* = V* @V is
non-trivial. 0]

Now assume that the Sp(2n, R)-Higgs bundle (V, ) = (V, 3,7) is a Hodge bundle, i.e.,
V=@F,p:F - F 1 ®K and v: F;, —» F*, |, ® K, as descibed in Proposition 5.3,
and let
be the weight ¢ subspace of V & V*. Then ¢ has components

vi: Fy = Fip @ K.
Let ig and ¢; be the smallest and largest weights corresponding to non-zero weight spaces,
respectively:
iy = max{i | F; # 0}.
Lemma 6.2. If (V,p) = (V,3,7) is simple and a complex variation of Hodge structure,
then
(1) any weight i for which ¥; # 0 differs from iq by an integer,
(2) the map ¢;: F; — Fii1 @ K is non-vanishing for i = ig,i0+ 1,...,13 — 1, and
(3) only one of the bundles in the decomposition ¥; = F; & F*, is non-zero for i =
do,io +1,. .. i — 1.

Proof. (1) Let

E = @F and  E" = @F

1—nEZ i—ng7
and define splittings V =V, ® V}, and V* =V & V] by the requirement that
E'=V,®eV: and FE'=V,&V/.
Clearly these splittings satisfy the conditions of Lemma 6.1 and hence, since (V,3,7) is
simple, we conclude that E” = 0.
(2) If ¢; = 0 for some j, we can let
E=@F ad E=F F,

i0<i<j JH1<i<iy

and we obtain a contradiction with simplicity of (V, 3,), using Lemma 6.1, as in the proof

of (1).
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(3) We can organize the bundles F; and F;* and the maps between them in the diagram

(6.37) Fy . Fen
\/ %
~ S
. 7B N T8
P, F*o

where the maps are twisted by K, i.e., F; . FZ*,_, should be interpreted to mean that

we have a map F, ——= F*, | ® K | and analogously for 4. From this it is clear that, if
we define

Va = @ Fi0+2i Vb = @ Fz‘0+1+2z'
= @ RS Vi = @ Fiyioi
and let ' =V, @V} and E” =V, @ V then, again using Lemma 6.1, simplicity implies

that £ = 0 or £” = 0. Since the bundles F; are just the direct sums of the bundles
appearing in each column in the diagram (6.37) above, this concludes the proof. O

Proposition 6.3. If (V,p) = (B F;,3,7) is simple and a Hodge bundle, we have either
the diagram

(6.38) Fi o Fig11
NN
Y, Fy 7
or the diagram
(6.39) Fi Fis F
AN AT A
FZ Fy P

where each of the maps is non-zero. Here the maps are twisted by K, i.e., F; AN Fr,

should be interpreted to mean that we have a map F; T F*,_, ® K | and analogously

for 3.
Proof. Immediate from Lemma 6.2. O

Remark 6.4. Recall from Proposition 3.24 that, for each d, there is an isomorphism M, 5
M _g, given by the duality (V, 3,v) — (V*,4%, 3%). Under this duality the situations (6.38)
and (6.39) correspond (in fact, as we shall see, the former situation corresponds to d < 0,
whereas the latter corresponds to d > 0). Henceforth we shall assume, for definiteness,
that we are in the situation (6.38) of Proposition 6.3.
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6.2. Application of the criterion for minima. In this section we combine the descrip-
tion of the complex variations of Hodge structure given in Proposition 6.3 and the criterion
given in Corollary 5.6 to determine the minima of the Hitchin functional corresponding to
simple Sp(2n, R)-Higgs bundles which are stable as Sp(2n, C)-Higgs bundles.

Let
m =19+ 1 and M =1

be the smallest and largest weight, respectively, appearing in the decomposition V = € F;.
Then we can write

p
(6.40) V= @ Fa—ax,
A=0

where . .
p=(M-—m)/2, M:p+§ and m:—p+§.

Note also that m =1 — M.

Theorem 6.5. Let (V,3,v) be a Hodge bundle of the type described in (6.38) of Proposi-
tion 6.3. Assume that 3 # 0 and v # 0. Then the map

ad(p): End(V), — (S*’V @ K ® S*V* ® K)
s an tsomorphism for all k > 0 if and only if the following holds:

(i) For any 0 < X\ < p the rank of Fy_oy is 1;
(ii) for any 0 < X < p—1 the piece of 5 in

Fry_oa® Fm+2)\ ® K C S2V ® K

never vanishes;
(iii) for any 1 < X < p —1 the piece of y in

Fif g @F: 0 oK CSV*®K
never vanishes.
An analogous statement holds for Hodge bundles of the type described in (6.39) of Propo-
sition 6.3.
Proof. The assumption § # 0 and v # 0 means that in the decomposition (6.40) we have
p > 1. If we take the piece in degree k = 2p of the map ad(y), we get
A=ad(p)y : Fy @ Ff — S?°Fy @ K,

which by assumption is an isomorphism. Computing the ranks r; = rk(F;), we deduce

’I“M(T’M + 1)
TmMrm=—"———"".
2
To prove that ry;, = r,, = 1, we assume the contrary and show that this leads to a

contradiction. If rj; > 1 then by the formula above we must have r,, < rp;. Let b be the
piece of Bin Fyy ® F,,, ® K C (S*V ® K)s,. Then the map A sends any e € Fjy @ F, to

A(e) = eb + be*.
The first summand denotes the composition of maps

Fr, -2 F, =5 Fy
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and the second summand .

ey LNy
Take a basis uy,...,u,,, of [y whose first r,, elements are a basis of b(F}), and take on
Fy; the dual basis. If we write the matrices of eb and be* with respect to these basis, one
readily checks that the (rp; — 7,,) X (rar — 7m) block in the bottom left of both matrices
vanishes. Consequently, an element in S?F); represented by a symmetric matrix whose
entry at the bottom left corner is nonzero cannot belong to the image of A. Hence A is
not an isomorphism, in contradiction to our assumption, so we deduce that

TV = Tm = 1.

One also deduces that the section b € H°(Fy ® F,, ® K) never vanishes. This proves
statements (i) and (ii) when A =0 or p.

Observation. The following observation will be useful: if e € F; ® F;* C End(V), then
any nonzero piece of ad(y)(e) in the decomposition (5.33) belongs to a summand of the
form F; ® F, ® K, and any nonzero piece in (5.34) belongs to a summand of the form
Fy @ F; ® K (in both cases the symmetrization should be understood if the two indices
coincide). This follows from the fact that ad(y)(e) is the sum of compositions of e with
another map (either on the right and on the left). Hence each summand in ad(y)(e) must
share with e at least the domain or the target.

Now let us take any k = 2p — 2\ > 1, such that A > 1, so that 1 < A < p — 1. Then we
have

(6.41) El’ld(V)gp_g)\ = FM ® F;;_,_Q)\ © FM_2 ® F:1+2)\_2 ©---D FM—Z)\ ® F;;

We claim that there is no nonzero block in (S?V*® K)s,_ox+1 of the form Ff ,, @ F Q K.
Indeed, for that one should take v = —(2p —2XA+1) — (m+2X\) = —M — 1, but F_y_ =
0, because —M — 1 < m. On the other hand, (S?V* ® K),, 2x11 contains the block
Fy ® Fyr_9n ® K and no other block involving Fj,;. Hence we must have

ad(p)k(Fur ® Frpi0)) C Fur @ Fiyy—oy @ K.
Taking ranks and using the fact that ad(y)x is injective, we deduce that
Tm+2x < TM—2)-
Since 1 < A<p—-1<«<=1<p—X<p-—1, we automatically deduce that
Pmt2p—2) < T —2p422-
But m + 2p = M, so we conclude that
(6.42) Tma2x = T'M—2X-
Let us distinguish two possibilities.
Case (1). Suppose that A = 2+ 1 is odd. Then we have
S*Frin 1 ®K C(S*V* @ K)yp_ort1,
and the observation above implies that
ad(p)5p o (S*Fpin1 @ K) C Fryaa @ Fry g
The argument given above for A = 0 proves now that the piece of v in
Fyaa @, 190K

never vanishes.



40 0. GARCIA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA

Case (2). Suppose that A = 2 is even. Then we have
S?Fy oy ® K C(S?V @ K)gp_ori1,
and the observation above implies that
ad(SO)z_pl—zx(S2FM—/\ ® K) C Fyu-x® Fp i
The argument given above for A = 0 proves now that the piece of § in
Frya® Fpa® K

never vanishes.

These arguments prove statements (ii) and (iii).

We are now going to prove that for any 1 < A < p/2 the ranks ry;_oy = 7,000 = 1 using
induction. Fix such a A and assume that for any 0 <[ < A we have ry;_oy = 7ppyo = 1
(when | = 0 we already know this is true). Since 2p — 2\ > 1 we must have

(6.43) rk End(V)g, oy = tk(S?V @ K © S*V* ® K)gp_ori1-
Using induction we can compute the left hand side:
rk End(V)op—ox = raurmaon + Tv—oTmiorn—2 + + -+ + Ta—oxi2lm+2 + Fvi—2aTm
= Poaox + Taon + (A —1).
We now distinguish again two cases.
Case (1). Suppose that A = 20 + 1 is odd. Then we compute
rk(S*V )ap-ori1 = rarar—on + -2 v—2xt2 + 0+ TA-A+1TM-A-1
=7ry_ox+1
and

27 7%
tk(S*V™)op_oat1 =TmTPm423—2 + Tmtalme2n—a + -+ P a3 mgrt1

piact 1
+<r “21+ ):l+1.

Comparing the two computations it follows from (6.43) that

Tm+2)\ - 17
and using (6.42) we deduce that
ra—2ox = 1.

Case (2). Now suppose that A = 2[ is even. Then we have

2
tk(S*V )ap—ont1 =rmra—on + Tau—arm—onia + - -+ Ta—asolm—a—2

M-

and
rk<S2v*)2p—2)\+1 = TmTmi2r—2 T Tmi2Tmaor—a T+ Timaa—2TmaA
=1l
Comparing again the two computations we deduce that
Tmtox = Tm—2x = L.
This finishes the proof of statement (i) and thus the proof of the Theorem. O]
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Corollary 6.6. Let (V,3,7v) be a Hodge bundle of the type described in (6.38) of Proposi-
tion 6.3. Assume that 5 # 0 and v # 0 and that the map

ad(p): End(V), — (S?’V @ K ® S*V* ® K)
15 an isomorphism for all k > 0. Then the following holds.

(1) If n=2 thean@F_%Q@K%C.
(2) If n=2q+ 1 > 3 is odd then [3: Ff_z/\iF%Jrz/\K for any integer —q < X\ < gq. In
2

particular, there exists a square root L of K such that for any integer —q < A < ¢
we have

Fai-2g-3 = Fnang = Fioy 2 L@ K72,
and the bundle V' is of the form

V= é LMK

A=—q

(3) Ifn=2q+2 >4 theny: F_y = F*, K and 3: F*,
2 2
—q < X< g+ 1. In particular, there exists a square root L of K such that for any
integer —q < A < g+ 1 we have

5 F_%H)\K for any integer

Floin =L K™ 2 Fyrogri-n = Frvaourg)s

and the bundle V is of the form

g+1

V=@ LK

A=—q

(4) For any n > 2, the degree of V is degV =n(1 — g).
(5) For anyn > 2, an Sp(2n,R)-Higgs bundle of the form described in (1)—(3) above is
stable as an SL(2n, C)-Higgs bundle, and thus also as an Sp(2n, C)-Higgs bundle.

Analogous statements hold for Hodge bundles of the type described in (6.39) of Proposi-
tion 6.3. In particular, in this case the degree of V is degV =mn(g — 1) (¢f. Remark 6.4).

Remark 6.7. In the case n = 1 it is not possible for (V@) to be a Hodge bundle with 5 # 0
and v # 0.

Proof of Corollary 6.6. First we observe that, since the F; are all line bundles, we have
n=p+1, M=p+3and m=—p+1.

(1) In this case we have n =2, p=1, M = 3/2, m = —1/2. Then, taking A = 0 in (ii)
of Theorem 6.5 we get F% ® F_% ® K = C.

(2) In this case we have n = p+1 =2+ 1 so that M =2+ 1/2 and m = —2¢ + 1/2.
Hence, using (ii) and (iii) of Theorem 6.5, we can describe the structure of the maps 3 and
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v in the following diagram:

e—> O

where an arrow ; means that there is an isomorphism §: F} — F; ® K (and

”

thus j = —i + 1); similarly, an arrow ¢ ; means that there is an isomorphism

v: F; — F; @ K. In particular, we see that the isomorphism §: F7 5 F% ® K means that
2

1 = [~ for a square root L of K. This proves the case A\ = 0 of (2). Now repeated

2
application of (ii) and (iii) of Theorem 6.5 proves the general case. Note that this argument
can be phrased as saying that the graph above is connected and its only closed loop is the
one at 1/2: thus the remaining F; are uniquely determined by F% .

(3) In this case we have n = p+ 1 = 2¢ + 2 so that M = 2¢+ 3/2 and m = —2q — 1/2
and, as above, we have a diagram

B
B
s T
° [ o< T o o °
M M—-2 3/2 -1/2 m+2 m

The argument is now analogous to the previous case.
(4) Easy from the formulas for V' given in (2) and (3).

(5) Let (V, ¢) be of the kind described in (1)—(3), and consider the associated SL(2n, C)-
Higgs bundle (V@& V* @) = H(V, ). The ®-invariant subbundles of V@ V* are of the form
@i>i0(Fi @ F*,). From the given description, it is easy to check that such a subbundle,
when proper and non-zero, has degree strictly negative. 0

Finally, we use the analysis carried out so far to determine the minima of the Hitchin
functional on the locus of the moduli space corresponding to simple Sp(2n, R)-Higgs bun-
dles which are stable as Sp(2n, C)-Higgs bundles.

Theorem 6.8. Let (V,3,v) be a simple Sp(2n,R)-Higgs bundle which is stable as an
Sp(2n, C)-Higgs bundle.

(1) If |d| < n(g — 1) then (V,B,7) represents a minimum of the Hitchin functional if
and only if it belongs to Ny.

(2) If |[d| = n(g — 1) and n > 3 then (V,[(,7) represents a minimum of the Hitchin
functional if and only if one of the following situations occurs:

(i) the Sp(2n,R)-Higgs bundle (V. 3,7) belongs to Ny;
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(ii) the Sp(2n,R)-Higgs bundle (V,[3,7) is of the type described in (2) or (3) of
Corollary 6.6. In this case we say that (V,[3,7) is a quiver type minimum.

Proof. It (V,3,7) belongs to Ny then we know from Proposition 5.9 that it represents a
minimum. And, if (V,3,~) is of the type described in (2) or (3) of Corollary 6.6, then
Corollary 5.6 and Theorem 6.5 show that it represents a minimum.

On the other hand, if (V, 3, ) is a minimum which does not belong to Ny, then Corol-
lary 5.6, Theorem 6.5 and Corollary 6.6 show that it is of the type described in (2) or (3)
of Corollary 6.6. O

7. MINIMA ON THE ENTIRE MODULI SPACE

7.1. Main result and strategy of proof. In Section 6 we characterized the minima
of the Hitchin functional on the locus of M, corresponding to simple Sp(2n,R)-Higgs
bundles (V, ¢) which are stable as Sp(2n, C)-Higgs bundles. In this section we provide the
remaining results required to extend this characterization to the whole moduli space, thus
completing the proof of Theorem 5.10. As explained in the proof of that Theorem, what is
required is to rule out certain type of potential minima of the Hitchin functional. In each
case this is done by using (2) of Proposition 5.4. The main result of this Section is the
following.

Proposition 7.1. Let (V.o = 3+ 7) be a polystable Sp(2n, R)-Higgs bundle and assume
that the decomposition (V,p) = (Vi,¢1) ® - & (Vi, ¢x) of Theorem 3.29 is non-trivial. If
(V, ) is a local minimum of the Hitchin functional then either 5 =0 or v = 0.

Proof. The starting point is the structure Theorem 3.29. Recall that this describes a
polystable Sp(2n, R)-Higgs bundle as a direct sum

(7.44) (V.¢) = P Vi, 00),

where each Sp(2n, R)-Higgs bundle (V;, ;) comes from a G;-Higgs bundle which is a smooth
point in its respective moduli space. If (V] ¢) is a minimum, then Proposition 5.2 implies
that each (V}, ;) is a minimum on the corresponding moduli space of G;-Higgs bundles.
Consider each of the possible G;’s in turn.

The case G; = Sp(2n;,R). This is the case covered by Theorem 6.8. (Except for the
case n; = 2, which will require special attention.)

The case G; = U(n;). In this case ¢; = 0 for any G;-Higgs bundle, as we have already
seen.

The case G; = U(p;, ¢;). In this case, the minima of the Hitchin functional were deter-
mined in [6]. There it is shown that a U(p;, ¢;)-Higgs bundle (V;, W;, 6+ %) is a minimum
if and only if 5 = 0 or 4 = 0. Hence (V;,p;) = UE(m’qi)(Vé,VVi,ﬂ +79) (cf. (3.16)) is a
minimum if and only if ; =0o0r v =0

The case G; = GL(n;,R). The moduli space of such Higgs bundles was studied in [7].
Using the results of that paper we show in Lemma 7.8 below that a Sp(2n;, R)-Higgs bundle
(Vi, i) coming from a GL(n;, R)-Higgs bundle is a minimum if and only if ¢; = 0.

A quiver type minimum (V] ¢) is simple and stable as a Sp(2n, C)-Higgs bundle by (5)

of Corollary 6.6. Thus, to conclude the proof of the Proposition, it remains to show that
if (V, ) is a minimum and the decomposition (7.44) is non-trivial, then it belongs to N,
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i.e., 3 =0 or v=0. By the above analysis of the minima coming from G;-Higgs bundles,
it therefore suffices to show that (V) is not a minimum when the decomposition (7.44)
falls in one of the following cases:

(1) There is a (V;, ;) in Ny, with 8; # 0 and a (V}, ;) in Ny, with ~; # 0.
(2) There is a (V;, ¢;) which is a quiver type minimum and a (V}, ;) which lies in Nj;,.
(3) There are (distinct) (V;, ¢;) and (V}, ¢;) which are quiver type minima.

In order to accomodate the possibility n; = 2, the quiver type minima must here be
understood to include all minima with § # 0 and v # 0 (cf. (1) of Corollary 6.6). The
case n; = 1 is included since such minima must have 5 =0 or v = 0 (cf. Remark 6.7).

Note that, by Proposition 5.2, in fact it suffices to consider the case when k = 2 in (7.44).
With this in mind, the results of Lemmas 7.2, 7.4 and 7.6 below conclude the proof. [

7.2. Deforming a sum of minima in N.

Lemma 7.2. Let (V,p) be a polystable Sp(2n,R)-Higgs bundle which decomposes as a
direct sum (V ) = (V', ') @ (V" ") with ¢ = (0',7) and ¢" = (6",7"). Suppose
that ' =0, v # 0, 5" # 0 and ~" = 0. Suppose additionally that (V',¢") and (V" ¢")
are stable Sp(2n,R)-Higgs bundles or stable U(p, q)-Higgs bundles. Then (V) is not a
minimum of f on My. The same is true if 3 #0, v =0, 8" =0 and 7" # 0.

Proof. We prove the Lemma by applying the criterion in (2) of Proposition 5.4. As a first
step, we identify the complex C* defined in (5.36), and for that we need to know the
weights of each piece V', V”. Recall that the weight of ¢/, " is always 1.

(1) Since v/: V' — V™K, the weight on V"* is 1 + X' = =X, where )\’ is the weight on
V', Thus N = —1/2.
1umnilarly, the weight on 1S = .
2) Similarly, th igh V"is M =1/2

From this it follows immediately that the complex C* is given by
C*: Hom(V', V") — 0,
so that
H'(C*) = H' (Hom(V', V")).
Recall from Remark 5.8 that d’ = deg(V’) > 0 and d” < 0 so, by Riemann—Roch,
H'(Hom(V', V")) # 0.

This proves that C'* has nonzero first hypercohomology. To finish the argument we need to
integrate any element of H'(C*®) to a deformation of (V, ) through polystable Sp(2n, R)-
Higgs bundles.

Chose any® nonzero element a € H*(Hom(V’,V")). Denote by D the open unit disk.
Define V=D x V' and V' = D x V", which we view as vector bundles over X x D. We
denote by vj, : V' — V* @ K (here K denotes the pullback to X x D) the extension of
which is constant on the D direction, and we define similarly 5}, : V"* — V" ® K. Take
the extension

0=V - V-V =0

3when one of (V',¢') and (V”, ") is a U(p, q)-Higgs bundle, this choice is not completely arbitrary, cf.
the proof of Lemma 7.3 below.
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classified by
a®1e H' (Hom(V', V") = H'(X; Hom(V', V")) @ H°(D;C).
The restriction of this to X x {t} is the extension
(7.45) 0-V"=V, -V =0
classified by ta € H'(Hom(V’,V")). Define yp : V — V* ® K as the composition

VDV 2V g K VK,

where the first arrow comes from the exact sequence defining V and the third one comes
from dualising the same exact sequence and tensoring by the pullback of K. Similarly,
define fp : V¥ — V ® K as the composition

Vv v e K S Ve K.

The resulting triple (V, 8p,vp) is a family of symplectic Higgs bundles parametrized by
the disk, whose restriction to the origin coincides with (V) ), and which integrates the
element a in the deformation complex.

[t remains to show that each member of the family (V, 8p,vp) is a polystable Sp(2n, R)-
Higgs bundle. This is done in Lemma 7.3 below. We have thus proved that (V) ¢) is not a
local minimum. U

Lemma 7.3. The Sp(2n,R)-Higgs bundle (Vi, s = B + v:) on X, obtained by restricting
to X x {t} the family (V,Bp,vp) constructed in the proof of Lemma 7.2, is polystable.

Proof. It will be convenient to use the stability condition for Sp(2n, R)-Higgs bundles as
given in Lemma 3.16. Thus, if (V;, ¢;) is not stable, there are subbundles A C V; and
B C V;* such that 1(A) C B® K and §;(B) C A® K, and with deg(A & B) = 0. Since
X is a Riemann surface, the kernel of the restriction to A of the sheaf map V; — V" is
locally free and corresponds to a subbundle A" C A. The quotient A” := A/A’ then gives a
subbundle A” C V" so that we have a commutative diagram with exact rows and columns:

0 0 0
(7.46) 0 A A A 0
0 v Vi % 0.
Similarly, we obtain subbundles B” C V"* and B’ C V'* and a diagram:
0 0 0
(7.47) 0 B B B —— 0

b

0 v v, | CAgu—(}
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One easily checks that B"* C A’ and B”" c A”. By definition of 7, the diagram

0 1% v, V' —— 0
oI
0 v v, v — 0.

commutes. Thus, since 1,(A) C B ® K, we have that 7/ (A") C B’ ® K. Similarly,
B"(B") ¢ A”® K. It follows that the pair of subbundles A" C V' and B’ C V'* destabilizes
(V',¢) and that the pair of subbundles A” C V" and B” C V""" destabilizes (V" ¢").

Consider now the case in which both (V’,¢’) and (V”,¢") are stable Sp(2n, R)-Higgs
bundles. Then we must have A’ B = V' V"™ or A’ @ B’ = 0 and similarly for A” & B”.
The only case in which the original destabilizing subbundle A® B C V, ® V;* is non-trivial
is when /@B = V'@ V"™ and A”@ B"” = 0 (or vice-versa). But, in this case, V' = A’ = A
and hence (7.46) shows that the non-trivial extension (7.45) splits, which is a contradiction.
Hence there is no non-trivial destabilizing pair of subbundles of (V;, ¢;), which is therefore
stable.

It remains to deal with case in which one, or both, of (V' ¢’) and (V”, ") are stable
U(p, q)-Higgs bundles. The remaining cases being similar, for definiteness we consider
the case in which (V" ¢") is a stable Sp(2n”,R)-Higgs bundle and (V' ') is a stable
U(n}, n})-Higgs bundle, i.e.,

Vi=VieVv, ¢=4€eHV/oV,®K).
In addition to the cases considered above, we now also need to consider the case when
A’ @ B’ is non-trivial, say A’@® B’ = V/ @ V)", There are now two possibilities for A” & B":
either it is zero or it equals V" @ V"*; we leave the first (simpler) case to the reader and
consider the second one. In this case, the element
a=ay+ay € H'(Hom(V', V") = H (Hom(V/, V")) @ H'(Hom(Vy, V"))

chosen in the proof of Lemma 7.2 above must be taken such that both a; and ay are
non-zero (this is possible by Riemann-Roch). Thus, for i = 1,2 we have a commutative
diagram

0 —— V" V;fz Vz‘, -0
0 —— V” Vi VieVy; —— 0

of non-trivial extensions, where the two vertical maps on the right are inclusions. This,
together with (7.47) for B’ = V3" and B” = V""", gives rise to the commutative diagram

0—— W B vV —— 0
O ‘/1/* @ ‘/*2/* V;* V//* 0
O ‘/2/* ‘/l‘;; V//* 0

The composites of the vertical maps on the left and on the right are isomorphisms. Hence
the composite of the middle vertical maps is also an isomorphism and this provides a
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splitting of the extension
O—>V1/*—>V;*—>Vt;kﬁ0,
Denote the splitting maps in the dual split extension by
i V=V, and p: V= V,.

We now have a diagram

0 N V// ‘/t1 ‘/1/ SN 0

0 N V// ‘/; ‘/1/@‘/2/ SN 0
I

0o —— V” Vi, Vs, —— 0,

where the vertical maps on the right are the natural inclusion and projection, respectively.
Using the existence of the splitting map i: V/ — V; and the inclusion V;, — V; one readily
sees that this diagram commutes. This finally gives us the commutative diagram

0 0 VilVy —— V3 0
0 v Vi, Vy 0,
which shows that the sequence at the bottom is split, a contradiction. 0]

7.3. Deforming a sum of a quiver type minimum and a minimum in N,.

Lemma 7.4. Let (V,¢) be a polystable Sp(2n,R)-Higgs bundle which decomposes as a
direct sum (V,p) = (V',¢") & (V", ") with ¢ = (8',7') and ¢" = (8",7"). Suppose that

(1) (V',¢') is a quiver type minimum,
(2) (V",¢") is a minimum with 5" = 0 or 4" = 0 which is a stable G"-Higgs bundle
for G" one of the following groups: Sp(2n”,R), U(p”,q"), U(n”) or GL(n",R).

Then (V, ) is not a minimum of f on M.

Proof. Consider for definiteness the case in which (V',¢’) is a quiver type minimum with
deg(V') = n/(1 — g) and (V”,¢"”) has 4" = 0 and (3” # 0. The case in which 5" = 0 and
~v" 2 0 can be treated along the same lines as the present case, so we will not give the
details. The case in which (V' ¢') is a quiver type minimum with deg(V') = n/(g — 1) is
obtained by symmetry. Note that some degenerate cases can occur, namely:

(1) (V',¢') is a quiver type minimum with rk(V’) = 2 (cf. (1) of Corollary 6.6).
(2) ("/’//7 (p//) has /8// — fy// — 0
With respect to Case (1), all we need for the arguments below is that 3: Fj — F_L®Kis

2
an isomorphism, which is guaranteed by (1) of Corollary 6.6. In what concerns Case (2),
slight modifications are required in the arguments given below; we leave these to the reader.

With these introductory remarks out of the way, Corollary 6.6 tells us that V' decom-
poses as a direct sum of line bundles V' = F,, & --- @ F); and that restricting 5’ we get
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an isomorphism
g F — Fy®K.
Our first task is to identify nonzero elements in the first hypercohomology of C'*. A good

place to look for them is in the hypercohomology of the piece of highest weight in the
deformation complex, which is

(7.48) V" @ Fy eV QF:) - V'@ Fy® K.
This morphism cannot be an isomorphism, because the ranks do not match. Thus Propo-
sition 5.5 implies that H' of this complex is non-vanishing.

In the hypercohomology long exact sequence (cf. (2.4)) of the complex (7.48), the map
HO(v//* ® FM D v// ® F;,:,) — HO(v//* ® FM) D HO(v// ® F;;) N HO(v// ® FM ® K)

is always onto because the map f : H'(V" @ F¥) — H°(V" ® Fy ® K) is induced by
tensoring ' : F}}, — Fyy ® K (which is an isomorphism) with the identity map V" — V"
so f is also an isomorphism. Hence the image of H*(V" ® Fy; ® K) — H! is zero, and
this by exactness implies that H' — H'(V"* @ Fyy & V" ® F?) is injective. We now want
to characterize the image of this inclusion. Tensoring the Higgs fields 8” and " with the
indentity on Fj; and V" respectively, we get maps

"V @Fy - V"® Fy ® K,
and
B:V'@F SV'®Fy®K.
Now the map ( in the long exact sequence
H — H' (V" @ FyeV'®F) - H (V'@ Fy ® K) — H2
can be intepreted as follows: given elements (§,¢) € H/(V"™* @ Fy;) & H' (V" @ ),
((8,€) = —=p"(0) — B'(e) € HY(V" ® Fyy @ K).

Hence we may take a nonzero pair (9, ) satisfying 8”(9) + 3'(¢) = 0 and corresponding to
a nonzero element in the hypercohomology of the complex (7.48). We next prove that the
deformation along (4, 7) is unobstructed, by giving an explicit construction of a family of
Higgs bundles (V, 5;,7:) parameterized by ¢ € C and restricting to (V' @ V" ¢ + ¢”) at
t=0.

Pick Dolbeault representatives a; € Q%' (V"™ ® Fyr) and a. € Q¥(F* @ V") of § and .
We are going to construct a pair (W, 1) satisfying the following.

e There is a C*° isomorphism of vector bundles W} ~ Fj; & V" @ F,, with respect to
which the 9 operator of W, can be written as

_ 5FM tas t2y _
aWt = 0 8\/// iag = 80 + tCLl + t2a2,
0 0 Op,

where v € Q% (F* @ Fyr) will be specified later,
e 1, is a holomorphic section of H°(S?*W; ® K) of the form

v =G+ 3" +tu.
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Now the condition 5Wt v; = 0 translates into
50(6/ _'_ 6//)
Oy + ay (6 + ")
a1 + as(6'+ 6”)

0,
0,
0.

The first equation is automatically satisfied. As for the second equation note that
al(ﬁl + 6”) — 5”(%) + /8,(0/6) c Ql’l(V” ®S FM)

Since by hypothesis the Dolbeault cohomology class represented by 5”(as)+ (' (ac) is equal
to zero, we may chose a value of v; € Q¥(V” ®g Fy;) solving the second equation. Tt
remains to consider the third equation. Note that as3” = 0 and that a8’ = (') €
QY(Fy ® Fyy). Since 8 is an isomorphism, for any n € QU (Fy; ® Fyr) there exist some 7y
such that v(3') = n. Taking n = —ay14, we obtain a value of ~ solving the third equation
above.

It follows from the construction that there are short exact sequences of holomorphic
bundles

0— Fy— W, — Z, — 0, 0—-V"—= 272, - F, —0.
Dualizing both sequences we have inclusions F, — Z; and Z; — W] which can be
composed to get an inclusion

(7.49) Fr— Wy

Now let
Vi=W, e P Fr

m<A<M

To finish the construction of the family of Higgs bundles we have to define holomorphic
maps

B Vi = Vi®K, Yw:Vi =V K

defining sections in H°(S?V,;®@ K) and H°(S?V;*® K) respectively. The following conditions
are in fact satisfied by a unique choice of maps (5, v;):

the restriction of 3; to W, is equal to vy,

the restriction of §; to @,, . F> is equal to 3,

the restriction of v, to W; is equal to 0,

the restriction of v, to Fp; C V; is 0,

the restriction of v; to Fy;_o C V; is the composition of v : Fi,_o — F* @ K with
the inclusion (7.49) tensored by the identity on K,

e the restriction of v, to @,, 1o Fi is equal to .

The proof of the lemma is completed by using Lemma 7.5. O

Lemma 7.5. The Sp(2n,R)-Higgs bundle (V, ), obtained by restricting the family con-
structed in the proof of Lemma 7.4 to X x {t}, is polystable.

Proof. Analogous to the proof of Lemma 7.3. O
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7.4. Deforming a sum of two quiver type minima.

Lemma 7.6. Let (V,p) be a polystable Sp(2n,R)-Higgs bundle which decomposes as a
direct sum (V, @) = (V', ") @ (V", ") with ¢ = (8',7') and " = (8",7"). Suppose that
both (V',¢") and (V",¢") are quiver type minima. Then (V, ) is not a minimum of f on
M.

Proof. Suppose we have two minima which are quiver pairs (minimal degree)
V' =F,0 - 0F,=@F, ad V'=F,&-oF.=@F,.

All morphisms 3, 3”,+',4" are isomorphisms. We want to deform V' @ V",

The same ideas as before tell us (looking at the negative deformation complex) that we
should look at the piece of the exact sequence of maximal weight, which is

C.:F&k/@FJI\}//@ T/,;f/®F]/\4/_>F]/\4/®F]/\,4//®K
Define V' := F/,, & F};,. The restriction of the 8" to V" defines an isomorphism
ViV oV ek,

so we can apply exactly the same construction as before, replacing V" by V', and obtain
a deformation W5, of the bundle

F7/n’GBF]/\/I’@‘/O//:FT%’@F]/W’@FTZ,”@F””’

A very important point, however, is that now the extension classes of the bundles Wy and
W, are more restricted, since they belong respectively to the groups H'(F"; ® F},) and
HY(F!, @ F{.,). In particular, to define W, the line bundle F, only merges with Fy,.,
and not with £”,. This implies that there is a map

(750) Wte — F,,,/),/LH

which deforms the projection V' — F/,,.

We leave all the remaining Fy and F)] untouched. There are only two maps which have
to be deformed (apart from the (’s which are internal in W ). These are

Y iF,—Fy 2K and A" Fl, — Fij_,® K.
The first one can be deformed to a map
7(/;76 : Wiste = Fiy o @ K

exactly as in the previous section. As for 4", we combine the projection Wise — Wi with
the map in (7.50) and with +” to obtain the desired deformation

Wt&,tE — FJ,\;;//_2 X K.
Lemma 7.7 below completes the proof. 0]

Lemma 7.7. The Sp(2n,R)-Higgs bundle (V;, ), obtained by restricting the family con-
structed in the proof of Lemma 7.6 to X x {t}, is polystable.

Proof. Analogous to the proof of Lemma 7.3. O
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7.5. GL(n,R)-Higgs bundles. In this section, we will assume that

(V, @) = oM O((W, Q), ¥)

is an Sp(2n,R)-Higgs bundle associated to a GL(n,R)-Higgs bundle (W, @), ). Recall
that d = deg(V') = 0 in this case.

Lemma 7.8. Let (V,¢) be the Sp(2n,R)-Higgs bundle associated to a GL(n,R)-Higgs
bundle (W, Q), ) as in (3.28). If (V,p) is a minimum of f on My then ¢ = 0.

Proof. In [7] it is shown that there are two types of minima on the moduli space GL(n, R)-
Higgs bundles ((W,Q),v). The first type has 1) = 0. The second type corresponds to the
minimum on the Hitchin—Teichmiiller component and has non-vanishing Higgs field. They
are of the form:

W=F,®  -&F,

for line bundles F;, indexed by integers for n = 2m+1 odd and halt-integers for n = 2m+1
even. More precisely, F; = K™ such that, in particular, F; = F*,. With respect to this
decomposition of W,

1
0 0 0 --- 0
: . 0 1 0 . 0
0 . : ' N
1 0 - --- 0 0 0 10

We shall apply the criterion in (2) of Proposition 5.4 to show that USL("’C)((VV, Q), ) is
not a minimum of the Hitchin functional for such (W, Q), ).

Recall that V = W, 8 = ¢ f~! and v = f1, where f: V — V* is the symmetric
isomorphism associated to ). Hence the components of 5 and ~ are the canonical sections

B:F'—F i 1®K and v: F,—F',_ | ®K.
Since ¢ has weight one, the weight of F; is i (cf. Proposition 5.3). It follows that the
highest weight piece of the complex C* defined in (5.36) is
Cs,: Hom(F_,,, F,,) — 0.
Hence
H'(Cs,,) = H' (Hom(F_,, F,,))) = H (K™>™),

which is non-vanishing. Take a non-zero a € H'(Hom(F_,,, F},,)). Let D be the open unit
disk and let IF; be the pull-back of F; to X x D. Let

(7.51) 0—F,—-W,—F_,—0
be the extension with class
a®1¢e H' (Hom(F_,,,F,,)) = H(X;Hom(F_,,, F,,)) ® H(D;C).

Then V, = W, &b @Km F; is a family deforming V' which is tangent to a at t = 0 € D.
To obtain the required deformation of (V,¢) it thus remains to define the Higgs field
op € H°(S?V, @ K) deforming ¢. The only pieces of ¢ which do not automatically
lift are the ones involving F_,, and F,, ie., f € H(Hom(F*, ,,,F,) ® K) and v €
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H°(Hom(F_,,, F% ) ® K). In order to lift 3, clearly we should define Sp to be the
composition

B
F i — Fo — W,

where the last map is induced from the injection in (7.51). A similar construction gives
the lift vp of 7. We have thus constrcuted a family (V,,5p,vp) which is tangent to
a€ HYCs,,(V,p)) for t =0 € D. Hence Lemma 7.9 below completes the proof. O

Lemma 7.9. The Sp(2n,R)-Higgs bundle (Vi;, ), obtained by restricting (Vq, Bp, VD)
constructed in the proof of Lemma 7.8 above to X x {t}, is polystable.

Proof. Analogous to the proof of Lemma 7.3. O

8. COUNTING COMPONENTS: MAIN RESULTS

8.1. Connected components of M, for d = 0 and |d| = n(g—1). With the description
of the minima of the Hitchin functional given in Theorem 5.10 at our disposal we are now
in a position to complete the count of connected components of the moduli space in the
situation of d =0 and |d| =n(g —1).

Proposition 8.1. The quiver type minima belong to a Hitchin—Teichmiiller component of
the moduli space. In particular, they are stable and simple and correspond to smooth points
of the moduli space.

Proof. This is immediate from the description of the Sp(2n, R)-Higgs bundles of the Hitchin—
Teichmiiller component given in [32]. O

Proposition 8.2. Assume that d = —n(g — 1) and let (V,3,7) be a quiver type minimum
for the Hitchin functional. Let Ly be a fized square root of the canonical bundle, giving

rise to the Cayley correspondence isomorphism M _p4_1) = M of Theorem /.4, via
Vi—= W ® Ly. Then the following holds.

(1) The second Stiefel-Whitney class wo(W) € H*(X,Zy) vanishes.

(2) If n is odd, the first Stiefel-Whitney class wi (W) corresponds to the two-torsion
point L™ Ly in the Jacobian of X under the standard identification Jo = HY(X,Zs).

(3) If n is even, the first Stiefel-Whitney class wi (W) € H' (X, Z,) vanishes.

Proof. Easy (similar to the arguments given in [32| for G = SL(n, R)). O

Theorem 8.3. Let X be a compact oriented surface of genus g. Let My be the moduli
space of polystable Sp(2n,R)-Higgs bundles of degree d. Let n > 3. Then

(1) My is non-empty and connected;
(2) Mp(g—1) has 3.2%9 non-empty connected components.

Proof. (1) When d = 0, we have from Theorem 5.10 that the subspace of minima of the
Hitchin functional on M is Ny. It is immediate from Theorem 3.13 that N is isomorphic
to the moduli space of poly-stable vector bundles of degree zero. This moduli space is well
known to be non-empty and connected and hence My is non-empty and connected.
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(2) For definiteness assume that d = —n(g — 1). The decomposition (4.30) given by the
Cayley correspondence gives a decomposition

(852) M—n(g—l) = U Mwl,wza

w1, w2

/

wy.w, Under the Cayley correspondence.

where M, , corresponds to M

For each possible value of (wi,ws), there may be one or more corresponding Hitchin-
Teichmiiller components contained in M, ., (cf. Proposition 8.2); denote by Mwlm
the complement to these. Since minima in N_,,_1) (i.e. with v = 0) clearly do not
belong to Hitchin—Teichmiiller components, we see that the subspace of minima of /\;lwwj2
consists of those (V,(3,~) which have v = 0. Thus, under the Cayley correspondence,
this subspace of minima is identified with the moduli space of poly-stable O(n, C)-bundles
with the given Stiefel-Whitney classes (wy, ws). The moduli space of principal bundles for
a connected group and fixed topological type is known to be connected by Ramanathan
[41, Proposition 4.2]. However, since O(n,C) is not connected the result of Ramanathan
cannot be applied directly. But, all that is required for his argument is that semistability
is an open condition and thus, in fact the moduli space in question is connected (cf. [40]).
It follows that the subspace of minima on /\;lwl,w2 is connected and, hence, this space itself
is connected by Proposition 5.1. Additionally, each M., ., is non-empty (see, e.g., [40]).
Therefore, there is one connected component ./\;lu,m,)2 for each of the 229! possible values
of (wy,wy). Adding to this the 229 Hitchin—Teicmiiller components gives a total of 3.2%
connected components, as stated.

This accounts for all the connected components of M_,,_1) since there are no other
minima of the Hitchin functional. ]

8.2. Representations and Sp(2n,R)-Higgs bundles. Let R := R(Sp(2n,R)) be the
moduli space of reductive representations of 7 (X) in Sp(2n,R). Since U(n) C Sp(2n,R)
is a maximal compact subgroup, we have

m(Sp(2n, R)) 2 m (U(n)) = Z,

and the topological invariant attached to a representation p € R is hence an element
d = d(p) € Z. This integer is called the Toledo invariant and coincides with the first
Chern class of a reduction to a U(n)-bundle of the flat Sp(2n, R)-bundle associated to p.

Fixing the invariant d € Z we consider, as in (2.9),
Raq:={p € R such that d(p)=d}.

Proposition 8.4. The transformation p — (pt)_l in R induces an isomorphism of the
moduli spaces Ry and R_g.

As shown in Turaev [53] (cf. also Domic—Toledo [18], the Toledo invariant d of a repre-
sentation satisfies the Milnor-Wood type inequality

(8.53) |d| < n(g—1).
As a consequence we have the following.

Proposition 8.5. The moduli space Ry is empty unless
|d] < n(g—1).
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As a special case of Theorem 2.28 we have the following.

Proposition 8.6. The moduli spaces Ry and My are homeomorphic.

From Proposition 8.6 and Theorem 8.3 we have the main result of this paper regarding
the connectedness properties of R given by the following.

Theorem 8.7. Let X be a compact oriented surface of genus g. Let Ry be the moduli
space of reductive representations of (X)) in Sp(2n,R). Let n > 3. Then

(1) Ro is non-empty and connected;
(2) Raingg—1) has 3.2%9 non-empty connected components.

APPENDIX A. STABILITY OF TWISTED PAIRS AND HITCHIN-KOBAYASHI
CORRESPONDENCE

A.1. Standard parabolic subgroups. Here we set up some notations about parabolic
subgroups , which will be used when stating a general notion of (poly, semi)-stability (see
Chapter IV in [4] for more details). First some basic notation.

H — a compact and connected Lie group

H® — the complexification of H
h — the Lie algebra of H

h® — the Lie algebra of H
hS = [h%, h%] — the semisimple part of h©
3 C a — the center of h®

T C H — a maximal torus
t C h — the Lie algebra of T

a C h® — the complexification of t
(-,-) — an invariant C-bilinear pairing on h® extending the Killing form on h¢
R C ¢* = Homg(c, C) — the roots of h<
hs C h© — the root space corresponding to 6 € R

A C R — a choice of simple roots.

Defining ¢ = a N hS we have a = 3 @ ¢ and moreover
" =j3&ca @ Bs-
SER

For any A C A define R4 to be the set of roots 6 = ZﬁeA mpf € R with mg > 0 for all
B eA(soif A=0 then R4y = R). Then

is a Lie subalgebra of h*. Denote by P4, C H® the connected subgroup whose Lie algebra
is pa. The group Py is a parabolic subgroup of H®, and any parabolic subgroup of H® is
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conjugate to P, for some A. Define similarly R% as the set of roots § = > pea Mpf with
mp = 0 for all 3 € A. The vector space

(A.54) =3¢ D bs

seRY

is a Lie subalgebra of p4. Let L4 be the connected subgroup with Lie algebra [4. Then
L4 is a Levi subgroup of P4y, i.e., a maximal reductive subgroup of P4. Finally,

(A.55) Uy = @ f)g

S€RA\RY

is also a Lie subalgebra of p4, and the connected Lie group Us C P4 with Lie algebra uy
is the unipotent radical of P4. Uy is a normal subgroup of P4 and the quotient Ps/Uy, is
naturally isomorphic to L4 so we have

(A.56) Pa=LaUy.

A.2. Characters of parabolic subgroups. Let Z be the center of H®, and let I' =
Ker(exp : 3 — Z). Then 3g = I'®z R C 3 is the Lie algebra of the maximal compact
subgroup of Z. Let 33 = Homg(3r,iR) and let A = {\ € 35 | M) C 2wiZ}. Let
{Xs}sea C ¢* be the set of fundamental weights of h<, i.e., the duals with respect to the
Killing form of the coroots {2/(d, §) }sea. We extend any A € A to a morphism of complex
Lie algebras A : 3 ® ¢4 — C by setting A|; = 0, and similarly for any § € A we extend
As:cqa — Cto As:3® cqa — C by setting As|; = 0.

Let Z5 be the identity component of the center of L4, and let L% be the maximal
connected semisimple Lie subgroup of L, (i.e., the connected subgroup whose Lie algebra
is [[4, [4]. Define

Z°%(Ly) == Z5 N LY.
The product map Z3 x LY — L, induces an isomorphism Ly ~ Zj X gzoss(r,) LY, and
projection to the first factor gives a map Ly — Z3/Z°%°(L4). Composing this projection
with the quotient map Py — P4/U4 ~ L4 we obtain a morphism of Lie groups

TA - PA — ZZ/ZOSS(LA).
Let 34 C [4 be the Lie algebra of Z9. Let ¢4 = ﬂﬁeA\A Ker \g if A # A and let ¢4 = ¢ if
A = A. Then we have
34 =3 Dca.
This follows from the fact that for any d,d € R we have [hs, hy| = hsrs if § + 0" # 0 and
[hs, h_s] = (Ker A\s)* (see Theorem 2 in Chapter VI of [46]).

Lemma A.1. There exists some positive integer n (depending on the fundamental group of
L) such that for any X € A and any 6 € A the morphisms of Lie algebras n : 3B ca — C
and nhs 1 3 ® cqa — C exponentiate to morphisms of Lie groups

exp(n) : Z3/7°%(Ly) — C*, exp(ns) : Z3/7°%°(Ly) — C*.

Composing the morphisms given by the previous lemma with the morphism P4 we get
for any A € A and 6 € A morphisms of Lie groups

Fnx : Py — C*, Kns : Py — C*.
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A.3. Antidominant characters of p,. An antidominant character of p, is any ele-
ment of 3* @ ¢ of the form x = 2+ ), , nsAs, where z € 33 and each n; is a nonpositive
real number. If for each 6 € A we have ns < 0 then we say that x is strictly antidomi-
nant. The restriction of the invariant form (,) to 3 ® c4 is nondegenerate, so it induces an
isomorphism 3*®¢} ~ 3Pc4. For any antidominant character xy we define s, € 3®cq C 3@c
to be the element corresponding to x via the previous isomorphism. One checks that s,
belongs to ih. The following lemma implies that one can recover from s, the parabolic
subgroup P4 and all related objects.

Lemma A.2. Let s € ih and define the sets
ps := {x € B¢ | Ad(e")(x) is bounded ast — oo} C h°,
(:=={zch®|[z,s] =0} Cp®,
P,:={gc H | e"*ge™" is bounded as t — oo} C H®,
Ly:={ge€ H°| Ad(g)(s) =s } c HE.
The following properties hold:

(1) Both p, and I, are Lie subalgebras of h© and P, and L, are subgroups of HC.
Furthermore P, and L, are connected.

(2) Let x be an antidominant character of Pa. There are inclusions p, C Psys 4 Clgy,
Py C P, and Ly C Ly, with equality of x is strictly antidominant.

(3) For any s € ih there exists h € H and a standard parabolic subgroup Pa such that
P, = hPyh™! and Ly = hL,h™'. Furthermore, there is an antidominant character
X of P4 such that s = hs,h™t.

Proof. That [, ps are subalgebras and L, Ps are subgroups is immediate from the defini-
tions. Let Ty be the closure of {¢!* | ¢ € R}. Then L, is the centralizer of the torus T in
HE, so by Theorem 13.2 in [3] is connected. To prove that P, is also connected, note that
if g belongs to Py, so that e'*ge~"* is bounded as t — oo, then the limit of m4(g) := e**ge™**
as t — oo exists and belongs to L. Note by the way that the resulting map 7, : Py — L
is a morphism of Lie groups which can be identified with the projection Py, — P,/Us ~ Ly,
where
U, = {g € H® | e”*ge™" converges to 1 as t — oo} C P,

is the unipotent radical of U,. So if g € P, then the map 7 : [0,00) — H® defined as
v(t) = e®ge™" extends to give a path from g to L, and since Ly is connected it follows
that P is also connected. This proves (1). Let now x = z+) 5.5 ngAg be an antidominant
character of Py. Let 6 = 5\ mg/3 be a root and let u € hs. We have [s,, u] = (sy,6)u =
(X, 0)u = (3 5ea manp(B, B)/2)u. Hence Ad(e")(u) = (3o 5ca exp(tngms (B, 5)/2))u, so
this remains bounded as ¢ — oo if mg > 0 for any 3 such that ng < 0. This implies
that p4 C ps and [4 C [ and that the inclusions are equalities when y is strictly domi-
nant. The analogous statements for P4, L4, Ps, Lg follow from this, because the subgroups
Py, Ly, P, Lg are connected. Hence (2) is proved. To prove (3) take a maximal torus T}
containing {e** | + € R} and choose h € H such that h™1T,h = T and Ad(h~1)(s) belongs
to the Weyl chamber in t corresponding to the choice of A C R. Then use (2). O

Lemma A.3. Let P C H® be any parabolic subgroup, conjugate to Ps. Let x be an
antidominant character of pa. There exists an element sp, € ib, depending smoothly on
P, which is conjugate to s, and such that P C Py, , with equality if and only if x is strictly
antidominant.
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Proof. Assume that P = gP,g~" for some g € H®. From the well known equality H®/P, =
H/(PyNH) = H/(LyNH) we deduce that there exists some h € H such that P = hP,h~ .
Then we set sp, = hs,h~'. This is well defined because h is unique up to multiplication
on the right by elements of L4 N H, and these elements commute with s, . 0]

A.4. Principal bundles and parabolic subgroups. If E is a H®-principal holomorphic
bundle over X and M is any set on which H® acts on the left, we denote by E(M) the
twisted product E X yc M, defined as the quotient of £/ x M by the equivalence relation
(eh,m) ~ (e,hm) for any e € E, h € H® and m € M. The sections ¢ of E(M) are in
natural bijection with the maps ¢ : E — M satisfying o(eh) = h™1p(e) for any e € E and
h € H® (we call such maps antiequivariant). Furthermore, ¢ is holomorphic if and only if
© is holomorphic.

If M is a vector space (resp. complex variety) and the action of H® on M is linear
(resp. holomorphic) then E(M) is a vector bundle (resp. holomorphic fibration). In this
situation, for any complex line bundle L — X we can form a vector bundle E(M) ® L
which can be identified with EX(M), where E* denotes the principal H® x C* bundle
EL = {(e,l) € E xx L |14 0} and we form the associated product by making (h,\) €
HE® x C* act on m € M as Ahm. Consequently, the sections of E(M)® L can be identified
with antiequivariant maps E* — M.

Let B be a Hermitian vector space and let p : H — U(B) be a unitary representation.
The morphism p extends to a holomorphic representation of H® in GL(B), which we
denote also by p. Suppose that Py C HC is the parabolic subgroup corresponding to a
subset A C A and let y be an antidominant character. Define

B = {v € B p(e")v remains bounded as R > t — oo}.

This is a complex subspace of B and by (2) in Lemma A.2 it is invariant under the action
of P,. Define also

B)={veB|p*™)v=vforanyt}C By.

This is a complex subspace of By and, using again (2) in Lemma A.2, we deduce that Bg
is invariant under the action of Ly4.

Suppose that o is a holomorphic section of E(H®/P,). Since E(H®/P,) ~ E/P,
canonically and the quotient F — FE/P4 has the structure of a P4-principal bundle, the
pullback E, := ¢*FE is a Py4-principal bundle over X, and we can identify canonically
E ~ E, xp, H® as principal H"-bundles (hence, o gives a reduction of the structure group
of E to P4). Equivalently, we can look at E, as a holomorphic subvariety £, C E invariant
under the action of P4 C H® and inheriting a structure of principal bundle. It follows that
E(B) ~ E, xp, B, so the vector bundle E, xp, B can be identified with a holomorphic
subbundle

E(B),, C E(B).

Now suppose that oy is a holomorphic section of E,(Pa/La). This section induces,
exactly as before, a reduction of the structure group of E, from P4 to L4. So we obtain
from o, a principal Ly bundle E,, and an isomorphism E, ~ E, x, Ps. Hence E(B) ~
E,, X1, B, and we can thus identify the vector bundle E,, xp, BY with a holomorphic

subbundle
E(B)Y  C E(B),,.
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Let us write x = 2z 4+ > 5o n6)s, with 2z € 33, and 2z = 2 A + -+ + 2.\, where
A1, ..., A € A and the z; are real numbers. Let n be an integer as given by Lemma A.1.
Using the characters k,y, kns : P4 — C* defined in Subsection A.2 we can construct from
the principal P4 bundle E, line bundles E, x,, , C and E, X, , C. We define the degree
of the bundle E with respect to the reduction ¢ and the antidominant character y to be
the real number:

(A.57) deg(E)(o, x) := % (Z z; deg(E, X, o )+ Zn(; deg(Ey Xy s C)) :

j seA
This expression is independent of the choice of the A;’s and the integer n.

Although this will play no role in our results, we now stop to give another definition
of the degree in terms of the curvature of connections, in the spirit of Chern—Weil theory.
Define Hy = HN L4 and hy = hN[4. Then H, is a maximal compact subgroup of Ly,
so the inclusions H4 C L4 is a homotopy equivalence. Since the inclusion L4 C Py is also
a homotopy equivalence, given a reduction o of the structure group of E from H® to P,
one can further restrict the structure group of £ to H,4 in a unique way up to homotopy.
Denote by E! the resulting H4 principal bundle. Let 74 : p4 — 3 @ ¢4 be the differential
of the projection 74 defined in Subsection A.2. Let x = 2+ ;. 4 nsAs be an antidominant
character. Define k, = (24> _;ns\s)oma € p’. Let ha C [4 C pa be the Lie algebra of Hy.
Then x,(h4) C iR. Choose a connection A on E/ and denote by Fy € Q*(X, E! xaq ba)
its curvature. Then r,(Fj) is a 2-form on X with values in iR, and we have

deg(B)on) = 5 [ ().

T
A.5. Stability of L-twisted pairs. Let L be a holomorphic line bundle over X. We
define an L-twisted pair to be a pair of the form (E, ), where E is a holomorphic HC®-

principal bundle over X and ¢ is a holomorphic section of E(B) ® L. When it does not
lead to confusion we say that (E, ¢) is a pair, instead of a L-twisted pairs.

Let o € i3gr C 3. We say that (F, o) is:
e a-semistable if: for any parabolic subgroup P4, C H®, any antidominant char-

acter y for P4, and any holomorphic section ¢ € I'(E(H®/P,)) such that ¢ €
HY(E(B),, ® L), we have

deg(E)(a,x) — {@, x) = 0.

e a-stable if it is a-semistable and furthermore: for any P4, x and o as above, such
that ¢ € H°(E(B),, ® L) and such that A # 0 and x ¢ 3}, we have

deg(E)(a, x) — (@, x) > 0.

e a-polystable if it is a-semistable and for any P4, x and o as above, such that
w € HO(E(B);X ® L), Py # H® and Y is strictly antidominant, and such that

deg(E>(07 X) - <Oé, X) = 07

there is a holomorphic reduction of the structure group o, € TI'(E,(Pa/La)),
where E, denotes the principal Ps-bundle obtained from the reduction o of the
structure group. Furthermore, under these hypothesis ¢ is required to belong to
HY(E(B)?, ,® L) c H'(E(B),, ® L).

oL,X
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Remark A.4. For some instances of group H® and representation H® — GL(B) the last
condition in the definition of polystability is redundant (for example, H* = GL(n,C)
with its fundamental representation on C"). This does not seem to be general fact, but
we do not have any example which illustrates that the condition ¢ € HO(E(B)SM ® L)
is not a consequence of the a-semistability of (E,¢) and the existence of o, whenever

deg(E)(c, x) = (o, x) and ¢ € H'(E(B),, ® L).

A.6. The stability condition in terms of filtrations. In order to obtain a workable
notion of a-(poly,semi)stability it is desirable to have a more concrete way to describe, for
any holomorphic H®-principal bundle E,

e the reductions of the structure group of E to parabolic subgroups P ¢ H®, and
the (strictly or not) antidominant characters of P,

e the subbundle £(B); C E(B),

e the degree deg(E)(o, x) defined in (A.57),

e reductions to Levi factors of parabolic subgroups and the corresponding vector
bundle E(B)) . C E(B),,.

We now discuss how to obtain in some cases such concrete descriptions, beginning with
the notion of degree. In [10] the degree deg(E)(o, x) is defined in terms of a so-called
auxiliary representation (see §2.1.2 in [10]) and certain linear combinations of degrees of
subbundles. The following lemma implies that definition (A.57) contains the one given in
[10] as a particular case. Suppose that py : H — U(W) is a representation on a Hermitian
vector space, and denote the holomorphic extension H® — GL(WW) with the same symbol
pw. Let (Ker py)t C hC be the orthogonal with respect to invariant pairing on h® of the
kernel of py : h€ — gl(W), and let 7 : h® — (Ker py)* be the orthogonal projection.

Lemma A.5. Take some element s € ih. Then pw(s) diagonalizes with real eigenvalues
A< < A Let Wy = Ker(\j Idw —pw (s)) and define We; = @, W;.

(1) The subgroup Py, C H® consisting of those g such that pw(g)(W<;) C Wx; for
any i is a parabolic subgroup, which can be identified with Py . Let x € (3® ¢)* be
a character such that s, = s. Then x s strictly antidominant for Py,s.

(2) Suppose that for any a,b € (Ker py)* we have {(a,b) = Tr pw(a)pw(b). Let u €
(Ker pw)* be any element, and write pw(u) = > pw(u)i; the decomposition in
pieces pw(u);; € Hom(W;, W;). Then

k—1
(A.58) (v ) = Tr(pw (s)pw (1) = A Tr o (u) + (A = Aier) Tr pur ().
i=1

(3) Suppose that pw satisfies the conditions of (2). Let E be a holomorphic H®-
principal bundle and let W = E(W) be the associated holomorphic vector bundle.
Let o be a reduction of the structure group of E to a parabolic subgroup P and an
let x be an antidominant character of P. The endomorphism pw (sy) diagonalizes
with constant eigenvalues, giving rise to a decomposition VW = @le W;, where
pw (sy) restricted to W; is multiplication by \; € R. Suppose that A\y < -+ < .
For each i the subbundle We<; = @;.; W; C W is holomorphic. We have:

k—1
deg(E)(0,x) = AedegW + ) (A — Ais1) deg We.

i=1



60 0. GARCIA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA

Proof. The first assertion and formula (A.58) follows from easy computations. (3) follows
from (2). O

Remark A.6. Condition (2) of the lemma is satisfied when W = b, endowed with the
invariant metric, and py : B — End W is the adjoint representation, since the invariant
metric on b is supposed to extend the Killing pairing in the semisimple part bs.

To clarify the other ingredients in the definition of (poly,semi)stability, we put ourselves
in the situation where HC is a classical group, so that there is the so-called fundamental
representation p : H® — GL(N,C) with N depending on H®. Suppose that E is an
HC principal bundle, and denote by V the vector bundle associated to £ and p. One can
describe pairs (o, x) consisting of a reduction o of the structure group of F to a parabolic
subgroup P C H® and an antidominant character x of P in terms of filtrations of vector
bundles

(A.59) V=0CViC- - SVt CVe=V),
and increasing sequences of real numbers (usually called weights)
(A.60) A< S Ay,

which are arbitrary if H© = GL(n, C), and which satisfy otherwise:

o if HC = O(n,C) then, for any i, V;_; = Vit = {v € V | (v,V;) = 0}, where (,)
denotes the bilinear pairing given by the orthogonal structure (we implicitly define
VE) = 0), and >\k—i+1 + )\z = 0.

e if H® = Sp(2n,C) then, for any i, V;_; =Vt ={v € V |w(v,V;) = 0}, where w is
the symplectic form on V' (as before, Vj = 0), and furthermore A\;_; 11 + A; = 0.

The resulting character y is strictly antidominant if all the inequalities in (A.60) are strict.

Given positive integers p, ¢ define the vector bundle VP4 = V& @ (V*)®4. For any choice
of reduction and antidominant character (o, x) specified by a filtration (A.59) and weights
(A.60) we define

(VPa),, = > V,®- @V, 0Vy®- @V cVP,
iyt A, SAj Ay
where V- = {v € V* | (v, V) = 0} and (,) is the natural pairing between V' and V*. Since
HC is a classical group, there is an inclusion of representations

B C (p®p1 ® (p*)®q1) @D (p®pr ® (p*)®qr>’
so that the vector bundle E(B) is contained in VP04 @ ... @ VP2 One then has
E(B),, = EB)n (V) & o (Vi)

).
ax
Suppose that the invariant pairing (,) on the Lie algebra h® is defined using the funda-
mental representation as (z,y) = Tr p(z)p(y). This clearly satisfies the condition of (2) of
Lemma A.5, so by (3) in the same lemma we have

k-1

deg(E)(o,x) = ApydegV + Z()\Z — Aiy1) deg V.

i=1

We now specify what it means to have a reduction to a Levi factor of a parabolic
subgroup, as appears in the definition of polystability. Assume that (o, x) is a pair specified
by (A.59) and (A.60), so that o defines a reduction of the structure group of E to a
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parabolic subgroup P C H®, and that ¢ € H(L ® E(B),,) and deg(E)(0, x) = 0. If the
pair (F, @) is a-polystable all these assumptions imply the existence of a further reduction
o1, of the structure group of H® from P to a Levi factor L C P; this is given explicitly by
an isomorphism of vector bundles

VGt =VieoWWVie - & Vi/Vi.

When H® = GL(n, C) such isomorphism is arbitrary. When H® is O(n, C) (resp. Sp(2n,C)),
it is also assumed that the pairing of an element of V;/V;_; with an element of V;/V,_4,
using the scalar product (resp. symplectic form), is always zero unless j +i =k + 1. We
finally describe the bundle E(B)], | in this situation. Let

(Gry™)g, = > (Vi /Vir-1)® @V, / Vi) ®(Viy Vi) @@V [ Vi)

q
Aig i =gy X,

Then
0 _ ,q1\0 qr )0
E(B),, = E(B) N ((GryPet)g @@ (GryPrin);, ).
A.7. Infinitesimal automorphism space. For any pair (E,¢) we define the infinitesi-
mal automorphism space of (E, ¢) as

aut(E, ¢) = {s € H'(B(H%)) | p(s)(10) = 0},

where we denote by p : B — End(B) the morphism of Lie algebras induced by p. We
similarly define the semisimple infinitesimal automorphism space of (E, ¢) as

aut®™(E, @) = {s € aut(E, ¢) | s(x) is semisimple for any z € X }.

Proposition A.7. Suppose that (E, ) is a a-polystable pair. Then (E, ) is a-stable if
and only if aut**(E, @) C HY(E(3)). Furthermore, if (E, ) is a-stable then we also have
aut(E, ¢) C H(E(3))-

Proof. Suppose that (E, ) is a-polystable and that aut**(E, ) = H°(E(3)). We prove
that (E,p) is a-stable by contradiction. If (E,¢) were not a-stable, then there would
exist a parabolic subgroup P4 € HT, a holomorphic reduction o € I'(E/P,), a strictly
antidominant character x such that deg(FE)(o, x) — (a, x) = 0, and a further holomorphic
reduction oy, € I'(E,/L4) to the Levi Ly (here E, is the principal P4 bundle given by o,
satisfying E, xp, H® ~ E) such that ¢ € H*(E(B)%, , ® L). Since the adjoint action of
L4 on h® fixes s,, there is an element

sox € HY(E,, (h°)) = HY(E(H))

which coincides fiberwise with s,. On the other hand s, is semisimple because it belongs
to ih. The condition that ¢ € H°(E(B)Y, |, ® L) implies that p(ssq) () = 0, 50 54y €

aut**(E, ). And the condition that P4 # H® implies that s, ¢ 3. This contradicts the
assumption that aut®(E, ¢) = HY(E(3)), so (E, @) is a-stable.

Now suppose that (E, o) is a-stable. We want to prove that aut(E, @) = H°(E(3)). Let
€ € aut(E, ). Since £ is a section of E x e b, it can be viewed as an antiequivariant
holomorphic map ¢ : E — h*. The bundle E is algebraic (to prove this, take a faithful
representation H® — GL(n,C) and use the fact that any holomorphic vector bundle over
an algebraic curve is algebraic), so by Chow’s theorem v is algebraic. Hence 1 induces
an algebraic map ¢ : X — h¢/HC, where h®/HC denotes the affine quotient, which is
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an affine variety. Since X is proper, ¢ is constant, hence it is contained in a unique fiber
Y =77 1(y) C h%, where 7 : b — h/HC is the quotient map.

By a standard results on affine quotients, there is a unique closed H® orbit ¢ C Y,
and by a theorem of Richardson the elements in & are all semisimple. Consider the map
o0 :Y — O which sends any y € Y to ys, where y = ys + ,, is the Jordan decomposition
of y (see for example [4]). We claim that this map is algebraic (note that the Jordan
decomposition, when defined on the whole Lie algebra h*, is not even continuous). To
prove the claim first consider the case h© = gl(n, C). Then Y C gl(n, C) is the set of n x n
matrices with characteristic polynomial equal to some fixed polynomial, say [[(z — \;)™,
with A; # A; for ¢ # j. By the Chinese remainder theorem there exists a polynomial
P € C[t] such that P = \; mod (t—X;)™ and P =0 mod t. Then themap o :Y — O'is
given by o0(A) = P(A), which is clearly algebraic. The case of a general h* can be reduced
to the previous one using the adjoint representation ad : h — End(h®) ~ gl(dim h<, C).

By construction o is equivariant, so it induces a projection pp : H(E(Y)) — H(E(0)).
We define & = pgr(§) and &, = & — &. Note that the decomposition & = & + &, is
simply the fiberwise Jordan decomposition of an element of the Lie algebra as the sum of a
semisimple element plus a nilpotent one. We claim that both & and &, belong to aut(E, ¢).
To prove this we have to check that p(&)(¢) = p(&.)(¢) = 0. But p(&) = p(&) + p(&)
is fiberwise the Cartan decomposition of p(§), since Cartan decomposition commutes with
Lie algebra representations. In addition, if f = f; + f,, is the Cartan decomposition of an
endomorphism f of a finite dimensional vector space V and v € V satisfies fv = 0, then
fsv = fov =0, as the reader can check putting f in Jordan form. This proves the claim.

We want to prove that & € H°(E(3)) and that &, = 0. We will need for that the
following lemma.

Lemma A.8. Let s € h® be a semisimple element. There exists some h € HC such that:

(1) if we write u = Ad(h™")(s) = h™'sh = u, + iu; with u,,u; € b, then [u,, u;] = 0;
(2) there exists an element a € b such that

Kerad(s) = Ad(h)(Kerad(u,) NKerad(u;)) = Ad(h) Kerad(a).

Proof. Using the decomposition h® = h@ih we define a real valued scalar product on h© as
follows: given u, + iu;, v, + iv; € h we set (u, + iu;, v, + iv;)g == —(u,, v,) — (us,v;). The
bilinear pairing (, ) restricted to b is negative definite, so the pairing (, )g is positive definite
on the whole h® and hence the function || ||? : © — R defined by ||s||? := (s, s)g is proper.
Let O, be the adjoint orbit of 5. Since s is semisimple, &, is a closed subset of h®, and hence
the function || - || : s — R attains its minimum at some point v = u, + iu; € O,. That
u minimizes || - ||? on its adjoint orbit means that for any v € h< we have (u, [v, u])r = 0,
since we can identify 7,0, = {[v,u] | v € h®}. Now we develop for any v = v, + iv;, using
the biinvariance of (,) and Jacobi rule:

0 = (u, + iy, [uy + iug, v, + iv;])r
= (u, + iuy, ([uy, v.] = [ug, v]) + i([us, v + [ure, vi]))r
= — (U, [, vp] — [z, vi]) — (s, [wi, ] + [, vi])
= (ur, [us, vi]) — (W, [ur, vi])
= —2([u;, uy|, vy).
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Since this holds for any choice of v, it follows that [u;,u,] = 0. So the endomorphisms
ad(u;) and ad(u,) commute and hence diagonalize in the same basis with purely imaginary
eigenvalues (because they respect the pairing (-, -)r). Hence Ker ad(u) = Ker ad(u, +iu;) =
Ker(ad(u,) 4+ iad(u;)) = Ker ad(u,) N Ker ad(u;). Since u, and u; commute, they generate
a torus T, C H. Take h such that u = Ad(h™')(s) and choose a € b such that the closure
of {e'* | t € R} is equal to T,. Then Kerad(a) = Kerad(u,) N Kerad(u;), so the result
follows. 0J

We now prove that & is central. Let v = w, + iu; = h™'ysh be the element given by
the previous lemma such that [u,,u;] = 0. Let 1, : E — h® be the antiequivariant map
corresponding to & € H°(E(h®)), whose image coincides with the adjoint orbit @,. Define
Ey={e € E|9Ys(e) =u} C E. Then Ej defines a reduction of the structure group of £
to the centralizer of u, which we denote by HS = {g € H® | Ad(g)(u) = u}. Define the
subgroups P = {g € HC | eFiluigeThiui s bounded as t — oo } C HC. By (3) in Lemma
A.2, P* are parabolic subgroups and L,, = P* NP~ = {g € H® | Ad(g)(w;) = u;} is a
common Levi subgroup of P and P~. By (1) in Lemma A.2, Hf is a connected subgroup
of H®, so by the same argument as in the end of the proof of Lemma A.8 we can identify
H§ with {g € H® | Ad(g)(uw;) = w;, Ad(g)(u,) = u,}. This implies that HS C L,,, hence
Ey induces a reduction ot (resp. o7) of the structure group of E to PT (resp. P7).
One the other hand, if y corresponds to iu; via the isomorphism (3 @ ¢)* ~ 3 @ ¢ (so that
s, = iu;), then y is antidominant for P* and —x is antidominant for P~.

Let ¢ : EL' — B be the antiequivariant map corresponding to . Since p(&,)(p) = 0
we have p(u)p(e) = 0 for any e € Ey. Let v € B be any element. Since u; and u,
commute, the vectors p(e'™i)v are uniformly bounded as t — oo if and only if the vectors
p(e!)p(e )y = p(e™)v are bounded. It follows that ¢ belongs both to HO(E(B);,X ®L)

and to HO(E(B)_,’_X ® L). Applying the a-stability condition we deduce that

deg (0", x) = (@,x) 20, and  degE(0~, —x) — (@, —x) > 0.

These inequalities, together with deg E(c™, x) — (o, x) = —(deg E(c, —x) — (o, —x)),
imply that deg E(o, x) — (a, x) = 0. Since we assume that (F, ) is a-stable, such a thing
can only happen if x, and hence any element in the image of v, is central.

Finally, we prove that £, = 0 proceeding by contradiction. Since the set of nilpotent
elements h¢ C b contains finitely many adjoint orbits, which are locally closed in the
Zariski topology, and since &, is algebraic, there exists a Zariski open subset U C X and
an adjoint orbit &, C hC such that &,(x) € O, for any x € U. Assume that &,(x) # 0 for
x € U (otherwise &, vanishes identically). Consider for any x € U the weight filtration of
the action of ad(&,(x)) on E(H°),:

Wk w M e cwEtcwl el

which is uniquely defined by the conditions: ad(&,(z))(W7) C W72 ad(&,(x)) (W) =0
and the induced map on graded spaces Grad(&,(z))’ : GrWJ — GrW_ 7 is an isomor-
phism. As z moves along U the spaces W7 give rise to an algebraic filtration of vector
bundles --- C W% c Wkt ... c Wit c WE .- € E(h%)|y. By the properness of
the Grassmannian of subspaces of h these vector bundles extend to vector bundles defined
on the whole X

(A.61) W hkocw TRl coocwrtcwr .- B(pY)
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and the induced map between graded bundles Grad(&,)’ : Gr W7 — Gr W™ is an isomor-
phism away from finitely many points. This implies that

(A.62) deg Gr W7 < deg Gr W .

By Jacobson—-Morozov’s theorem the weight filtration (A.61) induces a reduction o of the
structure group of E to a parabolic subgroup P C H® (the so-called Jacobson—Morozov’s
parabolic subgroup associated to the nilpotent elements in the image of &,|¢), and there
exists an antidominant character x of P such that ad(s,) preserves the weight filtration
and induces on the graded piece Gr W7 the map given by multiplication by j.

The subbundle E(B),, ® L C E(B) ® L can be identified with the piece of degree
0 in the weight filtration on E(B) ® L induced by the nilpotent endomorphism p(&,).
Since p(&,)(¢) = 0, we have ¢ € HO(E(B);X ® L) (the kernel of a nonzero nilpotent
endomorphism is included in the piece of degree zero of the weight filtration). Hence, by
a-stability, deg(FE)(co, x) — (o, x) has to be positive. On the other hand, the character y
can be chosen to be perpendicular to 3, so by (3) in Lemma A.5 we have

deg E(0,x) — (a,x) = »_ jdeg Gr I’
jez
By (A.62) this is < 0, thus contradicting the stability of (E, ¢). O

A.8. Jordan—Holder reduction. In this subsection we associate to each a-polystable
pair (F, ) an a-stable pair. This is accomplished by picking an appropriate subgroup
H' C H (defined as the centralizer of a torus in H) and by choosing a reduction of the
structure group of £ to H’ . The resulting new pair is called the Jordan-Hélder reduction
of (E, ). It is constructed using a recursive procedure in which certain choices are made,
and the main result of this subsection (see Proposition A.12) is the proof that the resulting
reduction is canonical up to isomorphism.

Let G’ C G be an inclusion of complex connected Lie subgroup with Lie algebras g’ C
g. Assume that the normalizer Ng(g') of ¢’ in G is equal to G'. Suppose that E is a
holomorphic principal G-bundle.

Lemma A.9. The holomorphic reductions of the structure group of E to G’ are in bijection
with the holomorphic subbundles F' C E(g) of Lie subalgebras satisfying this property:

for any x € X and trivialization E, ~ G, the fiber F,, which we identify to
a subspace of g via the induced trivialization E(g), ~ g, is conjugate to g'.

Proof. Let d = dim g’ and let Gry(g) denote the Grassmannian of complex d-subspaces in-
side g. Let Oy = {Ad(h)(g') | h € G} C Gry(g). By assumption there is a biholomorphism
Oy ~ G/G'. Furthermore, the set of vector bundles F' C E(g) satisfying the condition of
the lemma is in bijection with the holomorphic sections of E(Oy), so the result follows. [

We now apply this principle to a particular case. Let P C H® be a parabolic subgroup,
let L C P be a Levi subgroup and let U C P be the unipotent radical. Denote u = Lie U,
p = Lie P and [ = Lie L. The adjoint action of P on p preserves u and using the standard
projection P — P/U ~ L (see Section A.1 and recall that P is isomorphic to P, for some
choice of A) we make P act linearly on [ via the adjoint action. Hence P acts linearly on
the exact sequence 0 — u — p — [ — 0. We claim that Np([) = L. To check this we
identify P (up to conjugation) with some P4, then use (A.54) and (A.55) together with
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the surjectivity of the exponential map uy — Uy to deduce that no nontrivial element of
U normalizes [, and finally use the decomposition P = LU.

Lemma A.10. Suppose that E, is a holomorphic principal P-bundle. The reductions of
the structure group of E, from P to L C P are in bijection with the splittings of the exact
sequence of holomorphic vector bundles

(A.63) 0— Ey(u) = E,(p) — E,([) =0

given by holomorphic maps E,(l) — E,(p) which are fiberwise morphisms of Lie algebras.

Proof. Since Np(l) = L, we may use Lemma A.9 with G = P and G’ = L. The subalgebras
g C p which are conjugate to p are the same as the images of sections [ — p of the exact
sequence 0 — u — p — [ — 0 which are morphisms of Lie algebras. Hence the vector
subbundles F' C E(p) satisfying the requirements of Lemma A.9 can be identified with the
images of maps E([) — E(p) which give a section of the sequence (A.63) and which are
fiberwise a morphism of Lie algebras. 0

Suppose that (E, ) is a a-polystable pair which is not a-stable. By Proposition A.7
there exists a semisimple non central infinitesimal automorphism s € aut®(FE, ). The
splitting h® = 3 @ hT (recall that hS = [pC, hC] is the semisimple part) is invariant under
the adjoint action of H® (which is connected by assumption) hence we have H°(E(h*)) =
H°(E(3)) @ H°(E(h%)) so projecting to the second summand we can assume that s €
H(E(h5)).

As shown in the proof of Proposition A.7, the image of s is contained in an adjoint orbit
in h© which contains an element v = u, + iu; such that u,, u; are commuting elements of b.
Let a € b, = [h, h] be an infinitesimal generator of the torus generated by u, and wu; and let
HFY be the complexification of Hy := Zy(a) = {h € H | Ad(h)(a) = a}. Let ¢, : E — h°
be the antiequivariant map corresponding to the section s. Then

E,={e€ E|Yse)=u} CE

is a H{-principal bundle, which defines a reduction of the structure group of E. We say
that the pair (Ey, HY) is the reduction of (£, H®) induced by s and u.

Define By = {v € B | p(a)(v) = 0}. The restriction of p to H; preserves Bj, so we
have a subbundle E|(B;) C E|(B) ~ E(B). Let ¢ : E¥ — B be the antiequivariant
map inducing the section ¢ € H(E(B) ® L) (see Subsection A.4). By the definition of
the infinitesimal automorphisms, for any (e,l) € EE we have p(,(e))p(e,l) = 0. Now
p(s(e)) = p(u, + iu;) = p(u,) + ip(w;). Since p restricted to H is Hermitian, p(u,) and
p(u;) have purely imaginary eigenvalues, and since [p(u,.), p(u;)] = 0 it follows that

P(%(e))cb(ea l) =0 < p(ur)¢(6a l) = p(ui)¢(e> l) =0 < p(a)¢(e> l) =0

for any (e,!) € EL. This implies that ¢(E{) C By, and consequently ¢ lies in the subbundle
E\(B))® L C E(B)® L. To stress this fact we rename ¢ with the symbol ;. To sum
up: assuming that (£, ) is a-polystable but not a-stable we have obtained a subgroup
H, = Zy(a) C H, a Hi-invariant subspace By C B, and a new pair (E1, ¢1), where Ej is
a HE principal bundle and ¢; € H*(E,(B;) ® L). We denote the Lie algebras of H, and
its complexification by bh; and ht.

Proposition A.11. The pair (E1, By) is a-polystable.
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Proof. Since H; is the centralizer of a and a belongs to the center of h*, we have o € pt.
Hence the statement of the proposition makes sense. We first prove that (£, By) is a-
semistable. Let P, C Hf be a standard parabolic subgroup. By (2) in Lemma A.2 there
is some s € i (satisfying s = s, for an appropriate antidominant character x of P;) such
that P, = {g € HY | e®*ge™* is bounded as t — oo }. Since ih; C ib it makes sense to
define P = {g € H® | e*ge™" is bounded as t — oo }, which is a parabolic subgroup of
HEC, and clearly P, C P. Hence, any reduction o; of the structure group of E; to P, say
(E1)s, C E1, gives automatically a reduction o of the structure group of E to P, specified
by E, = (E1)e, xp, P C (E1), xp, H® = E. Furthermore, any antidominant character
X € ih of P; is an antidominant character of P, and there is an equality deg(E1)(o1, x) =
deg(E)(o, x). Finally, if the section ¢; belongs to H’(E1(B1),, , ® L), then it also belongs
to H(E(B),, ® L). All this implies that (E1, ;) is a-semistable.

To prove that (E, 1) is a-polystable it remains to show that if the reduction o; and x
have been chosen so that deg(E1)(o1, x) —(c, x) = 0, then there is a holomorphic reduction
or, of the structure group of (E}),, to the Levi L; = {g € HF | Ad(g)(s) = s} such that
(A.64) o1 € HY(E(B)?  ®L).

OL15X

Define L = {g € H® | Ad(g)(s) = s}, which is a Levi subgroup of P, let U; C P, and
U C P be the unipotent radicals, and denote the corresponding Lie algebras by u; = Lie Uy,
p; = Lie P, [; = LieL;, u = LieU, p = Lie P, [ = Lie L. By Lemma A.10 it suffices to
check that there exists a bundle morphism wy : (E}),, (1) — (E1)s, (p1) given fiberwise by
morphisms of Lie algebras, defining a splitting of the exact sequence

(A.65) 0= (E1)o (u1) = (E1)o (p1) = (1), () — 0.

Let T C H be the closure of {e™ | ¢ € R}, which is a torus. Denote by TV = Hom(T’, S*)
the group of characters of 7. We have decompositions

u:@un, PI@Pm [:@[m
neTv neTv neTv

and since the elements of HY fix a, the action of HF on u, p and [ respects the splittings
above. It follows that we have a commutative diagram with exact rows

0 Eo(u) Es(p) Eo(D) 0
0 (Ex)on(u) (E1)o, () (Er)o, () ——0

0 —— Byerv (B1)o1(ty) — Byerv (Er)o () —— Byerv (Er)o (1) —0

Taking in the bottom row the summands corresponding to the trivial character n = 0 (the
constant representation 7' — {1} € S') we get the exact sequence (A.65). By hypothesis
the pair (F, ) is a-polystable, so there is a section v : E,(I) — E,(p) of the top row,
given fiberwise by morphisms of Lie algebras. Using the isomorphisms and equalities in
the diagram, this gives rise to a section

w : @ (E1>0'1([17) - @ (El)cn (pn)

neTv neTv
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of the bottom row. Then w = (wy,)yuerv, where wy, : (Ei)y (I;) — (E1)e (b)), and
one checks that w; := wy is fiberwise a morphism of Lie algebras and that it gives the
desired splitting of the sequence (A.65). To check (A.64) we proceed as follows. First
note that s, belongs both to the center of [; and [, hence it defines holomorphic sections
S0 € H'((E1)s, (1)) and s, € HY(E,(1)). Condition (A.64) is equivalent to

(A.66) p(wi(s0,.x))(0) = 0

(note that (E)s, (p1) is a subbundle of (E))s, (h%) ~ E1(h%), hence it acts fiberwise on
E(B)®L). To prove this equality, we use again the hypothesis that (F, ) is a-polystable,
which implies that ¢ € H(E(B),, , ® L), where o, is the reduction specified by w. This
is equivalent to p(w(ssy))(¢) = 0, and this implies (A.66) because s, € ly C P, v I U

Let (E,p) be a a-polystable pair. Iterating the procedure described in the previous
subsection as many times as possible we obtain a sequence of groups H = Hy D H; D Hy D

. and elements a; € (h;—1)s = [b;—1,b;—1] such that H; = Zp,_ (a;), vector subspaces
B =By D> By D By D ..., and a-polystable pairs (E, p) = (Eo, vo0), (E1,¢1),- .., where
Ej is a H-principal bundle over X and contained in E;_y, and ¢; € H°(E;(B;)®L). Since
dim H; < dim H;_4, this process has to eventually stop at some pair, say (£, ¢,), which
will necessarily be a-stable. We say that (E,., ¢, H,, B,) is the Jordan—H®&lder reduction
of (E,p,H,B). To justify this terminology we need to prove that the construction is
independent of the choices made in the process. Note that the elements in the sequence
{ag,a1,...,a;} all belong to the initial Lie algebra h and they commute pairwise. Hence
they generate a torus 7' C H, the closure of the set {exp Y t;a; | to,...,t € R}, and H,
is the centralizer in H of T(g ). With this in mind, the following proposition implies the
uniqueness of the Jordan—Hélder reduction.

Let H; C H be the connected Lie subgroup whose Lie algebra is hs = [b, b].

Proposition A.12. Let (E, ) be a a-polystable pair. Suppose that T',T" C H are tori,
and define H' (resp. H") to be the centralizer in H of T" (resp. T"). Let B’ (resp. B")
be the fized point set of the action of T' (resp. T") on B, and assume that there are
reductions E' C E (resp. E" C E) of the structure group of E to H'® (resp. H"®). Let
¢ : EY' — B the equivariant map corresponding to . Assume that $(E'Y) C B’ ® L and
$(E"") € B" ® L. Denote by ¢' € H*(E'(B') ® L) and " € H(E"(B") ® L) the induced
sections. Finally, suppose that both (E',¢") and (E",¢") are a-stable. Then there is some
g € HE such that H® = g~Y(H"®)g, E' = E"g, T'"® = g7}(T"%)g and B' = p(¢g~')B".

Before proving Proposition A.12 we state and prove two auxiliary lemmas.

Lemma A.13. Let v/,u” € b and let s',s" € H'(E(h®)) be sections such that s'(x) (resp.
s"(x)) is conjugate to iu' (resp. iu") for any x € X. Let (E', H'®) (resp. (E",H"")) be
the reductions of (E, H®) induced by s' and iu' (resp. s" and iu").

(1) Assume that [s',s"] = 0. Let "% be the Lie algebra of H"C. Then we can naturally
identify s with a section of E"(H"C).

(2) Let 3" be the center of B"C. If s' € HY(E"(3")) then there is some h € HE such that
E" C E'h as subsets of E.

Proof. Let ¢/ 9" : E — B® be the antiequivariant maps corresponding to s’,s”. The
condition [s',s”] = 0 implies that for any e € E the elements ¢'(e),1"(e) € hT commute.
Since E” = (¢")7'(iv/"), this implies that, for any e € E”, ¢'(e) commutes with iu”, so
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/(e) belongs to h”C. This proves (1). We now prove (2). First observe that, being a
centralizer of a semisimple element in h¢, H”C is connected (see e.g. Theorem 13.2 in
|3]). Hence, the adjoint action of H"”C on h” fixes any element in 3”. Take some element
e € E". By hypothesis, there is some h € H® such that ¢'(e) = Ad(h™1)(iu'), so e € E'h.
The condition s’ € H*(E”(3")) implies that 1'(e) € 3” so, by the previous observation, for
any g € H'® we have ¢/(eg) = Ad(g~!) Ad(h~Y)(iv/) = Ad(h~Y)(iv/), hence eg € E'h. Tt
follows that E” C E’h. O

For any u € b we denote by T, C H the torus generated by wu, i.e., the closure of
{exptu |t € R}, and T.* denotes the complexification of T,.

Lemma A.14. Let v/, u" € b, = [, b] and let H'® (resp. H"C) be the complexification of
the centralizer Zy (u') (resp. Zy(u")). If there is some g € H® such that H'® = g~'(H"®)g
then TG = g7'TG.g.

Proof. The center of h'C is 3 Lie TG, and the sum is direct because u’ is assumed to belong
to h,. Similarly, the center of h”C is 3 ® LieTS,. Since H is connected, its adjoint action
on 3 is trivial, and hence taking the center of the Lie algebra in each side of the equality
TS = g7'T% g we deduce that Lie TS = g~ *(Lie TS )g. This implies the equality between
the complexified tori. O]

We now prove Proposition A.12.

Proof. Let v/, u” € b, satisfy 7" = T,, and T” = T,». The existence of reductions of E to
the centralizers of u' and u” gives rise to sections &', 5" € aut**(E, p) ¢ H*(E(h®)) such
that s'(x) (resp. s”(x)) is conjugate to is’ (resp. is”) for any z € X.

If [¢,s"] = 0 then by (1) Lemma A.13 we can view & € aut®(E”,¢") and s" €
aut®*(E’, ¢'). Since by assumption (E”, ¢”) and (E’, ¢') are a-stable, by Proposition A.7 we
deduce that s is central in the centralizer of s” and vice-versa. By (2) in Lemma A.13 there
exist g,h € H® such that £/ C E”g and E” C E'h. This implies that E' C E"g C E'hg,
but E' C E'hg clearly implies that £ = E’hg, which combined with the previous chain
of inclusions gives B/ = E”g. It then follows that H'® = g~}(H"%)g. By Lemma A.14 we
have TG = g71T%g. Finally, since the fixed point set of T acting on B coincides with the
fixed point set of T,y (and similarly for T'G,) we have B’ = p(g~1)B".

Suppose now that [s',s”] # 0. There are holomorphic splittings

(A.67) EW)=E,©---0E,=F & ---&F,
such that ad(s’)|g; = A Idg; and ad(s”)|r, = px Idp,, where the real numbers Ay < --- < A,
(resp. p1 < --- < p,) are the eigenvalues of ad(is’) (resp. ad(is”)). Define for any

j the subbundles Fe; = @, Fr C E(h°) and E<; = @, Ex C E(h%). Denote by
e+ E(h%) — Ej the projection using the decomposition (A.67). Let & (resp. &, F<;,
Z;) be the sheaf of local holomorphic sections of E<j (resp. Ej, F<;, F;). Define for any
7 the sheaf

p
yij = @ﬂ'k(@ﬁgk N gﬁj)-
k=1
This is a subsheaf of the sheaf associated to F(h*), and we denote by Féj C E(h°) the
subbundle obtained by taking the saturation of fij.
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By (1) in Lemma A.5 s” induces a holomorphic reduction ¢” € T'(E(H®/P)) of the
structure group of F to P = Pj,».

Lemma A.15. The filtration Fél C---C Fiq = E(h%) also induces a reduction o* of the
structure group of E to P.

Proof. For any t € R there is a natural fiberwise action of e**" on E(H®/P), which allows
to define e*'0” € I'(E(H®/P)). For the reader’s convenience, we recall how this is defined.
For any x € X we can identify o”(x) with an antiequivariant map &, : £, — H®/P (here
HEC acts on the left of H®/P). Similarly, s'(x) corresponds to a map ¢ : E, — h which
is antiequivariant and hence satisfies, for any f € E, and g € HE,

(A.68) eUU19) — gltil) g
Then €' ¢”(x) corresponds to the antiequivariant map .., : E, — HC/P defined as

() = ¥ DG () = Egu(fe ).

That &, is antiequivariant follows from (A.68). For each x the action of ¢**'®) defines
on the fiber E,(H®/P) a decomposition in Zariski locally closed subvarieties {%;}, the
Schubert cells. Each %, ; corresponds to a connected component C,; C E,(H®/P) of
the fixed point set of the action of {"*'® | ¢t € R} on E,(H®/P), and €, is the set of
z € E,(H®/P) such that "' ®) 2 converges to C,; as t — o0o. Since s’ is algebraic and, for
any x, s'(x) is conjugate to the same element iu', each €; = J, .y %5, is a Zariski locally
closed subvariety of E(H®/P). Since ¢” is an algebraic section of E(H®/P), there is a
Zariski open subset U C X such that ¢”|; is contained in a unique cell 6; C E(H®/P).
Then for any = € U the limit of := lim, .o, e 0" (z) € C,; C % is well defined, and the
filtration {ﬁijw
algebraic section 0?} € I'(U; E(H®/P)). Finally, Fij results from extending the reduction
ol to an algebraic section of € I(E(HC/P)), which exists and is unique thanks to the
properness of the flag variety H®/P. O

} corresponds to of. As z moves along U the elements of describe an

Let x be the antidominant character of P corresponding to u”, so that s, = iu”.

Lemma A.16. We have ¢ € H'(E(B), L®L).

Proof. Let U C X denote, as in the preceeding lemma, a nonempty Zariski open subset
such that for any € U we have o%(z) = lim, ., €' 0”(z). By continuity, it suffices to
prove that for any =z € U

(A.69) o) e E(B), ®L.

Uﬁ,x
The vector ¢(z) corresponds to an antiequivariant map ¢ : EX — B, whereas 0% corre-
sponds to an antiequivariant map & : E, — H®/P. Define P! = ¢(P) C E,. Then P!
is an orbit of the action of P on E, on the right (which can also be obtained by identi-
fying E(H®/P) with the quotient E/P). And (A.69) is equivalent to requiring that ¢(z)
restricted to (P#)L is contained in By . Define for any real ¢ the map & : E, — H®/P
as &t (f) = Egn(fe ™)), where 4 : E, — b€ is the antiequivariant map corresponding to
s'. Let also P! be £,'(P). By the previous lemma, we have &,; = lim;_ &, so we have
P! = lim,_,,, P! as orbits of E,/P. By continuity, it suffices to check that for any t the
restriction of ¢(x) to (P})* is contained in B.
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Since ¢, " € aut(FE, ), we have

(A.70) ple™)(p) =
and we also have ¢ € HO(E(B);,,% ® L). Defining P/ = £,,/(P) this implies that

(A.71) o(g,1) € B, for any g € P! and [ € L,.

Assume that f € P! and [ € L,. Then &:(f) = &En(fe W) € P, so fe ) ¢ P,
Hence

o(f.1) = o(fe 1) € B,

where the equality follows from (A.70) and the inclusion follows from (A.71). This proves
that ¢(x) maps (P})" inside By, so we are done. O

Hence we can apply the a-polystability condition, which in view of Lemma A.5 and
Remark A.6 reads

q—1

(A.72) deg(E)(0%, X) = pgdeg FE, + > (1j — pjs1) deg FE; > 0

j=1

(the (a, x) term vanishes because we assume that s” is orthogonal to the center of ). On
the other hand, since s” € aut®(F, ¢), the same arguments as in the proof of Proposition
A.7 imply that

q—1

(A.73) deg(E) (0", x) = ptgdeg Feg+ Y (1t — ptj41) deg Fej = 0,

J=1

An easy computation shows that deg ﬁéj = deg F<;, whereas in general deg g;éj < deg Féj
with equality if and only if ﬁéj = (ﬁéj)w, so that in general

deg F'c; < deg Féj.

Since deg F«, = deg ﬁéq = deg Féq (because .Z<, is equal to the sheaf associated to
E(H%)) and p; — pj1q < 0 for any 1 < j < g — 1, we have

deg(E)(0”, x) > deg(E)(d*, x),

which combined (A.72) and (A.73) yields deg(E)(c”,x) = deg(E)(c*,x) = 0. By the
previous comments, this equality implies fij = (ﬁij)w for any j, so that 35; is the
sheaf of local holomorphic sections of a subbundle Féj C E(h%). This has the following
consequence: if we define .Z} = @, mx(.Z1 N &), then .Z} is also the sheaf of sections
of a subbundle F} c E(h) and we have Fij = D, F'. In particular, we obtain a
decomposition E(h®) = @, F'. Let st = N IdFJp € HY(E(H®)). Then we have

[s',s*] = 0 and furthermore s* € aut®*(E, ). These two properties imply that s* €
aut**(E’, ¢'), so by Proposition A.7 s is central in the centralizer of s’. Similarly s is
central in the centralizer of s%, so we can proceed as in the first case and deduce the
statement of the theorem with s” replaced by s*. Reversing the roles of s’ and s” we obtain
the theorem. 0



REPRESENTATIONS OF SURFACE GROUPS 71

A.9. Hitchin-Kobayashi correspondence. Choose a Hermitian metric by, on the com-
plex line bundle L, and denote by F;, € 2%(X;iR) the curvature of the corresponding Chern
connection. Suppose that E, C E defines a reduction of the structure group of E from
H® to H. Then the vector bundle F(B) = E X yc B can be canonically identified with
Ej, x g B, and hence inherits a Hermitian structure (obtained from the Hermitian structure
on B, which is preserved by H). So for any ¢ € H’(E(B) ® L) it makes sense to define

i
pn(p) = p* (—§<P ® w*’“"L> :
Here we identify ip®¢**"z with a skew symmetric section of End(E(B)®L)* = End(E(B))*,
hence a section of E,(u(B))*. The map p* : Ey(u(B))* — En(h)* is induced by the dual
of the infinitesimal action of h on B. Using the isomorphism h* ~ h given by the nonde-
generate pairing (-, -,) we view (@) as a section of Ej,(h).

Theorem A.17. . Let (E,p) be a a-polystable pair. There exists a reduction h of the
structure group of E from HC to H, given by a subbundle E, C E, such that

(A.74) A(F, + Fp) + pn(p) = —ia,

where Fy, € Q*(X; Ey(h)) denotes the curvature of the Chern connection on E with respect
to h and A : Q*(X) — Q%X) is the adjoint of wedging with the volume form on X.
Furthermore, if (E, @) is a-stable then h is unique. Conversely, if (E,y) is a pair which
admits a solution to equation (A.74), then (E,p) is a-polystable.

Proof. Suppose first of all that (E,y) is a-stable. Then by Proposition A.7 we have
aut**(E, ¢) = H(E(3)), so (E, ) is simple in the sense of Definition 3.8 in [10]. Hence
we can apply Theorem 4.1 of [10] to deduce the existence and uniqueness of h. (Recall
that the notion of a-stability given in the present paper coincides with the one in [10]
thanks to (3) in Lemma A.5.) If (E,¢) is a-polystable but not stable, then we consider
the Jordan—Holder reduction (E', o', H', B") of (E, ¢, H, B). Now the pair (E’, ) is simple
and we can proceed as before to get a reduction b’ of the structure group of £’ from H’ €
to H' satisfying (A.74). But b’ also defines a reduction of the structure group of E from
HC to H, by defining E), := Ey xp H C Ejy xz H® = E. For this choice of h, equation
(A.74) still holds.

The proof of the converse is standard. One first proves that if (£, ¢) admits a solution to
the equations then (E,¢) is a-semistable (see for example [10]). To prove a-polystability
one can use the same strategy as in the Hitchin-Kobayashi correspondence for vector
bundles. Namely, assume that h € E(H®/H) defines a reduction of the structure group to
H, in such a way that equation (A.74) is satisfied. Assume also that P C H® is a parabolic
subgroup, that there is a holomorphic reduction ¢ of the structure group of F to P, an
antidominant character x of P such that ¢ is contained in E(B);, ® L and such that

(A.T5) deg(E) (o, ) — (@, x) = 0.

We want to prove that there is a further reduction o, of the structrue group of E from P
to L and that ¢ is contained in £(B)% = ® L.

OLsX
Let Ej C E be the principal H bundle specified by h. The reduction ¢ corresponds to
an antiequivariant map & : E — H®/P, so that £(f) is a parabolic subgroup of H® for each
f € E. Then, using the construction given in Lemma A.3 we define an H-antiequivariant
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map ¢ : B — ib by setting ¥(f) = s¢(y), for any f € Ej,. The map 9 corresponds to a
section of Ej,(ih), which we denote by

Shox € Eh(lf)) .

For details on the following notions the reader can consult [38]. Let E be the C*> H-
principal bundle underlying FEj,, and let o/ be the set of connections on E. Each element
of A € &/ defines a holomorphic structure 94 on E. Let also .7 be the space of smooth
sections of Ex g B® L, and let ¢4 be the gauge group of E. The space &/ x.# has a natural
structure of infinite dimensional symplectic manifold, with respect to which the action of
¢ is Hamiltonian and (A, ¢) — u(A, ¢) := A(F,+ FL) + un(p) +ia can be identified with a
moment map for this action (see Section 4 in [38]). Furthermore, —is; ,, can be identified
with an element in the Lie algebra of the gauge group ¢.

We will now apply the notions of maximal weight A and the function ), (see Section 2.3
in [38]). Let A € & be the element giving rise to the d-operator which corresponds to
the holomorphic structure E. A simple computation tells that (A.75) is equivalent to the
maximal weight of —is, 5, on (94, ¢) being zero:

)\((gfb 30)7 _ish,a,x) = tlirgo )‘t((EAa So)a _ishmx) =0.

Equation (A.74) is equivalent to the vanishing of the moment map of the action of ¢ at
the pair (94, ¢). Hence we have A\((Da, ), —isnoy) = 0, and since \((Da,¢), —iSh.o.)
is nondecreasing as a function of ¢ it follows that A;((0, ), —ish..,) = 0 for any ¢. This
implies that e'*rox fixes the pair (Ja, ). That 04 is fixed implies that s, , induces a
holomorphic reduction o, of the structure group of E to L, and that ¢ is fixed implies
that  is contained in E(B),, ® L. O

A.10. Automorphism groups of polystable pairs. In this section we include a result
which is required for the proof of Theorem 3.12. We also find it interesting by itself
and think it might be of use in other context. Let (E,p) be an L-twisted pair. Let
Aut(FE, ¢) denote the holomorphic automorphisms of (E, @), i.e., the holomorphic gauge
transformations ¢ : £ — E such that ¢ o g* = ¢, where ¢ : E* — B is the antiequivariant
map corresponding to ¢ and ¢* : E xx L — E xx L is the transformation acting as ¢ in
the F factor and the identity in the L factor.

The group Aut(F, @) carries a natural structure of Lie group with Lie algebra equal to
aut(F, ¢).

Lemma A.18. Let (E,p) be an a-polystable pair. Then Aut(FE, ) is a reductive Lie
group.

Proof. If (E, ) is a-polystable, then by Theorem A.17 there exists a reduction h €
[(E(H®/H)) of the structure group satisfying equation (A.74). By the arguments in
the proof of Theorem A.17 this can be interpreted as the vanishing of the moment map
of the action of 4 (the gauge group of Ej) on &/ x . at the point (A, ¢), where A is
the Chern connection of £ and h. It follows (see for example Proposition 1.6 in [51]) that
Aut(FE, ¢) is the complexification of Aut(E,¢) N¥Y. Any g € Aut(F,¢) N'Y preserves
simultaneously the complex structure of £ and the reduction h, hence it also preserves
the Chern connection A. But the group of gauge transformations in ¢ preserving a given
connection can be identified with a closed subgroup of the automorphisms of the fiber of
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Ej, at any given point, and consequently is a compact Lie group. Hence Aut(FE,¢) N¥ is
a compact Lie group, so by the previous argument Aut(F, ¢) is reductive. 0]

APPENDIX B. TWISTED (G-HIGGS PAIRS AND SIMPLIFIED STABILITY

B.1. Twisted G-Higgs pairs. Let GG be a real reductive Lie group, let H C G be a
maximal compact subgroup and let g = h @& m be a Cartan decomposition, so that the Lie
algebra structure on g satisfies

(h,b] C b, [h, m] C m, [m, m] C .

The group H acts linearly on m through the adjoint representation, and this action extends
to a linear holomorphic action of H® on m® = m ® C (this is the isotropy representation).
Furthermore, the Killing form on g induces on m® a Hermitian structure which is preserved
by the action of H.

Let X be a compact Riemann surface and let L be a holomorphic line bundle on X.
We define an L-twisted G-Higgs pair to be a pair (E, ¢), where E is a holomorphic HC®-
principal bundle over X and ¢ is a holomorphic section of E(m®) ® L. Here E(m®) is the
m®-bundle associated to E via the isotropy representation. Let 3 be the centre of h€ and let
a € ih N 3. The notions of a-stability, semistability and polystability given in Section A.5
apply naturally to L-twisted G-Higgs pairs. A polystable L-twisted G-Higgs pair satisfies
the following.

Proposition B.1. Let (E, ) be an L-twisted G-Higgs pair which is a-polystable but not
a-stable. Then the Jordan—Hdélder reduction of (E, ) is an L-twisted G'-Higgs pair for
some reductive subgroup G' C G.

Proof. Recall from Section A.8 that in the Jordan—Hélder reduction (E’,¢’, H', (m®)’) of
(E, o, H;m") the subgroup H' C H is defined as the centralizer of a torus 7' C H and that
(m®)’ is the fixed point set of T acting on m®. So it suffices to prove that the Lie algebra
structure on b @ m induces a structure of Cartan pair on (', (m®)’ N'm). The action of T
on h and m induces decompositions

b:@bn and m:@mn,
neTv neTv
where T denotes the group of characters of T' (for which we use additive notation). Then
one has, as usual,

B0: 0] C By By, M) C My, [m,, m,] C byyp

for any pair of characters n,u € TV. Taking n = p = 0 and observing that ' = by and
(m€) N'm = my, it follows that

.6 cCy, B, (m%) Nm] C (M%)’ Nm, [(m®) Nm, (m®) Nm] C ¥,
so that ', (m®)’ N'm) is certainly a Cartan pair.

We can make a more precise statement: defining G’ as the centralizer of T inside G we
have proved that the Jordan—Holder reduction of (E, ¢) is an L-twisted G’-Higgs bundle.
OJ
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B.2. L-twisted Sp(2n,R)-Higgs pairs. Let G = Sp(2n,R). The maximal compact sub-
group of G is H = U(n) and hence H® = GL(n,C). Now, if V = C" is the fundamental
representation of GL(n,C), then the isotropy representation space is:
m® = S?V ¢ S*V*.
An L-twisted Sp(2n, R)-Higgs pair is thus a pair consisting of a rank n holomorphic vector
bundle V' over X and a section
o= (8,7) € H'(L® SV & L®S*V").

Let « be a real number. Following Sections A.5 and A.6 (see also [10]), (V, ¢) is said to
be a-semistable if for any filtration by holomorphic subbundles

Y =0CWNEWhG - CVi=V),

the following condition holds. For any sequence of real numbers A = (A} < Ay < -+ < \g)
define the subbundle

N AN= > LaViesVie Y. LeViesVi, cLe(SVe s,
Ai+A; <0 Ai+A; >0
where, if V', V" are subbundles of V, V' ®g V" denotes the subbundle of S?V induced by
V' ® V" under the projection V ®V — S?V. (This is the same as the bundle L ® E(B),
of Appendix A; we use the notation N (%', \) for convenience.) Define also
k-1
AV, X, a) = \p(deg Vi, — ang) + Y (A; = A1) (deg V; — any),
j=1
where n; = rkV; (this expression is equal to deg(E)(o,x) — (a,x)). Then, if ¢ €
HO(N(7,)\)), we must have

(B.76) d(V,\ a) > 0.

The pair (V, ) is a-stable if it is a-semistable and furthermore, for any choice of ¥
and \ for which there is a j < k such that A\; < A1, whenever ¢ € H'(N(¥, X)), we have

(B.77) d(V,\ ) > 0.

It is well known that when ¢ = 0, the a-(semi)stability is equivalent to o = (V') (where
w(V) = deg V/rkV is the slope of V) and V' being (semi)stable. The next two theorems
give a generalization of this fact for general ¢, providing a much simpler (semi)stability
condition for quadratic pairs. It is important to notice that in the statement of the the-
orems, the inclusions in the filtration of V' are not necessarily strict, in contrast to the
original definition. The proofs of these theorems will be given in Subsections B.4 and B.5.

Theorem B.2. Let (V,p) be an L-twisted Sp(2n,R)-Higgs pair. The pair (V,p) is a-
semastable if and only iof for any filtration of holomorphic subbundles 0 C V}, C Vo C V
such that

(B.78) o =(8,7) € H(L® ((S*Va+ Vi @5 V) & (S*Vi- + V5" @5 V™))
we have
(B.79) degV —deg Vo — deg Vi > a(n — ny — ny),

where n =rkV.
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Remark B.3. The statement of the Theorem also covers the case ¢ = 0, as we shall
now explain. If 0 = V; = V5, then the condition (B.78) is equivalent to 8 = 0 and the
inequality (B.79) reads degV > an. If Vj =V, =V, then (B.78) is equivalent to v = 0
and the inequality (B.79) says that deg V' < an. Consequently, if ¢ = (3,7) = 0, then
a-semistability implies @ = deg V/rk V' = pu(V). In this case, taking V; = 0 and Vo, C V
any subbundle, the condition (B.79) is equivalent to (V2) < p(V'), so V' is semistable. On
the other hand one can check that if V' is semistable and o = p(V'), then the condition
(B.79) is satisfied for any filtration 0 C V; C V, C V.

Theorem B.4. Let (V,¢) be an L-twisted Sp(2n,R)-Higgs pair. The pair (V,p) is a-
stable if and only if the following condition is satisfied. For any filtration of holomorphic
subbundles 0 C Vi, C Vo, C V' such that

e H(L® ((S*Va+ V1 ®@s V) @ (S*Vi- + V5" ®s V?Y)))
the following holds: if at least one of the subbundles Vi and Vy is proper (that is, non-zero
and different from V') then
degV —deg Vo — deg Vi > a(n — ny — ny),
(where n =1k'V'), and in any other case

degV —deg Vo — deg Vi > a(n — ng — ny).

Remark B.5. Arguing as in Remark B.3 we deduce from the previous theorem that if ¢ = 0,
then (V,0) is a-stable if and only if @« = degV/rkV and V is a stable vector bundle.

B.3. Some results on convex sets. Let W be an n dimensional vector space over R. We
denote the convex hull of any subset S C W by CH(S) C W. Let hq, ho, . .., h; be elements
of the dual space W*. We assume that [ > n and that the first n elements hq, ..., h, are
a basis of W*. Define for any h € W* the set

{h<a}={veW|h() <a} CW,
and define {h = a} C W similarly.

Counsider the convex subset of W

C=(){h <0}

(here and below if no range is specified for the index then it is supposed to be the whole
set {1,...,1}).

Remark B.6. The fact that {hy,..., i} span W* is equivalent to the condition that C
does not contain any positive dimensional vector subspace of W. Indeed, if h € W* and
Z C W is a subspace contained in {h < 0}, then Z is contained in {h = 0}. Consequently
any vector subspace of W contained in C' has to lie in (),{h; = 0} = 0.

Lemma B.7. C'= CH(9C).

Proof. For any a < 0 define C,, = CN{hy +---+ h, = a}. Since for any € C we have
hi(z) < 0 and furthermore hy,..., h, is a basis of W*, we deduce that C, is compact.
Hence C, = CH(0C,). Now, take any z € C and set a = hy(x) + --- + hy(z). Then
z € C, = CH(0C,) C CH(0C). This proves the inclusion C' C CH(OC). The other
inclusion follows from the fact that C' is convex. ]
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Now we have 0C' = |, C;, where C; = {h; = 0} N C. On the other hand, for any i the
collection of elements hy, ..., h; induce elements A/, ..., h; on the dual of {h; = 0} which
obviously span. Hence we may apply again the lemma to C; and deduce that C; = CH(9C}).
Proceeding recursively, we deduce that C' is the convex hull of the union of the sets

Cr=(Yhi=0}nC
i€l
where I runs over the collection of subets of {1,..., [} satisfying
(B.80) |I| = n — 1 and the vectors {h; | i € I} are linearly independent.

Each such subset C; is a halfline.

Lemma B.8. Fiz a basis ey, ... e, of W, and denote by e}, ..., e the dual basis. Assume
that any h; can be written either as e — e; or £(el + e;) for some indices a,b depending
on i. Then for any I satisfying (B.80) there are disjoint subsets P, N C {1,...,n} so that
defining the element c; =Y, pe; — ZjeN e; we have C1 = Rxocy.

Proof. Pick some I satisfying (B.80), so that C; = (,c;{h: = 0} is one dimensional, and
let ¢; € W be an element such that C; = Rxoc;. Write ¢; = ) A\je; and take some nonzero
A€ {M, ..., A} Define Py = {j | \; = A} and N, = {j | \; = —A}. We want to prove
that for any j ¢ P\ U Ny, \; = 0. Suppose the contrary. Then
C/I = Z 2)\j€j + Z >\jej
JEPA\UN, j¢PyUN,

does not belong to Rc;. However, for any pair of indices a, b we clearly have

(e —e)er=0= (e —e;)c; =0 and (e +ep)er =0= (e} +¢€;)c; = 0.
This implies by our assumption that ¢; € (),c;,{hi = 0} = Cj, in contradiction with the
fact that C; is one dimensional. O

B.4. Proof of Theorem B.2. As already mentioned, when ¢ = 0 the pair (V,0) is a-
semistable if and only if & = p(V') and V is semistable. Thus, by Remark B.3, it suffices
to consider the case ¢ # 0. Let 7 be any filtration of V', and define

A o) ={AeR [N < <M, e NV, N
The pair (V, ) is a-semistable if for any A € A(¥, ) we have
d(V, M\ a) > 0.

But d(7,\, «) is clearly a linear function on A, so to check stability it sufficies to verify
that d(¥,\,a) > 0 for any A belonging to a set A’ C R¥ whose convex hull is A(7, ).
Define for any ¢, the subbundles

Dij=Vi®sV;+Vii®@sV+V ®sVjoy C SV

and
Di; =V @s Vi, + Vi @s V' + V' @5 Vi C SV

A tuple \; < -+ < A\ belongs to A(7, ¢) if and only if these two conditions holds:

e for any ¢,j such that (3 is contained in H°(L ® D, ;) but is not contained in the
suIn HO(L & Di—l,j) + HO(L & Di,j—l); we have )\7, + )\j S 0.

e for any 4, j such that v is contained in H(L ® Dj ;) but is not contained in the sum
H(L ® Dj,, ;) + H(L® D};,,), we have \; + X; > 0.
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Hence A(7,¢) C RF is the intersection of halfspaces of the form {\; — A1y < 0} and,
{Aa + X < 0} (for at least one pair (a,b), if 5 # 0) or {A. + A\¢g > 0} (for at least
one pair (¢, d), if v # 0). Since the only nonzero vector subspace included in the set
A ={)\ <--- < A} is the line generated by (1,...,1) and the set A(¥, ) is contained
and A and furthermore satisfies at least one equation of the form A\, 4+, > 0or A\.+ g <0,
it follows that A(7,¢) does not contain any nonzero vector subspace.

So by the arguments in the previous subsection A(7,¢) is the convex hull of a col-
lection of half lines of the form R>¢)\;, and by Lemma B.8 we can assume that the
coordinates of A; are 0 and £1. But if A\; € A(¥,¢) we necessarily must have ¢; =
(—=1,...,—-1,0,...,0,1,...,1), say a copies of —1, b of 0 and k — (a + b) of 1. Consider
first the case when 0 < a < a + b < k. Define now the filtration

V=0 CVa G Vars G V).
One can easily check that
d(”//, )‘17 Oé) = d(/y/,a (_1a 07 1)a Oé) = degv - deg V;z - deg Va—i—b - a(n — Mg — na-i—b)a
and that N(¥, ) = L® ((S*Vars + Vo ®@s V) @ (SPV;- + VL, @5 V*)).

Next we need to consider the cases where one or more of the inequalities in the condition
0 <a < a-+b< kbecomes an equality, in which case some of the inclusions in 0 C V, C
Vats © V will not be strict. Since in the semistability condition one has to consider
strict inclusions, a priori we should consider separately each case (so for example, if 0 <
a < a+b =k, we consider the filtration 0 C V, C V with weights A\ = (—1,0), and
so on). In the following table we list the possible degenerations (apart from the case

a =a+b=Fk =0, which is impossible since k¥ > 1) and the corresponding form of the
conditions ¢ € H'(N(¥,))) and d(¥, A, a) > 0.

Degeneration o€ H(N(V,\) d(V,\c) >0
O=a<a+b=k always satisfied always satisfied
O=a=a+b<k 6=0 degV > an
O<a=a+b=k v=0 degV < an
O<a<a+b=k v e H°(L ® S?V>}) degV, < an,
O<a=a+b<k|peH (L@ (V,aVaVIaV)| degV —2degV, > a(n —2n,)
O<a<a+b<k B e H(L®S*V,.,) degV —deg Vopp > a(n — nass)

TABLE B.1. Semistability conditions for degenerate filtrations

Inspecting each of these cases in turn we see that they correspond to instances of the a-
semistability condition stated in the Theorem with some inclusions not being strict. More
precisely, in each case the subbundle N(¥#',)\) turns out to coincide with L ® ((S*V, 4 +
Vo®sV)® (S?V;E+ VL, ®sV*)), and the degree d(¥, X, ) is equal to degV — deg V,, —
deg Voip — a(n — ng — ngyp)-

B.5. Proof of Theorem B.4. The proof is exactly like that of Theorem B.2, except that
we have to distinguish the cases in which stability implies strict inequality. We assume that
¢ # 0. Following the notation of Subsection B.5, these are the cases in which A\ contains
at least two different values. If A\; = (—1,...,—1,0,...,0,1,...,1) contains a copies of
—1, b copies of 0 and k — (a + b) copies of 1, admitting that some of the numbers a, b or
k — (a4 b) is equal to 0, the condition that A\; contains at least two different numbers is
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equivalent to asking that at least one of the bundles V, and V,.; is a proper subbundle of
V' (this happens in the last three rows of Table B.1). Using the fact that N(¥/,c) is the
positive span of vectors of the form A; (because ¢ # 0), the theorem follows.

B.6. Polystable Sp(2n,R)-Higgs pairs. Let a be a real number. According to Sec-
tions A.5 and A.6, a twisted Sp(2n, R)-Higgs pair (V, ¢) with ¢ = (3,7) € H(L ® S?V &
L ® S?V*) is said to be a-polystable if it is semistable and for any filtration by holomor-
phic strict subbundles

V=0CVigV,g---CVy=V),
and sequence of strictly increasing real numbers A = (A\; < .-+ < A;) such that ¢ €
HO(N(¥,)\)) and d(¥, \,a) = 0 there is a splitting of vector bundles
VeVieV/Vi@: & Vi/Via

with respect to which
BeH( P LoVi/Vii®sV;/V; 1)
)\i“l‘)\j:O
and
yeH( @ Lo Vi/Via) ®s (V;/Via)").
XiFA;=0

This implies that if (V) is a-polystable but not a-stable, then it can be decomposed as
the sum of a polystable vector bundle, L-twisted U(p, q)-Higgs pairs (arising from pairs
0 # X\, = —\; with ¢ # j), and lower rank twisted symplectic Higgs pairs (arising in case
there is some A\; = 0). Furthermore, by the results in Section A.8 each of these pieces
is a-polystable, so the procedure can be repeated until one reaches a decomposition all

of whose pieces are a-stable. Again by the results in Section A.8, such decomposition is
unique up to isomorphism, and is in fact the Jordan-Holder reduction of (V, ¢).

B.7. L-twisted Sp(2n,C)-Higgs pairs. Consider now the case G = Sp(2n,C). A maxi-
mal compact subgroup of G is H = Sp(2n) and hence H® coincides with Sp(2n,C). Now,
if W = C?" is the fundamental representation of Sp(2n,C) and w denotes the standard
symplectic form on W, the isotropy representation space is

m® = sp(W) = sp(W,w) := {£ € End(W) | w(é-,-) +w(-, &) =0} C End W,

so it coincides with the adjoint representation of Sp(2n, C) on its Lie algebra. An L-twisted
Sp(2n, C)-Higgs pair is thus a pair consisting of a rank 2n holomorphic symplectic vector
bundle (W, Q) over X (so € is a holomorphic section of A*IW* whose restriction to each
fiber of W is nondegenerate) and a section

® € H(L ®sp(W)),

where sp(W) is the vector bundle whose fiber over z is given by sp(W,., §2,).
Define for any filtration by holomorphic subbundles

W=0=Wo CW CWo C--- C W =W)

satisfying Wy, = VVZ-LQ for any ¢ (here Lg denotes the perpendicular with respect to )
the set

A(W) = {(>\1, Aoy )\k> € RF | Ai < Aip1 and Ap_iy1 + Ay = 0 for any ¢ }
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For any A € A(W) define the following subbundle of L ® End W:

NW,\) =L@sp(W)n > L®End(W;,W;).

>

Define also

N

—1
dW,A) = > (Aj — Aj1) deg W
1

<.
Il

(note that since W carries a symplectic structure we have W ~ W* and hence degW =
deg Wy, = 0).
Following again Sections A.5 and Section A.6, the pair ((W,2), ®) is said to be

e semistable if for any filtration W as above and any A € A(WV) such that & €
H°(N(W, ))), the following inequality holds: d(W, \) > 0.

e stable if it is semistable and furthermore, for any choice of filtration YW and X €
A(W) which is not identically zero (so for which there is a j < k such that \; <
Aj11), and such that ® € H'(N(W, \)), we have d(W, \) > 0.

e polystable if it is semistable and for any filtration VW as above and A € A(W)
satisfying A\; < A4 for each 4, v € HO(N(W,\)) and d(W, ) = 0, there is an
isomorphism

WZWl@Wg/Wl@"'@Wk/Wk_l

such that the pairing via Q any element of the summand W;/W,_; with an ele-
ment of the summand W;/W;_; is zero unless ¢ + j = k + 1; furthermore, via the
isomorphism above,

© € H(EP L ® Hom(W;/Wi_y, Wi/ Wiy)).

We now prove an analog of Theorems B.2 and B.4, which implies that the definition of
(semi)stability which we have given coincides with the usual one in the literature. Recall
that if (W, Q) is a symplectic vector bundle, a subbundle W’ C W is said to be isotropic
if the restriction of Q to W’ is identically zero.

Theorem B.9. An L-twisted Sp(2n,C)-Higgs pair (W, ), ®) is semistable if and only
if for any isotropic subbundle W' C W such that ®(W') C L @ W' we have deg W' < 0.
Furthermore, (W, Q),®) is stable if for any nonzero and strict isotropic subbundle 0 #
W' C W such that ®(W') C LW’ we have deg W’ < 0. Finally, (W, ), ®) is polystable
if it is semistable and for any nonzero and strict isotropic subbundle W' C W such that
S(W') C L@ W' and deg W' = 0 there is another isotropic subbundle W" C W such that
W CLOW" and W = W' & W,

Proof. The proof follows the same ideas as the proofs of Theorems B.2 and B.4, so we just
give a sketch. Take an L-twisted Sp(2n,C)-Higgs pair ((W,Q2), ®), and assume that for
any isotropic subbundle W’ C W such that ®(W’') C L ® W’ we have degW’ < 0. We
want to prove that ((W,Q), ®) is semistable. Choose any filtration W = (0 C W; C W, C
oo C Wy = W) satisfying Wy_; = VVfQ for any <. We have to understand the geometry of
the convex set

AW, ®) = {A e AW) | & € NOW,\)} C RE,
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Define for that J = {j | ®(W,) C L® W;} = {j1,...,Jr}- One checks easily that if
A= (A1, ..., k) € AW) then

(B81) A E A(W, (I)> <~ A\, = N for any jz <a<b< ji—i—l-
We claim that the set of indices J is symmetric:
(B.82) jeJ<—=k—jeJ

To check this it suffices to prove that ®(W;) C L ® W, implies that @(Wj»lﬂ) CL® leﬂ.
Suppose that this is not true, so that for some j we have ®W; C L ® W; and there
exists some w € VVjLQ such that dw ¢ L ® W]-LQ. Then there exists v € W; such that
Q(v, dw) # 0. However, since ® € H(L @ sp(W)), we must have Q(v, dw) = —Q(Pv, w),
and the latter vanishes because by assumption ®v belongs to ;. So we have reached a
contradiction.

Let J' ={j € J|2j <k} and define for any j € J’ the vector
S
<j d>k—j+1
where e, . .., e, is the canonical basis of R¥. It follows from (B.81) and (B.82) that AWV, ®)
is the positive span of the vectors {L; | j € J'}. Consequently, we have
dW,A) >0 for any A € AV, @) <= d(W, L;) >0 for any j .

One computes d(W, L;) = — deg Wj,_;—deg W,. On the other hand, since we have an exact
sequence 0 — Wy_; — W* — W — 0 (the injective arrow is given by the pairing with
Q) we have 0 = degW* = degW},_; + deg W}, so deg W},_; = deg W, and consequently
dW, L;) > 0 is equivalent to deg W; < 0, which holds by assumption. Hence ((IV,2), ®)
is semistable.

The converse statement, namely, that if ((WW,(2), ®) is semistable then for any isotropic
subbundle W' C W such that ®(WW’') C L @ W’ we have degW’ < 0 is immediate by
applying the stability condition of the filtration 0 C W/ c W'te C W.

Finally, the proof of the second statement on stability is very similar to case of semista-
bility, so we omit it. The statement on polystability is also straightforward. 0]

B.8. L-twisted SL(n,C)-Higgs pairs. If G = SL(n,C) then the maximal compact sub-
group of G is H = SU(n) and hence H® coincides with SL(n,C). Now, if W = C" is the
fundamental representation of SL(n, C), the isotropy representation space is given by the
traceless endomorphisms of W

m® = s[(W) = {¢ € End(W) | Tré =0} € End W,

so it coincides again with the adjoint representation of SL(n,C) on its Lie algebra. An
L-twisted SL(n,C)-Higgs pair is thus a pair consisting of a rank n holomorphic vector
bundle W over X endowed with a trivialization det W ~ & and a holomorphic section

® ¢ H'(L ® Endy W),

where Endy W denotes the bundle of traceless endomorphisms of W.

Define for any filtration by holomorphic subbundles
W=0=Wo CWi CWo C--- C W =W)



REPRESENTATIONS OF SURFACE GROUPS 81

the convex set

AOW) = {(A1, A2 ) € R | Ay < Ay for any i and » _tk Wi(A; — Aigr) = 0},

For any A € A(W) define the following subbundle of L ® End W:

NW,\) = L@EndyW N ) L&End(W;, W)).

N>

Define also

N

-1

AW, A) = D (A — Ajy1) deg W

1

(since det W is trivial we have deg W = deg W}, = 0).
Following again Sections A.5 and A.6, (W, ®) is said to be:

<.
Il

e semistable if for any filtration WW and A € A(W) such that ® € H(N(W, \)), we
have dOV, \) > 0.

e stable if it is semistable and furthermore, for any choice of filtration W and A €
A(W) which is not identically zero (so for which there is a j < k such that \; <
Aj11), and such that ® € H'(N(W, \)), we have d(W, \) > 0.

e polystable if it is semistable and for any filtration W as above and A\ € A(W)
satisfying \; < A\;41 for each 4, v € HY(N(W,))) and d(W,\) = 0, there is an
isomorphism

WZWl@Wg/Wl@"'@Wk/Wk_l

with respect to which

® € H(EP L ® Hom(Wi/Wi_y, Wi/ W;_y)).

Again we have a result as Theorem B.9 implying that the present notions of (semi)stability
coincide with the usual ones.

Theorem B.10. An L-twisted SL(n,C)-Higgs pair (W, ®) is semistable if and only if for
any subbundle W' C W such that @(W') C L @ W' we have degW’ < 0. Furthermore,
(W, ®) is stable if for any nonzero and strict subbundle W' C W such that (W') C LW’
we have deg W' < 0. Finally, (W, ®) is polystable if it is semistable and for each subbundle
W' C W such that @W') C L@ W' and deg W’ = 0 there is another subbundle W" C W
satisfying @W") C L W" and W = W' W".

The proof of Theorem B.10 is very similar to that of Theorem B.9, so we omit it.

B.9. L-twisted GL(n,R)-Higgs pairs. We study now L-twisted G-Higgs pairs for G =
GL(n,R). When L = K2, these will be related to maximal degree Sp(2n, R)-Higgs bundles.

A maximal compact subgroup of GL(n,R) is H = O(n) and hence H® = O(n, C). Now,
if W is the standard n-dimensional complex vector space representation of O(n,C), then
the isotropy representation space is:

m® = S2W.
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An L-twisted GL(n,R)-Higgs pair over X is thus a pair ((W,Q),%) consisting of a
holomorphic O(n, C)-bundle, i.e. a rank n holomorphic vector bundle W over X equipped
with a non-degenerate quadratic form (), and a section

Y e H(L® S*W).
Note that when ¢) = 0 a twisted GL(n, R)-Higgs pair is simply an orthogonal bundle.

Since the centre of o(n) is trivial, & = 0 is the only possible value for which stability
of an L-twisted GL(n,R)-Higgs pair is defined. The stability condition is formulated as
follows.

For any filtration of vector bundles
W=0=Wo CW, CWo C--- C W =W)

of satisfying W, = W,j_ © (here W,j_ © denotes the orthogonal complement of Wj_; with
respect to ()) define

A(W) = {()\1, )\2, RN )\k) € ]Rk | A < )‘H—l and \; + )\k—i-i-l =0 for any 17 }
Define for any A € A(W) the following bundle.
NW, A= Y LeW,asW,

)\i-i-)\jgo

Also we define

N

-1
d(W, >\) = ()\] - )‘j-l-l) deg Wj

1

<.
Il

(note that the quadratic form ) induces an isomorphism W ~ W* so degW = deg W), =
0).

According to Sections A.5 and A.6, an L-twisted GL(n, R)-Higgs pair (W, @, ) is said
to be

e semistable if for all filtrations W as above and all A € A(W) such that ¢ €
HO(N(W, ))), we have d(W, \) > 0,

e stable if it is semistable and for any choice of filtration W and nonzero A € A(W)
such that ¢ € H°(N(W, \)), we have d(W, \) > 0,

e polystable if it is semistable and for any filtration W as above and A\ € A(W)
satisfying \; < A\;y1 for each 4, v € HY(N(W,))) and d(W, ) = 0, there is an
isomorphism

WZWl@Wg/Wl@"'@Wk/Wk_l

such that pairing via () any element of the summand W;/W;_; with an element
of the summand W;/W;_; is zero unless ¢ + j = k + 1; furthermore, via this
isomorphism,

peH( P Lo (Wi/Winy) @s (W;/W,_1)).
Ai+A;=0

There is a simplification of the stability condition for orthogonal pairs analogous to
Theorem B.2 and Theorem B.4.
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Theorem B.11. The L-twisted GL(n,R)-Higgs pair (W, Q),v) is semistable if and only
if for any isotropic subbundle W' C W such that ¢ € H°(S?°W"he @ W @ W ® L) the
inequality deg W' < 0 holds. Furthermore, (W, Q),v) is stable if it is semistable and for
any isotropic strict subbundle 0 # W' C W such that 1 € H(S*W'te @ W' @5 W ® L)
we have deg W' < 0 holds. Finally, (W, Q), ) is polystable if it is semistable and for any
isotropic strict subbundle 0 # W' C W such that » € H°(S?W'*e & W @ W ® L) and
deg W' = 0 there is another isotropic subbundle W" C W such that ¢ € H(S?*W"+e @
W'@sW®L) and W =W W”".

Proof. The proof is analogous to the proofs of Theorems B.2 and B.4. Take an L-twisted
GL(n,R)-Higgs pair (W, Q),%), and assume that for any isotropic subbundle W' C W
such that ¢ € HY(S?W'e @ W’ ®s W ® L) the inequality deg W’ < 0 holds. We also
assume that 1 is nonzero, for otherwise the result follows from the usual characterization
of (semi)stability for SO(n, C)-principal bundles due to Ramanathan (see [41]). We want
to prove that ((W, @), ) is semistable. Choose any filtration W = (0 C Wy C Wy C --- C

Wi, = W) satisfying Wy._; = VVZ-LQ for any 7. Consider the convex set -
AW, ) ={r e AW) | ¥ € N(W,\)} C RY.
Define for any 7, 5 the subbundle
Dij=W;@s W;+W;_1 @s W + W ®g W;_1 C S*W.
A tuple A = (A1, ..., ) € A(W) belongs to AWV, ¢) if and only if:

for any 4, j such that ¢ is contained in H°(L ® D; ;) but is not contained in
the sum HO(L ® Di—l,j) + HO(L ® Di,j—l); we have >\2 + )\j S 0.

Hence A(W, 1) is the intersection of A(W) with the set of points in R¥ satisfying a collection
of inequalities of the form A\,+ A, < 0 and A\.+X; > 0 (the latter follow from the restrictions
i+ Ag—it1 = 0). Since A(W) does not contain any line, a fortiori A(W, v) neither does, so
(using Lemma B.8) A(W, ) is the convex hull of a set of half lines {R>(L; | i € Z}, where
Li=(-1,...,—-1,0,...,0,1,...,1) contains i copies of —1 and i copies of 1. Consequently,
we have

dOW, ) >0 for any A € AOV,¢) <= d(W,L;) >0foranyiecT.

It follows from the definition that N(W, L;) = W; ®¢ W + S?*W,,_; and since Wj,_; = WilQ
the condition L; € AV, ) can be translated into the condition

e H(S*W; 2 oW, ®s W @ L).

One computes d(W, L;) = — deg Wj,_; —deg W;. On the other hand, since we have an exact
sequence 0 — Wy_; — W* — W;x — 0 (the injective arrow is given by the pairing with
the quadratic form @) we have 0 = deg W* = deg Wy_; + deg W}, so deg Wj_; = deg W
and consequently d(W, L;) > 0 is equivalent to deg W; < 0, which holds by assumption.
Hence ((W,Q), ) is semistable.

The converse statement, namely, that if ((IW, @), ) is semistable then for any isotropic
subbundle W/ C W such that ®(W’') C L @ W’ we have degW’ < 0 is immediate by
applying the stability condition of the filtration 0 C W/ Cc W'te c W.

Finally, the proof of the second statement on stability is very similar to the case of
semistability, so we omit it. The statement on polystability is also straightforward. 0]
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Remark B.12. The condition ¢ € HO(S2W{° @ W, ®s W ® L) is equivalent to 1(W;) C
Wi ® L, where v = Yo @Q: W — W ® L. The reasoning is analogous to the proof of
Corollary 4.2.

REFERENCES

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc.
London Ser. A 308 (1982), 523-615.

[2] I. Biswas and S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs, J. London Math.
Soc. (2) 49 (1994), 219-231.

[3] A. Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20-82.

[4] , Linear algebraic groups, Second edition, Graduate Texts in Mathematics, vol. 126, Springer—
Verlag, New York, 1991.

[5] S. B. Bradlow, O. Garcia-Prada, and P .B. Gothen, Representations of the fundamental group of a
surface in PU(p, q) and holomorphic triples, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 347-352.

[6] , Surface group representations and U(p,q)-Higgs bundles, J. Differential Geom. 64 (2003),

[7]

111-170.
, Representations of surface groups in the general linear group, Proceedings of the XII Fall
Workshop on Geometry and Physics (H. Albuquerque, R. Caseiro, J. Clemente-Gallardo, J. M. Nunes
da Costa, and J. Teles, eds.), Publicaciones de la RSME, vol. 7, 2004, pp. 83-94.
8] , Mazimal surface group representations in isometry groups of classical Hermitian symmetric
spaces, Geometriae Dedicata 122 (2006), 185-213.
[9] , Homotopy groups of moduli spaces of representations, Topology 47 (2008), 203-224.
[10] S. B. Bradlow, O. Garcia-Prada, and I. Mundet i Riera, Relative Hitchin-Kobayashi correspondences
for principal pairs, Quart. J. Math. 54 (2003), 171-208.
[11] M. Burger and A. lozzi, Bounded Kdihler class rigidity of actions on Hermitian symmetric spaces,
Ann. Sci. Ecole Norm. Sup. (4) 37 (2004), no. 1, 77-103.
, Bounded differential forms, generalized Milnor-Wood inequality and an application to defor-
mation rigidity, Geom. Dedicata 125 (2007), 1-23.
[13] M. Burger, A. Iozzi, F. Labourie, and A. Wienhard, Mazimal representations of surface groups:
symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005), no. 3, 543-590.
[14] M. Burger, A. Iozzi, and A. Wienhard, Surface group representations with mazimal Toledo invariant,
C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 387-390.
, Surface  group  representations — with  maximal  Toledo  invariant, 2006,
arXiv:math.DG/0605656v2.
[16] , Hermitian symmetric spaces and Kdhler rigidity, Transform. Groups 12 (2007), no. 1, 5-32.
[17] K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382.
[18] A. Domic and D. Toledo, The Gromov norm of the Kaehler class of symmetric domains, Math. Ann.
276 (1987), 425-432.
[19] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3)
55 (1987), 127-131.
[20] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Mono-
graphs, The Clarendon Press Oxford University Press, New York, 1990.
[21] V. V. Fock and A. B. Goncharov, Moduli spaces of local systems and higher Teichmuller theory, Publ.
Math. Inst. Hautes Etudes Sci. 103 (2006), 1-211.
[22] T. Frankel, Fized points and torsion on Kdhler manifolds, Ann. of Math. (2) 70 (1959), 1-8.
[23] O. Garcia-Prada, P. B. Gothen, and V. Munoz, Betti numbers of the moduli space of rank 3 parabolic
Higgs bundles, Mem. Amer. Math. Soc. 187 (2007), no. 879, viii+80.
[24] O. Garcia-Prada and I. Mundet i Riera, Representations of the fundamental group of a closed oriented
surface in Sp(4,R), Topology 43 (2004), 831-855.
[25] W. M. Goldman, Discontinuous groups and the Euler class, Ph.D. thesis, University of California,
Berkeley, 1980.
, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), No. 2,
200-225.
, Representations of fundamental groups of surfaces, Springer LNM 1167, 1985, pp. 95-117.

[12]

[15]

[26]

[27]




REPRESENTATIONS OF SURFACE GROUPS 85

[28] , Topological components of spaces of representations, Invent. Math. 93 (1988), 557-607.

[29] P. B. Gothen, Components of spaces of representations and stable triples, Topology 40 (2001), 823-
850.

[30] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Mathematics, vol. 80, Academic
Press, San Diego, 1998.

[31] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55
(1987), 59-126.

[32] , Lie groups and Teichmiiller space, Topology 31 (1992), 449-473.

[33] D. Huybrechts, Fourier—Mukai transforms in algebraic geometry, Oxford University Press, 2006.

[34] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton University Press, 1987.

[35] F. Labourie, Cross ratios, Anosov representations and the energy functional on Teichmiller space,
Ann. Sci. Ecole Norm. Sup. (4), to appear.

, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006), no. 1,
51-114.

[37] J. W. Milnor, On the existence of a connection with curvature zero, Commm. Math. Helv. 32 (1958),
215-223.

[38] I. Mundet i Riera, A Hitchin—-Kobayashi correspondence for Kihler fibrations, J. Reine Angew. Math.
528 (2000), 41-80.

[39] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann
surface, Ann. of Math.(2) 82 (1965), 540-567.

[40] A. G. Oliveira, Representations of surface groups in the projective general linear group, preprint

[36]

(2008).

[41] A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975),
129-152.

[42] , Moduli for principal bundles over algebraic curves: I and II, Proc. Indian Acad. Sci. Math.

Sci. 106 (1996), 301-328 and 421-449.

[43] R.W. Richardson, Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J.
57 (1988) 1-35.

[44] A.H. W. Schmitt, Moduli for decorated tuples for sheaves and representation spaces for quivers, Proc.
Indian Acad. Sci. Math. Sci. 115 (2005), 15-49.

, Geometric invariant theory and decorated principal bundles, Ziirich Lectures in Advanced
Mathematics, European Mathematical Society, 2008.

[46] J. P. Serre, Complex Semisimple Lie Algebras, Springer—Verlag, 1987.

[47] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications
to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918.

, Higgs bundles and local systems, Inst. Hautes Etudes Sci. Publ. Math. 75 (1992), 5-95.

, Moduli of representations of the fundamental group of a smooth projective variety I, Publ.

Math., Inst. Hautes Etud. Sci. 79 (1994), 47-129.

, Moduli of representations of the fundamental group of a smooth projective variety II, Publ.
Math., Inst. Hautes Etud. Sci. 80 (1995), 5-79.

[51] R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of
Math. (2) 141 (1995), 87-129.

[52] D. Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom. 29
(1989), 125-133.

[53] V. G. Turaev, A cocycle of the symplectic first Chern class and the Maslov indezx, Funct. Anal. Appl.
18 (1984), 35-39.

[54] A. Wienhard, The action of the mapping class group on mazimal representations, Geom. Dedicata
120 (2006), 179-191.

[55] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971),
257-273.

[45]

[48]
[49]

[50]




86 0. GARCIA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA

DEPARTAMENTO DE MATEMATICAS, CSIC, SERRANO 121, 28006 MADRID, SPAIN

E-mail address: oscar.garcia-pradaQuam.es

DEPARTAMENTO DE MATEMATICA PURA, FACULDADE DE CIENCIAS, UNIVERSIDADE DO PORTO, RUA
DO CAMPO ALEGRE, 4169-007 PORTO, PORTUGAL

E-mail address: pbgothen@fc.up.pt

DEPARTAMENT D’ALGEBRA I GEOMETRIA, FACULTAT DE MATEMATIQUES, UNIVERSITAT DE BARCELONA,
GRAN VIA DE LES CORTS CATALANES 585, 08007 BARCELONA, SPAIN

E-mail address: mundet@mat.ub.es



