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Abstract

We determine when a generalized down-up algebra is a Noetherian unique factorisation

domain or a Noetherian unique factorisation ring.
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Introduction

Down-up algebras were introduced by Benkart and Roby in [6], motivated by the study of certain
“down” and “up” operators on posets. In this seminal paper, the highest weight theory for a down-
up algebra was developed and a parallel was drawn between down-up algebras and enveloping
algebras of Lie algebras, based on the apparent similarity between their respective representation
theories and structural properties. Later, in [11], Cassidy and Shelton introduced a larger class of
algebras which, when defined over an algebraically closed field, contains all down-up algebras.

Let K be an algebraically closed field of characteristic 0. Fix r, s, γ ∈ K and f ∈ K[x]. The
generalized down-up algebra L = L(f, r, s, γ) is the unital associative K-algebra generated by d, u
and h, subject to the relations:

[d, h]r + γd = 0, [h, u]r + γu = 0 and [d, u]s + f(h) = 0,

where [a, b]λ := ab − λba. A down-up algebra can be seen as a generalized down-up algebra, as
above, with deg(f) = 1.

Noteworthy examples of generalized down-up algebras are the enveloping algebra of the semisim-
ple Lie algebra sl2, of traceless matrices of size 2, which is isomorphic to L(x, 1, 1, 1), and the en-
veloping algebra of the 3-dimensional Heisenberg Lie algebra h, which is isomorphic to L(x, 1, 1, 0).
Another example is the quantum Heisenberg Lie algebra Uq(sl

+
3 ), where q ∈ K∗, which can be

seen as L(x, q, q−1, 0). Under a mild restriction on the parameters, the algebra of regular func-
tions on quantum affine 3-space, OQ(K

∗), is a generalized down-up algebra of the form L(0, r, s, 0),
with rs 6= 0. In [34], Smith defined a class of algebras similar to the enveloping algebra of sl2.
Subsequently, Rueda considered in [33] a larger family of algebras, including Smith’s algebras.
The algebras in Rueda’s family are generalized down-up algebras of the form L(f, 1, s, 1), and by
setting s = 1 we retrieve Smith’s algebras. Other examples of generalized down-up algebras can
be found in [4, Secs. 5 and 6].

Like down-up algebras, generalized down-up algebras display several features of the structure
and representation theory of a semisimple Lie algebra, but their defining parameters allow enough
freedom to obtain a variety of different behaviours. An example of this is the global dimension of
a generalized down-up algebra, which can be 1, 2 or 3, by [11, Thm. 3.1] (for a down-up algebra,
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the global dimension is always 3). Similarly, in some cases the centre is reduced to the scalars, but
in others it can be large, and there are cases in which the generalized down-up algebra is finite
over its centre. Other examples of properties which hold in some generalized down-up algebras
and do not in others are: being Noetherian, being primitive, having all finite-dimensional modules
semisimple, and having a Hopf algebra structure.

Generalized down-up algebras have been studied mostly from the point of view of representation
theory (see [6], [10], [24], [19], [11] and [29]); their primitive ideals have been determined in [21],
[28], [31], [30] and [32]. In this paper we study generalized down-up algebras from the point of
view of noncommutative algebraic geometry, namely, we provide a complete classification of those
generalized down-up algebras which are (noncommutative) Noetherian unique factorisation rings
(resp. domains), as defined by Chatters and Jordan in [12] and [13].

An element p of a Noetherian domain R is normal if pR = Rp. In our case, a Noetherian
domain R is said to be a unique factorisation ring, Noetherian UFR for short, if R has at least
one height one prime ideal, and every height one prime ideal is generated by a normal element. If,
in addition, every height one prime factor of R is a domain, then R is called a unique factorisation
domain, Noetherian UFD for short. As well as the usual commutative Noetherian UFDs, examples
of Noetherian UFDs include certain group algebras of polycyclic-by-finite groups [8] and various
quantum algebras [26, 25] such as quantised coordinate rings of semisimple groups. Unfortunately,
the notion of a Noetherian UFD is not closed under polynomial extensions. To the opposite, the
notion of a Noetherian UFR is closed under polynomial extensions. Moreover, Chatters and
Jordan proved general results for skew polynomial extensions of the type R[x;σ] and R[x; δ]. The
general case of skew polynomial extensions of type R[x;σ, δ] is more intricate and only partial
results have been obtained for a class of “quantum” algebras called CGL extensions [26], which
includes (generic) quantum matrices, positive parts of quantum enveloping algebras of semisimple
Lie algebras, etc.

Going back to enveloping algebras, it follows from results of Conze in [14] that, over the
complex numbers, the universal enveloping algebra of a finite-dimensional semisimple Lie algebra
is a Noetherian UFD, and an analogous result holds for a finite-dimensional solvable Lie algebra,
by [12]. It is thus natural to investigate the factorial properties of generalized down-up algebras.
Moreover, by considering cases in which the parameters r and s are roots of unity, we hope to get
some insight into the behaviour of enveloping algebras over fields of finite characteristic (see [7]
and references therein). Indeed, our analysis yields the following result, which shows that, for
generalized down-up algebras, the distinction between a Noetherian UFR and a Noetherian UFD
depends only on the existence of torsion in the multiplicative subgroup of K∗ generated by r and
s.

Theorem A. Let L = L(f, r, s, γ) be a generalized down-up algebra with rs 6= 0. Then L is a
Noetherian UFD if and only if L is a Noetherian UFR and 〈r, s〉 is torsionfree.

Noetherian generalized down-up algebras can be viewed as iterated skew polynomial rings as
well as generalized Weyl algebras (see [22] and [11]). They also can be described as ambiskew
polynomial rings (see [21]). In his paper [20], Jordan determined the height one prime ideals of
ambiskew polynomial rings under two additional conditions:

• conformality; recall that f is conformal in L(f, r, s, γ) if there exists g ∈ K[h] such that
f(h) = sg(h)− g(rh− γ);

• σ-simplicity (see below for the definition of σ-simplicity).

He then applied these results in [21, Sec. 6] to determine the height one prime ideals of down-up
algebras, under certain technical restrictions arising from [20]. Here we consider any Noetherian
generalized down-up algebra and obtain the following classification:

Theorem B. Let L = L(f, r, s, γ) be a generalized down-up algebra with rs 6= 0. Then L is a
Noetherian UFR except if f 6= 0 and one of the following conditions is satisfied:

(a) f is not conformal, r is not a root of unity, and there exists ζ 6= γ/(r−1) such that f(ζ) = 0;
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(b) f is conformal, 〈r, s〉 is a free abelian group of rank 2, and there exists ζ 6= γ/(r − 1) such
that f(ζ) = 0;

(c) γ 6= 0, r = 1, s is not a root of unity, and f /∈ K.

Acknowledgments. The authors would like to thank support from the Treaty of Windsor
Programme. They also wish to thank Christian Lomp and Paula Carvalho for helpful discussions
concerning the topics of this paper, and David Jordan for the reference [14].

1 Generalized down-up algebras and Factoriality

Throughout this paper, N is the set of nonnegative integers, K denotes an algebraically closed field
of characteristic 0 and K∗ is the multiplicative group of units of K. If X is a subset of the ring
L then the two-sided ideal of L generated by X is denoted by 〈X〉; we also write 〈x1, . . . , xn〉 in
place of 〈{x1, . . . , xn}〉. Moreover, we denote by Z(L) the centre of L.

Given a polynomial f = a0 + a1x+ · · ·+ anx
n ∈ K[x], with all ai ∈ K, we define the support

of f to be the set supp (f) = {i | ai 6= 0} and the degree of f , denoted deg(f), as the supremum
of supp (f). In particular, the zero polynomial has degree −∞. In the context of this paper, a
monomial in the variable x is a (nonzero) polynomial of the form λxk, for some λ ∈ K∗ and some
k ≥ 0.

1.1 Noetherian generalized down-up algebras

Let f ∈ K[x] be a polynomial and fix scalars r, s, γ ∈ K. The generalized down-up algebra
L = L(f, r, s, γ) was defined in [11] as the unital associative K-algebra generated by d, u and h,
subject to the relations:

dh− rhd + γd = 0, (1.1)

hu− ruh+ γu = 0, (1.2)

du− sud+ f(h) = 0. (1.3)

When f has degree one, we retrieve all down-up algebras A(α, β, γ), α, β, γ ∈ K, for suitable
choices of the parameters of L.

It is well known that L is Noetherian ⇐⇒ L is a domain ⇐⇒ rs 6= 0. Thus, from now on,
we will always assume rs 6= 0. Moreover we can view L as an iterated skew polynomial ring,

L = K[h][d;σ][u;σ−1, δ], (1.4)

where σ(h) = rh− γ, σ(d) = sd, δ(h) = 0, δ(d) = s−1f(h). (See [11] for more details.)

To finish this section, we describe the Z-graduation of L obtained by assigning to the generators
the following degrees (see [11, Sec. 4]):

deg(u) = 1, deg(d) = −1, deg(h) = 0. (1.5)

The decomposition L = ⊕i∈ZLi of L into homogeneous components has been described in [11,
Prop. 4.1]:

L0 = K[h, ud] is the commutative polynomial algebra generated by h and ud,

and
L−i = L0d

i = diL0, Li = L0u
i = uiL0, for i > 0. (1.6)
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1.2 Conformality and isomorphisms

When we consider two generalized down-up algebras, say L = L(f, r, s, γ) and L̃ = L(f̃ , r̃, s̃, γ̃),
we may denote their canonical generators by d, u, h and d̃, ũ, h̃, respectively, if any confusion
could arise regarding which algebra we are referring to.

Lemma 1.1. The sets
{
di
}
i≥0

and
{
ui
}
i≥0

are right and left denominator sets in L.

Proof. See [20, 1.5]. It follows from [16, Lem. 1.4] that
{
di
}
i≥0

is a right and left denominator

set in L. Using the anti-automorphism that fixes h and interchanges d and u we obtain the
corresponding statement for

{
ui
}
i≥0

.

Fix the parameters r, s ∈ K∗, γ ∈ K, and consider the linear transformation s · 1 − σ of
K[h]. We denote the image of p ∈ K[h] under this transformation by p∗. Specifically, p∗(h) =
sp(h)− p(rh− γ).

Lemma 1.2. Let L = L(f, r, s, γ), p ∈ K[h] and L̃ = L(f − p∗, r, s, γ). Consider the denominator
sets D =

{
di
}
i≥0

in L, D̃ = {d̃i}i≥0 in L̃ and the corresponding localisations LD−1 and L̃D̃−1.

There is an isomorphism φ : LD−1 → L̃D̃−1, determined by φ(d) = d̃, φ(h) = h̃, φ(u) =
ũ+ p(h̃)d̃−1.

Proof. To show the existence of an algebra endomorphism φ : L→ L̃D̃−1 as stated, the following
relations need to be checked in L(f − p∗, r, s, γ)D̃−1:

d̃h̃− rh̃d̃+ γd̃ = 0; (1.7)

h̃
(
ũ+ p(h̃)d̃−1

)
− r

(
ũ+ p(h̃)d̃−1

)
h̃+ γ

(
ũ+ p(h̃)d̃−1

)
= 0; (1.8)

d̃
(
ũ+ p(h̃)d̃−1

)
− s

(
ũ+ p(h̃)d̃−1

)
d̃+ f(h̃) = 0. (1.9)

As the first two of these relations are immediately checked, we show only (1.9):

d̃
(
ũ+ p(h̃)d̃−1

)
= d̃ũ+ d̃p(h̃)d̃−1

= d̃ũ+ p(rh̃− γ)

= sũd̃− (f − p∗)(h̃) +
(
sp(h̃)− p∗(h̃)

)

= s
(
ũ+ p(h̃)d̃−1

)
d̃− f(h̃).

As φ(d) is a unit in L̃D̃−1, the map φ above extends (uniquely) to a map φ : LD−1 → L̃D̃−1.
Now, similar considerations show the existence of an inverse map ψ : L̃D̃−1 → LD−1, such that
ψ(d̃) = d, ψ(h̃) = h, ψ(ũ) = u− p(h)d−1. Hence, φ is bijective.

Given r, s, γ ∈ K, we say that f ∈ K[h] is conformal if there is g such that f = g∗. We also
say, somewhat abusively, that f is conformal in L(f, r, s, γ). Thus, if f is conformal, then LD−1

is isomorphic to L(0, r, s, γ)D̃−1. In this case, in particular, the nonzero element z := ud− g(h) is
normal and satisfies the relations zh = hz, dz = szd and zu = suz.

The following results from [9] determine when a polynomial f is conformal in L(f, r, s, γ).

Lemma 1.3 ([9, Lem. 1.6]). Let f =
∑
aih

i. Then f is conformal in L(f, r, s, 0) if and only if
s 6= ri for all i ∈ supp (f). In that case, a polynomial g satisfying f(h) = sg(h)− g(rh) exists and
is unique if we impose the additional condition that supp (f) = supp (g); in particular, g can be
chosen so that deg(g) = deg(f).

Proposition 1.4 ([9, Prop. 1.7]). If r 6= 1 then L(f, r, s, γ) ≃ L(f̃ , r, s, 0) for some polynomial f̃
of the same degree as f . Furthermore, f is conformal in L(f, r, s, γ) if and only if f̃ is conformal
in L(f̃ , r, s, 0).

Proposition 1.5 ([9, Prop. 1.8]). f is conformal in L(f, 1, s, γ) except if s = 1, γ = 0 and f 6= 0.
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1.3 Noetherian unique factorisation rings and domains

In this section, we recall the notions of Noetherian unique factorisation rings and Noetherian
unique factorisation domains introduced by Chatters and Jordan (see [12, 13]).

An ideal I in a ring L is called principal if there exists a normal element x in L such that
I = 〈x〉 = xL = Lx.

Definition 1.6. A ring L is called a Noetherian unique factorisation ring (Noetherian UFR for
short) if the following two conditions are satisfied:

(a) L is a prime Noetherian ring;

(b) Any nonzero prime ideal in L contains a nonzero principal prime ideal.

Definition 1.7. A Noetherian UFR L is said to be a Noetherian unique factorisation domain
(Noetherian UFD for short) if L is a domain and each height one prime ideal P of L is completely
prime; that is, L/P is a domain for each height one prime ideal P of L.

Note that the generalized down-up algebra L = L(f, r, s, γ), with rs 6= 0, is Noetherian and has
finite Gelfand-Kirillov dimension; so, it satisfies the descending chain condition for prime ideals,
see for example, [23, Cor. 3.16]. As, moreover, L is a prime Noetherian ring, we deduce from [13]
the following result.

Proposition 1.8. Let L = L(f, r, s, γ) be a generalized down-up algebra with rs 6= 0. Then L is
a Noetherian UFR if and only if all of its height one prime ideals are principal.

To end this section, we recall a noncommutative analogue of Nagata’s Lemma (in the commu-
tative case, see [15, 19.20 p. 487]) that allows one to prove that a ring is a Noetherian UFR or a
Noetherian UFD by proving this property for certain localisations of the ring under consideration.

If L is a prime Noetherian ring and x is a nonzero normal element of L, we denote by Lx the
(right) localisation of L with respect to the powers of x.

Lemma 1.9 ([26, Lem. 1.4]). Let L be a prime Noetherian ring and x a nonzero, nonunit, normal
element of L such that 〈x〉 is a completely prime ideal of L.

(a) If P is a prime ideal of L not containing x and such that the prime ideal PLx of Lx is
principal, then P is principal.

(b) If Lx is a Noetherian UFR, then so is L.

(c) If Lx is a Noetherian UFD, then so is L.

1.4 Some prime ideals of L

In [20, 2.10], Jordan defines prime ideals Q(P ) which depend on certain prime ideals P of a
subalgebra which, in our setting, is K[h]. It is easy to generalize that construction so as to include
the case when f is not conformal in L, which we will do below. We give the details only for the
prime ideals of K[h] of the form 〈h− λ〉, with λ ∈ K. The only case remaining concerns 〈0〉, the
zero ideal of K[h], which will not be necessary for our discussion and carries additional technical
issues.

Lemma 1.10. Let L = L(f, r, s, 0) and write f =
∑
aih

i. Then, for every k ≥ 0,

duk = skukd− Pk(h)u
k−1, (1.10)

where:

(a) Pk(h) =
∑k−1

i=0 s
if(r−ih);
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(b) If f = g∗ then Pk(h) = skg(r1−kh)− g(rh);

(c) The coefficient of hm in Pk(h) is amk, if s = rm, and am
(sr−m)k−1
sr−m−1 if s 6= rm.

In particular, if f is not conformal then Pk 6= 0 for all k > 0.

Proof. Equation (1.10) along with parts (a) and (b) follow readily by induction on k ≥ 0. Part
(c) follows from (a). Finally, if f is not conformal, recall from [9, Lem. 1.6] that there is m such
that am 6= 0 and s = rm. Thus, the coefficient of hm in Pk(h) is nonzero, for k > 0.

Let L = L(f, r, s, 0). Fix λ ∈ K and define the L-module Vλ as follows. As a K-vector space,

Vλ =
⊕

i≥0

Kvi

and the L-action is given by:

h.vk = rkλvk

u.vk = vk+1

d.vk = −Pk(r
k−1λ)vk−1, for k ≥ 1, and d.v0 = 0.

Assume there is k > 0 such that Pk(r
k−1λ) = 0. Then

⊕
i≥k Kvi is a proper submodule of

Vλ. Let k > 0 be minimal with this property, and define Mλ =
⊕

i≥k Kvi. Thus, Lλ := Vλ/Mλ

is a finite-dimensional representation of L. Let Qλ := annLLλ. By the minimality of k it is
straightforward to see that Lλ is simple. Thus, Qλ is a primitive ideal; in particular, it is prime.

Remark 1.11.

(a) Mλ, Lλ and Qλ are defined only if there exists k > 0 such that Pk(r
k−1λ) = 0.

(b) When f is conformal, this construction is a special case of the construction in [20, 2.10],
where P is the ideal of K[h] generated by h− λ and Qλ = Q(〈h− λ〉).

Theorem 1.12. Let L = L(f, r, s, 0). Suppose λ ∈ K is such that Pk(r
k−1λ) = 0 for some k > 0.

Then Qλ is a non-principal maximal ideal of L containing dk and uk.
Furthermore, if Pk 6= 0 for all k > 0 (e.g., if f is not conformal) and Q is any prime ideal

of L containing dk and uk for some k > 0, then there exists λ ∈ K such that Qλ is defined and
Q = Qλ.

Proof. This follows essentially as in [20, Thm. 2.12]. We give details for completeness.
Let ρ : L → EndK(Lλ) be the map which defines the representation. Since Lλ is finite-

dimensional and simple, and K is algebraically closed, Schur’s Lemma implies that EndL(Lλ), the
centraliser algebra of Lλ, is just K. Thus, by the Jacobson Density Theorem, ρ is onto and induces
an algebra isomorphism L/Qλ ≃ EndK(Lλ). As EndK(Lλ) is simple, the ideal Qλ is maximal.

If Q is any prime ideal of L containing dk and uk for some k > 0, then the proof of [20, Thm.
2.12] shows that there is k > 0 and a prime ideal P of K[h] such that Pk(r

k−1h) ∈ P . As we are
assuming Pk 6= 0 for all k > 0, and K is algebraically closed, it follows that there is λ ∈ K such
that Pk(r

k−1λ) = 0. Then, as in the proof of [20, Thm. 2.12], we have Qλ ⊆ Q, and hence, by
the maximality of Qλ, we obtain Q = Qλ.

Finally, Qλ is not principal because, by the definition of Lλ, we have dk, uk ∈ Qλ. This is a
general fact concerning any generalized Weyl algebra D(φ, a) over a commutative domain D such
that 0 6= a ∈ D is not a unit. (Recall, e.g. [11, Lem. 2.7], that L is a generalized Weyl algebra,
where D is the polynomial algebra in the variables h and a = ud.) Nevertheless, we give the
specific details for L.

Assume ξL is a principal ideal of L containing uk, for some k > 0. Then, the equation ξx = uk,
for x ∈ L, implies that both ξ and x must be homogeneous, with respect to the Z-grading defined
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in (1.5). Assume ξ has degree n < 0. Then we can write ξ = td−n and x = t′uk−n, for some
t, t′ ∈ K[h, ud]. We have:

uk = (td−n)(t′uk−n) = tφ−n(t′)d−nu−nuk = tφ−n(t′)

(
−n∏

i=1

φi(ud)

)
uk,

where φ is the automorphism of K[h, ud] defined by φ(h) = rh and φ(ud) = sud−f(h). The above
equation implies that ud is a unit in K[h, ud], which is a contradiction. Hence, ξ has degree n ≥ 0.
Similarly, assuming that dk ∈ ξL, we conclude that ξ has degree n ≤ 0. It follows that , if ξL
contains both uk and dk, then ξ ∈ K[h, ud]. But then the equation ξ(tuk) = uk, for t ∈ K[h, ud],
implies that ξ is a unit and ξL = L. Thus, no proper ideal of L containing uk and dk can be
principal.

We end this section by pointing out some principal height one prime ideals which will also be
of interest later.

Lemma 1.13. Let L = L(f, r, s, 0). Then the normal element h generates a height one, completely
prime ideal of L. Furthermore, if r is a primitive root of unity of order l ≥ 1 then, for any λ ∈ K∗,
the central element hl − λ generates a height one prime ideal of L which is completely prime if
and only if r = 1.

Proof. First, notice that h is normal, as γ = 0, and generates a completely prime ideal, as the
factor algebra L/〈h〉 is either a quantum plane or a quantum Weyl algebra, or one of their classical
analogues, in case s = 1. By the Principal Ideal Theorem (see [27, 4.1.11]), 〈h〉 has height one.

If r is a primitive root of unity of order l ≥ 1 then hl is central. Consider the presentation
L = K[h][d;σ][u;σ−1, δ] of L as an iterated skew polynomial ring, as given in (1.4) above, with
σ(h) = rh and δ(h) = 0. It is easy to see that (hl − λ)K[h] is a σ-prime ideal of K[h] (i.e., it is a
prime ideal in the lattice of σ-stable ideals of K[h]). It follows, e.g. by [5, Prop. 2.1], that hl − λ
generates a prime ideal of K[h][d;σ]. In particular, this ideal is σ-prime and δ-stable, so it follows
by [5, Prop. 2.1] that 〈hl − λ〉 is a prime ideal of L = K[h][d;σ][u;σ−1, δ]. Again by the Principal
Ideal Theorem, this ideal has height one.

If l ≥ 2, then hl−λ factors nontrivially, as K is algebraically closed, so 〈hl−λ〉 is not completely
prime, by simple degree arguments. Otherwise, if l = 1 then r = 1 and the factor algebra L/〈h−λ〉
is again a quantum plane or a quantum Weyl algebra, or one of their classical analogues, so in
this case the ideal 〈h− λ〉 is completely prime.

2 The case f not conformal

Assume f =
∑
aih

i is not conformal. Then, by Propositions 1.4 and 1.5, we can assume γ = 0.
By Lemma 1.3, we can write f = fc + fnc, where fc = g∗ is conformal and fnc is such that s = ri

for all i ∈ supp (fnc). Such a decomposition f = fc + fnc is unique, and fnc 6= 0, as f is not
conformal.

Lemma 2.1. Let L = L(f, r, s, 0) with f not conformal. There is j ∈ supp (f) such that s = rj

and fnc = hjF , where 0 6= F ∈ K[h] ∩ Z(L). Furthermore:

(a) If r is not a root of unity, then F ∈ K∗;

(b) If r is a root of unity of order l ≥ 1, then F (h) = G(hl) is a polynomial in the central
indeterminate hl.

Proof. Let us write fnc =
∑

i∈supp (fnc)
aih

i. Let j = min supp (fnc). Thus, s = rj and we can

write fnc = hjF (h), where F (h) =
∑

i∈supp (fnc)
aih

i−j . Given i ∈ supp (fnc), we have i − j ≥ 0

and ri = s = rj , so ri−j = 1.
If r is not a root of unity, then i = j and F (h) ∈ K∗. Otherwise, if r is a primitive l-th root of

unity, then l divides i− j and F (h) is a polynomial in hl, which is thus central, as γ = 0.
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Proposition 2.2. Let L = L(f, r, s, 0), with f not conformal, and consider the localisation LD−1,
where D =

{
di
}
i≥0

. Then
{
hi
}
i≥0

is a right and left denominator set in LD−1 and the localisation

at this set is isomorphic to L̂ = L(F, r, 1, 0) localised at the multiplicative set generated by the

corresponding elements d̂ and ĥ in L̂, where f = fc + fnc and fnc = hjF , as in the previous
lemma.

Proof. The first statement follows from the normality of h in L. We have already seen in Lemma 1.2
that LD−1 is isomorphic to L̃D̃−1, where L̃ = L(fnc, r, s, 0), under an isomorphism that maps
h to h̃, d to d̃ and u to ũ + g(h̃)d̃−1, where fc = g∗. So it suffices to show that L̃ localised
at the multiplicative set generated by d̃ and h̃ is isomorphic to the corresponding localisation of
L̂ = L(F, r, 1, 0) at the multiplicative set generated by d̂ and ĥ.

It is easy to see that there is an algebra homomorphism Φ : L(fnc, r, s, 0) −→ L(F, r, 1, 0) such

that Φ(d̃) = d̂, Φ(h̃) = ĥ and Φ(ũ) = ûĥj . This homomorphism clearly extends to an isomorphism
when we pass to the localisation under consideration.

Next, we define a (left and right) denominator set X in L(f, r, s, 0), which depends on r:

(a) If r is not a root of unity, then X is the multiplicative set generated by d and h.

(b) If r is a root of unity of order l ≥ 1, then X is the multiplicative set generated by d, h and
the central elements of the form hl − λ, for λ ∈ K∗.

Proposition 2.3. Let L = L(f, r, s, 0) and assume f is not conformal. Then the localisation of
L at the denominator set X defined above is a simple algebra.

Proof. By the previous result, it is enough to assume L = L(F, r, 1, 0), where F 6= 0 is either a
scalar (if r is not a root of unity) or a polynomial in the central indeterminate hl (if r has order
l ≥ 1). Furthermore, since F is central and invertible in the localisation under consideration (K
is algebraically closed), we can assume F = 1, on replacing u by uF−1. The result then follows
from the description below of the prime ideals of L(1, r, 1, 0).

Theorem 2.4. Let L = L(1, r, 1, 0).

(a) Assume that r is not a root of unity. Then Spec(L) = {〈0〉, 〈h〉}.

(b) Assume that r is a primitive l-th root of unity, for l ≥ 1. Then

Spec(L) = {〈0〉, 〈h〉} ∪ {〈hl − λ〉 | λ ∈ K∗}.

Proof. This follows from the isomorphism L(1, r, 1, 0) ≃ A1(K)[h;φ], where A1(K) denotes the
first Weyl algebra over K, generated by d and u, subject to the relation ud− du = 1, and φ is the
automorphism of A1(K) defined by φ(d) = r−1d and φ(u) = ru. Thus, we identify the algebras L
and A1(K)[h;φ]. Below we sketch the proof, which relies on the simplicity of A1(K) (recall that
K has characteristic 0).

Firstly, all ideals listed in the statement are prime, e.g. by Lemma 1.13. We will show that
there are no other prime ideals. There is an N-grading on A1(K)[h;φ] such that the homogenous
component of degree n ≥ 0 is A1(K)hn = hnA1(K). This grading is, of course, different from the
usual Z-grading of L we consider in the paper, but for the remainder of this proof, this is the
grading we will consider. As usual, the degree of an element in A1(K)[h;φ] is the maximum of the
degrees of its nonzero homogeneous components, i.e., its degree as a polynomial in h.

Assume P 6= 〈0〉 is a prime ideal of A1(K)[h;φ]. Let 0 6= ξ ∈ P be a (not necessarily homo-
geneous) element of minimum degree, say n ≥ 0. Then the set of leading coefficients of nonzero
elements of P of degree n, adjoined with 0, is easily seen to be an ideal of A1(K). As the latter is
simple and ξ 6= 0, it follows that this ideal contains 1. Therefore, we can assume that ξ is monic.
By the minimality of the degree of ξ and the fact that its leading coefficient is a unit, we can use
right and left division algorithms to conclude that P is principal and generated by ξ, both on the
right and on the left. In particular, ξ is normal.
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Since A1(K)[h;φ] is N-graded, every homogeneous constituent of ξ is normal, so we will first
determine the homogeneous elements of A1(K)[h;φ] which are normal. Assume ahi is normal,
where a ∈ A1(K) and i ≥ 0. Then, as hi is itself normal, it follows that a is normal in A1(K).
Thus, a ∈ K. This shows, in particular, that the normal elements of A1(K)[h;φ] are polynomials
in h with coefficients in K, but not every such polynomial is normal, except if r = 1. Indeed,
suppose 0 6= ξ =

∑
i≥0 λih

i is normal, where λi ∈ K. Then there is a such that dξ = ξa. It must

then be that a ∈ A1(K), by degree considerations, and λid = λiφ
i(a), for all i. If λi and λj are

nonzero, then rid = φ−i(d) = a = φ−j(d) = rjd, so ri−j = 1. This implies that we can write
ξ = hkG, where k ≥ 0 and either G is a (nonzero) scalar, if r is not a root of unity, or G is a
polynomial in hl with scalar coefficients and nonzero constant term, if r is a primitive l-th root of
unity.

As h and G are normal, and P = 〈ξ〉 is prime, either h ∈ P or G ∈ P . If the former occurs,
then P = 〈h〉. Otherwise, k = 0, r is a primitive l-th root of unity, and P = 〈hl − λ〉, for some
λ ∈ K∗, as K is algebraically closed and, up to a scalar, G can be factored into central polynomials
of the form hl − µ, for µ ∈ K∗. This establishes the claim.

Similarly, we can define a (left and right) denominator set Y in L(f, r, s, 0), which can be
obtained from X by replacing d by u. Specifically:

(a) If r is not a root of unity, then Y is the multiplicative set generated by u and h.

(b) If r is a root of unity of order l ≥ 1 then Y is the multiplicative set generated by u, h and
the central elements of the form hl − λ, for λ ∈ K∗.

Proposition 2.5. Let L = L(f, r, s, 0) and assume f is not conformal. Then the localisation of
L at the denominator set Y defined above is a simple algebra.

Proof. Consider the isomorphism L(f, r, s, 0) −→ L(f, r−1, s−1, 0), defined by the correspondence
d 7→ −s−1u, u 7→ d, h 7→ h. Notice that f is conformal in L(f, r, s, 0) if and only if f is conformal
in L(f, r−1, s−1, 0) (if f(h) = sg(h)−g(rh) then f(h) = s−1G(h)−G(r−1h), for G(h) = −sg(rh)).
Thus, our claim follows from applying our previous result to L(f, r−1, s−1, 0) and the denominator
set X , and using this isomorphism.

We can now determine when L(f, r, s, 0) is a Noetherian UFR or a Noetherian UFD, assuming
f is not conformal.

Theorem 2.6. Let L = L(f, r, s, 0) and assume f is not conformal. Then L is a Noetherian
UFR, except in the case that f is not a monomial and r is not a root of unity. Moreover, L is a
Noetherian UFD if and only if either r = 1 or if r is not a root of unity and f is a monomial.

Proof. Let us first identify the possible height one primes.
Let P be a height one prime ideal of L. If P does not contain any power of d or if P does not

contain any power of u then, by Propositions 2.3 and 2.5, P must contain either h or hl − λ, for
some λ ∈ K∗ (the latter can occur only when r is a primitive l-th root of unity, for some l ≥ 1),
as these elements are normal. But both h and hl − λ generate prime ideals, by Lemma 1.13, so it
follows that either P = 〈h〉 or P = 〈hl − λ〉.

Otherwise, P must contain both a power of d and a power of u. Thus, P = Qλ, for some
λ ∈ K, by Theorem 1.12. In particular, Pk(r

k−1λ) = 0 for some k > 0 (with the notation of
Lemma 1.10). Assume that λ = 0. Then h ∈ Q0 = P and P = 〈h〉, which is a contradiction, as
〈h〉 does not contain any power of d. So P = Qλ for some λ ∈ K∗.

To summarise, the possible height one primes of L are: 〈h〉; 〈hl − λ〉 with λ ∈ K∗ and Qλ for
some λ ∈ K∗ such that Pk(r

k−1λ) = 0, for some k > 0.
We now distinguish between three different cases.
Let us first consider the case that f is a monomial. Then Pk 6= 0 is also a monomial and hence

the only possibility for λ to satisfy Pk(r
k−1λ) = 0 is λ = 0, which is a contradiction. So the only

possible height one primes of L are 〈h〉 and 〈hl − λ〉 with λ ∈ K∗. They are all principal so that
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L is a Noetherian UFR. Furthermore, it follows from Lemma 1.13 that L is a Noetherian UFD
except if r is a primitive root of unity of order l ≥ 2.

If f is not a monomial, then we consider two cases:
Case 1: r is a primitive l-th root of unity. In this case, hl −λl annihilates Lλ, so h

l−λl ∈ Qλ.
It follows that Qλ is not a height one prime. So, as above, the only height one primes of L are 〈h〉
and 〈hl − λ〉 with λ ∈ K∗, whence the final statement follows.

Case 2: r is not a root of unity. As f is not a monomial, there is η ∈ K∗ such that P1(η) =
f(η) = 0. Assume Qη does not have height 1. Then it properly contains a nonzero prime ideal
Q. This ideal Q cannot be of the form Qλ, as these ideals are maximal, hence either Q does not
contain a power of d or Q does not contain a power of u. By the first part of our argument, as
r is not a root of unity, Q must contain h. In particular, h annihilates the module Lη, which is
a contradiction, as η 6= 0. Thus, Qη indeed has height one and is not principal, so L is not a
Noetherian UFR in this case.

3 The case f = 0

We will consider separately the cases γ = 0 and γ 6= 0.

3.1 The case f = 0 and γ = 0

In this case, the defining relations of L = L(0, r, s, γ) are:

dh = rhd, hu = ruh, du = sud,

and L is the so-called quantum coordinate ring of affine 3-space over K. The normal elements d,
u and h generate pairwise distinct completely prime ideals so, by [26, Prop. 1.6], it is enough to
show that the localisation T of L with respect to the Ore set generated by these three elements is a
Noetherian UFR. Well, by [17, 1.3(i) and Cor. 1.5], the height one prime ideals of T are generated
by a single central element, so T is a Noetherian UFR. Thus, L is a Noetherian UFR. We record
this result below.

Proposition 3.1. Assume f = 0 and γ = 0. Then L(0, r, s, 0) is a Noetherian UFR.

We conclude this section by studying for which values of r and s the generalized down-up
algebra L(0, r, s, 0) is a Noetherian UFD.

Proposition 3.2. Assume f = 0 and γ = 0. Then L = L(0, r, s, 0) is a Noetherian UFD if and
only if 〈r, s〉 is torsionfree.

Proof. As was observed above, L is just the quantum coordinate ring of an affine 3-space. So we
deduce from [18, Thm. 2.1] that, if 〈r, s〉 is torsionfree, then all prime ideals of L are completely
prime. Thus, the result is proved in this case.

Now assume that 〈r, s〉 is not torsionfree. First, if r is a root of unity of order l ≥ 2, then the
result follows from Lemma 1.13. So we are left with the cases where r is either 1 or not a root of
unity. Before distinguishing between different cases, let us describe our strategy to prove that L
is not a Noetherian UFD in these cases.

If L were a Noetherian UFD, then so would be the localisation T of L at the Ore set generated
by the normal elements h, d, u. (Note that this is due to the fact that we are localising at elements
that are “q-central” - see also Proposition 4.1.) This localised algebra T is a quantum torus. More
precisely, it is the quantum torus generated by the three indeterminates h, d and u, and their
inverses h−1, d−1 and u−1, subject to the relations

dh = rhd, hu = ruh, du = sud.

Now it follows from [18] that extension and contraction provide mutually inverse bijections between
the prime spectrum of T and the prime spectrum of the centre Z(T ) of T , and that Z(T ) is
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a (commutative) Laurent polynomial algebra over K. Moreover, we can compute this centre
explicitly, using [18, 1.3]. So, to prove that L is not a Noetherian UFD in the remaining cases, we
will construct a height one prime ideal of T which is not completely prime. This is achieved by
computing the centre of T in each case.

We distinguish between three cases:
Case 1: r = 1 and s is a root of unity of order β ≥ 2. In this case, we get

Z(T ) = K[u±β, h±1, d±β ].

Hence, uβ − 1 generates a height one prime ideal in T which is not completely prime.

Case 2: r is not a root of unity and s is a root of unity of order β ≥ 2. In this case, we get

Z(T ) = K[(ud)±β].

Hence, (ud)β − 1 generates a height one prime ideal in T which is not completely prime.

Case 3: r and s are not roots of unity. Hence, there exists (α0, β0) with β0 > 0 minimal such
that rα0sβ0 = 1. In this case, we deduce from [18, 1.3] that

Z(T ) = K[(uβ0hα0dβ0)±1].

Now observe that the fact that 〈r, s〉 is not torsionfree imposes that gcd(α0, β0) > 1. Hence,
uβ0hα0dβ0 − 1 generates a height one prime ideal in T which is not completely prime.

3.2 The case f = 0 and γ 6= 0

If r 6= 1, then on replacing h by h̃ = h+ γ/(1− r) we can reduce to the case γ = 0 studied above.
So we can assume r = 1. We can further assume γ = 1, by replacing the generator h by γ−1h.
Let Q be the subalgebra of L generated by d and u. Then Q is the quantum plane with relation
du = sud and L = Q[h; ∂], where ∂ is the derivation of Q determined by ∂(d) = d, ∂(u) = −u.
By the arguments of Section 3.1, Q is a Noetherian UFR.

Proposition 3.3. Assume f = 0, r = 1 and γ 6= 0. Then L = L(0, 1, s, γ) is a Noetherian UFR.

Proof. Without loss of generality, we assume γ = 1. By [13, Thm. 5.5], it is enough to show that
every non-zero ∂-prime ideal of Q contains a non-zero principal ∂-ideal, for the derivation ∂ of Q
defined above.

Let 0 6= I ≤ Q be a ∂-prime ideal of Q. Choose p = p(d, u) ∈ I \ {0} with minimal support,
i.e., 0 6= p =

∑
aijd

iuj ∈ I such that aij ∈ K and the set {(i, j) | aij 6= 0} has minimal cardinality.
Fix (α, β) such that aαβ 6= 0. It is straightforward to check that ∂(diuj) = (i − j)diuj, for all
nonnegative integers i, j. Then,

I ∋ (α − β)p− ∂(p) =
∑

aij(α− β)diuj −
∑

aij(i− j)diuj

=
∑

aij(α+ j − β − i)diuj .

Furthermore, (α− β)p− ∂(p) has a smaller support than p, as its coefficient of dαuβ is 0. By the
minimality assumption, it must be that (α−β)p−∂(p) = 0. Thus, ∂(p) = (α−β)p. In particular,
i− j is constant for all (i, j) such that aij 6= 0, and we can write p =

∑
i≥0 aid

iuj(i).
Choose α such that aα 6= 0. Then,

up− s−αpu =
∑

i≥0

ai(s
−i − s−α)diuj(i)+1

and this is still an element of I, with smaller support than p. Thus, up − s−αpu = 0 and
up = s−αpu. Similarly, dp = sβpd for some β ∈ Z, which shows that p is normal. In particular,
I contains the nonzero principal ideal generated by p, which is a ∂-ideal, as ∂(p) = λp for some
integer λ. This proves our claim.
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We now inquire when L is a Noetherian UFD. For that purpose, we will determine the height
one prime ideals of L explicitly and check which are completely prime. Since L is a Noetherian
UFR, we know that all height one prime ideals are principal. So we start out by determining the
normal elements of L.

Recall the Z-graduation of L described in (1.5).

Lemma 3.4. Assume f = 0, r = 1 and γ 6= 0. Let L = L(0, 1, s, γ) and consider the normal
element z = ud. The normal elements of L are homogeneous and of the form p(z)ui or p(z)di, for
i ∈ N and p(z) ∈ K[z]. Furthermore:

(a) If s is not a root of unity, then p(z) = λzc for some λ ∈ K and some integer c ≥ 0;

(b) If s is a primitive l-th root of unity (l ≥ 1), then p(z) = zcp̃(zl) for some integer 0 ≤ c < l
and some polynomial p̃(zl) in the central element zl.

Proof. We again assume γ = 1. Let ν =
∑

i∈Z
νi be a nonzero normal element of L, with νi

homogeneous of degree i. Notice that huidj = uidj(h + j − i). In particular, hνi = νi(h − i) for
all i ∈ Z. By degree considerations, there is ξ(h, z) ∈ K[h, z] such that hν = νξ(h, z). Thus,

∑
νiξ(h, z) = h

∑
νi =

∑
νi(h− i).

Therefore, equating homogeneous components and factoring out the nonzero νi, we get that h−i =
ξ(h, z) for all i such that νi 6= 0, which proves that ν is homogeneous.

Assume ν 6= 0 has degree i ≥ 0. We can write ν = p(h, z)ui (see (1.6)). As uidj is clearly
normal, for all i, j ∈ N, and L is a domain, p(h, z)ui is normal if and only if p(h, z) is normal.
Write p(h, z) =

∑
j≥0 pj(h)z

j, with pj(h) ∈ K[h]. As before, there must exist ξ(h, z) ∈ K[h, z]
such that up(h, z) = p(h, z)ξ(h, z)u. Using the commutation relations upj(h) = pj(h + 1)u and
uzj = s−jzju, and factoring out u on the right from both terms of that equation, we obtain

∑

j≥0

pj(h+ 1)s−jzj = ξ(h, z)
∑

j≥0

pj(h)z
j .

From the above equation we readily conclude that ξ(h, z) = ξ ∈ K, as we are assuming p(h, z) 6= 0.
Next, equating coefficients of zj, we get pj(h + 1)s−j = ξpj(h) for all j. This implies that pj(h)
is a constant polynomial, for all j. Thus, we conclude that ν = p(z)ui, for some p(z) ∈ K[z]. The
case i ≤ 0 is symmetric.

It remains to determine when a nonzero element p(z) ∈ K[z] is normal. Write p(z) =
∑

i aiz
i,

with ai ∈ K. Since up(z) =
∑

i s
−iaiz

iu, it is easy to conclude that p(z) is normal if and only if
there is λ ∈ K such that s−i = λ for all i such that ai 6= 0. Let c ≥ 0 be the first index for which
ac 6= 0. It follows that p(z) = acz

c if s is not a root of unity. In case s is a primitive l-th root of
unity, with l ≥ 1, then p(z) = zcp′(zl), where p′(zl) is a polynomial in zl, and the result follows.

We can now list all height one prime ideals of L and check when L is a Noetherian UFD.

Theorem 3.5. Assume f = 0, r = 1 and γ 6= 0. Let L = L(0, 1, s, γ) and z = ud. Then L is
a Noetherian UFD if and only if either s is not a root of unity or s = 1. The height one prime
ideals of L are:

(a) 〈d〉 and 〈u〉, if s is not a root of unity. These ideals are completely prime.

(b) 〈d〉, 〈u〉 and 〈z − λ〉, for λ ∈ K∗, if s = 1. These ideals are completely prime.

(c) 〈d〉, 〈u〉 and 〈zl −λ〉, for λ ∈ K∗, if s is a primitive l-th root of unity, with l > 1. The ideals
〈d〉 and 〈u〉 are completely prime but those of the form 〈zl − λ〉 are not.
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Proof. Once more, we assume γ = 1. Let P be a height one prime ideal of L. By Proposition 3.3,
there exists a normal element ν such that P = 〈ν〉. Furthermore, as P is prime, ν cannot be the
product of two nonzero, nonunit normal elements. Thus, by Lemma 3.4, the only possibilities are,
up to nonzero scalars, ν = u, ν = d or ν = p(z). The ideals generated by either u or d are indeed
completely prime, as the corresponding factor algebra is isomorphic to the enveloping algebra of
the two-dimensional nonabelian Lie algebra. By the Principal Ideal Theorem, they have height
one. So it remains to consider the case ν = p(z). Note first that z = ud, and since u and d are
nonzero nonunit normal elements, the ideal generated by z is not prime.

Assume first that s is not a root of unity. Then, by Lemma 3.4(a) and the above, there is
no other possibility for P . This proves part (a). Now assume s is a primitive l-th root of unity,
with l ≥ 1. Since K is algebraically closed, the only other possibility for the generator ν of P
is ν = zl − λ, for some λ ∈ K∗. If l = 1, i.e., in case s = 1, then 〈z − λ〉 is completely prime,
for λ 6= 0, as the factor algebra is isomorphic to the differential operator ring K[u±1][h; ∂], where
∂(ui) = −iui, for all i ∈ Z. This proves part (b).

Finally, assume l > 1. Recall that L can be presented as the differential operator ring Q[h; ∂],
where Q is the quantum plane with relation du = sud and ∂ is the derivation of Q determined by
∂(d) = d, ∂(u) = −u. The centre of Q is the polynomial algebra K[dl, ul], by [17, 1.3(i)], and the
element zl − λ is irreducible in this polynomial algebra. Thus, zl − λ generates a prime ideal of
K[dl, ul]. By [17, Cor. 1.5], zl−λ also generates a prime ideal of Q. Furthermore, ∂(zl−λ) = 0, as
∂(z) = 0. Hence, by [27, Prop. 14.2.5], zl − λ generates a prime ideal of L. This ideal has height
one, by the Principal Ideal Theorem. Since l > 1 and K is algebraically closed, zl − λ factors
nontrivially as a polynomial in z, so the ideal 〈zl − λ〉 is not completely prime, which proves part
(c).

4 The case f conformal and r not a root of unity

In this case, as r 6= 1, we can and will assume that γ = 0. Thus, the defining relations for
L = L(f, r, s, 0) are:

dh− rhd = 0, (4.11)

hu− ruh = 0, (4.12)

du− sud+ f(h) = 0. (4.13)

In particular, h is a nonzero, nonunit normal element of L which generates a completely prime
ideal of L.

Let Lh be the localisation of L with respect to the powers of h. It is clear that

Lh = K[h±1][d;σ][u;σ−1, δ],

where σ and δ are extended by setting σ(h−1) = r−1h−1 and δ(h−1) = 0.

Proposition 4.1. Assume γ = 0. Then Lh is a Noetherian UFR (resp. UFD) if and only if L is
a Noetherian UFR (resp. UFD).

Proof. The direct implication follows from Lemma 1.9. The converse follows from standard argu-
ments in localisation theory, provided we can show that any normal element of L is still normal
in Lh.

Let ν ∈ L be normal. We can assume ν 6= 0. Write ν =
∑

i∈Z
νi with νi homogeneous of

degree i. As hνi = νiσ
i(h) = riνih, it follows that hν =

∑
i∈Z

riνih. On the other hand, by the
normality of ν, there is h′ ∈ L such that hν = νh′. The Z-grading implies that h′ has degree 0.
Hence, the degree i component of νh′ is νih

′. Equating elements of the same degree we conclude
that riνih = νih

′, for all i. Choose α with να 6= 0. We must have h′ = rαh and thus hν = rανh.
Hence, in Lh, we have νh−1 = rαh−1ν, which is enough to show that ν is normal in Lh. This
concludes the proof.
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Let g ∈ K[h] be such that f = g∗, i.e., f(h) = sg(h) − g(rh). We will assume f 6= 0, as the
case f = 0 has already been dealt with in Section 3. In particular, g 6= 0.

The algebra Lh is in the scope of the algebras studied by Jordan in [20], where our polynomial
g plays the role of the element u of [20]. We will start out with a few technical observations
which will allow us to apply the results of [20] to Lh. We will remind the reader of the necessary
definitions as they are needed.

Lemma 4.2. Assume γ = 0 and r is not a root of unity. Then the Laurent polynomial algebra
K[h±1] is σ-simple, i.e., its only σ-invariant ideals are itself and the zero ideal.

Proof. This is worked out in Example 1.2.(i) of [20].

We recall Definition 1.7 of [20], applied in our context. Suppose there exists 0 6= p ∈ K[h±1]
such that σ(p) = s−np for some positive integer n. Let n ≥ 1 be minimal with respect to the
existence of such an element p. Then, any 0 6= p ∈ K[h±1] satisfying σ(p) = s−np will be called a
principal eigenvector, and n will be its degree.

In order to discuss the existence of principal eigenvectors, we will make use of two integers
ǫ ∈ Z and τ ∈ N, which have been defined in [9], as follows:

τ = min{i > 0 | si = rj for some j ∈ Z} and rǫ = sτ ,

if {i > 0 | si = rj for some j ∈ Z} 6= ∅, and τ = 0 = ǫ, otherwise. As long as r is not a root of
unity, ǫ is uniquely defined. Furthermore, by [9, Lem. 2.1], if δ, η ∈ Z then rδsη = 1 if and only if
there is λ ∈ Z such that (δ, η) = λ(−ǫ, τ).

Lemma 4.3. Assume γ = 0. There exist principal eigenvectors in Lh if and only if τ > 0, i.e., if
and only if there are integers α, β, with α 6= 0, such that sαrβ = 1.

Proof. Assume sαrβ = 1, with α 6= 0. We can thus assume α ≥ 1. Then σ(hβ) = rβhβ = s−αhβ ,
so there are principal eigenvectors.

Conversely, assume σ(p) = s−np for some n ≥ 1 and some p =
∑β

i=α aih
i, with α ≤ β and

aαaβ 6= 0. Then, 0 = σ(p) − s−np =
∑β

i=α ai(r
i − s−n)hi. In particular, rβ − s−n = 0 and

snrβ = 1.

Theorem 4.4. Assume γ = 0, r is not a root of unity and f 6= 0 is conformal. Then L is a
Noetherian UFR if and only if either τ > 0 or f is a monomial.

Proof. By Proposition 4.1, we can work over the localisation Lh. Then, the result for Lh follows
from Example 2.21 of [20].

It remains to establish when L is a Noetherian UFD, which we do next.

Theorem 4.5. Assume γ = 0, r is not a root of unity and f 6= 0 is conformal. Then L is a
Noetherian UFD if and only if either one of the following two conditions holds:

(a) 〈r, s〉 is a free abelian group of rank 2 and f is a monomial, or

(b) 〈r, s〉 is a free abelian group of rank 1.

Proof. Once again, we can work over the localisation Lh, by virtue of Proposition 4.1. Notice
that, since r is not a root of unity, 〈r, s〉 is a free abelian group of rank 2 if and only if τ = 0, and
〈r, s〉 is a free abelian group of rank 1 if and only if τ ≥ 1 and gcd(τ, ǫ) = 1.

Assume first that τ = 0. Then, by the above, Lh is a Noetherian UFR if and only if f is a
monomial. When this is the case, 〈z := ud− g(h)〉 is the unique height one prime ideal of Lh, and
it is clearly completely prime, as the factor algebra is a quantum torus in two variables (namely,
the cosets of u and h).

Let us now suppose τ ≥ 1. Then, by the proof of Lemma 4.3, there is a principal eigenvector,
h−ǫ, and it has degree τ . Furthermore, this principal eigenvector is unique, up to nonzero scalar
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multiples. It follows that 〈h−ǫzτ − λ〉 is a height one prime ideal of Lh, for all λ ∈ K∗ such that
λhǫ 6= (−g(h))τ , by [20, Cor. 2.9.(ii)]. Note that λhǫ = (−g(h))τ can occur for at most one value
of λ ∈ K∗. By [20, Thm. 2.24], it is easy to conclude that, for λ ∈ K∗, 〈h−ǫzτ − λ〉 is completely
prime if and only if gcd(τ, ǫ) = 1. In particular, under the current hypotheses, if Lh is a Noetherian
UFD, then 〈r, s〉 is free abelian of rank 1.

Conversely, assume gcd(τ, ǫ) = 1, with τ ≥ 1. Then, by [20, 2.17 and Prop. 2.18], the height one
prime ideals of Lh include 〈z〉, which is completely prime, and the ideals of the form 〈h−ǫzτ − λ〉,
for λ ∈ K∗ such that λhǫ 6= (−g(h))τ , which are all completely prime, as gcd(τ, ǫ) = 1. In case
h−ǫ(−g(h))τ /∈ K, then this is the complete list of height one prime ideals of Lh, and it follows that
Lh is a Noetherian UFD. Suppose that h−ǫ(−g(h))τ ∈ K. Then g(h) is a unit, say g(h) = µha, and
it follows that ǫ = τa. As we are assuming τ and ǫ to be coprime, it must be that τ = 1 and ǫ = a.
Thus, f(h) = sg(h) − g(rh) = µ(s− ra)ha = µ(sτ − rǫ)ha = 0, which contradicts our hypothesis
on f . Therefore, it is always the case that h−ǫ(−g(h))τ /∈ K and the proof is complete.

5 The case f conformal and r = 1

When r = 1, we cannot assume that γ = 0, so we will consider separately the cases γ 6= 0 and
γ = 0. The defining relations of L = L(f, 1, s, γ) are:

dh− hd+ γd = 0, (5.14)

hu− uh+ γu = 0, (5.15)

du− sud+ f(h) = 0. (5.16)

Note that if r = 1 and γ 6= 0 we retrieve the algebras studied by Rueda in [33]. The latter include
Smith’s algebras [34], which occur as generalized down-up algebras when r = s = 1 and γ 6= 0.
We assume throughout that f 6= 0.

5.1 The case f conformal, r = 1 and γ 6= 0

Let g be such that f(h) = sg(h) − g(h − γ). In particular, g 6= 0. Recall, from Section 4, the
definition of a principal eigenvector.

Lemma 5.1. Assume r = 1 and γ 6= 0. If p ∈ K[h] is such that σ(p) = µp for some µ ∈ K then
p ∈ K. In particular, the only nonzero σ-invariant ideal of K[h] is K[h] and there are principal
eigenvectors if and only if s is a root of unity.

Proof. Suppose that σ(p) = µp for some p ∈ K[h] \K. Then, since K is algebraically closed, there
is α ∈ K such that p(α) = 0. It follows that 0 = µp(α) = σ(p)(α) = p(α− γ), and hence α− γ is
also a root of p. Since α was an arbitrary root of p and γ 6= 0, this is impossible. Thus, p ∈ K.

Let I be a σ-invariant ideal of K[h]. Then I = 〈p〉, for some p ∈ K[h], and σ(p) ∈ K∗p, so
either I = 〈0〉 or I = K[h].

Finally, assume there is a principal eigenvector 0 6= p ∈ K[h]. Then there is n ≥ 1 so that
σ(p) = s−np. In particular, by the above, it follows that p ∈ K∗ and sn = 1. Conversely, if s is a
primitive n-th root of unity, then 1 is a principal eigenvector of degree n.

Proposition 5.2. Assume s is not a root of unity and γ 6= 0. Take p ∈ K[h]. Then p satisfies

∀λ ∈ K ∀n ≥ 1 snp(λ) = p(λ− nγ) =⇒ p(λ) = 0 (5.17)

if and only if p ∈ K.

Proof. Let p ∈ K[h] and assume, by way of contradiction, that p is not constant. Then the set of
roots of p is finite and nonempty. Let ∆ = {α−β | α and β are roots of p} be the set of differences
of (not necessarily distinct) roots of p. Since ∆ is finite, there exists an integer n ≥ 1 such that
nγ /∈ ∆. Consider the polynomial pn(h) = snp(h)− p(h − nγ). Since s is not a root of unity, pn
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has the same degree as p. In particular, pn has some root, say α ∈ K. By (5.17), α is a root of p,
which in turn implies that α − nγ is a root of p, as well. Hence, nγ = α − (α− nγ) ∈ ∆, which
contradicts our choice of n. So indeed, p ∈ K. The converse implication is trivial.

We are now ready to say when L is a Noetherian UFR.

Theorem 5.3. Assume f and γ are nonzero and r = 1. Then L = L(f, 1, s, γ) is a Noetherian
UFR if and only if one of the following conditions hold:

(a) s is a root of unity, or

(b) s is not a root of unity and f ∈ K.

Proof. The first and second parts follow from [20, Prop. 2.18] and [20, Prop. 2.20], respectively,
and the results in this section. Note that, since s 6= 1, then f ∈ K ⇐⇒ g ∈ K.

Next, we deduce from [20, 2.22 and Remark 2.25] the cases where L is a Noetherian UFD.

Theorem 5.4. Assume f and γ are nonzero and r = 1. Then L = L(f, 1, s, γ) is a Noetherian
UFD if and only if one of the following conditions hold:

(a) s = 1, or

(b) s is not a root of unity and f ∈ K.

5.2 The case f conformal, r = 1 and γ = 0

In this case, h is central in L. Note also that since f is conformal in L, then s 6= 1. Nevertheless,
the conformality condition will not be used in this section, as we will not refer to [20]. We will
consider separately the cases s not a root of unity and s a root of unity of order l ≥ 2.

5.2.1 The case f conformal, r = 1, γ = 0 and s not a root of unity

Theorem 5.5. Assume f is nonzero, r = 1, γ = 0 and s is not a root of unity. Then L =
L(f, 1, s, 0) is a Noetherian UFD. In fact, the height one prime ideals of L are 〈h−λ〉, for λ ∈ K,
and 〈du − ud〉.

Proof. Let λ ∈ K. Then h− λ is central and the factor algebra L/〈h− λ〉 is either the quantum
plane or the quantum Weyl algebra, depending on whether λ is a root of f or not. In either case,
L/〈h− λ〉 is a domain, and thus the ideal 〈h− λ〉 is completely prime.

The element du−ud = (s− 1)z is normal and the factor algebra L/〈du−ud〉 is a commutative
algebra generated by h, d and u, subject to the relation ud− 1

s−1f(h) = 0. It is easy to see that

the element ud − 1
s−1f(h), viewed as an element of the polynomial algebra in the 3 commuting

variables h, d and u, is irreducible, provided that f 6= 0. This shows that L/〈du−ud〉 is a domain.
Another way of reaching this conclusion is by realising this factor algebra as the generalized Weyl

algebra K[h]
(
idK[h],

1
s−1f(h)

)
. (The reader is referred to [3] for more details on generalized Weyl

algebras.)
The above shows that all ideals of the form 〈h− λ〉, for λ ∈ K, and 〈du − ud〉 are completely

prime and principal. By the Principal Ideal Theorem, they have height one. To finish the proof,
we need only show that any nonzero prime ideal of L must contain one of these ideals. We do so
in the next proposition.

Proposition 5.6. Assume f is nonzero, r = 1, γ = 0 and s is not a root of unity. Then any
nonzero prime ideal of L = L(f, 1, s, 0) must contain either du− ud or h− λ, for some λ ∈ K.
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Proof. Let P be a nonzero prime ideal of L and assume h − λ is not in P , for any scalar λ. We
will show that du − ud ∈ P .

Since K is algebraically closed and K[h] is a central subalgebra, it follows that P ∩K[h] = 〈0〉.

Let L̃ be the localisation of L at the central multiplicative set of nonzero elements of K[h]. Let

F = K(h) be the field of fractions of K[h]. Then L̃ can be seen as the first quantised Weyl algebra
As

1(F), generated over F by X and Y , and subject to the relation XY − sY X = 1. In fact, it is

easy to check that there are mutually inverse F-algebra maps, Φ : L̃→ As
1(F) and Ψ : As

1(F) → L̃,

such that Φ(d) = X , Φ(u) = −f(h)Y , Ψ(X) = d and Ψ(Y ) = −u (f(h))−1.

Thus, P extends to a nonzero prime ideal P̃ of L̃, which we identify, via the map Φ above, with
a prime ideal of As

1(F). The element Z := XY − Y X of As
1(F) is normal, nonzero and not a unit.

In fact, Z corresponds, via Ψ, to the element (ud− du) (f(h))
−1

. Let Bs
1(F) be the localisation of

As
1(F) at the powers of Z. Since s is not a root of unity, Bs

1(F) is simple, by [2, Lem. 2.2] (note
that this result does not depend on the base field being algebraically closed). Since Z is normal,

this means that every nonzero prime ideal of As
1(F) contains Z. In particular, Z ∈ Φ(P̃ ), i.e.,

(ud− du) (f(h))−1 ∈ P̃ . Thus, du− ud ∈ P = P̃ ∩ L.

5.2.2 The case f conformal, r = 1, γ = 0 and s 6= 1 a root of unity

We finally tackle the case in which s is a primitive l-th root of unity, for some l ≥ 2. It is
straightforward to see that, in this case, both dl and ul are central. Our aim is to prove that, in
this case, L is a Noetherian UFR.

Let L̃ be the localisation of L with respect to the multiplicative set generated by the central
elements of the form h−λ, where λ runs through the roots of f . In case f is a (nonzero) constant

polynomial, we have L̃ = L.
Since, for λ a root of f , L/〈h − λ〉 is a quantum plane, the ideals of the form 〈h − λ〉, with

f(λ) = 0, are completely prime as well as pairwise distinct. Thus, by [26, Prop. 1.6], it will be

enough to show that L̃ is a Noetherian UFR.
Let S be the localisation of K[h] at the multiplicative set generated by the h−λ, with λ running

through the roots of f . Since K is algebraically closed, f is a product of linear factors, and thus is
invertible in S. The localised algebra L̃ can be seen as the algebra over S, generated by elements
D and U , subject to the relation

DU − sUD = 1,

where D = d and U = −u (f(h))−1
. Consider the nonzero normal element Z = DU − UD, of L̃.

It satisfies ZU = sUZ and ZD = s−1DZ. In particular, Z l is central in L̃. The algebra L̃/〈Z〉
is isomorphic to the commutative Laurent polynomial algebra S[U±1], and hence Z generates a

completely prime ideal of L̃. Therefore, it will suffice to show that the localisation L̂ of L̃ at
the multiplicative set generated by Z is a Noetherian UFR, by [26, Prop. 1.6]. The latter is a
consequence of the result that follows.

Proposition 5.7. Under the above assumptions, L̂ is an Azumaya algebra over its centre Z(L̂),

with [L̂ : Z(L̂)] = l2. Moreover, the centre Z(L̂) of L̂ is the localisation of S[U l, Dl] at the powers
of Z l.

Proof. The proof is entirely analogous to that of [1, Prop. 1.3]. We give details for completeness.

First, it is easy to see that the centre of L̃ is S[U l, Dl], and it must contain Z l, as this element
commutes with D and U .

Let b = aZn be an element of L̂ with a ∈ L̃ and n ∈ Z. Take q ∈ Z and 0 ≤ r < l such that
n = ql + r. As Zql is central in L̂, we get that b = aZqlZr is central in L̂ if and only if aZr is
central in L̃. Hence, Z(L̂) = {cZql | c ∈ S[U l, Dl], q ∈ Z} is the localisation of S[U l, Dl] at the
powers of Z l.

By [1, Lem. 1.2],
{
U iDj

}
0≤i,j≤l−1

is a basis for L̂ over its centre. So [L̂ : Z(L̂)] = l2.

To conclude, it is enough to show that the irreducible finite dimensional representations of L̂
over K all have dimension l, by the Artin-Procesi Theorem. Let ρ : L̂ → EndK(V ) be such an
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irreducible representation, with dimK V = m. Since K is algebraically closed, and V is finite-
dimensional, it follows by Schur’s Lemma that the centre of L̂ acts on V as scalars. Thus,
dimK ρ(L̂) ≤ l2. By the Jacobson Density Theorem, ρ is surjective. Therefore,

m2 = dimK EndK(V ) = dimK ρ(L̂) ≤ l2,

and m ≤ l.
On the other hand, let X = ρ(D), Y = ρ(U). Then, XY −sY X = ρ(DU −sUD) = ρ(1) = 1 ∈

EndK(V ). Furthermore, as Z is invertible in L̂, the same is true of ρ(Z) = XY −Y X ∈ EndK(V ).
Thus, dimK EndK(V ) ≥ l2, again by [1, Lem. 1.2]. So m ≥ l and m = l.

Theorem 5.8. Assume f is nonzero, γ = 0, r = 1 and s is a primitive l-th root of unity, for
some l ≥ 2. Then L = L(f, 1, s, 0) is a Noetherian UFR, but not a Noetherian UFD.

Proof. Since the algebra L̂ is Azumaya over its centre, it follows that all ideals of L̂ are centrally
generated. Hence, as Z(L̂) is a (commutative) UFR, by Proposition 5.7, we deduce from the

Principal Ideal Theorem that L̂ is a Noetherian UFR. We can thus conclude that L is a Noetherian
UFR, by [26, Prop. 1.6].

We will now observe that the ideal 〈dl − 1〉 of L is prime. To see this, notice that L is an
Ore extension over the commutative polynomial algebra K[h, d]. So, by [5, Prop. 2.1], it will be
enough to prove that dl − 1 generates a δ-stable, σ-prime ideal of this polynomial algebra, where
σ and δ are as in (1.4). In particular, σ(d) = sd. This ideal is stable under δ and σ because dl − 1
is central in L = K[h, d][u;σ−1, δ]. Consider the prime ideal I of K[h, d] generated by d− 1. Since
s is a primitive root of unity of order l, it follows that

⋂

i∈Z

σi(I) =
∏

0≤i≤l−1

(d− si)K[h, d] = (dl − 1)K[h, d],

so (dl − 1)K[h, d] is indeed a σ-prime ideal of K[h, d], as it is the intersection of a σ-orbit of a
prime ideal. Thus, 〈dl − 1〉 is a prime ideal of L.

By the Principal Ideal Theorem, 〈dl − 1〉 has height one. Yet, it is not completely prime, as
l ≥ 2 and hence the central element dl−1 factors non-trivially. So L is not a Noetherian UFD.

6 The case f conformal and r 6= 1 a root of unity

The final part of our discussion concerns the case when f is conformal and r is a primitive root
of unity of order l ≥ 2. Since r 6= 1 we will assume, without loss of generality, that γ = 0, by
Proposition 1.4.

We start with a negative result, which follows immediately from Lemma 1.13.

Corollary 6.1. Let L = L(f, r, s, 0) and assume r 6= 1 is a root of unity. Then L is not a
Noetherian UFD.

The remainder of this section is devoted to establishing that, under the current assumptions,
L = L(f, r, s, 0) is a Noetherian UFR. The following general result will play, in this section, the
role of Propositions 2.3 and 2.5.

We consider a Noetherian ring R, with a subring A, which is a domain, and such that R is free
both as a left and as a right A-module, with basis S := {X i | i ≥ 0}. Assume the multiplicative

system S satisfies the Ore condition on both sides, and let R̂ := RS−1 be the corresponding
localisation.

Lemma 6.2. Let P be a nonzero prime ideal of R such that P ∩ S = ∅, and assume that there
exists b ∈ R̂ such that:

(a) PS−1 = R̂b = bR̂;
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(b) Xb = ηbX, for some central unit η of A.

Then P = xR = Rx, where e ∈ Z is minimal such that bXe ∈ R, and x = bXe.

Proof. Observe that, since b 6= 0, a minimal e ∈ Z such that bXe ∈ R exists; also, Xx = ηxX .
We will prove that P = Rx. As Xb = ηbX , e is also minimal such that Xeb ∈ R, and Xeb = ηex,
so a similar argument will show that P = xR, using the fact that {X i | i ≥ 0} is a free basis for
R as a right A-module.

By construction, it is clear that Rx ⊆ P , as x ∈ PS−1 ∩ R = P . Let y ∈ P . Then y ∈
PS−1 = R̂b = R̂xX−e = R̂x, as x and X η-commute. Hence, there exists u ∈ R̂ such that y = ux.
Moreover, there exists t ≥ 0 such that uXt ∈ R. Therefore, yXt = uxXt = η−tuXtx, i.e., there
exist t ≥ 0 and r ∈ R such that yXt = rx. We choose a minimal such t.

Assume that t ≥ 1. Write

r =
k∑

i=0

riX
i, y =

k∑

i=0

yiX
i, x =

k∑

i=0

xiX
i,

where ri, yi, xi ∈ A. Note that x0 6= 0, as otherwise xX−1 ∈ R, so that bXe−1 ∈ R, contradicting
the minimality of e.

On the other hand, as Xx = ηxX , the equality yXt = rx can be written as follows:

k∑

i=0

yiX
i+t =

k∑

i=0

riX
ibXe =

k∑

i=0

riη
ibXe+i =

k∑

i=0

riη
ixX i =

k∑

i,j=0

riη
ixjX

i+j .

As t ≥ 1, identifying the degree 0 coefficients yields 0 = r0x0. As x0 6= 0 and A is a domain, this
forces r0 = 0. Hence, rX−1 ∈ R and yXt−1 = rxX−1 = ηrX−1x. This contradicts the minimality
of t. Thus, t = 0 and y = rx ∈ Rx, as desired.

Proposition 6.3. Let L = L(f, r, s, 0), with f conformal. If P is a prime ideal of L of height
one, which either does not contain any power of d or does not contain any power of u, then P is
a principal ideal, generated by a normal element of L.

Proof. By Lemma 1.2, the localisation L̂ of L at the denominator set D = {di}i≥0 is isomorphic to
a quantum coordinate ring of affine 3-space over K, localised at the powers of one of its canonical
generators. As in Section 3.1, it follows that L̂ is a Noetherian UFR.

If P is a height one prime ideal of L which is disjoint from D, then PD−1 is a height one
prime ideal of L̂, so it is generated by a normal element b ∈ L̂. It is easy to see that in a quantum
coordinate ring the normal elements are q-central, so there is η ∈ K∗ such that db = ηbd. Thus,
by Lemma 6.2, P is a principal ideal, generated by some normal element x ∈ L.

The statement regarding u follows similarly.

So it remains to consider the prime ideals that contain both a power of d and a power of u.
We start by discussing the simpler case where s is not a root of unity.

Proposition 6.4. Let L = L(f, r, s, 0), with f 6= 0 conformal and r 6= 1 a root of unity. If s is
not a root of unity, then L is a Noetherian UFR, but not a Noetherian UFD.

Proof. In view of Corollary 6.1 and Proposition 6.3, it is enough to show that the height one prime
ideals of L either do not contain any power of d or do not contain any power of u.

Let P be a prime ideal of L which contains a power of d and a power of u. Since r is a root
of unity and s is not, it follows that (s/rm)k 6= 1, for all k > 0. Thus, by Lemma 1.10, the
polynomials Pk are all nonzero, for k > 0. Hence, P = Qλ, for some λ ∈ K, by Theorem 1.12.

If λ = 0, then h ∈ P ; otherwise hl − λl ∈ P , where l ≥ 2 is the order of r. Therefore, either
〈h〉 ( P or 〈hl−λl〉 ( P , as P = Qλ is not principal, so P has height at least two, by Lemma 1.13,
thus proving our claim.
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In the next lemma we deal with the case in which s is a root of unity. Note that if r and s are
roots of unity and f is conformal, then Lemma 1.10 guarantees the existence of a positive integer
k such that Pk = 0. For any such k, the elements uk and dk are normal.

Lemma 6.5. Let L = L(f, r, s, 0), with f 6= 0 conformal, and assume r and s are roots of unity.
Take k > 0 minimal such that Pk = 0. Then, uk and dk are normal and each generates a height
one prime ideal of L.

Proof. We will prove the statement for uk; the result for dk will thus follow, by symmetry.
Consider the Ore set D =

{
di
}
i≥0

in L and the localisation L̂ = LD−1. Recall that z :=

ud − g(h) is normal and satisfies zh = hz, dz = szd and zu = suz (see Section 1.2). It is easy
to see that h and z generate a (commutative) polynomial algebra in two variables, K[h, z], and

L̂ = K[h, z][d±1; τ ], where τ(h) = rh, τ(z) = sz, with u = (z + g(h))d−1.
Let ξ = z + g(h) ∈ K[h, z]. This is an irreducible polynomial in the polynomial algebra

K[h, z], hence it generates a prime ideal P = ξK[h, z]. Furthermore, τ i(ξ) and τ j(ξ) are associated
irreducible polynomials if and only if k divides i− j. The latter follows from the minimality of k,
as Pi(h) = 0 ⇐⇒ sig(h) = g(rih) ⇐⇒ k divides i.

Thus,

I :=
⋂

i∈Z

τ i(P ) =
⋂

i∈Z

τ i(ξ)K[h, z] =
⋂

1−k≤i≤0

τ i(ξ)K[h, z] =
∏

1−k≤i≤0

τ i(ξ)K[h, z]

is a τ -prime ideal of K[h, z]. It follows (e.g. by [5, Prop. 2.1]) that Q := IL̂ is a prime ideal of L̂.

Claim:
∏

1−n≤i≤0

τ i(ξ) = undn, for all n ≥ 0.

The claim above can be readily established by induction. In particular, Q = ukdkL̂ = ukL̂.
It remains to show that the prime ideal that Q contracts to in L is generated by uk. This

follows by applying Lemma 6.2 to the contraction of Q to L, and noting that:

• duk = skukd, and

• for n ∈ Z, ukdn ∈ L ⇐⇒ n ≥ 0.

Finally, the height of 〈uk〉 is one, by the Principal Ideal Theorem.

Our final result finishes the classification of which generalized down-up algebras are Noetherian
UFR’s.

Theorem 6.6. Let L = L(f, r, s, 0), with f 6= 0 conformal and r 6= 1 a root of unity. Then L is
a Noetherian UFR but not a Noetherian UFD.

Proof. By Proposition 6.4, it remains to consider the case where s is a root of unity (possibly
equal to 1), and by Corollary 6.1 and Proposition 6.3, it will be enough to show that there are no
height one prime ideals of L which contain both a power of d and a power of u.

Let P be a prime ideal of L which contains a power of d and a power of u. Let k > 0 be
minimal such that Pk = 0. Since uk is normal, we must have uk ∈ P , so P contains the height
one prime ideal 〈uk〉, by Lemma 6.5. So P does not have height one, as 〈uk〉 contains no power of
d.

7 Proofs of Theorems A and B

In this final section, we start by proving Theorem B, which gives a complete classification of the
generalized down-up algebras which are a Noetherian UFR, and then we prove Theorem A. We
also specialise our results to down-up algebras, as introduced by Benkart and Roby in [6].
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Proof of Theorem B. Assume first that γ = 0. Then the condition there exists ζ 6= γ/(r− 1) such
that f(ζ) = 0 is equivalent to the condition f is not a monomial, and the condition 〈r, s〉 is a free
abelian group of rank 2 is equivalent to the condition r is not a root of unity and τ = 0. Thus,
in this case, the result follows from Theorem 2.6, Proposition 3.1, Theorem 4.4, Theorem 5.5,
Theorem 5.8 and Theorem 6.6.

Now assume that γ 6= 0 and r = 1. Then, by Proposition 1.5, f is conformal, and the result
follows from Proposition 3.3 and Theorem 5.3.

Finally, if γ 6= 0 and r 6= 1, then Proposition 1.4 asserts that L is isomorphic to a generalized
down-up algebra L(f̃ , r, s, 0), such that f is conformal in L(f, r, s, γ) if and only if f̃ is conformal
in L(f̃ , r, s, 0). Furthermore, by the proof of this result (see [9, Prop. 1.7]), we can take f̃(h) =
f(h+γ

r−1 ). Hence, in this case, the result follows from applying our previously established criteria to

L(f̃ , r, s, 0).

To finish the classification, we just need to determine the generalized down-up algebras which
are a Noetherian UFD, and prove Theorem A.

Proof of Theorem A. It will be enough to establish this result in the case γ = 0, and the case
γ 6= 0, r = 1, by Proposition 1.4, as the statement does not involve f or γ. So we assume that
either γ = 0 or r = 1.

• If f is not conformal then γ = 0, by Proposition 1.5, and thus, by Lemma 1.3, 〈r, s〉 = 〈r〉.
Then Theorem 2.6 establishes the result.

• If f = 0 and γ = 0, then the result follows from Propositions 3.1 and 3.2.

• If f = 0 and γ 6= 0, then we assume r = 1 and the result follows from Proposition 3.3 and
Theorem 3.5.

• If f 6= 0 is conformal and r is not a root of unity, then we assume γ = 0 and the result
follows from Theorems 4.4 and 4.5.

• If f 6= 0 is conformal, r = 1 and γ 6= 0, then Theorems 5.3 and 5.4 establish the result.

• If f 6= 0 is conformal, r = 1 and γ = 0, then Proposition 1.5 implies that s 6= 1. Thus,
Theorems 5.5 and 5.8 imply the result.

• If r 6= 1 is a root of unity, then we can assume that γ = 0, and the result follows directly
from Corollary 6.1.

We note that the hypothesis that L be a Noetherian UFR, in Theorem A, is essential, as the
following example illustrates. Let r ∈ K∗ be a non-root of unity, s ∈ {1, r} and f = h ∈ K[h]. Then
L = L(h, r, s, 1) is not a Noetherian UFD, by Proposition 1.4 and Theorem B(a). Yet, 〈r, s〉 ≃ Z

is torsionfree. Notice that L(h, r, s, 1) is isomorphic to the down-up algebra A(r + s,−rs, 1).
In general, the down-up algebra A(α, β, γ), as defined in [6], can be viewed as the generalized

down-up algebra L(h, r, s, γ), where α = r + s and β = −rs (see [9, Lem. 1.1] for more details).
So we have:

Corollary 7.1. Let A = A(α, β, γ) be a down-up algebra over K with β 6= 0. Let r, s ∈ K be the
roots of h2 − αh − β. Then A is a Noetherian UFR except if γ 6= 0, β is not a root of unity and
one of the following conditions is satisfied:

(a) α+ β = 1;

(b) α2 + 4β = 0;

(c) 〈r, s〉 is a free abelian group of rank 2.
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Furthermore, A is a Noetherian UFD if and only if A is a Noetherian UFR and 〈r, s〉 is torsionfree.

Proof. We use the isomorphism A(α, β, γ) ≃ L(h, r, s, γ). First, by Proposition 1.4, Lemma 1.3
and Proposition 1.5, we conclude that f(h) = h is conformal in L(h, r, s, γ) if and only if one of
the following conditions holds:

• γ = 0 and r 6= s;

• γ 6= 0, r 6= 1, s 6= 1 and r 6= s;

• γ 6= 0 and r = 1.

Thus, we can apply Theorem B to conclude that A is a Noetherian UFR except in the cases listed
below:

• γ 6= 0, s = 1 and r is not a root of unity;

• γ 6= 0, s = r and r is not a root of unity;

• γ 6= 0 and 〈r, s〉 is a free abelian group of rank 2;

• γ 6= 0, r = 1 and s is not a root of unity.

Notice that, in all of these cases, γ 6= 0 and β = −rs is not a root of unity. Also, α+ β = 1 ⇐⇒
r = 1 or s = 1, and α2 + 4β = 0 ⇐⇒ r = s. The first part of the theorem thus follows. The
second part is a direct consequence of Theorem A.

Two down-up algebras of particular interest are the enveloping algebra of the Lie algebra sl2
and the enveloping algebra of the 3-dimensional Heisenberg Lie algebra, which occur as A(2,−1, 1)
and A(2,−1, 0), respectively. Using Corollary 7.1, we retrieve the well-known fact that each of
these two algebras is a Noetherian UFD (see [14] and [12, Prop. 3.1]).

Generalized down-up algebras also include other classes of algebras, such as Smith’s algebras
[34] and Rueda’s algebras [33]. In the case of Smith’s algebras, the result is quite straightforward.
Let f ∈ K[H ]. Recall that the Smith algebra S(f) is the K-algebra generated by A,B,H with
relations:

[H,A] = A, [H,B] = −B and [A,B] = f(H).

It is well known that S(f) ≃ L(f, 1, 1, 1). Hence, we deduce from Theorems A and B the following
result.

Corollary 7.2. Let S(f) be a Smith algebra with f ∈ K[H ]. Then, S(f) is a Noetherian UFD.
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