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Abstract

Coupled cell systems are systems of ODEs, defined by ‘admissible’ vector fields, as-
sociated with a network whose nodes represent variables and whose edges specify cou-
plings between nodes. It is known that non-isomorphic networks can correspond to the
same space of admissible vector fields. Such networks are said to be ‘ODE-equivalent’.
We prove that two networks are ODE-equivalent if and only if they determine the same
space of linear vector fields; moreover, the variable associated with each node may be
assumed 1-dimensional for that purpose. We briefly discuss the combinatorics of the
resulting linear algebra problem.

AMS classification scheme numbers: 37C10 20L05

1 Introduction

Networks of nonlinear dynamical systems have become the topic of considerable attention
recently, mainly because a wide variety of physical and biological systems can naturally be
modelled by such networks, see Wang [12], Stewart [10]. The theoretical understanding
of such systems is also under intensive development. Of course, every (finite) network of
dynamical systems can be considered as a single dynamical system, and every dynamical
system is trivially a network with only one node and no edges, so it might seem that net-
works offer no gain in generality. However, networks possess additional structure, namely,
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canonical observables—the dynamical behaviour of the individual nodes [5]. These observ-
ables can be compared, revealing such features as synchrony or phase-relations, and it is
precisely these features that are important in many applications. Any theoretical treatment
of network dynamics must therefore take this additional structure into account, so conven-
tional dynamical systems theory must be modified to preserve that structure. The topology
(or ‘architecture’) of the network imposes constraints on the dynamics, with the result that
many new phenomena become ‘generic’ for a given architecture, see for example Golubitsky
et al. [4].

A network (or graph) is a schematic representation of a set of dynamical systems (that
is, ordinary differential equations or ODEs) that are coupled together. The nodes of the
graph (‘cells’ of the network) represent the individual dynamical sytems, and the directed
edges (‘arrows’) represent couplings. One formulation of this idea is known as ‘coupled cell
systems’, and it provides a convenient formal framework for the theory. In this formulation,
introduced by Stewart et al. [11] and extended into a technically more convenient form
by Golubitsky et al. [7], both arrows and cells are labelled to indicate various ‘types’ of
dynamical behaviour. To each cell ¢ is associated a choice of ‘cell phase space’ P., which
we will assume is a finite-dimensional vector space R over R, where k may depend on c.
(More generally, it could be a finite-dimensional smooth manifold, but we do not consider
this generalization here.) The overall phase space of the coupled cell system is P, the direct
product of the P. over all cells c.

Associated with each network G is a class of differential equations on P, which correspond
to ‘admissible’ vector fields on P. These are the ODEs that are compatible with the network
topology and the choice of cell phase spaces. The admissible vector fields can be characterised
in terms of an algebraic structure known as the ‘symmetry groupoid’ of the network. A
groupoid is similar to a group, except that product of two elements may not always be
defined. The symmetry groupoid Bg consists of all ‘input isomorphisms’ between pairs of
cells ¢, d—that is, type-preserving bijections between the set of arrows entering cell ¢ and
the corresponding set for cell d. The admissible vector fields then turn out to be precisely
those that are equivariant under a natural action of the groupoid Bg on P, in a sense that
generalizes the usual notion of equivariance under the action of a group [5, 6].

It was observed in [7] that topologically distinct coupled cell networks can give rise to
the same space of admissible vector fields (for a suitable choice of cell phase spaces), a phe-
nomenon known as ‘ODE-equivalence’. The aim of this paper is to investigate the conditions
under which two networks are ODE-equivalent. Here we prove two main theorems. The first
(Theorem 7.1 below) reduces the problem of ODE-equivalence to ‘linear equivalence’, where
two networks (with suitably identified phase spaces) are linearly equivalent if they determine
the same space of linear admissible vector fields. (The definition we use is actually more
technical.) The second (a simple but useful corollary) is that when deciding linear equiva-
lence, it can without loss of generality be assumed that each cell phase space is 1-dimensional
(Corollary 7.7).

We also discuss the characterization of linearly equivalent networks, reducing this ques-
tion to a combinatorial condition in linear algebra. In a sense, this condition completely
solves the problem of linear equivalence, hence of ODE-equivalence. However, the relation
between network topology and the linear algebra condition is deceptively simple; in par-
ticular, there seems to be no straightforward combinatorial condition on the two networks



that determines linear equivalence, other than a suitably ‘encoded’ form of the linear algebra
condition. This topic will be the subject of future work by Aguiar and Dias [1].

Sections 2, 3, 4 of the paper provide formal definitions for, and basic properties of, coupled
cell networks, the associated symmetry groupoid, and admissible vector fields. Section 5
defines ODE-equivalence. Section 6 discusses linear equivalence, including a typical example
that shows how the network topology encodes a linear algebra condition. Section 7 proves
the main theorem that ODE-equivalence is the same as linear equivalence, and deduces as a
corollary that linear equivalence does not depend on the choice of cell phase spaces (provided
their dimensions are at least 1), so that when deciding linear (hence ODE) equivalence, all
cells may be assumed to have 1-dimensional phase spaces. Finally Section 8 provides a brief
discussion of the combinatorial issues associated with linear equivalence.

2 Coupled Cell Networks

A coupled cell network can be represented schematically by a directed graph (see for example
Figures 1, 2, 3 below) whose nodes correspond to cells and whose edges represent couplings.
We employ the following definition, introduced by Golubitskyet al. [7], which permits mul-
tiple arrows and self-coupling. This formulation has several technical advantages over the
more restricted version described in [11].

Definition 2.1 [7] In the multiarrow formalism, a coupled cell network G consists of:
(a) A finite set C = {1,...,n} of nodes (or cells).

(b) An equivalence relation ~¢ on the nodes in C.
The type or cell label of cell ¢ is the ~c-equivalence class [c]¢ of c.

(c) Associated with each node c is a finite set of input terminals I(c). Each input terminal
i € I(c) is the receptacle for one arrow or edge that begins in tail cell 7(i) and ends
in terminal 7. That arrow is denoted by e = (7(7),), and it has head cell ¢ and head
terminal . Let £ denote the set of all arrows.

(d) An equivalence relation ~g on the edges in £.
The type or coupling label of edge e is the ~pg-equivalence class [e]g of e.

(e) Equivalent edges have equivalent tails and heads. That is, if (7(¢),7) ~g (7(j), j) where
i€ I(c)and j € I(d), then 7(i) ~¢ 7(j) and ¢ ~¢ d.

We write G = (C,g,Nc,NE). O

Observe that in this definition of coupled cell network, self-coupling is permitted since
7(i) = ¢ for a terminal i in cell ¢ is permitted. Also multiarrows are permitted since we can
have 7(i) = 7(j) for two distinct terminals i, 7 in the same cell c.

Remark 2.2 It is possible to avoid explicit use of terminals since they are in one-to-one
correspondence with arrows (via the map (7(i),i) — ¢). We therefore follow [7] and omit
explicit terminals from all network diagrams. Implicitly, a terminal is determined by the
head end of the corresponding arrow. &



3 Symmetry Groupoid of a Coupled Cell Network

Given a graph G = (C, &, ~¢, ~g) as in Definition 2.1, we can define the ‘symmetry groupoid’
Bg of GG. This definition centres upon the notion of ‘input set’.

Definition 3.1 Following [7], let G = (C, &, ~¢, ~g) be a coupled cell network. The relation
~ of input-equivalence on C is defined by ¢ ~; d if and only if there exists a bijection

B I(c) = 1(d)
that preserves edge type. That is, for every input terminal i € I(c)

(7(2),4) ~e (7(8(1)), B(i))

Any such ( is called an input isomorphism from cell ¢ to cell d. We denote the set of all
input isomorphisms from cell ¢ to cell d by B(c,d), and define

Bo= | Ble.d)

cd € C

where U indicates disjoint union. A natural product operation can be defined on Bg as
follows: elements (B € B(e,d) and $; € B(a,b) can be multiplied only when b = ¢, and in
this case (23, € B(a,d) is the usual composition of functions. Now B¢ is a groupoid whose
objects are the nodes of GG, and the Bg-morphisms are the elements of the sets B(c,d),
with the product operation between the morphisms as defined above. Some references on
groupoids are Brandt [2], Brown [3] and Higgins [8]. Following [7, 11] we call B¢ the symmetry
groupoid of the network G. For any ¢ € C, the subset B(c,c) is a group, the vertexr group
corresponding to c. O

Structure of B(c,d)

Let B(c,d) C Bg. We can specify the structure of the set B(c,d) in terms of the structure
of G. We distinguish three cases:

1. If ¢ 41 d then B(c,d) = 0.

2. If ¢ = d we can define an equivalence relation =. on I(c) by

J1=cjo = (7(41),J1) ~& (7(j2), J2) (3.1)
where ji, jo € I(c). If Ky, Ky, ..., K, are the =.-equivalence classes (on I(c)), then
B(C,C):SKl X ”.XSKT(C) QSn (32)

where each Sk, comprises all permutations of the set K;, extended by the identity on
I(c)\ K;, and n = |C|.

3. If ¢ £ d and ¢ ~; d (so that B(c,d) # 0), then for any 5 € B(c,d) we have
B(c,d) = AB(c,c) = B(d, )

For proofs of the above facts see [11], end of Section 3.
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4 Admissible Vector Fields

We make now precise the connection between coupled cell systems and coupled cell networks.
Essentially, the network is a schematic diagram (graph), whereas the system is a set of ODEs
whose couplings correspond to the edges of the network. To obtain these ODEs we must
associate variables z, with cells ¢, that is, we must choose a phase space for each cell.

By a coupled cell system we mean a network of dynamical systems coupled together,
where we use a labelled directed graph G (that is, a coupled cell network in the sense of
Definition 2.1), whose nodes correspond to cells, and whose edges represent couplings. The
term ‘coupling’ here is used in the sense that the output of certain cells affects the time-
evolution of other cells.

Again, we follow the treatment of Stewart et al. [11] and Golubitsky et al. [7]. Consider
a coupled cell network G = (C, &, ~¢, ~g), with symmetry groupoid Bg. We wish to define
a class FL of ‘admissible’ vector fields corresponding to G. This class consists of all vector
fields that are ‘compatible’ with the labelled graph structure, and it depends on a choice of
‘total phase space’P.

To each cell ¢ € C we associate a cell phase space P., which for simplicity we assume is a
nonzero finite-dimensional real vector space.

If ¢, d are in the same ~¢c-equivalence class, then we insist that P, = P;, and we identify
these spaces canonically. The total phase space is

p=]][~

ceC

with coordinate system
T = (xc)cec

on P. If D= (dy,...,ds) is any finite ordered subset of s cells in C we define
PD:Pdl X "'XPdS

and we write
Ip = (l’dl, .. .,xds)
where x4, € P;,. Note that the same cell can appear more than once in D. (This condition
must be permitted because of the multiarrow formalism.)
Suppose that ¢ ~; d and consider the ordered sets Dy = 7(I(c)), D2 = 7(I(d)) of C. Let
B € B(c,d). Then f is a bijection between I(c) and I(d). Moreover for all i € I(c) we have
(1(2),7) ~g (T7(B(7)), 5(7)), and so 7(i) ~¢ 7(5(7)). We can define the pullback map

5*2 PDQ—)Ppl

by
(ﬁ*(Z»T(j) = Zr(8())

for all 7(j) € Dy and z € Pp,. If 7 (I(c)) = (7(i1),...,7(is)) then (1)) = (Tr(ir)s - - -» Triiy))
and 3" (2r(1(0)) = (Tr(s(0)): - - > Tr(a(i)))-

We use pullback maps to relate different components of a vector field associated with a
given coupled cell network.



For a given cell ¢ the internal phase space is P. and the coupling phase space is
Prr(e)) = Prin) X -+ X Priiy)
where as before 7(1(c)) denotes the ordered set of cells (7(i1),...,7(is))-

Definition 4.1 [7] Let G = (C, &, ~¢, ~g) be a coupled cell network with symmetry group-
oid Bg. For a given choice of the P., a (smooth) vector field f: P — P is Bg-equivariant
or G-admussible if:

(a) Domain Condition: For any ¢ € C the component f.(x) depends only on the internal
phase space variable z. and the coupling phase space variables ;7). That is, there

exists a (smooth) function fc . P. X Prj()) — P, such that
fc(x> - fc(xcer(I(c)))

(b) Pullback Condition: For all ¢,d € C and (3 € B(c,d)

~

fa(Za, e 1)) = fe (za, B (zr(1(a)) )
for all z € P.

&

Theorem 4.2 Let G = (C,E,~¢,~g) be a coupled cell network and Bg the corresponding
symmetry groupoid. A vector field f : P — P for a given choice of the P, is Bg-equivariant
if and only if for each connected component Q of B (that is, each ~-equivalence class)

(a) f. is B(c,c)-invariant for some ¢ € Q.

(b) Ford € Q such that d # ¢, given (any) 5 € B(c,d), we have

fa(zay 2rray) = fo(2a, 8 (2rriap) )
Proof This is a generalization of Lemma [11] 4.5 and is proved the same way. O

Now we introduce notation for the space of G-admissible vector fields on P:

Definition 4.3 Let G be a coupled cell network. For a given choice of the P., define F}
to consist of all smooth G-admissible vector fields on P. Clearly FZ is a vector space over
R. Like all function spaces, it can be equipped with a variety of topologies, but here only
the vector space structure is relevant. Let PL be the subspace of F£ consisting of the G-
admissible polynomial vector fields on P, and let £LE be the subspace of P£ consisting of the
G-admissible linear vector fields on P. &

The space of Bg-equivariant maps has a natural decomposition according to the ‘con-
nected components’ of the groupoid Bg, and this decomposition is inherited by the polyno-
mial and linear vector fields:



Definition 4.4 Let Q@ C C be an ~j-equivalence class. Define

FEQ) = {feFL: f(x)=0, Vs ¢ Q}
Pe(Q) = {fePs: flx)=0, Vs ¢ Q}
LEQ) = {feLb: fula)=0,Vs¢ Q)

We say that vector fields in F£(Q), PE(Q), and LE(Q) are supported on Q. &

Remark 4.5 From the above theorem there are direct sum decompositions
Fe=@FIQ PE=PPiQ Li=DLiQ
Q Q Q

where Q runs over the ~;-equivalence classes of G. &

For detailed proofs see [11], end of Section 4, especially Proposition 4.6.

5 ODE-equivalence

As pointed by Golubitsky et al. [7], in the class of coupled cell networks that permits self-
coupling and multiarrows, it is possible for two different coupled cell networks G and G5 to
generate the same space of admissible vector fields. Figure 1 shows a simple example, taken
from Golubitsky et al. [7]. In G; both cells have the same cell type, and similarly for Gs.
Suppose that the phase space for all four cells is R¥ and identify these spaces canonically.
Then the total phase space for both G; and G5 is R¥ x RF.

The admissible vector fields for GG; have the form

H(xy,22) = (h(z1, 21, 22), h(x2, 22, 71))

where i : R* x R*¥ x R¥ — R* is any smooth function, and the admissible vector fields for
G5 have the form

F(xy,m2) = (f(21,22), f (22, 71))

where f: R* x R¥ — R” is any smooth function. It is now easy to see that the set {H} of
all H is the same as the set {F'} of all F. Namely, given f we can set h(x,y, z) = f(z, 2), so
that {H} C {F}. Given h we can set f(a,b) = h(a,a,b) so that {F'} C {H}. Therefore the
spaces .7:51 and ]—"gg are the same.

For a less trivial example, see Figure 2 of Section 6. Note that the above comparison of
admissible vector fields involves identifying cells in the two networks, a step that we formalise
in general in terms of a bijection between the two sets of cells.

In the next definition, given a coupled cell network GG; and a choice of total phase space
P, for G;, we denote by P, . the cell phase space corresponding to cell ¢ of C;.
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Figure 1: Two coupled cell networks G (on the left) and G5 (on the right) that generate
the same space of admissible vector fields.

Definition 5.1 Two coupled cell networks GGy and G5 are v-ODE-equivalent if:

1. There is a bijection v : C; — Cs that preserves cell-equivalence and input-equivalence,
such that:

2. If we choose cell phase spaces P, # 0 for G1, and define the corresponding choice of
cell phase spaces for G5 by
P2,'y(c) = Pl,c

so that the corresponding total phase spaces are

P=][P. P=]]P o

ceCy ceCy

then:

3. The condition
T = 7 (53)

is satisfied.

Two coupled cell networks GG; and Gy are ODFE-equivalent if they are y-ODE-equivalent
for some bijection ~. &

Remarks 5.2 (a) The cells of Gy can be renumbered so that 7y = id. In this case, we
omit explicit reference to ~.

(b) It is shown in Section 7 below that if (5.3) holds for some choice of nonzero cell phase
spaces P., then it holds for all such choices. We postpone proving this fact until we
have looked at a typical example, which makes the result obvious.

It follows that ODE-equivalence of two networks depends only on their architecture,
and not on the particular choice of cell phase spaces. Note, however, the appearance
of the bijection v that associates cells in the two networks (and must preserve cell-
equivalence), and the requirement that P,y = P..

&

Isomorphic networks (in the usual graph-theoretic sense) are always O D E-equivalent. As
pointed out by Golubitsky et al. [7], O D E-equivalent networks are not necessarily isomorphic
(see for instance Figure 1). The aim of this paper is to describe necessary and sufficient
conditions for two coupled cell networks to be ODE-equivalent. In the next section we define
the notion of ‘linear equivalence’ between two networks. We show in Section 7 that two
coupled cell networks are ODE-equivalent if and only if they are linearly equivalent.



6 Linear Equivalence

In this section we define the notion of ‘linear equivalence’ (Definition 6.4 below). We start
with an example to illustrate the ideas involved, and, in particular, the effect of multiple
arrows.

Example 6.1 Consider the coupled cell networks G; and G4 of Figure 2. Here all cells are
cell-equivalent in each graph, and the ~;-equivalence classes of both graphs are:

Ql = {17273}a QQ = {4}

The identity function on {1,2,3,4} = C; = Cs preserves cell-equivalence and input-equiva-

lence.
5. S !
B /1 ° 3
W N4
® (a)

Figure 2: Coupled cell networks Gy (left) and Gy (right). The number k attached to the
right of each edge symbolizes k edges of that type.

First, choose all cell phase spaces to be P, = R. We now describe the linear admissible
vector fields for both graphs, that is, the spaces Egl and LE , of linear groupoid-equivariant
maps. Let Y, denote coordinates on the phase space of cell ¢, for c = 1,...,4, in both graphs.
Any linear G;-admissible vector field F = (fy, fa, f3, f1) : R* — R? has the form:

fihi) = a¥;
f2(Y2) = aYy
f3(Y3) = aYs
fa(Ya, Y1,Y5,Y3) = bYy+c(BY1 +Y3) +d(2Y; + Y2 + 15)

where a, b, ¢, d are real constants, and any linear Go-admissible vector field G = (g1, g2, 93, g4) :
R* — R* has the form:

gl(Yl) = e
gz(Yz) = eYs
93(3/3.) = eYs

94(Ye, Y1,Y2,Ys) = hYy+j(5Y1 +Ys) + [(5Y; + 3Y3)

where e, h, j, [ are real constants. Now recall Definition 4.1, and use the notation R{zy, ..., z,, }
for the real vector space spanned by zq, ..., z,,. It is clear that
R{Y,, 5Y1+Y3, 2Y1 + Yo + Y5} =R {Y,, 5Y1 + Y3, 5, + 35} (6.4)

9



since 5Y,+3Y3 = 5(2Y; +Y>+Y3) —2(5Y1 +Y3) and 2Y; +Ya+Y3 = 2(5Y; +Y3) + 1 (5Y543Y3).
Therefore the space Egl of linear G-admissible vector fields on R* equals the space Egg of
linear Gy-admissible vector fields on R*. We prove in Theorem 7.1 that this is a necessary
and sufficient condition for the graphs G; and G5 to be ODE-equivalent. &

If we let P, = R for k > 1 the identical calculation can be carried over, with the only
change being that the Y; now represent arbitrary vectors in R”. However, condition (6.4)
can be interpreted as the condition that the rows of the 3 x 4 matrices

0001 0 001
50 30 5010
2110 0530
should span the same subspaces of R*. The entries in these matrices are determined by the
corresponding network topology, so this condition does not depend on the size of k. This
fact generalises, see Corollary 7.7 below. (It is also easy to give an independent proof, along

the lines of the above example.)

Definition of Linear Equivalence

We introduce some notation before we define linear equivalence between coupled cell net-
works. Consider two coupled cell networks G; = (C;, &, ~c,,~g,) for i = 1,2 such that
there is a bijection v : C; — Cs preserving cell-equivalence and input-equivalence. Given a
connected component Q of Bg, and ¢ € Q, consider

Il(C> = K1 U . U Krl(c)

where K1, ..., K, ) are the =.-equivalence classes (on /(c)) and n,(c) is the cardinality of
I(c). (See (3.1) for the definition of the relation =..) Consider

]2(7(0)) - Ll U e U er('y(c))

where Lq, ..., Ly,(y(c)) are the =,)-equivalence classes on I5(y(c)), and ny(y(c)) is the car-
dinality of I5(y(c)).

We use the notation Rz, ..., z,] for the polynomial ring in indeterminates z1, ..., 2,
over R, and R{z,..., z,} for the real vector space spanned by z1, ..., 2z,. Let

Ry =R[Y; 1), Ye (i (o))

be the real vector space of polynomials in the indeterminates Y7 (1),..., Y (ni(c)), Where
Tl(l), cey 7'1(711(0)) S Cl.

Remark 6.2 We avoid notational complications here if we permit repetition of the indeter-
minates (that is, we allow z; = z; when ¢ # j), and interpret the resulting ring of polynomials
to be the same as the ring obtained when any repeated indeterminates are replaced by the
corresponding single indeterminate. Again, this convention arises from the multiarrow for-

malism. It amounts to performing calculations in the polynomial ring Rz, ..., z,] where
the z; are independent indeterminates, and then applying a ring homomorphism to identify
various z;. O

10



Let
Ry =R[Y, -1,)), - Yo i (m(ma(r(e))))]

be the real vector space of polynomials in the indeterminates Y -1(7, 1)), - -, Yo~ 1(r(ma(+(e)))
where 15(1), ..., 72(n2(y(c))) € Cs.
Consider the subspace S{ of R; defined by

ST=RAY. Y Yo, .o Y. Yaq (6.5)

1€K1 iEKrl(c)

Thus S{ contains the linear polynomials of R; that are Bj(c, ¢)-invariant. Similarly, let

SO =RV Vim0 D, Yeimay ¢ S Ro (6.6)

1€Ly iELT2(,Y(C))

be formed by the linear polynomials of Ry that are By(y(c),v(c))-invariant.

Example 6.3 Recall the coupled cell networks Gy and G, of Figure 2. For both networks,
all cells are cell-equivalent and the ~j-equivalence classes are Q; = {1,2,3} and Qy = {4}.
Thus the identity function v on {1,2,3,4} = C; = C, preserves cell-equivalence and input-
equivalence. Consider Qs and recall (6.5) and (6.6) where now ¢ =4 = y(4). Then

SY=R{Y,, 5Y;+ Y3, 2i + Y, + Y3}

and
S3W = R{Y, BY) +Ys, 5Y; +3Y3)

As noted earlier, $4 = S7* . Moreover,
Si=9" =R{V}
fori=1,2,3.
Definition 6.4 Two coupled cell networks G, and Gy are v-linearly equivalent if:

1. There is a bijection 7 : C; — Cy that preserves cell-equivalence and input-equivalence,
such that:

2. For each connected component Q of the network G; and for each ¢ € Q we have

Si = 53

where S¢, 57 are as defined in (6.5) and (6.6).

Two coupled cell networks GGy and Gy are linearly equivalent if they are v-linearly equiv-
alent for some 7. &

Note that this definition is independent of the dimensions of the P.. Again, we may
renumber to make ~ the identity.

11



Example 6.5 We return to Example 6.3. Recall the coupled cell networks G; and G5 of
Figure 2. Let v denote the identity on the set {1,2,3,4}. Then G and Gs are ~-linearly
equivalent since S¢ = 57 for all ¢ € {1,2,3,4}. We show in Theorem 7.1 that this is
necessary and sufficient for Gy and G, to be ODE-equivalent. As a corollary, L&, = LE, for
any choice of P compatible with cell-equivalence.

7 Linear Equivalence and ODE-equivalence

We now come to the main theorem of this paper, which reduces ODE-equivalence to linear
equivalence, and its corollary, that the cell phase spaces may be assumed 1-dimensional in
that context. Recall Definition 5.1 of ODE-equivalence and Definition 6.4 of linear equiva-
lence of coupled cell networks. Our main result is:

Theorem 7.1 Let v : C; — Cy be a bijection that preserves cell-equivalence and input-
equivalence. Then two coupled cell networks G1 and Gy are v-ODE-equivalent if and only if
they are ~y-linearly equivalent.

Proof The proof is divided in two steps. We prove in Proposition 7.2 below that given
two coupled cell networks G and G5 and a bijection v : C; — Cy preserving cell-equivalence
and input-equivalence, together with a choice of total phase space P; for G; and P, for Go
according to Definition 5.1, then .7-"51 = ]—"gg if and only if 7?51 = 7352. The rest of the
proof consists in proving in Proposition 7.3 below that 7751 = 7355 if and only if G; and
G5 are ~-linearly equivalent for some bijection v : C; — Cy preserving cell-equivalence and
input-equivalence. As a corollary, we deduce that 7751 = 7?5; if and only if £F L= Egz, and
that in this context we may without loss of generality assume that all cell phase spaces are
1-dimensional. O

In the rest of the section we state and prove Propositions 7.2 and 7.3.

Proposition 7.2 Let G; and G5 be two coupled cell networks such that there is bijection
v Cp — Cy that preserves cell-equivalence and input-equivalence. Consider a choice of total
phase space Py = [].co, Prc for Gi, and let Py = [[.cc, Prye) e the corresponding phase

space for Gy. Then .7:51 = ]—"gg iof and only if 7351 = 7352-

Proof  Trivially, if fgi = f(% then 7751 = ng Suppose now that 7751 = ng By
Theorem 4.2, every smooth equivariant vector field f € .7-"52 is determined uniquely by its
components f. where ¢ runs through a set of representatives for the connected components
(that is, the ~j-equivalence classes) of the groupoid Bg,. Note that since v : C; — Cy is
a bijection that preserves input-equivalence, if Q is a connected component of the groupoid
B, then v(Q) is a connected component of Bg,, and if R is a set of representatives for
the connected components of Bg, then v(R) is a set of representatives for the connected
components of Bg,. The only constraints on f. are that it depends only on x.,z(() and
is invariant under the vertex group B(c,c). Thus every smooth equivariant vector field f is
determined uniquely by a finite set of B(c, ¢)-invariant functions, where ¢ runs through a set
of representatives for the connected components of the groupoid. Moreover, if d ~; ¢ then
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fa is related to f. by a pullback map §* for 5 € B(c,d). Pullbacks permute variables, hence
preserve smoothness (and also map polynomials to polynomials).

Schwarz [9] proves that in general for any compact Lie group I" with an orthogonal
action on R", if the algebra of ['-invariant polynomials is generated by p1, ..., pr (and by
Hilbert’s basis theorem such a finite basis always exist), then any I'-invariant C'*°-function of
n variables is a C'*°-function of the generators p1,..., pr. Since Ppi = sz, the vector space
of polynomial Bj(c, ¢)-invariants (where By (c,c¢) C Bg,) coincides with the vector space of
polynomial By (y(c),v(c))-invariants (where Ba(y(c),v(c)) € Bg,). In particular, the two
spaces share a set of invariant polynomial generators. Thus, given an ~-equivalence class
Q C (4, the equality

Pei(Q) = P& (1(Q))

implies that
F(Q) = Fa;(+(Q)

Now Theorem 4.2 implies that .7:(1;1 = ng. O

Proposition 7.3 Assume the conditions of Proposition 7.2. Then
P P
if and only if Gy and Gy are y-linearly equivalent.

Before we prove Proposition 7.3, we state and prove two lemmas that explore the structure
of the symmetry groupoids of coupled cell networks.

. d . . . .

Lemma 7.4 Consider Vi, ... V4 where each V; is a nonzero finite-dimensional vector
. . . ds

space of dimension k;, and denote coordinates on V" by x; = (z;1,...,%;q,). Let

=Sy x - x Sq,

and
VledIEB--'GBVSdS

Define a I'-action on V' by: if 0 € Sy, then
o-r= (xl,...,l'i_l,(j'-$i7$i+1,...,$s)

where
oI = (xwfl(l), e ,l‘iﬂ—l(di))

Then any real I'-invariant polynomial is a sum of polynomials of the form

q1(21)q2(22) - - - qs(xs)

where for j =1,...,s, each q;(x;) is Sg,-invariant.
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Proof The idea of the proof is simple but the notation is complicated. Essentially, we
use the fact that any invariant can be obtained as a linear combination of symmetrized
monomials, so the proof reduces to computations with monomials.

In detail, recall that p: V — R is [-invariant if and only if

plo-x)=plx) VYoel, zeV
This condition holds if and only if p: V' — R is Sy -invariant, where S;, acts nontrivially

only on Vidi.
Denote by Zg the set of nonnegative integers. Monomials in z; have the form

I Iq
xlﬁ s '331,51
where I4,. .., 1; € (Z$)™, and each .CE{]J is a monomial in the k; components of zy ;.

Let p : V — R be a I'-invariant polynomial, and write it as linear combination of
monomials in z; with coefficients in R[zs, ..., zs]. Suppose that p(z) contains a term that
is a scalar multiple of

I
x{ll . -xl‘fclh q(za, ..., xs)
Since p is Sy, -invariant and Sy, acts trivially on zo, ..., x,, then p(z) must also contain
I Ia,
Ty o) """ T10(d) q(z2,. .., xs)

for all o € Sy,. It follows that p(z) contains a scalar multiple of

I
Z xfo(l) . ~x1i;(d1) (2, ..., xs) = qr(x1) - q(w2, .. ., 24)

O'GSdl

where ¢ (x1) = Zaesdl xfo(l) o -xi‘f;(dl). Now we repeat the same argument for g(xo, ..., )
inductively. O

Remark 7.5 This proof can be presented in a more abstract way: inductively, consider the
polynomial Sy, -invariants over the ring of polynomial invariants for the subgroup Sg4, x
X §g; X I X - x 1. O

Lemma 7.6 Let V be a nonzero finite-dimensional real vector space of dimension d, and
denote coordinates on V' by y = (y1,...,v:). Let ' = S; and consider the action of T' on V'*
defined by:

oY= (ya—l(l), e ,yg—l(t)) (U c St, Yy <€ V)
Then the ring of the T-invariant polynomials from V' to R is generated by the set of all
I'-invariant polynomials of the form

gty

where I € (Z§)? and each y! is a monomial in the d components of y;.
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Proof Choose coordinates (y1,...,y;) on V! where y; = (y;1,...,¥iq). Thus, if 0 € Sy,

o (v = Yoy Yo )

where
Yo-1(31) = (y(rfl(i),h R 7y0*1(i),d)

A real polynomial S;-invariant on V* is a linear combination of S;-invariants of the form

2 Vsl Yol (7.7)
gES
where I; € (Zd)%.
To continue the proof we need some terminology. Say that a polynomial (7.7) is of type
m, where 1 < m < t, if only m sets of indices, without loss of generality, I,..., I, are
non-zero. That is, [, =+ =1; = (0,...,0), and [; # (0,...,0) for j =1,...,m
Now observe that if m = 1, then given any I, € (Zg )¢, an expression (7.7) of type 1 has

the form
pL(y) =y, oyl
gES

The proof of the lemma is carried out by induction on the type m of the I'-invariant poly-
nomial. Suppose that any polynomial of the form (7.7) of type less than or equal to m is a
polynomial in polynomials of type 1. We prove that the same holds for polynomials of type
m + 1. Consider

. Im+1
p117~~~71m+1 2 :ya(l 0(2 a(m—i-l)
o€St

Take the S;-invariant polynomial
p) =pnY) - Pr..(Y)

=D ¥

o€St

where

Note that py,(y) for all j is a [-invariant polynomial of type 1. Moreover
P) = Pr,dn W) + Y Biri(y)

where each 3; € R and each r;(y) is an S;-invariant of the form (7.7) of type less than
or equal to m. By hypothesis 7;(y) is -invariant and can be written as a polynomial in
[-invariant polynomials of type 1. Thus

Phptmis () = D(y) — Z Biri(y)

and so pr,,..1,...(y) is a I'-invariant polynomial that can be written as a polynomial of I'-
invariant polynomials of type 1. O
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Again, this proof can be presented more abstractly, along the lines of Remark 7.5.

Proof of Proposition 7.3 Let G, G5 be two coupled cell networks and let v: C; — Co
be a bijection that preserves cell-equivalence and input-equivalence. Renumber the cells in
Cs so that the bijection v is the identity. Thus C; =C, =C and P, = P, = P.

Trivially if PS, = PK, then for each connected component Q of Gy (and G) and for
each ¢ € Q we have S7 = S5. We now prove the converse. Suppose that for each connected
component Q of G; (and G5) and for each ¢ € Q we have

S¢ = S5

Let f be any admissible polynomial vector field in 775 By Theorem 4.2, for any component
Q of Bg, and ¢ € Q, the property of Bg,-equivariance of f on the component
fc : Pox Pr(1,(e)) — P.is equivalent to B (c, c)-invariance of fC Moreover, Bj (¢, ¢)-invariance

of f. is equivalent to Bj(c, ¢)-invariance of each real component of fc We choose the same
coordinate system for P, and P, and then prove that if S{ = S§ then the ring of the
real polynomial Bj(c, c)-invariants is the same as the ring of the real polynomial Bs(c, ¢)-
invariants. By Lemmas 7.4 and 7.6 the ring of real polynomial B (¢, ¢)-invariants is generated
as a ring by the real polynomial Bj(c,c)-invariants of type 1. Similarly, the ring of real
polynomial Bs(c, ¢)-invariants is generated as a ring by the real polynomial Bs(c, ¢)-invariants
of type 1. Now it is enough to prove that if S{ = SS, then any type 1 real polynomial
By (¢, ¢)-invariant is a real polynomial Bsy(c, ¢)-invariant. (Or equivalently, that any type 1
real polynomial Bs(c, ¢)-invariant is a real polynomial By(c, ¢)-invariant.)
As before, I1(c) = Ky U---U K, () where Ky, ..., K, () are the =.-equivalence classes
on I1(c). Thus
Bi(c,c) =Sk, X -+- X Sk

ri(c)
Similarly, Ir(¢) = Ly U---U Ly, where Ly, ..., L, are the =.-equivalence classes on
I(c), and

BQ(C,C) = SLl X oo X SL

By Lemma 7.4 any real Bj(c, ¢)-invariant polynomial is a product of real Sg,-invariant
polynomials. Set K; = {1,...,t}, so that S; = Sk, and let V' = Py, where V = P,
(for any [ € K;) is a non-zero finite-dimensional real vector space. Suppose that V has
dimension d, and denote coordinates on V* by y = (y-(1),--.,¥r@r), where each y.;
(Yr@i)1s - - -» Yr(i),d)- Thus, if o € Sy then

ra(c)

o - (yT(1)7 cee 7y7'(t)) - (yT(a—l(l))a cee 7y7'(a—1(t)))

where
Yro-1(1) = Ur(o=1@)15 - -+ Yr(o—1(i)).d)
Given I € (Z{)?, the polynomial

pr(y) = yia) +-t yi(t)
is Sy-invariant (and so Bj(c, ¢)-invariant) and

Yr(l) + -+ Yr(t) €Sy
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where S{ is as defined in (6.5). By hypothesis, S¢ = S5, where S§ is defined in (6.6). Thus
there exist real coefficients aq, aq, ag, . . ., such that

}/7-(1) +-+ K—(t) = Oéopo(y) + aj,pj, (Y) + Q,Dj, (Y) +e (78)

where po(Y) = Y. and p;, (V) = ZZ.GLJ_F Y. for p > 1. Here L, , L;,,... denote =.-equiva-
lence classes on I5(c).

We claim that the p;,(Y') that appear in (7.8) can be chosen to depend only on Y7y, where
the cell phase space Prx) = Pra). To see this note that for all m € {1,...,t} = K; C I1(¢)
we know that since (7(1),1) ~g, (7(m),m) then 7(1) ~¢, 7(m) and so P.1y = Prgy. Also,
all the cells in the same =.-equivalence class are cell-equivalent. Thus if some p; (Y) (with
aj, # 0) in (7.8) depends on Yy, Y4 such that Prq) = P.1), then as 7(k) ~¢, 7(l) since
((1),1) ~pg, (7(k),k) where I,k € L;, C Iy(c), we have that P, = Py = Prq). This
proves the claim.

Set V() = yi(j) for all 7. Substituting all of this into equation (7.8) we get

pi(y) =Yy + -+ Yo = ar(y)
where
a(y) = aoyl + o, Z yi(z') + Z yi(i) L
€Ly, i€Ljy

is a By(c, ¢)-invariant. O

Corollary 7.7 The following conditions on two networks Gy, Gy are equivalent:
(a) Gy and Gy are y-linearly equivalent.
(b) With the identification v : C; — Co, the spaces Egl and Egg are equal for all P.

(¢) With the identification y : Ci — Ca, the spaces LE, and L, are equal when all cell
phase spaces are taken to be R.

Proof Condition (a) implies 7-ODE-equivalence for any choice of P, and y-ODE-equivalence
implies (b) by restricting to linear vector fields. Then (c) is special case of (b). Finally, (c)
clearly implies (a). O

8 Combinatorics of Linear Equivalence

Given two coupled cell networks, G; and G, Theorem 7.1 implies that in order to verify
their ODE-equivalence, we need only check their linear equivalence. That is, we must decide
whether there exists some bijection between the corresponding sets of cells C;, preserving
cell-equivalence and input-equivalence, such that for each ¢ € C; the vector spaces S{ and
Sy ©) are equal. A problem concerning the topology of networks as directed graphs has now
become a linear algebra problem of finding when two vector spaces of linear polynomials are
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equal. Standard methods of linear algebra can solve this problem efficiently in any given
case.

It might seem likely that linear equivalence is simpler to work with than ODE-equivalence,
in the sense that linear equivalence can be read off easily from the topologies two networks
concerned, modulo elementary linear algebra. But it is not clear whether the above linear
algebra problem can be simplified significantly by exploiting the network topology (say by
defining some kind of ‘normal form’ for the network, with a topological procedure that
reduces any given network to normal form) in a way that is not a trivial encoding of the
corresponding linear algebra computation. To illustrate the combinatorial complexities that
may arise when determining linear equivalence, we generalize Example 6.1.

Recall Example 6.3, corresponding to the coupled cell networks of Figure 2. The two
networks are ODE-equivalent since they are linearly equivalent, taking + to be the identity
function on C; = Cy = {1,2,3,4}. Other examples of coupled cell networks can easily be
constructed that are also linearly equivalent to G; and G, in the following way. Note that
taking

V= {)\1)/1 + AaYo + AsYs + MYy )\1, )\2, )\3, A € R}

then
S =57W = AV 4 AYa 4+ AsYs + MY €V 0 A 43X =53}

Figure 3: A coupled cell network with four identical cells, two edge-equivalence classes. The
symbols a; and b; attached to the right of each edge symbolizes the number of edges of that
type. Thus a;, b; denote nonnegative integers.

Now consider Figure 3. Any coupled cell network with four identical cells and two edge-
equivalence classes, as in Figure 3, is y-linearly equivalent to GG; of Figure 2 provided that

R{Y), a1Y1+ a2Ys + a3Ys + a4y, b1Y1 + boYo + bsYs + 0,Y,} =

{)\1}/1 + )\2}/2 + )\3YEJ, + )\4Y21 eV )\1 + 3)\2 == 5)\3}

Here a;, b; are nonnegative integers and - is the identity on {1,2,3,4}.

Other questions that we can pose include the following. Given an ODE-equivalence class
of coupled cell networks, is there a canonical ‘normal form” — perhaps a graph, or a set of
graphs, such that the number of edges is minimal among all the graphs of that ODE-class?
Moreover, given a graph G, when can we find a subgraph that is ODE-equivalent to G?
These questions are addressed by Aguiar and Dias [1].
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