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Abstract

Coupled cell systems are systems of ODEs, defined by ‘admissible’ vector fields, as-
sociated with a network whose nodes represent variables and whose edges specify cou-
plings between nodes. It is known that non-isomorphic networks can correspond to the
same space of admissible vector fields. Such networks are said to be ‘ODE-equivalent’.
We prove that two networks are ODE-equivalent if and only if they determine the same
space of linear vector fields; moreover, the variable associated with each node may be
assumed 1-dimensional for that purpose. We briefly discuss the combinatorics of the
resulting linear algebra problem.

AMS classification scheme numbers: 37C10 20L05

1 Introduction

Networks of nonlinear dynamical systems have become the topic of considerable attention
recently, mainly because a wide variety of physical and biological systems can naturally be
modelled by such networks, see Wang [12], Stewart [10]. The theoretical understanding
of such systems is also under intensive development. Of course, every (finite) network of
dynamical systems can be considered as a single dynamical system, and every dynamical
system is trivially a network with only one node and no edges, so it might seem that net-
works offer no gain in generality. However, networks possess additional structure, namely,
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canonical observables—the dynamical behaviour of the individual nodes [5]. These observ-
ables can be compared, revealing such features as synchrony or phase-relations, and it is
precisely these features that are important in many applications. Any theoretical treatment
of network dynamics must therefore take this additional structure into account, so conven-
tional dynamical systems theory must be modified to preserve that structure. The topology
(or ‘architecture’) of the network imposes constraints on the dynamics, with the result that
many new phenomena become ‘generic’ for a given architecture, see for example Golubitsky
et al. [4].

A network (or graph) is a schematic representation of a set of dynamical systems (that
is, ordinary differential equations or ODEs) that are coupled together. The nodes of the
graph (‘cells’ of the network) represent the individual dynamical sytems, and the directed
edges (‘arrows’) represent couplings. One formulation of this idea is known as ‘coupled cell
systems’, and it provides a convenient formal framework for the theory. In this formulation,
introduced by Stewart et al. [11] and extended into a technically more convenient form
by Golubitsky et al. [7], both arrows and cells are labelled to indicate various ‘types’ of
dynamical behaviour. To each cell c is associated a choice of ‘cell phase space’ Pc, which
we will assume is a finite-dimensional vector space Rk over R, where k may depend on c.
(More generally, it could be a finite-dimensional smooth manifold, but we do not consider
this generalization here.) The overall phase space of the coupled cell system is P , the direct
product of the Pc over all cells c.

Associated with each network G is a class of differential equations on P , which correspond
to ‘admissible’ vector fields on P . These are the ODEs that are compatible with the network
topology and the choice of cell phase spaces. The admissible vector fields can be characterised
in terms of an algebraic structure known as the ‘symmetry groupoid’ of the network. A
groupoid is similar to a group, except that product of two elements may not always be
defined. The symmetry groupoid BG consists of all ‘input isomorphisms’ between pairs of
cells c, d—that is, type-preserving bijections between the set of arrows entering cell c and
the corresponding set for cell d. The admissible vector fields then turn out to be precisely
those that are equivariant under a natural action of the groupoid BG on P , in a sense that
generalizes the usual notion of equivariance under the action of a group [5, 6].

It was observed in [7] that topologically distinct coupled cell networks can give rise to
the same space of admissible vector fields (for a suitable choice of cell phase spaces), a phe-
nomenon known as ‘ODE-equivalence’. The aim of this paper is to investigate the conditions
under which two networks are ODE-equivalent. Here we prove two main theorems. The first
(Theorem 7.1 below) reduces the problem of ODE-equivalence to ‘linear equivalence’, where
two networks (with suitably identified phase spaces) are linearly equivalent if they determine
the same space of linear admissible vector fields. (The definition we use is actually more
technical.) The second (a simple but useful corollary) is that when deciding linear equiva-
lence, it can without loss of generality be assumed that each cell phase space is 1-dimensional
(Corollary 7.7).

We also discuss the characterization of linearly equivalent networks, reducing this ques-
tion to a combinatorial condition in linear algebra. In a sense, this condition completely
solves the problem of linear equivalence, hence of ODE-equivalence. However, the relation
between network topology and the linear algebra condition is deceptively simple; in par-
ticular, there seems to be no straightforward combinatorial condition on the two networks
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that determines linear equivalence, other than a suitably ‘encoded’ form of the linear algebra
condition. This topic will be the subject of future work by Aguiar and Dias [1].

Sections 2, 3, 4 of the paper provide formal definitions for, and basic properties of, coupled
cell networks, the associated symmetry groupoid, and admissible vector fields. Section 5
defines ODE-equivalence. Section 6 discusses linear equivalence, including a typical example
that shows how the network topology encodes a linear algebra condition. Section 7 proves
the main theorem that ODE-equivalence is the same as linear equivalence, and deduces as a
corollary that linear equivalence does not depend on the choice of cell phase spaces (provided
their dimensions are at least 1), so that when deciding linear (hence ODE) equivalence, all
cells may be assumed to have 1-dimensional phase spaces. Finally Section 8 provides a brief
discussion of the combinatorial issues associated with linear equivalence.

2 Coupled Cell Networks

A coupled cell network can be represented schematically by a directed graph (see for example
Figures 1, 2, 3 below) whose nodes correspond to cells and whose edges represent couplings.
We employ the following definition, introduced by Golubitskyet al. [7], which permits mul-
tiple arrows and self-coupling. This formulation has several technical advantages over the
more restricted version described in [11].

Definition 2.1 [7] In the multiarrow formalism, a coupled cell network G consists of:

(a) A finite set C = {1, . . . , n} of nodes (or cells).

(b) An equivalence relation ∼C on the nodes in C.
The type or cell label of cell c is the ∼C-equivalence class [c]C of c.

(c) Associated with each node c is a finite set of input terminals I(c). Each input terminal
i ∈ I(c) is the receptacle for one arrow or edge that begins in tail cell τ(i) and ends
in terminal i. That arrow is denoted by e = (τ(i), i), and it has head cell c and head
terminal i. Let E denote the set of all arrows.

(d) An equivalence relation ∼E on the edges in E .
The type or coupling label of edge e is the ∼E-equivalence class [e]E of e.

(e) Equivalent edges have equivalent tails and heads. That is, if (τ(i), i) ∼E (τ(j), j) where
i ∈ I(c) and j ∈ I(d), then τ(i) ∼C τ(j) and c ∼C d.

We write G = (C, E ,∼C,∼E). 3

Observe that in this definition of coupled cell network, self-coupling is permitted since
τ(i) = c for a terminal i in cell c is permitted. Also multiarrows are permitted since we can
have τ(i) = τ(j) for two distinct terminals i, j in the same cell c.

Remark 2.2 It is possible to avoid explicit use of terminals since they are in one-to-one
correspondence with arrows (via the map (τ(i), i) 7→ i). We therefore follow [7] and omit
explicit terminals from all network diagrams. Implicitly, a terminal is determined by the
head end of the corresponding arrow. 3
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3 Symmetry Groupoid of a Coupled Cell Network

Given a graph G = (C, E ,∼C ,∼E) as in Definition 2.1, we can define the ‘symmetry groupoid’
BG of G. This definition centres upon the notion of ‘input set’.

Definition 3.1 Following [7], let G = (C, E ,∼C ,∼E) be a coupled cell network. The relation
∼I of input-equivalence on C is defined by c ∼I d if and only if there exists a bijection

β : I(c) → I(d)

that preserves edge type. That is, for every input terminal i ∈ I(c)

(τ(i), i) ∼E (τ(β(i)), β(i))

Any such β is called an input isomorphism from cell c to cell d. We denote the set of all
input isomorphisms from cell c to cell d by B(c, d), and define

BG =
⋃̇

c,d ∈ C

B(c, d)

where ∪̇ indicates disjoint union. A natural product operation can be defined on BG as
follows: elements β2 ∈ B(c, d) and β1 ∈ B(a, b) can be multiplied only when b = c, and in
this case β2β1 ∈ B(a, d) is the usual composition of functions. Now BG is a groupoid whose
objects are the nodes of G, and the BG-morphisms are the elements of the sets B(c, d),
with the product operation between the morphisms as defined above. Some references on
groupoids are Brandt [2], Brown [3] and Higgins [8]. Following [7, 11] we call BG the symmetry
groupoid of the network G. For any c ∈ C, the subset B(c, c) is a group, the vertex group
corresponding to c. 3

Structure of B(c, d)

Let B(c, d) ⊆ BG. We can specify the structure of the set B(c, d) in terms of the structure
of G. We distinguish three cases:

1. If c 6∼I d then B(c, d) = ∅.

2. If c = d we can define an equivalence relation ≡c on I(c) by

j1 ≡c j2 ⇐⇒ (τ(j1), j1) ∼E (τ(j2), j2) (3.1)

where j1, j2 ∈ I(c). If K1, K2, . . . , Kr(c) are the ≡c-equivalence classes (on I(c)), then

B(c, c) = SK1 × · · · × SKr(c)
⊆ Sn (3.2)

where each SKi
comprises all permutations of the set Ki, extended by the identity on

I(c) \ Ki, and n = |C|.

3. If c 6= d and c ∼I d (so that B(c, d) 6= ∅), then for any β ∈ B(c, d) we have

B(c, d) = βB(c, c) = B(d, d)β

For proofs of the above facts see [11], end of Section 3.
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4 Admissible Vector Fields

We make now precise the connection between coupled cell systems and coupled cell networks.
Essentially, the network is a schematic diagram (graph), whereas the system is a set of ODEs
whose couplings correspond to the edges of the network. To obtain these ODEs we must
associate variables xc with cells c, that is, we must choose a phase space for each cell.

By a coupled cell system we mean a network of dynamical systems coupled together,
where we use a labelled directed graph G (that is, a coupled cell network in the sense of
Definition 2.1), whose nodes correspond to cells, and whose edges represent couplings. The
term ‘coupling’ here is used in the sense that the output of certain cells affects the time-
evolution of other cells.

Again, we follow the treatment of Stewart et al. [11] and Golubitsky et al. [7]. Consider
a coupled cell network G = (C, E ,∼C,∼E), with symmetry groupoid BG. We wish to define
a class FP

G of ‘admissible’ vector fields corresponding to G. This class consists of all vector
fields that are ‘compatible’ with the labelled graph structure, and it depends on a choice of
‘total phase space’P .

To each cell c ∈ C we associate a cell phase space Pc, which for simplicity we assume is a
nonzero finite-dimensional real vector space.

If c, d are in the same ∼C-equivalence class, then we insist that Pc = Pd, and we identify
these spaces canonically. The total phase space is

P =
∏

c∈C

Pc

with coordinate system
x = (xc)c∈C

on P . If D = (d1, . . . , ds) is any finite ordered subset of s cells in C we define

PD = Pd1 × · · · × Pds

and we write
xD = (xd1 , . . . , xds

)

where xdi
∈ Pdi

. Note that the same cell can appear more than once in D. (This condition
must be permitted because of the multiarrow formalism.)

Suppose that c ∼I d and consider the ordered sets D1 = τ(I(c)),D2 = τ(I(d)) of C. Let
β ∈ B(c, d). Then β is a bijection between I(c) and I(d). Moreover for all i ∈ I(c) we have
(τ(i), i) ∼E (τ(β(i)), β(i)), and so τ(i) ∼C τ(β(i)). We can define the pullback map

β∗ : PD2 → PD1

by (
β∗(z)

)
τ(j)

= zτ(β(j))

for all τ(j) ∈ D1 and z ∈ PD2. If τ (I(c)) = (τ(i1), . . . , τ(is)) then xτ(I(c)) =
(
xτ(i1), . . . , xτ(is)

)

and β∗
(
xτ(I(d))

)
=

(
xτ(β(i1)), . . . , xτ(β(is))

)
.

We use pullback maps to relate different components of a vector field associated with a
given coupled cell network.
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For a given cell c the internal phase space is Pc and the coupling phase space is

Pτ(I(c)) = Pτ(i1) × · · · × Pτ(is)

where as before τ(I(c)) denotes the ordered set of cells (τ(i1), . . . , τ(is)).

Definition 4.1 [7] Let G = (C, E ,∼C,∼E) be a coupled cell network with symmetry group-
oid BG. For a given choice of the Pc, a (smooth) vector field f : P → P is BG-equivariant
or G-admissible if:

(a) Domain Condition: For any c ∈ C the component fc(x) depends only on the internal
phase space variable xc and the coupling phase space variables xτ(I(c)). That is, there

exists a (smooth) function f̂c : Pc × Pτ(I(c)) → Pc such that

fc(x) = f̂c

(
xc, xτ(I(c))

)

(b) Pullback Condition: For all c, d ∈ C and β ∈ B(c, d)

f̂d

(
xd, xτ(I(d))

)
= f̂c

(
xd, β

∗
(
xτ(I(d))

) )

for all x ∈ P .

3

Theorem 4.2 Let G = (C, E ,∼C ,∼E) be a coupled cell network and BG the corresponding
symmetry groupoid. A vector field f : P → P for a given choice of the Pc is BG-equivariant
if and only if for each connected component Q of BG (that is, each ∼I-equivalence class)

(a) f̂c is B(c, c)-invariant for some c ∈ Q.

(b) For d ∈ Q such that d 6= c, given (any) β ∈ B(c, d), we have

fd

(
xd, xτ(I(d))

)
= f̂c

(
xd, β

∗
(
xτ(I(d))

) )

Proof This is a generalization of Lemma [11] 4.5 and is proved the same way. 2

Now we introduce notation for the space of G-admissible vector fields on P :

Definition 4.3 Let G be a coupled cell network. For a given choice of the Pc, define FP
G

to consist of all smooth G-admissible vector fields on P . Clearly FP
G is a vector space over

R. Like all function spaces, it can be equipped with a variety of topologies, but here only
the vector space structure is relevant. Let PP

G be the subspace of FP
G consisting of the G-

admissible polynomial vector fields on P , and let LP
G be the subspace of PP

G consisting of the
G-admissible linear vector fields on P . 3

The space of BG-equivariant maps has a natural decomposition according to the ‘con-
nected components’ of the groupoid BG, and this decomposition is inherited by the polyno-
mial and linear vector fields:
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Definition 4.4 Let Q ⊆ C be an ∼I -equivalence class. Define

FP
G (Q) =

{
f ∈ FP

G : fs(x) = 0, ∀s 6∈ Q
}

PP
G (Q) =

{
f ∈ PP

G : fs(x) = 0, ∀s 6∈ Q
}

LP
G(Q) =

{
f ∈ LP

G : fs(x) = 0, ∀s 6∈ Q
}

We say that vector fields in FP
G (Q), PP

G (Q), and LP
G(Q) are supported on Q. 3

Remark 4.5 From the above theorem there are direct sum decompositions

FP
G =

⊕

Q

FP
G (Q) PP

G =
⊕

Q

PP
G (Q) LP

G =
⊕

Q

LP
G(Q)

where Q runs over the ∼I-equivalence classes of G. 3

For detailed proofs see [11], end of Section 4, especially Proposition 4.6.

5 ODE-equivalence

As pointed by Golubitsky et al. [7], in the class of coupled cell networks that permits self-
coupling and multiarrows, it is possible for two different coupled cell networks G1 and G2 to
generate the same space of admissible vector fields. Figure 1 shows a simple example, taken
from Golubitsky et al. [7]. In G1 both cells have the same cell type, and similarly for G2.
Suppose that the phase space for all four cells is Rk and identify these spaces canonically.
Then the total phase space for both G1 and G2 is Rk × Rk.

The admissible vector fields for G1 have the form

H(x1, x2) = (h(x1, x1, x2), h(x2, x2, x1))

where h : Rk × Rk × Rk → Rk is any smooth function, and the admissible vector fields for
G2 have the form

F (x1, x2) = (f(x1, x2), f(x2, x1))

where f : Rk ×Rk → Rk is any smooth function. It is now easy to see that the set {H} of
all H is the same as the set {F} of all F . Namely, given f we can set h(x, y, z) = f(x, z), so
that {H} ⊆ {F}. Given h we can set f(a, b) = h(a, a, b) so that {F} ⊆ {H}. Therefore the
spaces FP1

G1
and FP2

G2
are the same.

For a less trivial example, see Figure 2 of Section 6. Note that the above comparison of
admissible vector fields involves identifying cells in the two networks, a step that we formalise
in general in terms of a bijection between the two sets of cells.

In the next definition, given a coupled cell network Gi and a choice of total phase space
Pi for Gi, we denote by Pi,c the cell phase space corresponding to cell c of Ci.
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Figure 1: Two coupled cell networks G1 (on the left) and G2 (on the right) that generate
the same space of admissible vector fields.

Definition 5.1 Two coupled cell networks G1 and G2 are γ-ODE-equivalent if:

1. There is a bijection γ : C1 → C2 that preserves cell-equivalence and input-equivalence,
such that:

2. If we choose cell phase spaces Pc 6= 0 for G1, and define the corresponding choice of
cell phase spaces for G2 by

P2,γ(c) = P1,c

so that the corresponding total phase spaces are

P1 =
∏

c∈C1

P1,c P2 =
∏

c∈C1

P1,γ(c)

then:

3. The condition
FP1

G1
= FP2

G2
(5.3)

is satisfied.

Two coupled cell networks G1 and G2 are ODE-equivalent if they are γ-ODE-equivalent
for some bijection γ. 3

Remarks 5.2 (a) The cells of G2 can be renumbered so that γ = id. In this case, we
omit explicit reference to γ.

(b) It is shown in Section 7 below that if (5.3) holds for some choice of nonzero cell phase
spaces Pc, then it holds for all such choices. We postpone proving this fact until we
have looked at a typical example, which makes the result obvious.

It follows that ODE-equivalence of two networks depends only on their architecture,
and not on the particular choice of cell phase spaces. Note, however, the appearance
of the bijection γ that associates cells in the two networks (and must preserve cell-
equivalence), and the requirement that Pγ(c) = Pc.

3

Isomorphic networks (in the usual graph-theoretic sense) are always ODE-equivalent. As
pointed out by Golubitsky et al. [7], ODE-equivalent networks are not necessarily isomorphic
(see for instance Figure 1). The aim of this paper is to describe necessary and sufficient
conditions for two coupled cell networks to be ODE-equivalent. In the next section we define
the notion of ‘linear equivalence’ between two networks. We show in Section 7 that two
coupled cell networks are ODE-equivalent if and only if they are linearly equivalent.
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6 Linear Equivalence

In this section we define the notion of ‘linear equivalence’ (Definition 6.4 below). We start
with an example to illustrate the ideas involved, and, in particular, the effect of multiple
arrows.

Example 6.1 Consider the coupled cell networks G1 and G2 of Figure 2. Here all cells are
cell-equivalent in each graph, and the ∼I -equivalence classes of both graphs are:

Q1 = {1, 2, 3}, Q2 = {4}

The identity function on {1, 2, 3, 4} = C1 = C2 preserves cell-equivalence and input-equiva-
lence.

2 1
1

1

1 2 3

4

1 2 3

4

5 5 3

1

5

Figure 2: Coupled cell networks G1 (left) and G2 (right). The number k attached to the
right of each edge symbolizes k edges of that type.

First, choose all cell phase spaces to be Pc = R. We now describe the linear admissible
vector fields for both graphs, that is, the spaces LP

G1
and LP

G2
of linear groupoid-equivariant

maps. Let Yc denote coordinates on the phase space of cell c, for c = 1, . . . , 4, in both graphs.
Any linear G1-admissible vector field F = (f1, f2, f3, f4) : R4 → R4 has the form:

f1(Y1) = aY1

f2(Y2) = aY2

f3(Y3) = aY3

f4(Y4, Y1, Y2, Y3) = bY4 + c(5Y1 + Y3) + d(2Y1 + Y2 + Y3)

where a, b, c, d are real constants, and any linear G2-admissible vector field G = (g1, g2, g3, g4) :
R4 → R4 has the form:

g1(Y1) = eY1

g2(Y2) = eY2

g3(Y3) = eY3

g4(Y4, Y1, Y2, Y3) = hY4 + j(5Y1 + Y3) + l(5Y2 + 3Y3)

where e, h, j, l are real constants. Now recall Definition 4.1, and use the notation R{z1, . . . , zm}
for the real vector space spanned by z1, . . . , zm. It is clear that

R {Y4, 5Y1 + Y3, 2Y1 + Y2 + Y3} = R {Y4, 5Y1 + Y3, 5Y2 + 3Y3} (6.4)
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since 5Y2+3Y3 = 5(2Y1+Y2+Y3)−2(5Y1+Y3) and 2Y1+Y2+Y3 = 2
5
(5Y1+Y3)+

1
5
(5Y2+3Y3).

Therefore the space LP
G1

of linear G1-admissible vector fields on R4 equals the space LP
G2

of
linear G2-admissible vector fields on R4. We prove in Theorem 7.1 that this is a necessary
and sufficient condition for the graphs G1 and G2 to be ODE-equivalent. 3

If we let Pc = Rk for k > 1 the identical calculation can be carried over, with the only
change being that the Yj now represent arbitrary vectors in Rk. However, condition (6.4)
can be interpreted as the condition that the rows of the 3 × 4 matrices




0 0 0 1
5 0 3 0
2 1 1 0







0 0 0 1
5 0 1 0
0 5 3 0




should span the same subspaces of R4. The entries in these matrices are determined by the
corresponding network topology, so this condition does not depend on the size of k. This
fact generalises, see Corollary 7.7 below. (It is also easy to give an independent proof, along
the lines of the above example.)

Definition of Linear Equivalence

We introduce some notation before we define linear equivalence between coupled cell net-
works. Consider two coupled cell networks Gi = (Ci, Ei,∼Ci

,∼Ei
) for i = 1, 2 such that

there is a bijection γ : C1 → C2 preserving cell-equivalence and input-equivalence. Given a
connected component Q of BG1 and c ∈ Q, consider

I1(c) = K1 ∪̇ · · · ∪̇ Kr1(c)

where K1, . . . , Kr1(c) are the ≡c-equivalence classes (on I1(c)) and n1(c) is the cardinality of
I1(c). (See (3.1) for the definition of the relation ≡c.) Consider

I2(γ(c)) = L1 ∪̇ · · · ∪̇ Lr2(γ(c))

where L1, . . . , Lr2(γ(c)) are the ≡γ(c)-equivalence classes on I2(γ(c)), and n2(γ(c)) is the car-
dinality of I2(γ(c)).

We use the notation R[z1, . . . , zm] for the polynomial ring in indeterminates z1, . . . , zm

over R, and R{z1, . . . , zm} for the real vector space spanned by z1, . . . , zm. Let

R1 = R[Yτ1(1), . . . , Yτ1(n1(c))]

be the real vector space of polynomials in the indeterminates Yτ1(1), . . . , Yτ1(n1(c)), where
τ1(1), . . . , τ1(n1(c)) ∈ C1.

Remark 6.2 We avoid notational complications here if we permit repetition of the indeter-
minates (that is, we allow zi = zj when i 6= j), and interpret the resulting ring of polynomials
to be the same as the ring obtained when any repeated indeterminates are replaced by the
corresponding single indeterminate. Again, this convention arises from the multiarrow for-
malism. It amounts to performing calculations in the polynomial ring R[z1, . . . , zm] where
the zj are independent indeterminates, and then applying a ring homomorphism to identify
various zi. 3
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Let
R2 = R[Yγ−1(τ2(1)), . . . , Yγ−1(τ2(n2(γ(c))))]

be the real vector space of polynomials in the indeterminates Yγ−1(τ2(1)), . . . , Yγ−1(τ2(n2(γ(c)))),
where τ2(1), . . . , τ2(n2(γ(c))) ∈ C2.

Consider the subspace Sc
1 of R1 defined by

Sc
1 = R



Yc,

∑

i∈K1

Yτ1(i), . . . ,
∑

i∈Kr1(c)

Yτ1(i)



 (6.5)

Thus Sc
1 contains the linear polynomials of R1 that are B1(c, c)-invariant. Similarly, let

S
γ(c)
2 = R



Yc,

∑

i∈L1

Yγ−1(τ2(i)), . . . ,
∑

i∈Lr2(γ(c))

Yγ−1(τ2(i))



 ⊆ R2 (6.6)

be formed by the linear polynomials of R2 that are B2(γ(c), γ(c))-invariant.

Example 6.3 Recall the coupled cell networks G1 and G2 of Figure 2. For both networks,
all cells are cell-equivalent and the ∼I-equivalence classes are Q1 = {1, 2, 3} and Q2 = {4}.
Thus the identity function γ on {1, 2, 3, 4} = C1 = C2 preserves cell-equivalence and input-
equivalence. Consider Q2 and recall (6.5) and (6.6) where now c = 4 = γ(4). Then

S4
1 = R {Y4, 5Y1 + Y3, 2Y1 + Y2 + Y3}

and
S

γ(4)
2 = R {Y4, 5Y1 + Y3, 5Y2 + 3Y3}

As noted earlier, S4
1 = S

γ(4)
2 . Moreover,

Si
1 = S

γ(i)
2 = R {Yi}

for i = 1, 2, 3.

Definition 6.4 Two coupled cell networks G1 and G2 are γ-linearly equivalent if:

1. There is a bijection γ : C1 → C2 that preserves cell-equivalence and input-equivalence,
such that:

2. For each connected component Q of the network G1 and for each c ∈ Q we have

Sc
1 = S

γ(c)
2

where Sc
1, S

γ(c)
2 are as defined in (6.5) and (6.6).

Two coupled cell networks G1 and G2 are linearly equivalent if they are γ-linearly equiv-
alent for some γ. 3

Note that this definition is independent of the dimensions of the Pc. Again, we may
renumber to make γ the identity.

11



Example 6.5 We return to Example 6.3. Recall the coupled cell networks G1 and G2 of
Figure 2. Let γ denote the identity on the set {1, 2, 3, 4}. Then G1 and G2 are γ-linearly

equivalent since Sc
1 = S

γ(c)
2 for all c ∈ {1, 2, 3, 4}. We show in Theorem 7.1 that this is

necessary and sufficient for G1 and G2 to be ODE-equivalent. As a corollary, LP
G1

= LP
G2

for
any choice of P compatible with cell-equivalence.

7 Linear Equivalence and ODE-equivalence

We now come to the main theorem of this paper, which reduces ODE-equivalence to linear
equivalence, and its corollary, that the cell phase spaces may be assumed 1-dimensional in
that context. Recall Definition 5.1 of ODE-equivalence and Definition 6.4 of linear equiva-
lence of coupled cell networks. Our main result is:

Theorem 7.1 Let γ : C1 → C2 be a bijection that preserves cell-equivalence and input-
equivalence. Then two coupled cell networks G1 and G2 are γ-ODE-equivalent if and only if
they are γ-linearly equivalent.

Proof The proof is divided in two steps. We prove in Proposition 7.2 below that given
two coupled cell networks G1 and G2 and a bijection γ : C1 → C2 preserving cell-equivalence
and input-equivalence, together with a choice of total phase space P1 for G1 and P2 for G2

according to Definition 5.1, then FP1
G1

= FP2
G2

if and only if PP1
G1

= PP2
G2

. The rest of the

proof consists in proving in Proposition 7.3 below that PP1
G1

= PP2
G2

if and only if G1 and
G2 are γ-linearly equivalent for some bijection γ : C1 → C2 preserving cell-equivalence and
input-equivalence. As a corollary, we deduce that PP1

G1
= PP2

G2
if and only if LP1

G1
= LP2

G2
, and

that in this context we may without loss of generality assume that all cell phase spaces are
1-dimensional. 2

In the rest of the section we state and prove Propositions 7.2 and 7.3.

Proposition 7.2 Let G1 and G2 be two coupled cell networks such that there is bijection
γ : C1 → C2 that preserves cell-equivalence and input-equivalence. Consider a choice of total
phase space P1 =

∏
c∈C1

P1,c for G1, and let P2 =
∏

c∈C1
P1,γ(c) be the corresponding phase

space for G2. Then FP1
G1

= FP2
G2

if and only if PP1
G1

= PP2
G2

.

Proof Trivially, if FP1
G1

= FP2
G2

then PP1
G1

= PP2
G2

. Suppose now that PP1
G1

= PP2
G2

. By

Theorem 4.2, every smooth equivariant vector field f ∈ FPi

Gi
is determined uniquely by its

components fc where c runs through a set of representatives for the connected components
(that is, the ∼I -equivalence classes) of the groupoid BGi

. Note that since γ : C1 → C2 is
a bijection that preserves input-equivalence, if Q is a connected component of the groupoid
BG1 then γ(Q) is a connected component of BG2 , and if R is a set of representatives for
the connected components of BG1 then γ(R) is a set of representatives for the connected
components of BG2 . The only constraints on fc are that it depends only on xc, xτ(I(c)) and
is invariant under the vertex group B(c, c). Thus every smooth equivariant vector field f is
determined uniquely by a finite set of B(c, c)-invariant functions, where c runs through a set
of representatives for the connected components of the groupoid. Moreover, if d ∼I c then

12



fd is related to fc by a pullback map β∗ for β ∈ B(c, d). Pullbacks permute variables, hence
preserve smoothness (and also map polynomials to polynomials).

Schwarz [9] proves that in general for any compact Lie group Γ with an orthogonal
action on Rn, if the algebra of Γ-invariant polynomials is generated by ρ1, . . . , ρk (and by
Hilbert’s basis theorem such a finite basis always exist), then any Γ-invariant C∞-function of
n variables is a C∞-function of the generators ρ1, . . . , ρk. Since PP1

G1
= PP2

G2
, the vector space

of polynomial B1(c, c)-invariants (where B1(c, c) ⊆ BG1) coincides with the vector space of
polynomial B2(γ(c), γ(c))-invariants (where B2(γ(c), γ(c)) ⊆ BG2). In particular, the two
spaces share a set of invariant polynomial generators. Thus, given an ∼I -equivalence class
Q ⊆ C1, the equality

PP1
G1

(Q) = PP2
G2

(γ(Q))

implies that
FP1

G1
(Q) = FP2

G2
(γ(Q))

Now Theorem 4.2 implies that FP1
G1

= FP2
G2

. 2

Proposition 7.3 Assume the conditions of Proposition 7.2. Then

PP1
G1

= PP2
G2

if and only if G1 and G2 are γ-linearly equivalent.

Before we prove Proposition 7.3, we state and prove two lemmas that explore the structure
of the symmetry groupoids of coupled cell networks.

Lemma 7.4 Consider V d1
1 , . . . , V ds

s where each Vi is a nonzero finite-dimensional vector
space of dimension ki, and denote coordinates on V di

i by xi = (xi,1, . . . , xi,di
). Let

Γ = Sd1 × · · · × Sds

and
V = V d1

1 ⊕ · · · ⊕ V ds

s

Define a Γ-action on V by: if σ ∈ Sdi
, then

σ · x = (x1, . . . , xi−1, σ · xi, xi+1, . . . , xs)

where
σ · xi = (xi,σ−1(1), . . . , xi,σ−1(di))

Then any real Γ-invariant polynomial is a sum of polynomials of the form

q1(x1)q2(x2) · · · qs(xs)

where for j = 1, . . . , s, each qj(xj) is Sdj
-invariant.

13



Proof The idea of the proof is simple but the notation is complicated. Essentially, we
use the fact that any invariant can be obtained as a linear combination of symmetrized
monomials, so the proof reduces to computations with monomials.

In detail, recall that p : V → R is Γ-invariant if and only if

p(σ · x) = p(x) ∀σ ∈ Γ, x ∈ V

This condition holds if and only if p : V → R is Sdi
-invariant, where Sdi

acts nontrivially
only on V di

i .
Denote by Z+

0 the set of nonnegative integers. Monomials in x1 have the form

xI1
1,1 · · ·x

Id1
1,d1

where I1, . . . , Id1 ∈ (Z+
0 )k1 , and each x

Ij

1,j is a monomial in the k1 components of x1,j.
Let p : V → R be a Γ-invariant polynomial, and write it as linear combination of

monomials in x1 with coefficients in R[x2, . . . , xs]. Suppose that p(x) contains a term that
is a scalar multiple of

xI1
1,1 · · ·x

Id1
1,d1

q(x2, . . . , xs)

Since p is Sd1 -invariant and Sd1 acts trivially on x2, . . . , xs, then p(x) must also contain

xI1
1,σ(1) · · ·x

Id1

1,σ(d1) q(x2, . . . , xs)

for all σ ∈ Sd1 . It follows that p(x) contains a scalar multiple of


 ∑

σ∈Sd1

xI1
1,σ(1) · · ·x

Id1

1,σ(d1)


 q(x2, . . . , xs) = q1(x1) · q(x2, . . . , xs)

where q1(x1) =
∑

σ∈Sd1
xI1

1,σ(1) · · ·x
Id1

1,σ(d1). Now we repeat the same argument for q(x2, . . . , xs)

inductively. 2

Remark 7.5 This proof can be presented in a more abstract way: inductively, consider the
polynomial Sdj+1

-invariants over the ring of polynomial invariants for the subgroup Sd1 ×
· · · × Sdj

× 1 × · · · × 1. 3

Lemma 7.6 Let V be a nonzero finite-dimensional real vector space of dimension d, and
denote coordinates on V t by y = (y1, . . . , yt). Let Γ = St and consider the action of Γ on V t

defined by:
σ · y =

(
yσ−1(1), . . . , yσ−1(t)

)
(σ ∈ St, y ∈ V )

Then the ring of the Γ-invariant polynomials from V t to R is generated by the set of all
Γ-invariant polynomials of the form

yI
1 + · · ·+ yI

t

where I ∈ (Z+
0 )d and each yI

i is a monomial in the d components of yi.
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Proof Choose coordinates (y1, . . . , yt) on V t, where yi = (yi,1, . . . , yi,d). Thus, if σ ∈ St,

σ · (y1, . . . , yt) =
(
yσ−1(1), . . . , yσ−1(t)

)

where
yσ−1(i) =

(
yσ−1(i),1, . . . , yσ−1(i),d

)

A real polynomial St-invariant on V t is a linear combination of St-invariants of the form

∑

σ∈St

yI1
σ(1) · · ·y

It

σ(t) (7.7)

where Ii ∈ (Z+
0 )d.

To continue the proof we need some terminology. Say that a polynomial (7.7) is of type
m, where 1 ≤ m ≤ t, if only m sets of indices, without loss of generality, I1, . . . , Im, are
non-zero. That is, Im+1 = · · · = It = (0, . . . , 0), and Ij 6= (0, . . . , 0) for j = 1, . . . , m.

Now observe that if m = 1, then given any I1 ∈ (Z+
0 )d, an expression (7.7) of type 1 has

the form
pI1(y) =

∑

σ∈St

yI1
σ(1) = yI1

1 + · · ·+ yI1
t

The proof of the lemma is carried out by induction on the type m of the Γ-invariant poly-
nomial. Suppose that any polynomial of the form (7.7) of type less than or equal to m is a
polynomial in polynomials of type 1. We prove that the same holds for polynomials of type
m + 1. Consider

pI1,...,Im+1(y) =
∑

σ∈St

yI1
σ(1)y

I2
σ(2) · · ·y

Im+1

σ(m+1)

Take the St-invariant polynomial

p(y) = pI1(y) · · ·pIm+1(y)

where
pIi

(y) =
∑

σ∈St

yIi

σ(1)

Note that pIj
(y) for all j is a Γ-invariant polynomial of type 1. Moreover

p(y) = pI1,...,Im+1(y) +
∑

i

βiri(y)

where each βi ∈ R and each ri(y) is an St-invariant of the form (7.7) of type less than
or equal to m. By hypothesis ri(y) is Γ-invariant and can be written as a polynomial in
Γ-invariant polynomials of type 1. Thus

pI1,...,Im+1(y) = p(y) −
∑

i

βiri(y)

and so pI1,...,Im+1(y) is a Γ-invariant polynomial that can be written as a polynomial of Γ-
invariant polynomials of type 1. 2
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Again, this proof can be presented more abstractly, along the lines of Remark 7.5.

Proof of Proposition 7.3 Let G1, G2 be two coupled cell networks and let γ : C1 → C2

be a bijection that preserves cell-equivalence and input-equivalence. Renumber the cells in
C2 so that the bijection γ is the identity. Thus C1 = C2 = C and P1 = P2 = P .

Trivially if PP
G1

= PP
G2

then for each connected component Q of G1 (and G2) and for
each c ∈ Q we have Sc

1 = Sc
2. We now prove the converse. Suppose that for each connected

component Q of G1 (and G2) and for each c ∈ Q we have

Sc
1 = Sc

2

Let f be any admissible polynomial vector field in PP
G1

. By Theorem 4.2, for any component
Q of BG1 and c ∈ Q, the property of BG1 -equivariance of f on the component

f̂c : Pc×Pτ(I1(c)) → Pc is equivalent to B1(c, c)-invariance of f̂c. Moreover, B1(c, c)-invariance

of f̂c is equivalent to B1(c, c)-invariance of each real component of f̂c. We choose the same
coordinate system for P1 and P2, and then prove that if Sc

1 = Sc
2 then the ring of the

real polynomial B1(c, c)-invariants is the same as the ring of the real polynomial B2(c, c)-
invariants. By Lemmas 7.4 and 7.6 the ring of real polynomial B1(c, c)-invariants is generated
as a ring by the real polynomial B1(c, c)-invariants of type 1. Similarly, the ring of real
polynomial B2(c, c)-invariants is generated as a ring by the real polynomial B2(c, c)-invariants
of type 1. Now it is enough to prove that if Sc

1 = Sc
2, then any type 1 real polynomial

B1(c, c)-invariant is a real polynomial B2(c, c)-invariant. (Or equivalently, that any type 1
real polynomial B2(c, c)-invariant is a real polynomial B1(c, c)-invariant.)

As before, I1(c) = K1 ∪̇ · · · ∪̇ Kr1(c) where K1, . . . , Kr1(c) are the ≡c-equivalence classes
on I1(c). Thus

B1(c, c) = SK1 × · · · × SKr1(c)

Similarly, I2(c) = L1 ∪̇ · · · ∪̇ Lr2(c) where L1, . . . , Lr2(c) are the ≡c-equivalence classes on
I2(c), and

B2(c, c) = SL1 × · · · × SLr2(c)

By Lemma 7.4 any real B1(c, c)-invariant polynomial is a product of real SKi
-invariant

polynomials. Set Ki = {1, . . . , t}, so that St = SKi
and let V t = Pτ(Ki) where V = Pτ(l)

(for any l ∈ Ki) is a non-zero finite-dimensional real vector space. Suppose that V has
dimension d, and denote coordinates on V t by y = (yτ(1), . . . , yτ(t)), where each yτ(i) =
(yτ(i),1, . . . , yτ(i),d). Thus, if σ ∈ St then

σ · (yτ(1), . . . , yτ(t)) = (yτ(σ−1(1)), . . . , yτ(σ−1(t)))

where
yτ(σ−1(i)) = (yτ(σ−1(i)),1, . . . , yτ(σ−1(i)),d)

Given I ∈ (Z+
0 )d, the polynomial

pI(y) = yI
τ(1) + · · · + yI

τ(t)

is St-invariant (and so B1(c, c)-invariant) and

Yτ(1) + · · ·+ Yτ(t) ∈ Sc
1
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where Sc
1 is as defined in (6.5). By hypothesis, Sc

1 = Sc
2, where Sc

2 is defined in (6.6). Thus
there exist real coefficients α0, α1, α2, . . . , such that

Yτ(1) + · · ·+ Yτ(t) = α0p0(Y ) + αj1pj1(Y ) + αj2pj2(Y ) + · · · (7.8)

where p0(Y ) = Yc and pjp
(Y ) =

∑
i∈Ljp

Yτ(i) for p ≥ 1. Here Lj1 , Lj2, . . . denote ≡c-equiva-

lence classes on I2(c).
We claim that the pjp

(Y ) that appear in (7.8) can be chosen to depend only on Yτ(k), where
the cell phase space Pτ(k) = Pτ(1). To see this note that for all m ∈ {1, . . . , t} = Ki ⊆ I1(c)
we know that since (τ(1), 1) ∼E1 (τ(m), m) then τ(1) ∼C1 τ(m) and so Pτ(1) = Pτ(m). Also,
all the cells in the same ≡c-equivalence class are cell-equivalent. Thus if some pjp

(Y ) (with
αjp

6= 0) in (7.8) depends on Yτ(l), Yτ(k) such that Pτ(l) = Pτ(1), then as τ(k) ∼C2 τ(l) since
(τ(l), l) ∼E2 (τ(k), k) where l, k ∈ Ljp

⊆ I2(c), we have that Pτ(k) = Pτ(l) = Pτ(1). This
proves the claim.

Set Yτ(j) = yI
τ(j) for all j. Substituting all of this into equation (7.8) we get

pI(y) = Yτ(1) + · · ·+ Yτ(t) = qI(y)

where

qI(y) = α0y
I
c + αj1


 ∑

i∈Lj1

yI
τ(i)


 + αj2


 ∑

i∈Lj2

yI
τ(i)


 + · · ·

is a B2(c, c)-invariant. 2

Corollary 7.7 The following conditions on two networks G1, G2 are equivalent:

(a) G1 and G2 are γ-linearly equivalent.

(b) With the identification γ : C1 → C2, the spaces LP
G1

and LP
G2

are equal for all P .

(c) With the identification γ : C1 → C2, the spaces LP
G1

and LP
G2

are equal when all cell
phase spaces are taken to be R.

Proof Condition (a) implies γ-ODE-equivalence for any choice of P , and γ-ODE-equivalence
implies (b) by restricting to linear vector fields. Then (c) is special case of (b). Finally, (c)
clearly implies (a). 2

8 Combinatorics of Linear Equivalence

Given two coupled cell networks, G1 and G2, Theorem 7.1 implies that in order to verify
their ODE-equivalence, we need only check their linear equivalence. That is, we must decide
whether there exists some bijection between the corresponding sets of cells Ci, preserving
cell-equivalence and input-equivalence, such that for each c ∈ C1 the vector spaces Sc

1 and

S
γ(c)
2 are equal. A problem concerning the topology of networks as directed graphs has now

become a linear algebra problem of finding when two vector spaces of linear polynomials are
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equal. Standard methods of linear algebra can solve this problem efficiently in any given
case.

It might seem likely that linear equivalence is simpler to work with than ODE-equivalence,
in the sense that linear equivalence can be read off easily from the topologies two networks
concerned, modulo elementary linear algebra. But it is not clear whether the above linear
algebra problem can be simplified significantly by exploiting the network topology (say by
defining some kind of ‘normal form’ for the network, with a topological procedure that
reduces any given network to normal form) in a way that is not a trivial encoding of the
corresponding linear algebra computation. To illustrate the combinatorial complexities that
may arise when determining linear equivalence, we generalize Example 6.1.

Recall Example 6.3, corresponding to the coupled cell networks of Figure 2. The two
networks are ODE-equivalent since they are linearly equivalent, taking γ to be the identity
function on C1 = C2 = {1, 2, 3, 4}. Other examples of coupled cell networks can easily be
constructed that are also linearly equivalent to G1 and G2, in the following way. Note that
taking

V = {λ1Y1 + λ2Y2 + λ3Y3 + λ4Y4 : λ1, λ2, λ3, λ4 ∈ R}

then
S4

1 = S
γ(4)
2 = {λ1Y1 + λ2Y2 + λ3Y3 + λ4Y4 ∈ V : λ1 + 3λ2 = 5λ3}

4

1
3

2

a

a

a

b

b

1

2

a3

4

b1

2

b3

4

Figure 3: A coupled cell network with four identical cells, two edge-equivalence classes. The
symbols ai and bi attached to the right of each edge symbolizes the number of edges of that
type. Thus ai, bi denote nonnegative integers.

Now consider Figure 3. Any coupled cell network with four identical cells and two edge-
equivalence classes, as in Figure 3, is γ-linearly equivalent to G1 of Figure 2 provided that

R {Y4, a1Y1 + a2Y2 + a3Y3 + a4Y4, b1Y1 + b2Y2 + b3Y3 + b4Y4} =

{λ1Y1 + λ2Y2 + λ3Y3 + λ4Y4 ∈ V : λ1 + 3λ2 = 5λ3}

Here ai, bi are nonnegative integers and γ is the identity on {1, 2, 3, 4}.
Other questions that we can pose include the following. Given an ODE-equivalence class

of coupled cell networks, is there a canonical ‘normal form’ — perhaps a graph, or a set of
graphs, such that the number of edges is minimal among all the graphs of that ODE-class?
Moreover, given a graph G, when can we find a subgraph that is ODE-equivalent to G?
These questions are addressed by Aguiar and Dias [1].
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