
Lp-BOUNDEDNESS OF THE GENERAL INDEX

TRANSFORMS

Semyon B. Yakubovich ∗

September 29, 2004

Department of Pure Mathematics, Faculty of Science,
University of Porto, Campo Alegre str., 687,

4169-007 Porto, Portugal

Abstract

We establish the boundedness properties in Lp for a class of integral transformations
with respect to an index of hypergeometric functions. In particular, by using the Riesz-
Thorin interpolation theorem we get the corresponding results in Lp(R+), 1 ≤ p ≤ 2
for the Kontorovich-Lebedev, Mehler-Fock and Olevskii index transforms. An inversion
theorem is proved for general index transformation. The case p = 2 is known as the
Plancherel type theory for this class of transformations.
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1 Introduction

We deal with a special class of integral transforms over semi-axis R+ of the form

(GHϕf)(x) =

∫ ∞

0

Hϕ(x, τ)f(τ)τdτ. (1.1)
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This class was introduced in [10] and studied in L2-weighted spaces. Here we assume that
f : R+ → C is a measurable function, which generally belongs to the space Lp(R+; dτ), 1 ≤
p ≤ ∞ over the measure dτ

||f ||Lp(R+;dτ) =

(∫ ∞

0

|f(τ)|pdτ

)1/p

< ∞, (1.2)

||f ||L∞(R+;dτ) = ess supτ∈R+
|f(τ)| < ∞. (1.3)

The kernel Hϕ(x, τ) is given as a Mellin type integral

Hϕ(x, τ) =
1

2πi

∫ γ+i∞

γ−i∞
Γ

(
s +

iτ

2

)
Γ

(
s− iτ

2

)
ϕ(s)x−sds, x > 0, (1.4)

where Γ(z) is Euler’s Gamma-function (cf. [1, Vol. I]), ϕ : C → C is a multiplier of the kernel
and s = γ + it, γ > 0, t ∈ R is a complex number. A multiplier ϕ(s) is a complex-valued
continuous function, which is defined on a vertical strip or semi-plane of the complex plane s
and satisfies some conditions of the integrability, which give a definite sense of the convergence
in (1.4). It is essentially known, that integrals of type (1.4) define a class of hypergeometric
functions, when ϕ is a ratio of products of shifted Gamma-functions. In this case integral (1.4)
is called the Mellin-Barnes integral. Such type of integral operators (1.1) in a slightly different
form has been considered in [7], [9]. As we will see below all familiar integral transforms as the
Kontorovich-Lebedev (KL), Mehler-Fock, Olevskii, Lebedev transforms [4], [7], [11] belong to
this class.

Our main goal in this paper is to prove an analog of the Parseval equality for the KL-
transform and the Hausdorff-Young inequality for the general operator (1.1) in order to es-
tablish the corresponding boundedness and inversion properties in Lp. We will appeal to the
classical Hausdorff-Young inequality for the Fourier transform [5] and the Riesz-Thorin in-
terpolation theorem. We note that for the KL-transform the Hausdorff-Young inequality has
been proved recently in [12]. Another approach was given in [6], [8] to study the Lp- bounded-
ness of the Mehler-Fock transform, basing on its composition structure and relationship with
the Kontorovich-Lebedev and the Hankel transforms [5].

If we put in (1.4) ϕ ≡ 1 then by using the table of the Mellin transform from [3] we obtain

1

4πi

∫ γ+i∞

γ−i∞
Γ

(
s +

iτ

2

)
Γ

(
s− iτ

2

)
x−sds = Kiτ (2

√
x), x > 0, (1.5)

where Kν(z) is the modified Bessel function of the second kind or the Macdonald function [1,
Vol. II]. The corresponding operator (1.1) is the modified KL-transform and it can be written
in the form

(KLf)(x) = 2

∫ ∞

0

Kiτ (2
√

x)f(τ)τdτ. (1.6)
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Letting in (1.4) ϕ(s) = Γ(1/2−µ−s)/Γ(1/2+s), µ ∈ R, under the condition 0 < γ < 1/2−µ,
we obtain the integral representation for the generalized Legendre function [1, Vol. I], namely

|Γ((1 + iτ)/2− µ)|2x−1/2(1 + x)µ/2P µ
(iτ−1)/2

(
2

x
+ 1

)

=
1

2πi

∫ γ+i∞

γ−i∞
Γ

(
s +

iτ

2

)
Γ

(
s− iτ

2

)
Γ(1/2− µ− s)

Γ(1/2 + s)
x−sds. (1.7)

The corresponding transform (1.1) is the generalized Mehler-Fock operator

[MFf ](x) = x−1/2(1 + x)µ/2

∫ ∞

0

|Γ((1 + iτ)/2− µ)|2P µ
(iτ−1)/2

(
2

x
+ 1

)
f(τ)τdτ. (1.8)

The classical Mehler-Fock transform [4] is the one with µ = 0. We note, that the Mehler-Fock
transform is quite important in the theory of elasticity, in particular in the analysis of stress
in the vicinity of an external crack.

If we take the multiplier function ϕ(s) = Γ(c− a− s)/Γ(s + a), a < c, 0 < Res = γ <
c − a, c 6= 0,−1,−2, . . . , then appealing to the table of the Mellin transform [3] we obtain
from (1.4) the kernel of the Olevskii transformation [7], [10]

Hϕ(x, τ) =
|Γ(c− a + iτ/2)|2

Γ(c)
x−a(1 + x)2a−c

2F1

(
a +

iτ

2
, a− iτ

2
; c;−1

x

)
, (1.9)

where 2F1(a, b; c; z) is the Gauss hypergeometric function [1, Vol. I]. Putting a = 1/2 we
immediately arrive at the generalized Mehler-Fock transform (1.8).

In the next section we will study the Lp-boundedness of the KL- transform (1.6). We will
see that it generalizes its L2-properties, which are proved in [10]. Indeed, it forms a bijection
KL : L2

(
R+; τ

sinh πτ
dτ

) ↔ L2 (R+; x−1dx) with the Parseval equality

∫ ∞

0

|(KLf)(x)|2 dx

x
= 4π2

∫ ∞

0

τ

sinh πτ
|f(τ)|2dτ. (1.10)

When f ∈ L2 (R+; dτ) ⊂ L2

(
R+; τ

sinh πτ
dτ

)
then by the elementary inequality sinh τ ≥ τ, τ ≥ 0

we have from (1.10) that

∫ ∞

0

|(KLf)(x)|2 dx

x
≤ 4π

∫ ∞

0

|f(τ)|2dτ, (1.11)

which means that the KL-operator (1.6) is of type (2, 2) with the norm ||KL|| ≤ 2
√

π.
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2 The Kontorovich-Lebedev transform

We will prove that main theorem of this section, which stays the boundedness and inver-
sion properties in Lp of the KL-operator (1.6). These results will be used to establish the
corresponding properties of the general index transformation (1.1).

We have
Theorem 1. Let f ∈ Lp (R+; dτ) , 1 ≤ p ≤ ∞. Then integral (1.6) exists for all x > 0 as

a Lebesgue integral. For 1 ≤ p ≤ 2 the KL-transformation is of type (p, p′)

Lp (R+; dτ) → Lp′
(
R+; x−1dx

)
, p−1 + p′

−1

= 1

and when 1 < p ≤ 2 an analog of the Hausdorff-Young inequality takes place

(∫ ∞

0

|(KLf)(x)|p′ dx

x

)1/p′

≤ 2π1/p′
(∫ ∞

0

|f(τ)|pdτ

)1/p

. (2.1)

The inversion formula in this case is given for almost all τ ∈ R+ by the integral

f(τ) =
1

2π2

sinh(πτ)

τ

d

dτ

∫ ∞

0

K̂(τ, x)(KLf)(x)
dx

x
, (2.2)

where

K̂(τ, x) =

∫ τ

0

yKiy(2
√

x)dy. (2.3)

Finally, if f ∈ Lp (R+; dτ) , g ∈ Lp′ (R+; dτ) , 1 ≤ p ≤ 2, then the following generalized
Parseval equality holds

lim
ε→0+

∫ ∞

0

(KLf)(x)(KLg)(x)
dx

x1−ε
= 4π2

∫ ∞

0

τ

sinh πτ
f(τ)g(τ)dτ. (2.4)

Proof. We show the existence of the integral (1.6) invoking the Hölder inequality and the
uniform estimate [7] for the Macdonald function

|Kiτ (x)| ≤ e−δ|τ |K0(x cos δ), δ ∈ (0, π/2). (2.5)

Hence we obtain

|(KLf)(x)| ≤ 2

∫ ∞

0

|Kiτ (2
√

x)f(τ)|τdτ ≤ 2||Kiτ (2
√

x)τ ||p′||f ||p

where accordingly

||Kiτ (2
√

x)τ ||p′ =

(∫ ∞

0

τ p′|Kiτ (2
√

x)|p′dτ

)1/p′

≤ K0(2
√

x cos δ)

(∫ ∞

0

τ p′e−δp′τdτ

)1/p′
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= Cδ,p′K0(2
√

x cos δ) < ∞, p′ 6= ∞,

where x > 0, δ ∈ (0, π/2) and Cδ,p′ is a constant depending on δ, p′. When p′ = ∞ we use the
following representation of the Macdonald function (cf. [1, Vol. II]

τKiτ (x) = x

∫ ∞

0

e−x cosh u sinh u sin τudu, (2.6)

and we estimate the corresponding norm as

||Kiτ (2
√

x)τ ||∞ = sup
τ∈R+

(τKiτ (2
√

x)) ≤ 2
√

x

∫ ∞

0

e−2
√

x cosh u sinh udu = e−2
√

x < 1, x > 0.

Thus the integrand in (1.6) is summable for any f ∈ Lp(R+), 1 ≤ p ≤ ∞.
Let 1 ≤ p ≤ 2. In order to demonstrate the boundedness in Lp of the KL-operator (1.6)

and to prove the inequality (2.1) we first show that (1.6) is an operator of type (1,∞) and
then we apply the Riesz-Thorin interpolation theorem (cf. [12]). In fact, by using (2.6)
we substitute the corresponding integral in (1.6) and we change the order of integration via
Fubini’s theorem. As a result we find

(KLf)(x) = 2
√

2πx

∫ ∞

0

e−2
√

x cosh u sinh u(Fsf)(u)du, (2.7)

where (Fsf)(u) is the sine Fourier transform of f [5]. Consequently,

|(KLf)(x)| ≤ 2
√

2πx sup
u∈R+

|(Fsf)(u)|
∫ ∞

0

e−2
√

x cosh u sinh udu

=
√

2πe−2
√

x sup
u∈R+

|(Fsf)(u)| ≤ 2||f ||1.

Therefore, the KL-transform is of type (1,∞) and we have

||KLf ||L∞(R+;x−1dx) ≤ 2||f ||1,
where we put

||KLf ||Lp(R+;x−1dx) =

(∫ ∞

0

|(KLf)(x)|p dx

x

)1/p

, 1 ≤ p < ∞, (2.8)

||KLf ||L∞(R+;x−1dx) = ess supx∈R+
|(KLf)(x)|. (2.9)

Taking into account inequality (1.11) we immediately obtain via the Riesz-Thorin interpolation
theorem the boundedness of the KL-transform (1.6) as an operator KL : Lp (R+; dτ) →
Lp′ (R+; x−1dx) , 1 ≤ p ≤ 2 and we prove inequality (2.1). It can be written in terms of the
norms (1.2), (2.8), (2.9) for all p ∈ [1, 2]

||KLf ||Lp′ (R+;x−1dx) ≤ 2π1/p′ ||f ||p.
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Further, we derive the generalized Parseval equality (2.4). Indeed, since Kiτ (2
√

x) is a
real-valued function (see (2.6)) we have that (KLg)(x) = (KLg)(x). Hence we insert the
value of (KLg)(x) by the related integral (1.6) into the left-hand side of (2.4) and we change
the order of integration. This gives the following equality for each ε > 0

∫ ∞

0

(KLf)(x)(KLg)(x)
dx

x1−ε
= 2

∫ ∞

0

g(τ)τ

∫ ∞

0

xε−1Kiτ (2
√

x)(KLf)(x)dxdτ. (2.10)

The change of the order of integration is motivated by using the absolute convergence of the
iterated integral (2.10) and appealing to Fubini’s theorem. In fact, with the Hölder inequality,
the inequality (2.1) and the estimate (2.5) we obtain

∫ ∞

0

|g(τ)|τ
∫ ∞

0

xε−1
∣∣Kiτ (2

√
x)(KLf)(x)

∣∣ dxdτ ≤
∫ ∞

0

|g(τ)|τ
(∫ ∞

0

xpε−1
∣∣Kiτ (2

√
x)

∣∣p dx

)1/p

dτ

×||KLf ||Lp′ (R+;x−1dx) ≤
∫ ∞

0

e−δτ |g(τ)|τdτ

(∫ ∞

0

xpε−1
∣∣K0(2

√
x cos δ)

∣∣p dx

)1/p

×2π1/p′ ||f ||p ≤
(∫ ∞

0

e−pδττ pdτ

)1/p (∫ ∞

0

xpε−1
∣∣K0(2

√
x cos δ)

∣∣p dx

)1/p

×2π1/p′||f ||p||g||p′ = Cp,δ,ε||f ||p||g||p′ < ∞,

since δ ∈ (0, π/2), ε > 0 and the Macdonald function has the asymptotic behaviour [1, Vol.
II]

Kν(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (2.11)

and near the origin
Kν(z) = O

(
z−|Reν|) , z → 0, (2.12)

K0(z) = − log z + O(1), z → 0. (2.13)

Returning to equality (2.10) and combining with (2.4) the problem is reduced to prove that

lim
ε→0+

∫ ∞

0

g(τ)

[
τ

∫ ∞

0

xε−1Kiτ (2
√

x)(KLf)(x)dx− 2π2τ

sinh πτ
f(τ)

]
dτ = 0. (2.14)

However, the latter limit equality (2.14) is an immediate consequence of the theorem from
[12], which says that

∣∣∣∣
∣∣∣∣τ

∫ ∞

0

xε−1Kiτ (2
√

x)(KLf)(x)dx− 2π2τ

sinh πτ
f(τ)

∣∣∣∣
∣∣∣∣
p

→ 0,

when ε → 0+. Precisely, applying again the Hölder inequality we find
∫ ∞

0

∣∣∣∣g(τ)

[
τ

∫ ∞

0

xε−1Kiτ (2
√

x)(KLf)(x)dx− 2π2τ

sinh πτ
f(τ)

]∣∣∣∣ dτ



GENERAL INDEX TRANSFORMS 7

≤ ||g||p′
∣∣∣∣
∣∣∣∣τ

∫ ∞

0

xε−1Kiτ (2
√

x)(KLf)(x)dx− 2π2τ

sinh πτ
f(τ)

∣∣∣∣
∣∣∣∣
p

→ 0,

when ε → 0+. Thus we obtain the relation (2.14) and we arrive at the equality (2.4). Now
we put

g(y) =

{
1, if y ∈ [0, τ ],

0, if y ∈ (τ,∞),

and we get (KLg)(x) = K̂(τ, x) (see (2.3)). We show that for each τ > 0 K̂(τ, x) ∈
Lp(R+; x−1dx), 1 < p ≤ 2. Indeed, integrating by parts in (2.6) we easily find the repre-
sentation

Kiτ (x) =

∫ ∞

0

e−x cosh u cos τudu, x > 0. (2.15)

Hence |Kiτ (x)| ≤ K0(x) and from (2.3) we obtain |K̂(τ, x)| ≤ τ2

2
K0(2

√
x). Taking into

account the asymptotic formula (2.11) for the Macdonald function K0(2
√

x) we conclude that
K̂(τ, x) ∈ Lp((a,∞); x−1dx) for any a > 0. So, choosing 0 < a < 1 it is sufficient to show that

K̂(τ, x) ∈ Lp((0, a); x−1dx), 1 < p ≤ 2. This fact follows from the asymptotic behavior of the

kernel (2.3) when x → 0+ (cf. [7], [10]). Precisely, we get K̂(τ, x) = O([log x]−1), x → 0+ and
the result follows. Now we write the equality (2.4) in the form

lim
ε→0+

∫ ∞

0

(KLf)(x)K̂(τ, x)
dx

x1−ε
= 2π2

∫ τ

0

y

sinh πy
f(y)dy. (2.16)

However, we can pass to the limit through the integral sign in the left-hand side of the equality
(2.16). In fact, since for all ε ∈ [0, 1] the integrand in the left-hand side of (2.16) is less than
or equal to the majorant Φ(τ, x), where

Φ(τ, x) =

{
x−1|(KLf)(x)K̂(τ, x)|, if x ∈ [0, 1],

|(KLf)(x)K̂(τ, x)|, if x ∈ (1,∞).

Furthermore, for each τ > 0 Φ(τ, x) ∈ L1(R+; dx) since

∫ ∞

0

Φ(τ, x)dx =

(∫ 1

0

+

∫ ∞

1

)
Φ(τ, x)dx ≤ ||KLf ||Lp′ (R+;x−1dx)

×
[(∫ 1

0

|K̂(τ, x)|p dx

x

)1/p

+

(∫ ∞

1

xp/p′|K̂(τ, x)|pdx

)1/p
]

≤ ||KLf ||Lp′ (R+;x−1dx)

[
||K̂||Lp(R+;x−1dx) +

τ 2

2

(∫ ∞

1

xp/p′Kp
0 (2
√

x)dx

)1/p
]

< ∞.
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Consequently, passing to the limit under the integral sign in (2.16) by virtue of the Lebesgue
dominated convergence theorem we derive

∫ ∞

0

(KLf)(x)K̂(τ, x)
dx

x
= 2π2

∫ τ

0

y

sinh πy
f(y)dy.

Hence for almost all τ ∈ R+ we arrive at the inversion formula (2.2) for the KL-transform
(1.6) and we complete the proof of Theorem 1.

Remark 1. For the case p = p′ = 2 we can pass to the limit with respect to ε → 0+ under
the integral sign in the left-hand side of (2.4). Then we immediately arrive at the Plancherel
theorem for the KL-transformation (see in [10]). In particular, it gives the Parseval equality
(1.10).

3 General index transform

In this section we establish boundedness properties in Lp-spaces for the general index trans-
formation (1.1). We will prove that transformation (1.1) represents a bounded operator
GHϕ : Lp (R+; dτ) → Lp′

(
R+; xγp′−1dx

)
, p−1 + p′

−1
= 1 for 1 ≤ p ≤ 2, γ > 0, where

the latter space Lp′ is over the measure xγp′−1dx and under sufficient conditions for the mul-
tiplier ϕ(s) of the kernel (1.4). An inversion theorem in Lp for this transformation will be
proved in the next section.

We begin to treat the kernel (1.4) by using the following integral representation for the
product of Gamma - functions (cf. formula (1.104) from [7] with integration by parts and the
use of the inverse sine Fourier transform)

τΓ

(
s +

iτ

2

)
Γ

(
s− iτ

2

)
= 22(1−s)Γ(2s + 1)

∫ ∞

0

sin(τy) tanh ydy

cosh2s y
, Res > 0. (3.1)

Hence we substitute this into (1.4) and invert the order of integration. As a result we find

τHϕ(x, τ) =
1

2πi

∫ γ+i∞

γ−i∞
22(1−s)Γ(2s + 1)ϕ(s)x−s

∫ ∞

0

sin(τy) tanh y

cosh2s y
dyds

=

∫ ∞

0

Φ(x cosh2 y) tanh y sin(τy)dy, (3.2)

where we denoted by

Φ(z) =
1

2πi

∫ γ+i∞

γ−i∞
22(1−s)Γ(2s + 1)ϕ(s)z−sds. (3.3)
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The change of the order of integration is motivated by the Fubini theorem if we suppose that
ϕ(γ + it) ∈ L1(R; Γ(2(γ + it) + 1)dt) or

∫ γ+i∞

γ−i∞
|Γ(2s + 1)ϕ(s)ds| < ∞. (3.4)

Indeed, we have the estimate

∫ γ+i∞

γ−i∞

∣∣22(1−s)Γ(2s + 1)ϕ(s)x−s
∣∣
∫ ∞

0

∣∣∣∣
sin(τy) tanh y

cosh2s y
dyds

∣∣∣∣ ≤ 22(1−γ)x−γ

×
∫ γ+i∞

γ−i∞
|Γ(2s + 1)ϕ(s)ds|

∫ ∞

0

tanh y

cosh2γ y
dy < ∞, γ > 0, (3.5)

which guarantees the change of the order of integration. Now we are ready to prove that
operator (1.1) GHϕ : L1 (R+; dτ) → Lγ,∞ (R+; dx) is bounded, where the norm in the space
Lγ,∞ (R+; dx) is defined by (see (1.3))

||f ||Lγ,∞(R+;dx) = ess supx∈R+
xγ|f(x)| < ∞, γ > 0. (3.6)

Precisely, we substitute the latter integral in (3.2) into (1.1) and we change the order of
integration appealing again to the estimate (3.5) and using the fact, that f ∈ L1 (R+; dτ).
Hence invoking the definition of the sine Fourier transform we derive

(GHϕf)(x) =

∫ ∞

0

f(τ)

∫ ∞

0

Φ(x cosh2 y) tanh y sin(τy)dydτ

=

√
π

2

∫ ∞

0

Φ(x cosh2 y) tanh y(Fsf)(y)dy. (3.7)

Further with (3.3) we get

xγ
∣∣(GHϕf)(x)

∣∣ ≤ 22(1−γ)

2π

√
π

2
sup

y∈R+

|(Fsf)(y)|
∫ γ+i∞

γ−i∞
|Γ(2s + 1)ϕ(s)ds|

∫ ∞

0

tanh y

cosh2γ y
dy

≤ Cγ||f ||1, γ > 0,

where Cγ > 0 is a constant, which depends on γ > 0 and it is equal to

Cγ =
22(1−γ)

2π

∫ γ+i∞

γ−i∞
|Γ(2s + 1)ϕ(s)ds|

∫ ∞

0

tanh y

cosh2γ y
dy =

2−2γ

πγ

∫ γ+i∞

γ−i∞
|Γ(2s + 1)ϕ(s)ds| .

Thus we obtain

||GHϕf ||Lγ,∞(R+;dx) ≤ Cγ||f ||1, (3.8)
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and we have proved the desired boundedness for the operator (1.1). It says that operator (1.1)
is of type (1,∞). We will show that GHϕ is also of type (2,2). However first we prove that for
any f ∈ Lp (R+; dτ) , 1 ≤ p ≤ 2 integral (1.1) exists for all x > 0 as a Lebesgue integral.

Indeed, with the Hölder inequality we find

∣∣(GHϕf)(x)
∣∣ ≤

∫ ∞

0

|Hϕ(x, τ)f(τ)τ | dτ ≤ ||f ||Lp(R+;dτ)

(∫ ∞

0

τ p′|Hϕ(x, τ)|p′dτ

)1/p′

. (3.9)

Meantime, employing the generalized Minkowski inequality we derive

(∫ ∞

0

τ p′ |Hϕ(x, τ)|p′dτ

)1/p′

=

(∫ ∞

0

τ p′dτ

∣∣∣∣
1

2πi

∫ γ+i∞

γ−i∞
Γ

(
s +

iτ

2

)
Γ

(
s− iτ

2

)
ϕ(s)x−sds

∣∣∣∣
p′

dτ

)1/p′

≤ x−γ

2π

∫ γ+i∞

γ−i∞
|ϕ(s)ds|

(∫ ∞

0

τ p′
∣∣∣∣Γ

(
s +

iτ

2

)
Γ

(
s− iτ

2

)∣∣∣∣
p′

dτ

)1/p′

.

In order to estimate the latter integral we appeal to the Hausdorff-Young inequality (cf. in
[5]) for the sine Fourier transform

||Fsf ||p′ ≤
(

2

π

) 1
p
− 1

2

||f ||p. (3.10)

Hence invoking (3.1) we arrive at the inequality

(∫ ∞

0

τ p′
∣∣∣∣Γ

(
s +

iτ

2

)
Γ

(
s− iτ

2

)∣∣∣∣
p′

dτ

)1/p′

≤
(

2

π

) 1
p
−1

22(1−γ)|Γ(2s+1)|
(∫ ∞

0

tanhp ydy

cosh2pγ y

)1/p

= Cγ,p|Γ(2s + 1)|.
Combining with (3.9) we obtain

∫ ∞

0

|Hϕ(x, τ)f(τ)τdτ | ≤ Cγ,px
−γ

2π
||f ||Lp(R+;dτ)

∫ γ+i∞

γ−i∞
|Γ(2s + 1)ϕ(s)ds| < ∞

for all x > 0. This fact implies the existence of the Lebesgue integral (1.1).
Further we study transformation (1.1) in L2. For this we use the L2-theory of the Mellin

transform [4], [5]. We observe that due to condition (3.4) ϕ(γ + it) ∈ L1(R; Γ(2(γ + it)+1)dt)
and since the integrand in (3.4) is continuous with respect to t ∈ R it follows that the product



GENERAL INDEX TRANSFORMS 11

ϕ(γ + it)Γ(2(γ + it) + 1) is bounded. Assuming that f belongs to the space S(R+) of rapidly
decreasing smooth functions and invoking (1.4), (3.1) we write GHϕ in the form

(GHϕf)(x) =
1

2π

√
π

2

∫ ∞

−∞
22(1−γ−it)Γ(2(γ + it) + 1)ϕ(γ + it)x−γ−it

×
∫ ∞

0

(Fsf)(y) tanh y

cosh2(γ+it) y
dydt, (3.11)

where we change the order of integration by the Fubini theorem. Then making the substitution
eξ = cosh2 y in the latter integral with respect to y we appeal to the Parseval equalities [5] for
the Mellin and the Fourier transforms to represent the L2-norm for the operator GHϕ as

||GHϕf ||2L2(R+;x2γ−1dx) =

∫ ∞

0

|(GHϕf(x)|2x2γ−1dx

= 2−4γ

∫ ∞

−∞
|ϕ(γ + it)Γ(2(γ + it) + 1)|2

∣∣∣∣
∫ ∞

0

e−(γ+it)ξ(Fsf)(arccosheξ/2)dξ

∣∣∣∣
2

dt

≤ A

∫ ∞

−∞

∣∣∣∣
∫ ∞

0

e−(γ+it)ξ(Fsf)(arccosheξ/2)dξ

∣∣∣∣
2

dt

= 2πA

∫ ∞

0

e−2γξ|(Fsf)(arccosheξ/2)|2dξ ≤ 2πA

∫ ∞

0

|(Fsf)(arccosheξ/2)|2dξ

= 2πA

∫ ∞

0

|(Fsf)(y)|2 tanh ydy ≤ 2πA

∫ ∞

0

|(Fsf)(y)|2dy

= 2πA

∫ ∞

0

|f(y)|2dy = 2πA||f ||2L2(R+;dτ), (3.12)

where A > 0 is an absolute constant. Thus we obtain the norm inequality

||GHϕf ||L2(R+;x2γ−1dx) ≤
√

2πA||f ||L2(R+;dτ), (3.13)

which takes place for the dense subspace S(R+) ⊂ L2(R+; dτ). Let f ∈ L2(R+; dτ). Hence
for Cauchy’s sequence {f}n ∈ S(R+), which converges to f we have

||GHϕfn − GHϕfm||L2(R+;x2γ−1dx) ≤
√

2πA||fn − fm||L2(R+;dτ) → 0, n, m →∞.

Consequently, {(GHϕfn)(x)} is a Cauchy sequence in the space L2 (R+; x2γ−1dx), which con-
verges to the limit (GHϕf)(x) with respect to the norm. Therefore we get by the continuity
of norms that (3.13) is true for any f ∈ L2(R+; dτ). Moreover, the limit function (GHϕf)(x)
coincides with transformation (1.1), since via (3.9) the corresponding sequence {(GHϕfn)(x)}
converges uniformly to the same limit. Precisely, we find

xγ
∣∣(GHϕf)(x)− (GHϕfn)(x)

∣∣ = xγ
∣∣(GHϕ(f − fn))(x)

∣∣ ≤ const.||f − fn||L2(R+;dτ) → 0, n →∞.
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Thus we conclude that operator GHϕ is of type (2,2). Taking into account that this trans-
formation is also of type (1,∞) via the Riesz-Thorin interpolation theorem we arrive at the
following

Theorem 2. Let the multiplier function ϕ(s) of the kernel (1.4) satisfy condition (3.4)
and 1 ≤ p ≤ 2. Then transformation (1.1) is a bounded operator GHϕ : Lp (R+; dτ) →
Lp′

(
R+; xγp′−1dx

)
, p−1 + p′

−1
= 1, γ > 0 and

||GHϕf ||Lp′(R+;xγp′−1dx) ≤ Bp,γ||f ||Lp(R+;dτ), (3.14)

where Bp,γ > 0 is a constant depending on p, γ. Moreover, for all x > 0 integral (1.1) exists
in Lebesgue’s sense.

4 Inversion theorem

Here we prove an inversion theorem for the general transformation (1.1) basing on the Mellin
transform theory in Lp (see [5], Chapter IV). We begin with a different integral representation
for the operator (1.1). Indeed, by using the results of the previous section, precisely the
estimate (3.9) under condition (3.4) we substitute integral (1.4) into (1.1) and we change the
order of integration. Thus we arrive at the representation

(GHϕf)(x) =
1

2πi

∫ γ+i∞

γ−i∞
ϕ(s)Θf (s)x

−sds, (4.1)

where (see (3.1))

Θf (w) =

∫ ∞

0

Γ

(
w +

iτ

2

)
Γ

(
w − iτ

2

)
τf(τ)dτ

=

√
πΓ(2w + 1)

22w−3/2

∫ ∞

0

(Fsf)(y) tanh y

cosh2w y
dydt. (4.2)

Hence if we prove that ϕ(γ + it)Θf (γ + it) ∈ Lp(R; dt), 1 < p ≤ 2 then from (4.1) via Th. 86
from [5] we obtain that functions ϕ(γ + it)Θf (γ + it), (GHϕf)(x) realize a Mellin transform

pair from Lp(R; dt) into Lp′
(
R+; xγp′−1dx

)
, p−1 + p′

−1
= 1, γ > 0. To do this we use the

generalized Minkowski inequality, the Hölder inequality, inequality (3.10) and representation
(3.11), (4.2) for the dense set of S(R+)- functions. But first we observe that due to condition
(3.4) and since ϕ(s) is continuous it follows that Γ(2(γ + it)+1)ϕ(γ + it) is bounded by t ∈ R.

We have
(∫ ∞

−∞
|ϕ(γ + it)Θf (γ + it)|pdt

)1/p

=

√
π

22γ−3/2

(∫ ∞

−∞
|ϕ(γ + it)Γ(2(γ + it) + 1)|p

×
∣∣∣∣
∫ ∞

0

(Fsf)(y) tanh y

cosh2(γ+it) y
dy

∣∣∣∣
p

dt

)1/p

≤ const.

(∫ ∞

−∞
|ϕ(γ + it)Γ(2(γ + it) + 1)|
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×
∣∣∣∣
∫ ∞

0

(Fsf)(y) tanh y

cosh2(γ+it) y
dy

∣∣∣∣
p

dt

)1/p

= const.

(∫ ∞

−∞
|ϕ(γ + it)Γ(2(γ + it) + 1)|

×
∣∣∣∣
∫ ∞

0

e−(γ+it)ξ(Fsf)(arccosheξ/2)dξ

∣∣∣∣
p

dt

)1/p

≤ const.

∫ ∞

0

e−γξ
∣∣(Fsf)(arccosheξ/2)

∣∣ dξ

×
(∫ ∞

−∞
|ϕ(γ + it)Γ(2(γ + it) + 1)| dt

)1/p

≤ const.

(∫ ∞

0

e−pγξdξ

)1/p

×
(∫ ∞

0

∣∣(Fsf)(arccosheξ/2)
∣∣p′ dξ

)1/p′

= const.

(∫ ∞

0

|(Fsf)(y)|p′ tanh ydy

)1/p′

≤ const.

(∫ ∞

0

|(Fsf)(y)|p′ dy

)1/p′

≤ const.||f ||Lp(R+;dτ) < ∞,

where all constants depend on p, 1 < p ≤ 2 and γ > 0. Thus we obtain

(∫ ∞

−∞
|ϕ(γ + it)Θf (γ + it)|pdt

)1/p

≤ const.||f ||Lp(R+;dτ), (4.3)

and this is true for all f ∈ Lp(R+; dτ), 1 < p ≤ 2 by the continuity of norms. Further, we
prove that inequality (3.14) keeps true for γ = 0 and the corresponding constant is depending
on p. Indeed, from (3.13) and the Fatou lemma we immediately obtain that

||GHϕf ||L2(R+;x−1dx) ≤
√

2πA||f ||L2(R+;dτ). (4.4)

Meantime, returning to the representation (3.7) we assume that the function Φ(x), which is
defined by (3.3) satisfies the condition Φ(x) ∈ L1((0, 1); x−1dx). Moreover due to condition
(3.4) we immediately find that Φ(x) ∈ L1((1,∞); x−1dx) since xγΦ(x) is bounded, γ > 0.
Thus Φ(x) ∈ L1(R+; x−1dx). Hence with elementary substitutions we find the estimate

∣∣(GHϕf)(x)
∣∣ ≤

√
π

2
sup

y∈R+

|(Fsf)(y)|
∫ ∞

0

|Φ(x cosh2 y)| tanh ydy

=
1

2

√
π

2
sup

y∈R+

|(Fsf)(y)|
∫ ∞

x

|Φ(u)|du

u
≤ 1

2

√
π

2
||f ||L1(R+;dτ)||Φ||L1(R+;x−1dx) < ∞. (4.5)

Thus combining with (4.4) via Riesz-Thorin theorem we arrive at the inequality

||GHϕf ||Lp′ (R+;x−1dx) ≤ Bp||f ||Lp(R+;dτ), (4.6)

where the constant Bp depends only on p.
Now let us introduce for each τ ∈ R+ similarly to (2.3) the following kernel

H(τ, x) =

∫ τ

0

yHψ(x, y)dy, (4.7)
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which contains a different multiplier function ψ. We note that the corresponding function
(3.3) Ψ(z) is given by the integral

Ψ(z) =
1

2πi

∫ γ+i∞

γ−i∞
22(1−s)Γ(2s + 1)ψ(s)z−sds, (4.8)

where we assume the multiplier condition ψ(γ + it) ∈ L1(R; Γ(2(γ + it) + 1)dt).
Hence as in (3.2) we can write correspondingly

τHψ(τ, x) =

∫ ∞

0

Ψ(x cosh2 y) tanh y sin(τy)dy. (4.9)

Under condition above on the multiplier ψ it is not difficult to show that the latter integral
converges uniformly with respect to τ ∈ [0, T ], T > 0. Consequently, we can integrate through
in (4.9) with respect to τ and invoking (4.7) we obtain

H(τ, x) =

∫ ∞

0

Ψ(x cosh2 y) tanh y
1− cos(τy)

y
dy. (4.10)

On the other hand (see (4.1)) we have

H(τ, x) =
1

2πi

∫ γ+i∞

γ−i∞
ψ(s)Θ(τ, s)x−sds, (4.11)

where

Θ(τ, s) =

∫ τ

0

Γ

(
s +

iy

2

)
Γ

(
s− iy

2

)
ydy.

Thus if we show that for each τ ∈ R+ the kernel (4.7) H(τ, x) ∈ Lp (R+; xγp−1dx) , 1 <
p < 2, γ > 0, then from (4.11) via Th. 86 from [5] we obtain that functions H(τ, x), ψ(γ −
it)Θ(τ, γ−it) realize a Mellin transform pair from Lp (R+; xγp−1dx) into Lp′(R; dt) p−1+p′

−1
=

1, γ > 0. Making the substitution x cosh2 y = w in (4.10) we majorate the kernel H(τ, x) as
follows

|H(τ, x)| ≤ 2

∫ ∞

0

∣∣Ψ(x cosh2 y)
∣∣ tanh y

y
dy = 2

∫ ∞

x

|Ψ(w)| dw

warccosh
√

w/x
.

Therefore appealing again to the generalized Minkowski inequality we obtain

(∫ ∞

0

|H(τ, x)|p xγp−1dx

)1/p

≤ 2

(∫ ∞

0

xγp−1dx

∣∣∣∣∣
∫ ∞

x

|Ψ(w)| dw

warccosh
√

w/x

∣∣∣∣∣

p)1/p

≤ 2

∫ ∞

0

|Ψ(w)| dw

w

(∫ w

0

xγp−1

arccoshp
√

w/x
dx

)1/p

= 21+1/p

∫ ∞

0

|Ψ(w)|wγ−1dw
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×
(∫ ∞

0

tanh u

up cosh2γp u
du

)1/p

< ∞, 1 < p < 2, γ > 0, (4.12)

if we assume that Ψ(w) ∈ L1(R+; wγ−1dw). If also Ψ(w) ∈ L1((0, 1); w−1dw) then from (4.12)
it easily follows that for each τ ∈ R+ the kernel H(τ, x) ∈ L1(R+; x−1dx). Indeed, under
condition on the multiplier function ψ(s) we get Ψ(w) ∈ L1(R+; w−1dw) and it attains the
value γ = 0 in the estimates (4.12). These preliminary discussions lead us to the inversion
theorem for the transformation (1.1).

Theorem 3. Let 1 < p < 2, f(τ) ∈ Lp(R+; dτ). Let also ϕ(γ + it) and ψ(γ + it) from
the space L1(R; Γ(2(γ + it) + 1)dt), γ > 0 be two multipliers, which define Φ(x) and Ψ(x) by
formulas (3.3), (4.8), correspondingly and satisfy the equality

lim
ε→0+

sup
t∈R

|ϕ(γ + it)ψ(ε− γ − it)− 1| = 0. (4.13)

If Φ(x) ∈ L1((0, 1); x−1dx) and Ψ(x) ∈ L1(R+; xκ−1dx) ∩ L1((0, 1); x−1dx), κ ∈
(
0, 1

p

]
, then

for almost all τ ∈ R+ the inversion formula for the general index transform (1.1) holds true

f(τ) =
1

4π2

sinh(πτ)

τ

d

dτ

∫ ∞

0

H(τ, x)
(GHϕf

)
(x)

dx

x
, (4.14)

where the kernel H(τ, x) is defined by (4.7) and the latter integral is a Lebesgue one.

Proof. In fact, as we concluded above under conditions of the theorem functions ϕ(γ +
it)Θf (γ+it), (GHϕf)(x) realize a Mellin transform pair from Lp(R; dt) into Lp′

(
R+; xγp′−1dx

)

with 1 < p < 2, γ > 0. Meantime for any ε > 0 we choose γ > 0 such that ε−γ ∈
(
0, 1

p

)
. Thus

under conditions of the theorem we find that functions H(τ, x), ψ(ε − γ − it)Θ(τ, ε − γ − it)
form a Mellin transform pair from Lp

(
R+; x(ε−γ)p−1dx

)
into Lp′(R; dt). Consequently, due to

Th. 88 from [5] the following relation takes place

∫ ∞

0

(GHϕf)(x)H(τ, x)xε−1dx =
1

2πi

∫ γ+i∞

γ−i∞
Θf (s)Θ(τ, ε− s)ϕ(s)ψ(ε− s)ds

=
1

2πi

∫ γ+i∞

γ−i∞
Θf (s)Θ(τ, ε− s) [ϕ(s)ψ(ε− s)− 1] ds +

1

2πi

∫ γ+i∞

γ−i∞
Θf (s)Θ(τ, ε− s)ds

= I1(τ, ε) + I2(τ, ε). (4.15)

Hence by using Theorem 1 and relations (1.4), (1.5), (1.6), (2.3), (4.2), (4.11) in the same
manner via Th. 88 from [5] we obtain that

I2(τ, ε) =
1

2πi

∫ γ+i∞

γ−i∞
Θf (s)Θ(τ, ε− s)ds = 2

∫ ∞

0

(KLf)(x)K̂(τ, x)xε−1dx. (4.16)
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Hence invoking equality (2.16) and making ε → 0+ we find

lim
ε→0+

I2(τ, ε) = 4π2

∫ τ

0

y

sinh πy
f(y)dy. (4.17)

Meanwhile with the Hölder inequality we estimate I1(τ, ε) as follows

|I1(τ, ε)| ≤ 1

2π
sup
t∈R

|ϕ(γ + it)ψ(ε− γ − it)− 1|
∫ γ+i∞

γ−i∞
|Θf (s)Θ(τ, ε− s)ds|

≤ 1

2π
sup
t∈R

|ϕ(γ + it)ψ(ε− γ − it)− 1|
(∫ γ+i∞

γ−i∞
|Θf (s)|p |ds|

)1/p

×
(∫ ε−γ+i∞

ε−γ−i∞
|Θ(τ, z)|p′ |dz|

)1/p′

,

where the norm ||Θf ||Lp(R;dt) is finite for any f ∈ Lp(R; dτ) due to (4.3). Moreover, employing
an analog of the Hausdorff-Young inequality for the Mellin transform (cf. Th. 74, 86 in [5])
we establish that the latter integral is also finite . Indeed, since via (1.5) the kernel (2.3)
and function Θ(τ, s) realize a Mellin transform pair then by taking into account asymptotic
properties of the kernel K̂(τ, x) (see the proof of Theorem 1) we deduce

(∫ ε−γ+i∞

ε−γ−i∞
|Θ(τ, z)|p′ |dz|

)1/p′

≤ Cp

(∫ ∞

0

∣∣∣K̂(τ, x)
∣∣∣
p

x(ε−γ)p−1dx

)1/p

≤ Cp

(∫ 1

0

∣∣∣K̂(τ, x)
∣∣∣
p dx

x
+

∫ ∞

1

∣∣∣K̂(τ, x)
∣∣∣
p

dx

)1/p

< ∞.

Therefore appealing to (4.13) we derive

|I1(τ, ε)| ≤ const. sup
t∈R

|ϕ(γ + it)ψ(ε− γ − it)− 1| → 0, ε → 0 + .

Combining with (4.15), (4.17) we arrive at the equality

lim
ε→0+

∫ ∞

0

(GHϕf)(x)H(τ, x)xε−1dx = 4π2

∫ τ

0

y

sinh πy
f(y)dy, τ ∈ R+. (4.18)

On the other hand we will motivate the passage to the limit under the integral sign in the
left-hand side of (4.18) via the dominated convergence theorem. In fact, the integrand is less
than or equal to the majorant M(τ, x)

M(τ, x) =

{
x−1|(GHϕf)(x)H(τ, x)|, if x ∈ [0, 1],

xγ+1/p−1|(GHϕf)(x)H(τ, x)|, if x ∈ (1,∞),



GENERAL INDEX TRANSFORMS 17

which belongs to L1(R+; dx). The summability of M(τ, x) can be verified by using (3.14) the
chain of estimates (4.12) and the condition Ψ(x) ∈ L1(R+; xκ−1dx) with κ = 1

p
. Precisely, we

have

∫ ∞

0

M(τ, x)dx =

∫ 1

0

|(GHϕf)(x)H(τ, x)|dx

x
+

∫ ∞

1

xγ+1/p−1|(GHϕf)(x)H(τ, x)|dx

≤
(∫ 1

0

|(GHϕf)(x)|p′ dx

x

)1/p′ (∫ 1

0

|H(τ, x)|p dx

x

)1/p

+

(∫ ∞

1

|(GHϕf)(x)|p′xγp′−1dx

)1/p′

×
(∫ ∞

1

|H(τ, x)|pdx

)1/p

≤ ||GHϕf ||Lp′(R+;xγp′−1dx)
[||H||Lp(R+;x−1dx)

+const.

∫ ∞

0

|Ψ(w)|w1/p−1dw

]
< ∞.

Hence equality (4.18) becomes as

∫ ∞

0

(GHϕf)(x)H(τ, x)
dx

x
= 4π2

∫ τ

0

y

sinh πy
f(y)dy, τ ∈ R+. (4.18)

Differentiating through this equality with respect to τ we finally arrive at the inversion formula
(4.14), which takes place for almost all τ ∈ R+. Theorem 3 is proved.

5 Examples

In this final section we consider some classical index transformations in Lp, which are particular
cases of the general transform (1.1). Namely, we will mention the results of Section 2 for
the Kontorovich-Lebedev transform (1.6) and we will establish boundedness and inversion
properties for the generalized Mehler-Fock transform (1.8) and for the Olevskii transform
(1.9). The L2 case for these transformations is considered in [10].

1. The Kontorovich-Lebedev transform. We put in (1.2) ϕ(s) = ψ(s) ≡ 1. By using
the Stirling asymptotic formula for the Gamma - function (cf. [1, Vol. I]) we see that these
multipliers evidently satisfy condition (3.4). So, via (1.5) we obtain the modified KL-transform
(1.6), for which Theorem 1 holds true. Calculating the corresponding Mellin integrals (3.3),
(4.8) we invoke relation (8.4.3.1) from [3] and we get Φ(x) = Ψ(x) = 4

√
xe−2

√
x. We note that

all conditions of Theorem 3 are clearly satisfied and we arrive at the inversion formula (4.14),
which coincides in this case with (2.2).

2. The generalized Mehler -Fock transform. Let us consider transformation (1.8),
where the corresponding multiplier function is equal to ϕ(s) = Γ(1/2−µ− s)/Γ(1/2+ s), µ <
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1/2. It satisfy the condition (3.4). Substituting the value of ϕ(s) into (3.3) and employing the
duplication formula for the Gamma - function we derive

Φ(x) =
1

2πi

∫ γ+i∞

γ−i∞
22(1−s)Γ(2s + 1)

Γ(1/2− µ− s)

Γ(1/2 + s)
x−sds =

4√
π

1

2πi

∫ γ+i∞

γ−i∞
Γ(s + 1)

×Γ(1/2− µ− s)x−sds =
4√
π

Γ(3/2− µ)
x

(1 + x)3/2−µ
,

where the latter integral is calculated via relation (8.4.2.5) from [3]. It is clear that the
function Φ(x) ∈ L1(R+; x−1dx), µ < 1/2. Thus according to Theorem 2 and inequality (4.6)
the generalized Mehler-Fock transform (1.8) is a bounded operator MF : Lp (R+; dτ) →
Lp′

(
R+; xγp′−1dx

)
, p−1 + p′

−1
= 1, 1 ≤ p ≤ 2, 0 ≤ γ < 1/2 − µ. In order to establish

the corresponding inversion formula (4.14) we look for the kernel (4.7) for this case with
ψ(s) = Γ(1/2− s)/Γ(1/2− µ + s). Appealing to the relation (8.4.41.12) from [3] we obtain

H(τ, x) = πx−1/2(1 + x)−µ/2

∫ τ

0

y

cosh(πy/2)
P µ

(iy−1)/2

(
2

x
+ 1

)
dy.

Furthermore, the multipliers plainly satisfy condition (4.13). From (4.8) we have for this case

Ψ(x) =
1

2πi

∫ γ+i∞

γ−i∞
22(1−s)Γ(2s + 1)

Γ(1/2− s)

Γ(1/2− µ + s)
x−sds

=
4√
π

1

2πi

∫ γ+i∞

γ−i∞

Γ(s + 1/2)Γ(s + 1)Γ(1/2− s)

Γ(1/2− µ + s)
x−sds.

The latter integral via relation (8.4.49.14) from [3] can be expressed in terms of the Gauss
hypergeometric function. Namely, we get

Ψ(x) ≡ Ψ>(x) =
4√
π

1

2πi

∫ γ+i∞

γ−i∞

Γ(s + 1/2)Γ(s + 1)Γ(1/2− s)

Γ(1/2− µ + s)
x−sds

=
2√

xΓ(1− µ)
2F1

(
1,

3

2
; 1− µ;−1

x

)
, x > 1,

Ψ(x) ≡ Ψ<(x) =
4 cos πµΓ(3/2 + µ)√

π

x

(1 + x)3/2+µ
− 4

√
x sin πµ

π
Γ(1+µ)2F1

(
1, 1 + µ;

1

2
;−x

)
,

where 0 < x < 1. Moreover, it satisfies Ψ>(1) = Ψ<(1). Thus, Ψ(x) ∈ L1(R+; xκ−1dx) ∩
L1((0, 1); x−1dx), where κ ∈ (0, 1/2) ⊂

(
0, 1

p

]
and the corresponding inversion formula for the

generalized Mehler-Fock transform can be written in the form

f(τ) =
1

4π

sinh(πτ)

τ

d

dτ

∫ ∞

0

∫ τ

0

y

cosh(πy/2)
P µ

(iy−1)/2

(
2

x
+ 1

)
x−3/2(1 + x)−µ/2[MFf ](x)dydx.
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3. The Olevskii tranformation. Our final example is the Olevskii transformation with
the kernel (1.9), which generalizes the Mehler-Fock transform (1.8)

[Of ](x) =
x−a(1 + x)2a−c

Γ(c)

∫ ∞

0

∣∣∣∣Γ
(

c− a +
iτ

2

)∣∣∣∣
2

2F1

(
a +

iτ

2
, a− iτ

2
; c;−1

x

)
f(τ)τdτ. (5.1)

As we could see in Section 1 in this case ϕ(s) = Γ(c− a− s)/Γ(s + a), 0 < a < c, 0 < Res =
γ < c−a, c 6= 0,−1,−2, . . . . Hence we observe that condition (3.4) is guaranteed. Analogously
we write the function (3.3) for this case

Φ(x) =
1

2πi

∫ γ+i∞

γ−i∞
22(1−s)Γ(2s + 1)

Γ(c− a− s)

Γ(a + s)
x−sds =

4√
π

1

2πi

∫ γ+i∞

γ−i∞
Γ(1/2 + s)Γ(s + 1)

×Γ(c− a− s)

Γ(a + s)
x−sds.

Omitting calculations of the latter Mellin-Barnes integral for 0 < x ≤ 1 and x > 1 we
use its asymptotic behavior (or the asymptotic behavior of the corresponding Meijer G-
function) [3] when x → 0 and x → ∞. For other values of x > 0 it converges uni-
formly and represents a continuous function. So we find that Φ(x) = O(x1/2), x → 0
and Φ(x) = O(xa−c), x → ∞. Therefore it plainly belongs to the space L1(R+; x−1dx).
Thus by Theorem 2 we conclude that the Olevskii transform (5.1) is a bounded operator
O : Lp (R+; dτ) → Lp′

(
R+; xγp′−1dx

)
, p−1 + p′

−1
= 1, 1 ≤ p ≤ 2, 0 ≤ γ < c− a.

Similarly by taking ψ(s) = Γ(a− s)/Γ(c− a + s), we satisfy condition (4.13) and via
relation (8.4.49.14) we arrive at the following kernel (4.7) for this case

H(τ, x) =
x−a

Γ(c)

∫ τ

0

∣∣∣∣Γ
(

a +
iy

2

)∣∣∣∣
2

2F1

(
a +

iy

2
, a− iy

2
; c;−1

x

)
dy.

The related function Ψ(x) is continuous for x > 0 and behaves as Ψ(x) = O(x1/2), x →
0 and Ψ(x) = O(x−a), x → ∞. Consequently, if a < 1

p
then Ψ(x) ∈ L1(R+; xκ−1dx) ∩

L1((0, 1); x−1dx), where κ ∈ (0, a) ⊂
(
0, 1

p

]
. Hence via Theorem 3 the inversion formula for

the Olevskii transform

f(τ) =
1

4π2Γ(c)

sinh(πτ)

τ

d

dτ

∫ ∞

0

∫ τ

0

∣∣∣∣Γ
(

a +
iy

2

)∣∣∣∣
2

2F1

(
a +

iy

2
, a− iy

2
; c;−1

x

)

×x−a−1[Of ](x)dydx

holds valid for almost all τ ∈ R+.
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