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Abstract

Inspired by a basis of identities for the variety of all strict pseu-
dosemilattices obtained in [12], we define a class of identities and study
the varieties defined by them. This study will give us some incite into
the structure of the lattice of varieties of pseudosemilattices. Some
interesting conclusions about this lattice will be drawn. In particular,
we shall prove this lattice is uncountable.

1 Introduction

We shall denote the set of idempotents of a regular semigroup S by E(S).
Define the binary relation ωr on E(S) as follows:

e ωrf if and only if e = fe.

Let ωl be the dual relation of ωr and let ω be the relation ωr ∩ ωl. We shall
denote by ωr(f) the set of idempotents e such that e ωrf . Similarly, we define
ωl(f) and ω(f).

Locally inverse semigroup can be characterized as regular semigroups S
such that, for any e, f ∈ E(S), there exists (a unique) g ∈ E(S) satisfying
the equality ωr(e) ∩ ωl(f) = ω(g). Thus, if S is a locally inverse semigroup,
then we can consider the algebra (E(S),∧) where e∧f is the unique element
g ∈ E(S) such that ωr(e) ∩ ωl(f) = ω(g). The algebras (E(S),∧) are called
pseudosemilattices.

Nambooripad [9] showed that the class of all pseudosemilattices consti-
tutes a variety of algebras. This result was generalized by Auinger [3] who
proved that the mapping

ϕ : Le(LI) −→ L(PS), V 7−→ {(E(S),∧) |S ∈ V}
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is a well-defined complete homomorphism from the lattice Le(LI) of e-varie-
ties of locally inverse semigroups (see [4, 5]) onto the lattice L(PS) of varie-
ties of pseudosemilattices. Thus, any information about L(PS) is useful to
understand the structure of Le(LI).

A regular semigroup is called strict if it is a subdirect product of com-
pletely simple and/or 0-simple semigroups. A strict pseudosemilattice is the
pseudosemilattice of idempotents of some [combinatorial] strict regular semi-
group. The class SPS of all strict pseudosemilattices is a variety. In fact, the
lattice L(PS) is divided into two disjoint intervals [T,NB] and [SPS,PS],
where the former is the 8-element lattice of varieties of normal bands. Fur-
ther, NB ⊆ SPS and SPS is the smallest variety of pseudosemilattices with
algebras that are not semigroups.

A basis of identities for the variety SPS was introduced in [12]. In this
paper we shall generalize those identities and study the varieties define by
these generalized identities. In the next section we recall some results and
terminology used in [12] and introduce the identities un,k,i ≈ vn,k,i. In Section
3 we define the varieties Gn,k,i and study the inclusion relation between these
varieties.

We can define the duals of the varieties Gn,k,i. In Section 4 we study
the connections between the varieties Gn,k,i and their duals. In this section
we study also the varieties defined by the join or meet of infinite chains of
varieties Gn,k,i. Finally, in last section, we shall use the results obtained in
the previous sections to show some properties of the lattice L(PS).

2 A class of identities

In this paper we shall denote by X a countably infinite alphabet, by
(F2(X),∧) the absolutely free binary algebra on X and by c(u) the content
of u ∈ F2(X), that is, the set of letters from X that appear in u. The variety
PS of all pseudosemilattices is defined by the identities [9]:

(i) x ∧ x ≈ x ;

(ii) (x ∧ y) ∧ (x ∧ z) ≈ (x ∧ y) ∧ z ;

(iii) ((x ∧ y) ∧ (x ∧ z)) ∧ (x ∧ w) ≈ (x ∧ y) ∧ ((x ∧ z) ∧ (x ∧ w)) ;

together with the right-left duals of the last two.
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Free pseudosemilattices have been studied in [6, 8] and one solution to the
word problem for free pseudosemilattices has been presented in [10]. Several
models for the free pseudosemilattice on X are described in [11]. In [12]
we gave another model for the free pseudosemilattice on X using bipartite
graphs that we shall briefly describe next. The omitted details can be found
in [12].

A bipartite graph can be defined as a triple (L,D,R) with L∩R = ∅ and
D ⊆ L×R. The elements of L∪R are called vertices and the elements of D
are called edges. Let B be the set of all 6-tuples (l, L,D,R, r, ϕ) such that

(a) (L,D,R) is a connected cycle free bipartite graph with (l, r) ∈ D;

(b) ϕ : L ∪R → X is a labeling for the vertices of (L,D,R).

Let Dϕ = {(aϕ, bϕ) : (a, b) ∈ D} ∪ {(cϕ, cϕ) : c ∈ L ∪R}.
In [12, Section 2] we associated a natural 6-tuple

αu = (lu, Lu, Du, Ru, ru, ϕu) ∈ B

recursively for each u ∈ F2(X). We observed that, for every α ∈ B, there
exists u ∈ F2(X) such that α = αu, although we may have several possibilities
for u. Let A be the 6-tuples α = (l, L,D,R, r, ϕ) ∈ B verifying also the
following two conditions:

(c) If a 6∈ {l, r} is a vertex of degree 1 and (a, b) ∈ D or (b, a) ∈ D, then
aϕ 6= bϕ.

(d) If (a, c), (b, c) ∈ D or (c, a), (c, b) ∈ D with a 6= b, then aϕ 6= bϕ.

An operation ∧ on A was introduced in [12, Section 2]. With this operation,
the algebra (A,∧) becomes a model for the free pseudosemilattice on X.

Let α = (l, L,D,R, r, ϕ) ∈ B. A labeled subgraph of α is a 6-tuple
α1 = (l1, L1, D1, R1, r1, ϕ1) ∈ B such that

D1 ⊆ D and ϕ1 = ϕ|L1∪R1
.

Observe that L1 ⊆ L and R1 ⊆ R since D1 ⊆ D. If we have also l1 = l and
r1 = r, then we say that α1 is a strong labeled subgraph of α.

Two elements αi = (li, Li, Di, Ri, ri, ϕi) ∈ B, i = 1, 2, are isomorphic if
there exists a bijection ψ : L1 ∪R1 → L2 ∪R2 such that
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(i) D1ψ = {(aψ, bψ) : (a, b) ∈ D1} = D2;

(ii) aψϕ2 = aϕ1 for all a ∈ L1 ∪R1.

If β is isomorphic to a [strong] labeled subgraph of α, then we shall say also
that β is a [strong] labeled subgraph of α. We observed in [12] that αω β if
and only if β is a strong labeled subgraph of α.

Let u, v ∈ F2(X). If Duϕu = Dvϕv, then Luϕu = Lvϕv and Ruϕu = Rvϕv
. The identity u ≈ v is called an elementary identity if

(i) αu, αv ∈ A;

(ii) (luϕu, Duϕu, ruϕu) = (lvϕv, Dvϕv, rvϕv) and Luϕu ∩Ruϕu = ∅;

(iii) there exists (x, y) ∈ Duϕu such that either luϕu = x and v is obtained
from u by replacing the first x in u with (x ∧ y), or ruϕu = y and v is
obtained from u by replacing the last y in u with (x ∧ y).

In particular, if u ≈ v is an elementary identity, then Dv has one more edge
than Du, either (lu, a) or (a, ru) for some vertex a 6∈ Lu ∪Ru.

Auinger [1] gave a solution to the word problem for the free strict pseu-
dosemilattice on X. He proved that an identity u ≈ v is satisfied by all strict
pseudosemilattices if and only if (luϕu, Duϕu, ruϕu) = (lvϕv, Dvϕv, rvϕv).
Thus, every elementary identity is satisfied by all strict pseudosemilattices.
In [12, Proposition 3.5] we proved the following result:

Result 2.1 Let u ≈ v be an identity satisfied by all strict pseudosemilattices

with |c(u)| = n. Then, for varieties of pseudosemilattices, the identity u ≈ v
is equivalent to a finite set I of elementary identities such that |c(u′)| ≤ 2n
for every u′ ≈ v′ ∈ I.

Let n ≥ 1, k ≥ 0 and 1 ≤ i ≤ 2n, and consider a set {x1, x2, · · · , x2n} of
2n distinct letters from X. Let

(i) Lm = {j odd : 0 < j ≤ m} and Rm = {j even : 0 < j ≤ m};

(ii) Dm = {(j, h) : j ∈ Lm, h ∈ Rm and |j − h| = 1};

(iii) ϕn,k,i : L2nk+i ∪R2nk+i → X with jϕn,k,i = xh for 1 ≤ h ≤ 2n such that
j ≡ h mod 2n .
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Define γn,0,1,0 = αx1 and

γn,k,i,j =

{

(j, L2nk+i, D2nk+i, R2nk+i, j + 1, ϕn,k,i) for 1 ≤ j < 2nk + i odd;

(j + 1, L2nk+i, D2nk+i, R2nk+i, j, ϕn,k,i) for 1 ≤ j < 2nk + i even.

Then each γn,k,i,j ∈ A. In fact, for the Green relations R = ωr ∩ (ωr)−1 and
L = ωl ∩ (ωl)−1 on A,

γn,k,i,j−1 R γn,k,i,j L γn,k,i,j+1

if j odd. Thus, for each n ≥ 1, k ≥ 0 and 1 ≤ i ≤ 2n, the elements γn,k,i,j
with 1 ≤ j < 2nk + i constitute an E-chain of idempotents from A, which
imply they all belong to the same D-class of A.

Let αn,k,i = γn,k,i,1. Define R
′
m = Rm ∪ {0}, D′

m = Dm ∪ {(1, 0)} and

ϕ′
n,k,i : L2nk+i ∪R

′
2nk+i → X

such that 0ϕ′
n,k,i = x2n and jϕ′

n,k,i = jϕn,k,i for 0 < j ≤ 2nk + i. Let

βn,k,i = ( 1 , L2nk+i , D
′
2nk+i , R

′
2nk+i , 2 , ϕ

′
n,k,i ).

Clearly αn,k,i, βn,k,i ∈ A if n ≥ 2 and there exist unique words un,k,i, vn,k,i ∈
F2(X) such that αn,k,i = αun,k,i

and βn,k,i = αvn,k,i
. Further, un,k,i ≈ vn,k,i

are elementary identities if n ≥ 2 and k ≥ 1. Note that if n = 1 then
αn,k,i, βn,k,i 6∈ A, and if k = 0 then un,k,i ≈ vn,k,i is not elementary.

Observe that, for n ≥ 2, un,1,1 and vn,1,1 were designated by un and vn in
[12], respectively. Thus, by [12, Theorem 4.2], we have the following result:

Result 2.2 B = {un,1,1 ≈ vn,1,1 : n ≥ 2} is a basis of identities for SPS.

By Lemmas 4.3 of [12], if un,1,1 ≈ vn,1,1 is a consequence of a set I of
elementary identities, then there exists u ≈ v ∈ I such that un,1,1 ≈ vn,1,1
is a consequence of u ≈ v. Further, the proof of Lemma 4.4 of [12] also
tells us that |c(u)| ≥ 2n if Dv = Du ∪ {(lu, a)} for some vertex a, and
that |c(u)| ≥ 2n − 2 if Dv = Du ∪ {(a, ru)} for some vertex a. If we look
carefully into the proofs of these lemmas, we can check easily that they can
be adapted for the general case of the identities un,k,i ≈ vn,k,i. Thus, we have
the following lemma.
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Lemma 2.3 Let n ≥ 2, k ≥ 1 and 1 ≤ i ≤ 2n. If un,k,i ≈ vn,k,i is a

consequence of a set I of elementary identities, then un,k,i ≈ vn,k,i is a con-

sequence of some u ≈ v ∈ I. Further, |c(u)| ≥ 2n if Dv = Du ∪ {(lu, a)} or

|c(u)| ≥ 2n− 2 if Dv = Du ∪ {(a, ru)}, for some vertex a.

From the previous lemma we conclude that if um,l,j ≈ vm,l,j implies
un,k,i ≈ vn,k,i, then m ≥ n. Clearly, un,l,j ≈ vn,l,j implies un,k,i ≈ vn,k,i if
l < k or if l = k and j ≤ i since, in these cases, un,l,j and vn,l,j are strong
labeled subgraphs of un,k,i and vn,k,i , respectively. The next proposition gives
more information about these identities. However, we need to define a partial
order 4 on N× N first. Let (l, j), (k, i) ∈ N× N. Then

(l, j) 4 (k, i) if l < k or if l = k and j ≥ i.

Note that 4 is not the lexicographic order on N×N. We are considering the
reverse order on N for the second component.

Proposition 2.4 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m. If

m ≥ n and (l, 2m− j) 4 (k, 2n− i), then um,l,j ≈ vm,l,j implies un,k,i ≈ vn,k,i.

Proof: Let ψ be an endomorphism of A such that

αxsψ =

{

αx1 if s ≤ 2m− 2n ;

αxs−2m+2n
if 2m− 2n < s ≤ 2m ,

and observe that αum,l,j
ψ ∧ αx2 = αun,l,j′

and αvm,l,j
ψ ∧ αx2 = αvn,l,j′

, for
j′ = max{1, j − 2m+ 2n}. Thus um,l,j ≈ vm,l,j implies un,l,j′ ≈ vn,l,j′ .

If l < k then (l, 2n − j′) 4 (k, 2n − i). If l = k, then 2m − j ≥ 2n − i,
and so 2n − j′ ≥ 2n − i. Thus, we have always (l, 2n − j′) 4 (k, 2n − i).
Consequently un,l,j′ ≈ vn,l,j′ implies un,k,i ≈ vn,k,i , and we conclude that
um,l,j ≈ vm,l,j implies un,k,i ≈ vn,k,i . �

3 The varieties Gn,k,i

Let Gn,k,i be the variety of pseudosemilattices defined by the identity
un,k,i ≈ vn,k,i, for n ≥ 2, k ≥ 1 and 1 ≤ i ≤ 2n. Then Gn,k,i contains SPS.
The following result is an obvious corollary of Proposition 2.4.
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Corollary 3.1 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m. If

m ≥ n and (l, 2m− j) 4 (k, 2n− i), then Gm,l,j ⊆ Gn,k,i.

The remainder of this section is devoted to the proof of the converse of
this corollary. For vertices a and b of α ∈ A, let dα(a, b) be the number of
edges in the path from a to b. Let αi = (li, Li, Di, Ri, ri, ϕi), for i = 1, 2 , be
two isomorphic labeled subgraphs of α ∈ A and let π : L1 ∪ R1 → L2 ∪ R2

be the isomorphism from α1 onto α2. Note that π is unique since α1 ∈ A.
Define

dα(α1, α2) = min{dα(a, aπ) : a ∈ L1 ∪R1} .

If ψ is an endomorphism of A, then α1ψ and α2ψ are two isomorphic labeled
subgraphs of αψ. Further dα(α1, α2) ≥ dαψ(α1ψ, α2ψ).

Fix n ≥ 2, k ≥ 1 and 1 ≤ i ≤ 2n for the remainder of this section. Let

A =

{

{αx1} if i = 1 ;

{γn,0,i,j : j < i} if i 6= 1 ,

and
B = {γn,1,i,j : i < j ≤ 2n} .

Let C be the subpseudosemilattice of A generated by C = A ∪ B.
The set

C ′ = {α ∈ C : Dϕ 6⊆ D2n+1ϕ2n+1 for α = (l, L,D,R, r, ϕ) }

is an ideal of C. Let An,i be the quotient algebra C/C ′, that is, the algebra

An,i = {α : α ∈ C \ C ′} ∪ {0}

where α1 ∧ α2 is defined to be 0 if α1 ∧ α2 ∈ C ′. In fact, if i 6= 1, then

An,i = {γn,l,i,j : l ≥ 0 and 1 ≤ j < 2nl + i} ∪ {0} .

The case i = 1 is more complex. Beside the elements indicated above with
i = 1, An,1 contains also the elements

{αx1} ∪ {γn,l,1,2nj+1 ∧ αx1 : 0 ≤ j < l} .

Let Ik be the set of all 6-tuples from An,i with more than 2n(k + 1)
vertices, together with the element 0. Then Ik is an ideal of An,i. We define
the quotient algebra

An,k,i = An,i/Ik .

Observe that if α ∈ An,k,i \ {0} and α1 and α2 are two isomorphic labeled
subgraphs of α, then dα(α1, α2) is multiple of 2n.
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Lemma 3.2 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m . Then

An,k,i 6∈ Gn,k,i. Further, An,k,i ∈ Gm,l,j if m < n or (k, 2n− i) ≺ (l, 2m− j).

Proof: Consider a homomorphism ψ : A → An,i such that

αxjψ =











γn,0,i,j if j < i ;

γn,0,i,i−1 if j = i ;

γn,1,i,j if i < j ≤ 2n .

Then αn,k,iψ = αn,k,i = γn,k,i,1 and βn,k,iψ = γn,k+1,i,2n+1. If π denotes the
projection of An,i onto An,k,i, then

αn,k,iψπ = αn,k,i and βn,k,iψπ = 0 .

Thus An,k,i fails to satisfy the identity un,k,i ≈ vn,k,i , and An,k,i 6∈ Gn,k,i.
Let us prove that An,k,i ∈ Gm,l,j if m < n or (k, 2n− i) ≺ (l, 2m− j). Let

ψ : A → An,k,i be a homomorphism. If αm,l,jψ = 0, then αm,l,jψ = βm,l,jψ.
Hence, assume αm,l,jψ 6= 0.

The vertices of αm,l,j labeled with x1 are the vertices from

A = {2ms+ 1 : 0 ≤ s ≤ l} .

Consider the labeled subgraphs of αm,l,jψ that correspond to the images of
these vertices. These labeled subgraphs are isomorphic obviously. Taking
into account the structure of αm,l,j , these labeled subgraphs are either all
the same or pairwise distinct. Further, if the former case occurs, then

αm,l,jψ = αm,1,1ψ = βm,l,jψ .

We shall prove that the latter case does not occur, thus concluding that
αm,l,jψ = βm,l,jψ for any homomorphism ψ : A → An,k,i . Hence um,l,j ≈
vm,l,j is satisfied by An,k,i , and An,k,i ∈ Gm,l,j .

Let α and β be the labeled subgraphs of αm,l,jψ that correspond to the
images of the vertices 1 and 2m + 1. Since α and β are isomorphic distinct
labeled subgraphs of αm,l,jψ ∈ An,k,i \ {0}, then

2n ≤ dαm,l,jψ(α, β) ≤ dαm,l,j
(1, 2m+ 1) = 2m.

Thus m ≥ n. Since A has l + 1 vertices, αm,l,jψ has at least l + 1 copies of
αx1ψ (one for each vertex from A). However, every element of An,k,i has at
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most k+1 copies of some α ∈ A; whence l ≤ k. Then (k, 2n−i) ≺ (l, 2m−j)
if and only if l = k and 2n− i > 2m− j.

Let n ≤ m, k = l and 2n − i > 2m − j. Let α = αm,0,jψ ∈ An,k,i \ {0}.
Observe that if α has more than 2n vertices, then αm,l,jψ has more than
2n(l + 1) vertices. However, since k = l, no element of An,k,i has more than
2n(l + 1) vertices. Thus, α has at most 2n vertices, and so α = αx1 if i = 1
or α = γn,0,i,h for some 1 ≤ h < i if i 6= 1.

Let αs = (l′s, L
′
s, D

′
s, R

′
s, r

′
s.ϕ

′
s) = αxsψ for 1 ≤ s ≤ 2m and

ys =

{

l′sϕ
′
s if s odd ;

r′sϕ
′
s if s even .

Let M = {(ys, yt) : 1 ≤ s, t ≤ 2m and |s− t| = 1} ∪ {(y1, y2m)} and

N = {(xs, xt) : 1 ≤ s, t ≤ 2n and |s− t| = 1} ∪ {(x1, x2n)} ⊆ D2n+1ϕ2n+1 .

Observe that N ⊆ M since otherwise the labeled subgraphs of αm,l,jψ cor-
responding to the images of the vertices 1 and 2m+ 1 of αm,l,j could not be
distinct. Let

M1 = {(ys, yt) ∈M : s, t ≤ j} and M2 = {(ys, yt) ∈M : j ≤ s, t} .

Then |M | ≤ |M1| + |M2| and |M2| ≤ 2m − j < 2n − i. Further, |M1| is
less than the number of vertices of α since α = αm,0,jψ. Thus |M1| < i and
|M | < 2n− 1. Then N is not contained in M since |N | = 2n− 1. We proved
we cannot have n ≤ m, k = l and 2n− i > 2m− j. Then the latter case does
not occur. �

Proposition 3.3 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m.

Then Gm,l,j ⊆ Gn,k,i if and only if m ≥ n and (l, 2m− j) 4 (k, 2n− i).

Proof: The direct implication follows from Lemma 3.2 since if m < n or
(k, 2n− i) ≺ (l, 2m− j), then An,k,i ∈ Gm,l,j \Gn,k,i. The reverse implication
is Corollary 3.1. �

An obvious corollary is the following result.

Corollary 3.4 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m. Then

Gn,k,i = Gm,l,j if and only if (n, k, i) = (m, l, j).
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4 The varieties G∗
n,k,i , Gk,i and Gk

Let L∗
m = Rm, R

∗
m = Lm and D∗

m = {(h, j) : (j, h) ∈ Dm}. Let

α∗
n,k,i = (2, L∗

2nk+i , D
∗
2nk+i , R

∗
2nk+i , 1, ϕn,k,i ) ,

and let u∗n,k,i be the unique word of F2(X) such that α∗
n,k,i = αu∗

n,k,i
. Then

α∗
n,k,i and u

∗
n,k,i are the duals of αun,k,i

and un,k,i, respectively. Similarly, we
define β∗

n,k,i and v
∗
n,k,i , the duals of βn,k,i and vn,k,i , respectively.

The results from the previous two section have their duals with respect
to the words u∗n,k,i and v

∗
n,k,i. Then

u∗n,k,i ≈ v∗n,k,i

are elementary identities if and only if n ≥ 2 and k ≥ 1. Let G∗
n,k,i be the

variety defined by the identity u∗n,k,i ≈ v∗n,k,i , for n ≥ 2, k ≥ 1 and 1 ≤ i ≤ 2n.

Proposition 4.1 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m.

Then G∗
m,l,j ⊆ G∗

n,k,i if and only if m ≥ n and (l, 2m− j) 4 (k, 2n− i).

The next three results compare the varieties Gn,k,i and G∗
n,k,i.

Proposition 4.2 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m with

i even. Then G∗
n,k,i = Gn,k,i . Further, G∗

m,l,j ⊆ Gn,k,i if and only if m ≥ n
and (l, 2m− j) 4 (k, 2n− i).

Proof: We just need to prove that Gn,k,i ⊆ G∗
n,k,i if i even since the equality

Gn,k,i = G∗
n,k,i follows then by duality and the second part of this proposition

follows from Proposition 4.1. Recall that αn,k,i = γn,k,i,1 and

βn,k,i = ( 1 , L2nk+i , D
′
2nk+i , R

′
2nk+i , 2 , ϕ

′
n,k,i ) ,

and define α = γn,k,i,2nk+i−1 and

β = ( 2nk + i− 1 , L2nk+i , D
′
2nk+i , R

′
2nk+i , 2nk + i , ϕ′

n,k,i )

(note that β is a well defined 6-tuple of A since i is even). Let u, v ∈ F2(X)
such that αu = α and αv = β. Applying Lemma 3.2 of [12] and its dual
several times if necessary, we conclude that un,k,i ≈ vn,k,i and u ≈ v are
equivalent identities.
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Relabel the vertices of αu and αv using the mapping θ defined by

xjθ =

{

xi+1−j if j ≤ i ;

x2n+i+1−j if i+ 1 ≤ j ≤ 2n ,

and observe that we obtain αu∗
n,k,i

from αu, and αu∗
n,k,i+1

if i 6= 2n or αu∗
n,k+1,1

if i = 2n from αv. Thus un,k,i ≈ vn,k,i implies u∗n,k,i ≈ u∗n,k,i+1
if i 6= 2n or

implies u∗n,k,i ≈ u∗n,k+1,1 if i = 2n. We shall assume that i 6= 2n and prove
this case only. The argumentation works as well for i = 2n but it needs some
minor adaptations.

Let ψ be an endomorphism of A such that αxjψ = αxj+1
for j < 2n and

αx2nψ = αx2n∧x1 . Then

αun,k,i
ψ ∧ αx1 = αu∗

n,k,i+1
and αvn,k,i

ψ ∧ αx1 = αv∗
n,k,i+1

.

Thus un,k,i ≈ vn,k,i implies u∗n,k,i+1
≈ v∗n,k,i+1

, and so it implies the identity
u∗n,k,i ≈ v∗n,k,i+1

. Finally, since

αv∗
n,k,i+1

ω αv∗
n,k,i

ω αu∗
n,k,i

,

we conclude that un,k,i ≈ vn,k,i implies u∗n,k,i ≈ v∗n,k,i . Thus Gn,k,i ⊆ G∗
n,k,i. �

Proposition 4.3 Let n,m ≥ 2, k ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m. If i
odd and 2m − j = 2n − i, then G∗

m,k,j and Gn,k,i are incomparable varieties

in the lattice L(PS). In particular, G∗
n,k,i and Gn,k,i are incomparable.

Proof: By Lemma 3.2 we just need to prove that An,k,i ∈ G∗
m,k,j to conclude

that G∗
m,k,j * Gn,k,i. The result follows by duality. Let ψ : A → An,k,i be a

homomorphism. Mimicking the proof of Lemma 3.2, we can assume that

α∗
m,k,jψ = (l, L,D,R, r, ϕ) ∈ An,k,i \ {0} .

Let A = {2ms + 1 : 0 ≤ s ≤ k} and consider the labeled subgraphs of
α∗
m,k,jψ that correspond to the images under ψ of the vertices of A. Mimicking

again the proof of Lemma 3.2, we can conclude that it is enough to show that
these labeled subgraphs cannot be pairwise distinct. However, if they were
pairwise distinct, we could prove that |R| ≥ (2nk + i + 1)/2, but no non-
zero element of An,k,i has such property. Therefore, these labeled subgraphs
cannot be distinct and An,k,i satisfies the identity u∗m,k,j ≈ v∗m,k,j . �
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Proposition 4.4 Let n,m ≥ 2, k, l ≥ 1, 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m with i
odd. Then G∗

m,l,j ⊆ Gn,k,i if and only if m ≥ n and (l, 2m−j) 4 (k, 2n−i+1).

Proof: Assume m ≥ n and (l, 2m− j) 4 (k, 2n− i+ 1). If i 6= 1, then

G∗
m,l,j ⊆ G∗

n,k,i−1 = Gn,k,i−1 ⊆ Gn,k,i

by Propositions 4.1, 4.2 and 3.3. If i = 1 and m = n, then 2m− j = 2n− j
and 2n− i+1 = 2n. Thus l < k since otherwise (k, 2n− i+1) ≺ (l, 2m− j).
Again by the results indicated above,

G∗
m,l,j ⊆ G∗

n,k−1,2n = Gn,k−1,2n ⊆ Gn,k,1 .

If i = 1 and m > n, then m ≥ n + 1. Further, if l = k then 2m− j ≥ 2n >
2n− 2. Thus (l, 2m− j) 4 (k, 2n− 2) if i = 1 and m > n, and once more by
the results above

G∗
m,l,j ⊆ G∗

n+1,k,2 = Gn+1,k,2 ⊆ Gn,k,1 .

Assume G∗
m,l,j ⊆ Gn,k,i. If j even, then Gm,l,j ⊆ Gn,k,i by Proposition

4.2; whence m ≥ n and (l, 2m − j) 4 (k, 2n − i) by Proposition 3.3. Since
i is odd, we must have (l, 2m − j) 4 (k, 2n − i + 1) as wanted. It remains
to show the case j odd. By Propositions 3.3 and 4.2, and since i < 2n (i is
odd), we have

G∗
m,l,j ⊆ Gn,k,i ⊆ Gn,k,i+1 = G∗

n,k,i+1 .

Thenm ≥ n and (l, 2m−j) 4 (k, 2n−i−1) by Proposition 4.1. If l < k, then
(l, 2m− j) 4 (k, 2n− i+1) as wanted. If l = k, then (l, 2m− j) 4 (k, 2n− i)
since both i and j are odd numbers; and by Proposition 4.3, we have in fact
(l, 2m− j) 4 (k, 2n− i+ 1).

We have shown that G∗
m,l,j ⊆ Gn,k,i if and only if m ≥ n and (l, 2m−j) 4

(k, 2n− i+ 1). �

In this section we have study the dual varieties of Gn,k,i until now. From
now on we are going to study another class of varieties. For k ≥ 1 and i ≥ 0,
we define the following varieties of pseudosemilattices:

Gk,i = ∩{Gn,k,2n−i |n ≥ 2} and Gk = ∩{Gn,k,1 |n ≥ 2}.

Then Gk,i = {un,k,2n−i ≈ vn,k,2n−i |n ≥ 2} is a basis of identities for Gk,i and
Gk = {un,k,1 ≈ vn,k,1 |n ≥ 2} is a basis of identities for Gk. Then G1 = SPS

by Result 2.2.
Next, we present a list of some trivial consequences of Lemma 2.3 and

Proposition 3.3:
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(i) The varieties Gk,i and Gk are pairwise distinct varieties and they all
contain the variety SPS.

(ii) No Gm,l,j is contained in Gk,i or in Gk.

(iii) Gk ⊆ Gm,l,j if and only if k ≤ l; and Gk,i ⊆ Gm,l,j if and only if k < l
or k = l and 2m− j ≤ i.

(iv) The varieties Gk,i and Gk form a subchain of L(PS):

Gk = ∩i≥0Gk,i ⊂ · · · ⊂ Gk,i+1 ⊂ Gk,i ⊂ · · · ⊂ Gk,0 ⊂ Gk+1 .

(v) If (Us)s≥1 is a sequence of varieties Gm,l,j such that Us+1 ⊂ Us, then
∩s≥1Us is one of the varieties Gk,i or Gk.

We shall discuss the dual varieties G∗
k,i and G∗

k briefly now. Clearly,

G∗
k,i = {u∗n,k,2n−i ≈ v∗n,k,2n−i |n ≥ 2}

is a basis of identities for G∗
k,i and

G∗
k = {u∗n,k,1 ≈ v∗n,k,1 |n ≥ 2}

is a basis of identities for G∗
k. If i even, then Gk,i = G∗

k,i by Proposition 4.2.
If i odd, no identity from Gk,i is a consequence of an identity from G∗

k,i by
Proposition 4.3; whence Gk,i 6= G∗

k,i by Lemma 2.3. By Propositions 4.4,
G∗
n+1,k,1 ⊆ Gn,k,1 ; whence G∗

k ⊆ Gk. By duality we conclude that G∗
k = Gk

for all k ≥ 1.

5 The lattice L(PS)

We begin this section showing that any finite pseudosemilattice is con-
tained in some Gk.

Lemma 5.1 Let E be a pseudosemilattice with t elements. Then E ∈ Gt.

Proof: In [12] we proved that un,1,1 ≈ vn,1,1 and un,1,1 ≈ un,1,2 are equivalent
identities (see the comments made before Lemma 4.3 in [12]). In the same
way we can show that un,k,1 ≈ vn,k,1 and un,k,1 ≈ un,k,2 are equivalent identi-
ties too, for each k ≥ 1. We shall prove that E satisfies un,t,1 ≈ un,t,2 for all
n ≥ 2.
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Fix n ≥ 2 and let ψ : A → E be a homomorphism. Let el = αn,l,1ψ for
l ≥ 1. Then el+1 ω el. Since E has t elements, there must exist s, r ≥ 1 such
that es = es+r and s + r ≤ t + 1. However, due to the structure of αn,k,1,
we must have in fact es = el for all l ≥ s. In particular, et = et+1. Thus
αn,t,2ψ = αn,t,1ψ since

αn,t+1,1 ω αn,t,2 ω αn,t,1 .

We conclude that E satisfies the identities un,t,1 ≈ un,t,2 for all n ≥ 2, and so
E ∈ Gt. �

Corollary 5.2 PS = ∨k≥1Gk.

Proof: The e-variety LI of all locally inverse semigroups is generated by its
finite combinatorial members by [2, Corollary 5.14]. Hence, PS is generated
by the finite pseudosemilattices. The previous lemma tells us that ∨k≥1Gk

contains all finite pseudosemilattices. Consequently PS = ∨k≥1Gk. �

In Figure 1 we depict the inclusion relation (not the actual sublattice)
between the varieties Gn,k,i, Gk,i and Gk. The dashed and dotted lines
represent the meet and join of infinite chains of these varieties.

A variety V has finite axiomatic rank if there exist k ≥ 1 and a basis of
identities V for V such that |c(u)|, |c(v)| ≤ k for all u ≈ v ∈ V . Otherwise,
we say that V has infinite axiomatic rank. An infinite axiomatic rank variety
has no finite basis of identities obviously. A basis of identities V for a variety
V is independent if no proper subset of V is a basis of identities for V. An
element a of a lattice L is ∧-prime if whenever b∧ c ≤ a, then b ≤ a or c ≤ a;
and it is ∧-irreducible if whenever b ∧ c = a, then b = a or c = a. Clearly, a
∧-prime element is ∧-irreducible.

In [12] we proved that the variety SPS has infinite axiomatic rank and
no independent basis of identities. In fact, we proved that every cofinite
subset of a basis of identities for SPS still is a basis of identities for SPS.
We proved also that SPS is a ∧-prime element and a ∧-irreducible element
of L(PS), and has no covers. These results follow from the fact that if a
set I of identities imply un,1,1 ≈ vn,1,1, then there exists u ≈ v ∈ I with
|c(u)| ≥ 2n− 2 such that u ≈ v implies un,1,1 ≈ vn,1,1. Using Lemma 2.3 and
its dual, we can replicate, for Gk, Gk,i and G∗

k,i , the proofs presented in [12]
for the previous results. Therefore, we just state bellow those results for the
varieties Gk, Gk,i and G∗

k,i .
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∨k∈NGk = PS

G1 = SPS

G2,1,1

G2,k,1

Gk

G2,k+1,1

Gk+1

G3,k,1

G4,k,1

G3,k+1,1

G4,k+1,1

G3,1,1

G4,1,1

G1,3

G2,k−1,4

Gk−1,0

Gk,3

G2,k,4

Gk,0

G2,k,2

Gk,2

G2,k,3

Gk,1

G3,1,3

G4,1,5

G3,k−1,6

G4,k−1,8

G4,k,5

G3,k,3

G4,k,6

G3,k,4

G4,k,7

G3,k,5

G4,k,8

G3,k,6

Gk,4

Gk,5

Gk,6

Gk,7

G3,k,2

G4,k,3

G4,k,2

G4,k,4

G3,1,2

G4,1,3

G4,1,2

G4,1,4

G1,4

G1,6

G1,5

G1,7

Figure 1: Inclusion relation in the lattice L(PS).
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Proposition 5.3 Let k ≥ 1 and i ≥ 0.

(i) Gk, Gk,i and G∗
k,i have infinite axiomatic rank.

(ii) A cofinite subset of a basis of identities for Gk [Gk,i, G
∗
k,i, respectively ]

stills a basis of identities for Gk [Gk,i, G
∗
k,i, respectively ].

(iii) Gk, Gk,i and G∗
k,i have no independent basis of identities.

(iv) Gk, Gk,i and G∗
k,i are ∧-prime elements and ∧-irreducible elements of

L(PS).

(v) Gk, Gk,i and G∗
k,i have no covers in the lattice L(PS).

The proof for the ∧-prime and ∧-irreducible properties work also for the
varieties Gn,k,i and G∗

n,k,i.

Proposition 5.4 Let n ≥ 2, k ≥ 1 and 1 ≤ i ≤ 2n. Then, the varieties

Gn,k,i and G∗
n,k,i are ∧-prime and ∧-irreducible elements of L(PS).

We end this paper showing that L(PS) is uncountable.

Theorem 5.5 The lattice L(PS) of varieties of pseudosemilattices is un-

countable.

Proof: Let Uk = Gk+1,k,1 for k ≥ 1. Then {Uk | k ≥ 1} is a set of pairwise
incomparable varieties of pseudosemilattices by Proposition 3.3. Let A and
B be two subsets of Z+, and let

U = ∩k∈AUk and V = ∩k∈BUk.

Then, by Lemma 2.3 and Proposition 3.3, U = V if and only if A = B.
Therefore, for any subset of Z+, we have a new variety of pseudosemilattices,
and so L(PS) is uncountable. �
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