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Abstract. There are many tools for studying local dynamics. An
important problem is how this information can be used to obtain
global information. For instance, if a map has a unique fixed point
which is a local attractor, when can one guarantee that it is a
global attractor?

One attempt at getting tools for global dynamics was made
through the Discrete Markus-Yamabe conjecture. A counter-example
(Szlenk’s example) to this conjecture in dimension 2 was presented
in [A. Cima, A. Gasull and F. Mañosas, The Discrete Markus-
Yamabe Problem Nonlinear Analysis, 35, 343-354, 1999]. In the
present article we show that Szlenk’s example has symmetry Z4.
Based on this example we construct, for any natural n ≥ 3, planar
maps whose symmetry group is Zn having a local attractor that
is not a global attractor. The same construction can be applied
to obtain examples that are also dissipative. The symmetry of
these maps forces them to have rational rotation numbers, lead-
ing to the new question of whether Zn-symmetry implies rational
rotation number.

1. Introduction

At the end of the 19th century, Lyapunov [10] related the local sta-
bility of an equilibrium point to the eigenvalues of the Jacobian matrix
of the vector field at that point. This led to the Markus-Yamabe Con-
jecture [12] in the 1960’s, and fifteen years later to a version for maps
of the original conjecture, using the relation between stability of fixed
points and the eigenvalues of the Jacobian matrix of the map at that
point [11]. In the 1990’s, this was named, by analogy, the Discrete
Markus-Yamabe Conjecture and remains unproven. It may be stated
as follows:

Discrete Markus-Yamabe Conjecture: Let F be a C1 map
from Rm to itself such that F (0) = 0. If all the eigenvalues of the
Jacobian matrix at every point have modulus less than one, then the
origin is a global attractor.
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It is known that the original conjecture holds for m = 2 and is, in
this case, equivalent to the injectivity of the vector field [9], [7]. It
is false for m > 2 [3], [5]. On the other hand, the Discrete Markus-
Yamabe Conjecture holds, for all m, if the Jacobian matrix of the map
is triangular and, additionally for m = 2, for polynomial maps [6]. It is
false in higher dimensions, also for polynomial maps [5]. This striking
difference between the discrete and continuous versions encouraged the
study of the dynamics of continuous and injective maps of the plane
that satisfy the hypotheses of the Discrete Markus-Yamabe Conjecture.
This is now known as the Discrete Markus-Yamabe Problem. From
the results in [1], it follows that the Discrete Markus-Yamabe Problem
is true for m = 2 for dissipative maps, by introducing as an extra
condition the existence of an invariant ray (a continuous curve without
self-intersections connecting the origin to infinity). An invariant ray
can be, for instance an axis of symmetry.

In the presence of symmetry, that is, when the map is equivariant,
the ultimate question can be stated as follows:

Equivariant Discrete Markus-Yamabe Problem: Let f :
R2 −→ R2 be a dissipative C1 equivariant planar map such that f(0) =
0. Assume that all eigenvalues of the Jacobian matrix at every point
have modulus less than one. Is the origin a global attractor?

The Equivariant Discrete Markus-Yamabe Problem is false if the
reflection is not a group element. In fact, the example constructed by
Szlenk and reported in [6] satisfies all the hypotheses of the Discrete
Markus-Yamabe Problem, is equivariant (as we show here) under the
standard action of Z4, but the origin is not a global attractor. Indeed,
there is an orbit of period 4 and the rotation number defined in [13] is
1
4
.
We use Szlenk’s example to construct differentiable maps on the

plane with symmetry group Zn for all n ≥ 2. Each example has an
attracting fixed point at the origin and a periodic orbit of minimal
period n which prevents local dynamics to extend globally.

Moreover, the symmetry of those examples implies that the rotation
number is rational. Implications of this fact are discussed in the final
section.

1.1. Equivariant Planar Maps. Let Γ be a compact Lie group act-
ing on R2, that is, a group which has the structure of a compact
C∞−differentiable manifold such that the map Γ × Γ → Γ, (γ, δ) 7→
γδ−1 is of class C∞. The reference for the folllowing definitions and
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results is Golubitsky et al. [8], to which we refer the reader interested
in further detail.

Our concern is about groups acting linearly on R2 (see Chapter XII
of Golubitsky et al. [8] for details) and more particularly about the
action of Zn, n ≥ 2 on R2. Identifying R2 ' C, the finite group Zn is
generated by one element Rn, the rotation by 2π/n around the origin,
with action given by

Rn · z = e2πi/nz.

We are interested in maps that reflect the symmetries associated to
the action of a given Γ on R2.

Definition 1.1. We say that γ ∈ GL(2) is a symmetry of a map
f : R2 → R2 if f(γx) = γf(x). We define the symmetry group of f as
the biggest closed subgroup of GL(2) containing all the symmetries of
f .

Definition 1.2. We say that f : R2 → R2 is Γ− equivariant or that f
commutes with Γ if

f(γx) = γf(x) for all γ ∈ Γ.

Proposition 1.3. Every map f : R2 → R2 is equivariant under the
action of its symmetry group.

An important space in the study of equivariant dynamics is the fol-
lowing.

Definition 1.4. Let Σ be a subgroup of Γ. The fixed-point subspace
of Σ is

Fix(Σ) = {p ∈ R2 : σp = p for all σ ∈ Σ}.
If Σ is generated by a single element σ ∈ Γ, we write Fix〈σ〉.

We note that, for each subgroup Σ of Γ, Fix(Σ) is invariant by the
dynamics of a Γ− equivariant map ([8], XIII, Lemma 2.1). In fact, we
have for p ∈ Fix(Σ)

f(p) = f(σp) = σf(p),

showing that f(p) ∈ Fix(Σ).

When f is Γ− equivariant, we can use the symmetry to generalize
information obtained for a particular point. This is achieved through
the group orbit of a point, which is defined to be

Γx = {γx : γ ∈ Γ}.

Lemma 1.5. Let f : R2 → R2 be Γ−equivariant and let p be a fixed
point of f . Then all points in the group orbit of p are fixed points of f .
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Proof. If f(p) = p it follows that f(γp) = γf(p) = γp, showing that γp
is a fixed point of f for all γ ∈ Γ. �

Since most of our results depend on the existence of a unique fixed
point for f , the group actions we are concerned with are such that
Fix(Γ) = {0}.

2. Example with periodic points

The next examples refer to a local attractor, examples with a local
repellor may be obtained considering f−1.

Theorem 2.1. For each n ≥ 2 there exists f : R2 → R2 such that:

a) f is a differentiable homeomorphism;
b) f has symmetry group Zn;
c) Fix(f) = {0};
d) The origin is a local attractor;
e) There exists a periodic orbit of minimal period n.

Before proceeding, it is useful to establish some concepts that will
be used in the proofs to come. Let S1,n ⊂ R2 be the open sector

S1,n = {(x, y) = (r cos θ, r sin θ) : 0 < θ < 2π/n}

and define Sj,n, j = 2, · · · , n recursively by Sj,n = Rn (Sj−1,n). Then
R2 =

⋃n
j=1 Sj,n, whereA is the closure ofA. Moreover, S1,n = Rn (Sn,n).

Then each Sj,n is a fundamental domain for the action of Zn, in partic-
ular if f : R2 −→ R2 is Zn-equivariant then f is completely determined
by its restriction to Sj,n.

A line ray is a half line through the origin, of the form {t(α, β) :
t ≥ 0}, with 0 6= (α, β) ∈ R2.

Our construction of the map f in Theorem 2.1 benefits from a closer
look at a simpler known example with Z4 symmetry and satisfying
Theorem 2.1. This was obtained by Szlenk and is presented in [6]. The
next Proposition establishes the relevant properties of this example
that will be used in the construction of other Zn-equivariant maps.

Proposition 2.2 (Szlenk’s example). Let F4 : R2 −→ R2 be defined by

F4(x, y) =

(
− ky3

1 + x2 + y2
,

kx3

1 + x2 + y2

)
for 1 < k <

2√
3
.

The map F4 has the following properties:

1) F4 is a differentiable homeomorphism.
2) Fix(F4) = {0}.
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3) F 4
4 (P ) = P for P =

(
(k − 1)−1/2, 0

)
, with F j

4 (P ) = Rj
4(P ) 6= P

for j = 2, 3.
4) 0 is a local attractor.
5) F4 is Z4-equivariant.
6) The restriction of F4 to any line ray is a homeomorphism onto

another line ray.
7) F4

(
Sj,4
)

= Sj+1,4 for j = 1, · · · , 4 (mod 4) with F4 (∂Sj,4) =
∂Sj+1,4.

8) The curve F4(cos θ, sin θ) goes across each line ray and is trans-
verse to line rays at all points θ 6= mπ

2
for m = 0, 1, 2, 3.

Proof. Statements 1), 3) and 4) are proved in [6]. Statement 2) is
proved in [2]. Note that the periodic orbit of P of statement 3) lies in
the boundary of the sectors

⋃
j ∂Sj,4.

Concerning 5) note that R4, the generator of Z4, acts on the plane
as R4(x, y) = (−y, x). In order to prove that F4(x, y) is Z4-equivariant
we compute

F4(R4(x, y)) = (− kx3

1 + x2 + y2
,− ky3

1 + x2 + y2
)

and

R4F4(x, y) = R4(−
ky3

1 + x2 + y2
,

kx3

1 + x2 + y2
) = (

−kx3

1 + x2 + y2
,
−ky3

1 + x2 + y2
).

Observing that these are equal establishes statement 5).

The behaviour of F4 on line rays described in 6) is easier to under-
stand if we write (x, y) in polar coordinates (x, y) = (r cos θ, r sin θ)
yielding:

(1) F4(r cos θ, r sin θ) =
kr3

1 + r2
(
− sin3 θ, cos3 θ

)
.

From this expression it follows that for each fixed θ, the line ray
through (cos θ, sin θ) is mapped into the line ray through (− sin3 θ, cos3 θ).
The mapping is a bijection, since r3/(1+r2) is a monotonically increas-
ing bijection from [0,+∞) into itself.

The behaviour of F4 on sectors and their boundary is the essence of
7). From the definition of the sectors we have

Sj+1,4 = R4 (Sj,4)

and therefore, by Z4-equivariance,

F4 (Sj+1,4) = F4 (R4 (Sj,4)) = R4 (F4 (Sj,4)) .
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F4

x x

y y

Figure 1. Szlenk’s example F4 maps a quarter of the
unit circle into a quarter of the astroid k

2
(− sin3 θ, cos3 θ).

It then suffices to show that F4

(
S1,4

)
= S2,4. The sectors S1,4 and S2,4

have the simple forms

S1,4 = {(x, y) : x > 0, y > 0} S2,4 = {(x, y) : x < 0, y > 0} .

From the expression of F4 it is immediate that if x > 0 and y > 0 then
the first coordinate of F4(x, y) is negative and the second is positive
and thus F4 (S1,4) ⊂ S2,4. It remains to show the equality, which we
delay until after the proof of 8).

The expression (1) in polar coordinates shows that the circle (cos θ, sin θ),
0 ≤ θ ≤ 2π is mapped by F4 into the curve γ(θ) = k

2
(− sin3 θ, cos3 θ)

known as the astroid (Figure 1). The arc γ(θ), 0 ≤ θ ≤ π/2 joins (0, k
2
)

to (−k
2
, 0). Since for θ ∈ (0, π/2) the functions cos3 θ and − sin3 θ are

both monotonically decreasing with strictly negative derivatives, then
the 0 ≤ θ ≤ π/2 arc of the astroid has no self intersections and the
restriction of F4 to the quarter of a circle 0 ≤ θ ≤ π/2 is a bijection
into this arc (Figure 1).

Moreover, the determinant of the matrix with rows γ(θ) and γ′(θ) is

det

(
γ(θ)
γ′(θ)

)
=

3k2

4
sin2 θ cos2 θ

showing that the arc of the astroid is transverse at each point γ(θ),
0 < θ < π/2 to the line ray through it. Transversality fails at the end
points of the arc, but the line rays still go across the astroid at the cusp
points — this is assertion 8).

Thus, F4 induces a bijection between line rays in S1,4 and line rays in
S2,4 and using the radial property 6) it follows that F4 (S1,4) = S2,4. The
behaviour on the boundary of S1,4 also follows either from the radial
property or from a simple direct calculation, concluding the proof of
7). �
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y y
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n
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Figure 2. Construction of the Zn-equivariant example
Fn in a fundamental domain of the Zn-action, shown here
for n = 6.

Proof of Theorem 2.1. For n ≥ 2, the map

(2) hn (r cos θ, r sin θ) =

(
r cos

4θ

n
, r sin

4θ

n

)
is a local diffeomorphism at all points in R2\{0}, is continuous at 0 and
hn(S1,4) = S1,n, hn(S2,4) = S2,n with |hn(x, y)| = |(x, y)|. Moreover,
the restriction of hn to S1,4 is a bijection onto S1,n and hn maps each
line ray through the origin into another line ray through the origin.

Similar properties hold for the inverse

h−1n (r cos θ, r sin θ) =

(
r cos

nθ

4
, r sin

nθ

4

)
with h−1n (S1,n) = S1,4.

Let Fn : S1,n −→ S2,n be defined by (see Figure 2)

(3) Fn(x, y) = hn ◦ F4 ◦ h−1n (x, y) .

We extend Fn to a Zn-equivariant map Fn : R2 −→ R2 recursively,
as follows.

Suppose for 1 ≤ j ≤ n − 1 the map Fn is already defined in Sj,n
with Fn(Sj,n) = Sj+1,n. If (x, y) ∈ Sj+1,n we have R−1n (x, y) ∈ Sj,n and
thus Fn ◦R−1n (x, y) is well defined, with Fn ◦R−1n (x, y) ∈ Sj+1,n. Define
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Figure 3. Image of the circle (sin θ, cos θ) by the Zn-
equivariant example Fn, shown here for n = 5.

Fn(x, y) for (x, y) ∈ Sj+1,n as Fn(x, y) = Rn ◦ Fn ◦ R−1n (x, y) ∈ Sj+2,n.
Finally, for (x, y) ∈ Sn−1,n we obtain Fn(x, y) ∈ S1,n.

The following properties of Fn now hold by construction, using Propo-
sition 2.2:

• Fn is Zn-equivariant.
• Fix(Fn) = {0}.
• The origin is a local attractor.
• F n

n (P ) = P for P =
(
(k − 1)−1/2, 0

)
, with F j

n(P ) 6= P for
j = 2, . . . , n − 1. Note that all F j

n(P ) lie on the boundaries
∂Sj,n of the sectors Sj,n.
• Fn maps each line ray through the origin onto another line ray

through the origin.

Since hn maps line rays to line rays, to see that Fn is a homeomor-
phism it is sufficient to observe that γn(θ) = Fn(cos θ, sin θ), 0 ≤ θ ≤ 2π
is a simple closed curve that meets each line ray only once and does
not go through the origin (Figure 3). This is true because away from
the origin both hn and h−1n are differentiable with non-singular deriva-
tives. Since hn and h−1n map line rays into line rays, it follows from
assertion 8) of Proposition 2.2 that γn is transverse to line rays except
at the cusp points γn(θ), θ = 2mπ

n
, m = 0, 1, . . . , n − 1 where the line

ray goes across it.
It remains to show that Fn is everywhere differentiable in R2. This

is done in Lemma 2.3 below.
�

Lemma 2.3. Fn is everywhere differentiable in R2.

Proof. First we show that DF4(0, 0) = (0) (zero matrix) implies that Fn
is differentiable at the origin with DFn(0, 0) = (0). That DF4(0, 0) =
(0) means that for every ε > 0 there is a δ > 0 such that, for every
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X ∈ R2, if |X| < δ then

|F4(X)− F4(0, 0)−DF4(0, 0)X| = |F4(X)| < ε |X| .

Since hn and h−1n preserve the norm, we have that if Y = hn(X) then
|Y | = |X| and furthermore, for any Y such that |Y | < δ we obtain

|Fn(Y )| =
∣∣hn (F4

(
h−1n (Y )

))∣∣ = |hn (F4(X))| = |F4(X)| < ε |X| = ε |Y |

proving our claim, since Fn(0, 0) = (0, 0).

Recall that in (3) and in the text thereafter the map Fn is made up
by gluing different functions on sectors: in S1,n the expression of Fn is
given by hn ◦ F4 ◦ h−1n and in S2,n by Rn ◦ hn ◦ F4 ◦ h−1n ◦ R−1n . Both
expressions define differentiable functions away from the origin since
both hn and h−1n are of class C1 in R2\{(0, 0)}. We have already shown
that Fn is differentiable at the origin. It remains to prove that the
derivatives of the two functions coincide at the common boundary of
∂S1,n and ∂S2,n. At the remaining boundaries the result follows from
the Zn-equivariance of Fn.

Since we are working away from the origin, we may use polar coor-
dinates. The expressions for hn, Rn and their inverses take the simple

forms below, where we use f̂ to indicate the expression of f using polar
coordinates in both source and target:

ĥn(r, θ) =

(
r,

4θ

n

)
ĥ−1n (r, θ) =

(
r,
nθ

4

)

R̂n(r, θ) =

(
r, θ +

2π

n

)
R̂−1n (r, θ) =

(
r, θ − 2π

n

)
.

Let F̂4(r, θ) = (R4(r, θ),Φ4(r, θ)) be the expression of F4 in polar
coordinates. From (1) we get:
(4)

R4(r, θ) =
kr3

1 + r2

√
cos6 θ + sin6 θ =

kr3

1 + r2

√
1− 3 cos2 θ + 3 cos4 θ

(5) Φ4(r, θ) =


arctan

(
−cos3 θ

sin3 θ

)
if θ 6= kπ

arccot

(
− sin3 θ

cos3 θ

)
if θ 6= π

2
+ kπ .
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The derivative DF̂4(r, θ) of F̂4 is thus,
(6)

kr2
3 + r2

(1 + r2)2

√
cos6 θ + sin6 θ

kr3

1 + r2
3 sin θ cos θ

(
sin4 θ − cos4 θ

)
√

cos6 θ + sin6 θ

0
3 sin2 θ cos2 θ

cos6 θ + sin6 θ


where the two alternative forms for Φ4(r, θ) yield the same expression
for the derivative.

Note that the Jacobian matrix of ĥn is constant and the same is true
for its inverse. The derivatives of both R̂n and of R̂−1n are the identity.
Let (r, 2π/n) be the polar coordinates of a point ξ in (∂S1,n ∩ ∂S2,n) \{0}.
In order to show that the derivatives at ξ of ĥn ◦ F̂4 ◦ ĥ−1n and of

R̂n ◦ ĥn ◦ F̂4 ◦ ĥ−1n ◦ R̂−1n coincide, we only need to show that DF̂4

at ĥ−1n (r, 2π/n) = (r, π/2) equals DF̂4 at ĥ−1n (R̂−1n (r, 2π/n)) = (r, 0).
More precisely, for any (r, θ)

Dĥn(r, θ) = An =

(
1 0
0 4

n

)
Dĥ−1n (r, θ) = Bn =

(
1 0
0 n

4

)
and thus

D
(
R̂n ◦ ĥn ◦ F̂4 ◦ ĥ−1n ◦ R̂−1n

)
(ξ)

= DR̂n(ĥn(F̂4((r, 0)))Dĥn(F̂4((r, 0))DF̂4(r, 0)Dĥ−1n (r, 0)DR̂−1n (r, 2π/n)

= Id · An ·DF̂4(r, 0) ·Bn · Id
= An ·DF̂4(r, 0) ·Bn

and

D
(
ĥn ◦ F̂4 ◦ ĥ−1n

)
(ξ)

= Dĥn(F̂4((r, π/2))DF̂4(r, π/2)Dĥ−1n (r, 2π/n)

= An ·DF̂4(r, π/2) ·Bn .

From (6) it follows that

DF̂4(r, π/2) = DF̂4(r, 0) =

 kr2
3 + r2

(1 + r2)2
0

0 0


completing our proof. �
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The construction in the proof of Theorem 2.1 only works because
Szlenk’s example F4 has the special properties 6, 7 and 8 of Proposi-
tion 2.2. For instance, identifying R2 ∼ C the map f(z) = z3 is Z4-
equivariant, but does not have the properties above and h5◦f◦h−15 (z) =
f(z).

Alarcón et al. [1, Theorem 4.4] construct, starting from F4, an ex-
ample having the additional property that ∞ is a repelllor. The new
example, G(x, y), is of the form

G(x, y) = φ(|F4(x, y)|)F4(x, y)

where φ : [0,∞) −→ [0,∞) is described in [1, Lemma 4.6].
Then G has all the properties of Proposition 2.2. Therefore, applying

to G the construction of Theorem 2.1 we obtain the following:

Corollary 2.4. For each n ≥ 2 there exists a map f : R2 → R2

satisfying properties a)–e) of Theorem 2.1 and, moreover, for which ∞
is a repellor.

A very interesting problem in Dynamical Systems is to describe the
global dynamics with hypotheses based on local properties of the sys-
tem. The Markus-Yamabe Conjecture is an example but not the only
one. For instance, Alarcón et al. [1] prove the existence of a global
attractor arising from a unique local attractor, using the theory of free
homeomorphisms of the plane. Recently, Ortega and Ruiz del Portal
in [13], have studied the global behavior of an orientation preserving
homeomorphism introducing techniques based on the theory of prime
ends. They define the rotation number for some orientation preserving
homeomorphisms of R2 and show how this number gives information
about the global dynamics of the system.

The theory of prime ends was introduced by Carathéodory in order
to study the complicated shape of the boundary of a simply connected
open subset of R2. When such a subset U is non empty and proper, U
is homeomorphic to the open unit disk and Carathéodory’s compacti-
fication associates the boundary of U with the space of prime ends P,
which is homeomorphic to S1. In that way, U ∪ P is homeomorphic
to the closed unit disk and if f is an orientation preserving homeo-
morphism with f(U) = U , then f induces an orientation preserving

homeomorphism f̃ in P. Since the space of prime ends is homeomor-
phic to the unit circle, the rotation number of f̃ is well defined and the
rotation number of f is defined to be equal to the rotation number of
f̃ .
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The points in ∂S2U , the boundary of U in the one point compacti-
fication of the plane, that play an important role in the dynamics are
accessible points. A point α ∈ ∂S2U is accessible from U if there exists
an arc ξ such that p is an end point of ξ and ξ \ {α} ⊂ U . Then α
determines a prime end p(α) ∈ P, which may not be unique, such that
ξ \ {p} ∪ {p(α)} is an arc in U ∪ P.

Accessible points are dense in ∂S2U , but for instance, in the case of
fractal boundaries there exist points which are not accessible from U .
On the contrary, when the boundary is well behaved, for instance an
embedded curve of R2, accessible points define a unique prime end.
That means that accessible periodic points of f are periodic points of
f̃ with the same period. Consequently the rotation number of f is 1
divided the period. See [14] and [4] for more details and definitions.

Proposition 2.5. The examples Fn in Theorem 2.1 have rotation num-
ber 1/n.

Proof. By construction of the maps in Theorem 2.1, the basin of at-
traction of the origin

Un =
n−1⋃
j=0

Rj
n (hn(U) ∩ S1,n)

is invariant by the map Fn and is a non empty and proper simply
connected open set. Moreover, as the periodic point P is hyperbolic,
the boundary of U is an embedded curve of R2 in a neighborhood of P .
In addition, P is an accessible point from Un, thus the rotation number
of Fn is 1

n
. �

The fact that the symmetry forces the maps in Theorem 2.1 to have
a rational rotation number seems to point out at a connection between
symmetry and rotation number. It raises the question: for orientation
preserving homeomorphisms of the plane with a non global asymptoti-
cally stable fixed point, does Zn−equivariance imply a rational rotation
number?

The question is relevant because the rotation number gives strong
information about the global dynamics of the system. For instance,
consider a dissipative orientation preserving Zn−equivariant homeo-
morphism f of the plane with an asymptotically stable fixed point p.
If the question has an affirmative answer, then Proposition 2 of [13]
implies that p is a global attractor under f if and only if f has no other
periodic point.
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