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Abstract. Some fundamental questions about infinite-vertex (free) profinite
semigroupoids are clarified, putting in evidence differences with the finite-
vertex case. This is done with examples of free profinite semigroupoids gener-

ated by the graph of a subshift. It is also proved that for minimal subshifts, the
infinite edges of such free profinite semigroupoids form a connected compact
groupoid.

1. Introduction

Since the 1960’s that the theory of finite semigroups and their pseudovarieties
has seen substantial developments motivated by its applications in computer science
through the theories of finite automata and regular languages [10, 20, 21, 26]. Since
the mid 1980’s, profinite semigroups, and particularly relatively free profinite semi-
groups, have been shown to play an important role in the study of pseudovarieties:
free profinite semigroups over a pseudovariety V capture the common properties
of semigroups in V; formal equalities between their elements serve to define sub-
pseudovarieties of V; V-recognizable languages are the traces over finite words of
their clopen subsets [6]. Yet, one of the main difficulties in the profinite approach is
that, in general, very little is known about the structure of relatively free profinite
semigroups.

Symbolic dynamics first came into this picture as a toolkit to exhibit elements
of relatively free profinite semigroups with suitable properties [2, 8] and to explore
structure features of such semigroups [8, 5]. Conversely, profinite conjugacy in-
variants have been found in relatively free profinite semigroups and some finite
computable conjugacy invariants for sofic subshifts were deduced [17, 18, 15].

Through the work of Tilson [38], see also [36], finite categories and semigroupoids
(categories without the requirement of local identities) have been shown to play a
crucial role in the study of certain operations on pseudovarieties, such as various
forms of semidirect products. The merge of this idea with the profinite approach
was first attempted in [9]. At first sight, there is for categories and semigroupoids
a similar theory of pseudovarieties and their relatively free profinite structures over
given profinite graphs [25, 9]. But, as this paper shows, there are some significant
differences in case the set of vertices is infinite. In many applications, the finite-
vertex case is sufficient [3, 39]. Nevertheless, the general case is also of interest [7,
34].

This paper brings together symbolic dynamics and relatively free profinite semi-
groupoids. The latter are used to establish some profinite conjugacy invariants, a
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theme which will be further explored in forthcoming papers. The former serves as a
tool to construct examples which clarify some difficulties in the theory of profinite
semigroupoids, which is the main subject of this work.

Given a profinite graph Γ, let Γ+ denote the semigroupoid freely generated by
Γ and ΩΓSd the profinite semigroupoid freely generated by Γ. A natural example
of profinite graph is the graph Σ(X ) of the shift function on a subshift X , whose
discrete connected components are the orbits of X . We use such examples to exhibit
profinite graphs Γ such that Γ+ is not dense in ΩΓSd, whose existence is apparently
noted here for the first time.

Consider the graph ⌈Γ⌉β, where β is an ordinal, recursively defined as follows:

⌈Γ⌉0 = Γ; ⌈Γ⌉β+ is the closure in ΩΓSd of the subsemigroupoid generated by ⌈Γ⌉β ;
if β is a limit ordinal then ⌈Γ⌉β =

⋃
γ∈β⌈Γ⌉γ . There exists an ordinal β such that

⌈Γ⌉β = ΩΓSd. Let o(Γ) be the least of those ordinals. As we said at the end of
the previous paragraph, there are subshifts X such that o(Σ(X )) > 1. In fact, we
prove that for every countable ordinal β, there is a countable subshift X such that
o(Σ(X )) > β.

On the other hand, we study some forms of obtaining upper bounds for o(Σ(X )),
and in fact we obtain its exact value for several cases. For doing this we first observe
that the graph Σ(X ) is the projective limit of the Rauzy graphs Σ2n(X ) and that
ΩΣ(X )Sd embeds into lim

←−
ΩΣ2n(X )Sd. In particular, it follows that if X is of finite

type then o(Σ(X )) = 1. Other classes of subshifts demand more tools. We take
the labelling map µ : Σ(X ) → A, where A is the alphabet of X , and consider the
natural continuous extension µ̂ of µ from lim←−ΩΣ2n(X )Sd to ΩAS, where ΩAS is the

free profinite semigroup generated by A. Let L(X ) be the language of the finite
words appearing in elements of X . Then

(1.1) L(X ) = µ̂
(
Σ(X )+

)
.

On the other hand, if M (X ) is the set of elements of ΩAS whose finite factors
belong to L(X ) then

(1.2) M (X ) = µ̂
(
lim
←−

ΩΣ2n(X )Sd
)
.

Equality (1.2) is the framework for proving the following key result (Theorem 5.9): if
µ̂(⌈Σ(X )⌉β) = M (X ) then ⌈Σ(X )⌉β = lim

←−
ΩΣ2n(X )Sd, thus ΩΣ(X )Sd = lim

←−
ΩΣ2n(X )Sd

and o(Σ(X )) ≤ β (it should be noticed that we do not know if there is X such that
ΩΣ(X )Sd 6= lim

←−
ΩΣ2n(X )Sd). We deduce this key result using two ingredients: first

we prove that µ̂ is faithful (that is, co-terminal edges are mapped injectively), and
second we prove that if q is an edge of ⌈Σ(X )⌉β then a factorization of µ̂(q) is natu-
rally reflected in a good factorization of q in ⌈Σ(X )⌉β (Theorem 4.9). We further de-
duce some general technical conditions under which one has µ̂(⌈Σ(X )⌉2) = M (X ),
thus o(Σ(X )) ≤ 2. For example, if X is the even subshift then X satisfies such
conditions and from that it follows that o(Σ(X )) = 2. Those conditions are also
satisfied when X is minimal; and from the fact that o(Σ(X )) ≤ 2, we deduce that

L(X ) = M (X ) (an equality proved used a very different approach in [5]), and thus
o(Σ(X )) = 1 by (1.1); these two properties are shared by the finite type subshifts,
but to obtain them for minimal subshifts it was necessary a significantly larger
effort.

Many of the above results are valid not only for free profinite semigroupoids,
but also for their counterparts relatively to proper subpseudovarieties with suitable
properties.

This paper is divided in six sections. Section 2 presents some preliminaries on
semigroups, subshifts and graphs. Section 3 is dedicated to the construction of
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a good definition of relatively free profinite semigroupoids generated by profinite
graphs. Section 4 specializes to relatively free profinite semigroupoids generated
by the graph of a subshift. There we study fundamental properties of the labeling
map µ̂ with which in Section 5 we investigate upper and lower bounds for the
ordinal o(Σ(X )), computing its exact value in some cases. Finally, in Section 6

we focus on the case where X is minimal: after proving that L(X ) = M (X ) and
o(Σ(X )) = 1, we use this fact to show that ΩΣ(X )Sd\Σ(X )+ is a connected compact
groupoid.

Our basic reference for symbolic dynamics is the book of Lind and Marcus [27].
For background on profinite semigroups and semigroupoids see the introductory
text [6].

2. Preliminaries

2.1. Some remarks about topology. Throughout this article all topologies are
considered to be Hausdorff. In absence of confusion, finite sets are endowed with
the discrete topology. Familiarity with nets is assumed. Let I be a directed set
(that is, I is endowed with a partial order ≤ such that for every i, j ∈ I there is
k ∈ I such that i ≤ k and j ≤ k). A directed system of topological spaces (Xi)i∈I is
a family (ϕj,i : Xj → Xi)i,j∈I, i≤j of continuous maps such that ϕi,i is the identity
map and ϕj,i ◦ ϕk,j = ϕk,i whenever i, j, k ∈ I, i ≤ j ≤ k. The corresponding
projective limit is the topological space

lim
←−
i∈I

Xi = {(si)i ∈
∏

i∈I Xi | i ≤ j ⇒ ϕj,i(sj) = si}.

Note that if ϕi is the canonical projection of lim
←−i∈I

Xi into Xi, then ϕi = ϕj,i ◦ϕj .

If the maps ϕj,i are onto then we speak about an onto directed system and an onto
projective limit. It is well known that lim

←−i∈I
Xi is a closed subset of

∏
i∈I Xi, which

is nonempty if the spaces Xi are compact, and that the canonical projections of
an onto projective limit are onto: see [22, Section 3.2], for instance. The following
proposition is easy to prove.

Proposition 2.1. Let Y be a subset of lim
←−i∈I

Xi. If for every i ∈ I there is k ≥ i

such that the canonical projection of Y into Xk is onto, then Y is dense in lim
←−

F .

2.2. Pseudovarieties of semigroups. We require some very basic knowledge
about the definitions of semigroups, topological semigroups, alphabets, letters,
words, languages, rational languages. This that can be found in [26, 31, 14]. Any-
way, we shall recall some of the terminology and notation. For instance, given a
semigroup S which is not a monoid, S1 denotes the monoid obtained from S by
adding an extra neutral element 1; if S is a monoid then S1 = S. The length of a
word u is denoted by |u|. The cardinal of a set X is also denoted by |X |. As usu-
ally, the free semigroup generated by an alphabet A is denoted by A+, the empty
word is denoted by 1, and A∗ is the monoid A+ ∪ {1}. Recall that a language L
of A+ is recognized by a semigroup S if there is some semigroup homomorphism
ϕ : A+ → S such that L = ϕ−1ϕ(L). If C is a class of semigroups, then we say L
is C -recognizable if L is recognized by some element of C .

A pseudovariety of semigroups is a class of finite semigroups closed under taking
homomorphic images, subsemigroups and finite direct products. Denote by VA+

the set of V-recognizable languages, and by V the family (VB+)B where B runs in
the class of finite alphabets. Eilenberg proved that the correspondence V→ V is a
latticeisomorphim between the set of pseudovarieties of semigroups and the set of
the so called varieties of rational languages, thus opening a vast research program
linking the algebraic theory of finite semigroups with the combinatorial theory of
languages.
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In contrast with Birkhoff’s varietaltheory of free algebras [13], a theory of free
objects in a pseudovariety V leads to the consideration of topological semigroups.
A map ψ : X → F separates two elements x and y of the set X if ψ(x) 6= ψ(y). A
pro-V semigroup is a compact semigroup such that every pair of distinct elements is
separated by a continuous homomorphism into a semigroup of V. This is equivalent
to being the projective limit of an onto directed system of semigroups of V [30].
If V is the class S of all finite semigroups then one usually uses the designation
profinite instead of pro-S. We shall use the fact that for every element s of a
profinite semigroup the sequence (sn!)n converges to an idempotent denoted by
sω [6, pg. 20].

A map κ from A into a topological semigroup T is a generating map of T if the
subsemigroup of T generated by κ(A) is dense in T . A pro-V semigroup T is a
free pro-V semigroup generated by A, with generating map κ : A → T , if for every
map ϕ from A into a pro-V semigroup S there is a unique continuous semigroup
homomorphism ϕ̂ : T → S satisfying ϕ̂ ◦ κ = ϕ (which means Diagram (2.1)
commutes).

(2.1) A
κ

//

ϕ
  @

@

@

@

@

@

@

@

T

ϕ̂

��
�

�

�

S

By the usual abstract nonsense, up to isomorphism of topological semigroups,
there is no more than one free pro-V semigroup generated by A. In fact there
is always such a semigroup: roughly speaking, it is the projective limit of all A-
generated semigroups of V. It is denoted by ΩAV. By relatively free profinite
semigroup we mean a semigroup of the form ΩAV, for some pseudovariety V. If
V has nontrivial semigroups then A embeds into ΩAV, and if V contains the pseu-
dovariety N of finite nilpotent semigroups (semigroups whose idempotents are all
equal to a zero element) then A+ embeds as a dense subset of ΩAV, and the ele-
ments of A+ are isolated points in ΩAV; for these reasons the elements of ΩAV are
also called pseudowords (or profinite words), and the elements of ΩAV \A+ are the
infinite pseudowords. The following proposition [1, Theorem 3.6.1] establishes an
important connection between the topology of ΩAV and V-recognizable languages,
when V contains N.

Proposition 2.2. Let V be a pseudovariety of semigroups containing N. Let A be
a finite alphabet. A language L of A+ is V-recognizable if and only if its topological
closure in ΩAV is open. The topology of ΩAV is generated by the topological closures
of V-languages of A+.

2.3. Some operations on pseudovarieties. Several algebraic operations on pseu-
dovarieties of semigroups reflect important combinatorial operations on varieties of
rational languages. One of such algebraic operations is the Mal’cev product of two
pseudovarieties V and W, denoted by V©m W (see the survey [32]). The pseudova-
riety V©m W contains V and W. A semigroup whose subgroups are trivial is called
aperiodic. Let A be the pseudovariety of finite aperiodic semigroups. Note that
N ⊆ A. A variety of languages V is closed under concatenation product if VA+

contains the concatenation of its elements, for every finite alphabet A. The pseu-
dovariety A©m V is the least pseudovariety containing V whose corresponding variety
of languages is closed under concatenation product. Since A©m V = A©m (A©m V) [31,
Exercise 5.10], the variety of V-recognizable languages is closed under concatena-
tion product if and only if V = A©m V. This result is a particular instance of a more



INFINITE-VERTEX FREE PROFINITE SEMIGROUPOIDS AND SYMBOLIC DYNAMICS 5

general result from [16], which in turn generalizes a similar result from [37] proved
for pseudovarieties of monoids.

Lemma 2.3. Let V be a pseudovariety of semigroups containing N. Let A be a finite
alphabet. The multiplication in ΩAV is an open map if and only if V = A©m V.

Proof. Let V be the variety of V-recognizable languages. Then {L |L ∈ VA+} is a
basis for the topology of ΩAV, by Proposition 2.2. Therefore {L×K |L,K ∈ VA+}
is a basis for the topology of ΩAV × ΩAV. For all subsets P and Q of A+ we have
P · Q = PQ. Hence the multiplication in ΩAV is an open map if and only if LK
is open for every L,K ∈ VA+. The set LK is open if and only if LK ∈ VA+, by
Proposition 2.2. Hence the multiplication in ΩAV is an open map if and only if
VA+ is closed under concatenation. �

Another key operation which is considered in detail in [1, Chapter 10], the semidi-
rect product (also designated wreath product) of two pseudovarieties V and W is a
pseudovariety denoted by V ∗ W. It contains V and W. Both the Mal’cev and
semidirect products respect inclusion in both factors (that is, for example, if V ⊆ U

then V ∗W ⊆ U ∗W). While both the Mal’cev and semidirect products are non-
commutative operations having the pseudovariety I of trivial semigroups as neutral
element, the latter is associative, unlike the first. A set of semidirect products that
deserved special attention is the set of pseudovarieties of the form V ∗ D, where
D is the pseudovariety of semigroups whose idempotents are right zeros. At the
variety of languages level, this operation is closely related with the operation of
taking inverse images under maps of the form Φk which we next define. Given an
alphabet A and k ≥ 1, consider the alphabet Ak of words on A of length k; to
avoid ambiguities, we represent an element w1 · · ·wn of (Ak)+ (with wi ∈ Ak) by
〈w1, · · · , wn〉; for k ≥ 0 the map Φk from A+ to (Ak+1)∗ is given by

Φk(a1 · · · an) =

{
1 if n ≤ k,

〈a[1,k+1], a[2,k+2], · · · a[n−k−1,n−1], a[n−k,n]〉 if n > k,

where ai ∈ A and a[i,j] = aiai+1 · · · aj−1aj .
A semilattice is a commutative semigroup whose elements are all idempotents.

The pseudovariety of finite semilattices is denoted by Sl.

Theorem 2.4. Let V be a pseudovariety containing Sl and N. For every finite
alphabet A and nonnegative integer k, the map Φk : A+ → (Ak+1)∗ has a unique
continuous extension from ΩA(V ∗ D) to (ΩAk+1V)1, which we denote by ΦV

k .

Theorem 2.4 was proved by the first author for the pseudovariety S of all finite
semigroups [1, Lemma 10.6.11]. The general case then follows easily from results
of [1, Section 10], as argued in [15]. We shall deal with a lot of pseudovarieties of
the form V = V ∗D. Since D ∗D = D and the semidirect product of pseudovarieties
is associative, the solutions of the equation V = V∗D on the variable V are precisely
the pseudovarieties of the form V ∗D. For every pseudovariety of semigroups V, the
class L V of all finite semigroups whose subsemigroups that are monoids belong
to V is a pseudovariety of semigroups. One has always V ∗ D ⊆ L V (sometimes
V ∗ D 6= L V) and L V = L V ∗ D. One of the most celebrated results of finite
semigroup theory is the equality Sl ∗ D = L Sl [12, 29, 42, 41].

2.4. Subshifts. Suppose the alphabet A is finite. Let AZ be the set of sequences
of letters of A indexed by Z. The shift in AZ is the bijective map σA (or just σ)
from AZ to AZ defined by σA((xi)i∈Z) = (xi+1)i∈Z. The orbit of x ∈ AZ is the set
O(x) = {σk(x) | k ∈ Z}. We endow AZ with the product topology with respect to
the discrete topology of A. Note that AZ is compact, since A is finite. A symbolic
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dynamical system of AZ is a nonempty closed subset X that contains the orbits of
its elements. Symbolic dynamical systems are also called shift spaces or subshifts.

Two subshifts X ⊆ AZ and Y ⊆ BZ are topologically conjugate if there is a
homeomorphism ϕ : X → Y commuting with shift: ϕ ◦ σA = σB ◦ ϕ. Such a
homeomorphism is also called a topological conjugacy. Since we will consider no
other form of conjugacy, we drop the reference to its topological nature.

Let x ∈ AZ. By a factor of (xi)i∈Z we mean a word xixi+1 · · ·xi+n−1xi+n (briefly
denoted by x[i,i+n]), where i ∈ Z and n ≥ 1. If X is a subset of AZ then we denote
by L(X ) the set of factors of elements of X , and by Ln(X ) the set of elements
of L(X ) with length n. A subset K of a semigroup S is factorial if it is closed
under taking factors, and it is prolongable if for every element u of K there are
a, b ∈ S such that aub ∈ K. It is easy to prove that the correspondence X 7→ L(X )
is a bijection between the subshifts of AZ and the nonempty factorial prolongable
languages of A+ [27, Proposition 1.3.4].

Let X be a subshift of AZ and V a pseudovariety of semigroups containing N.
Since K ∩ A+ = K for every language K of A+ (where K is the closure of K in

ΩAV), the correspondence X 7→ L(X ) is one-to-one. This suggests the exploration
of the algebraic-topological properties of ΩAV (in general much richer than those of
A+) to obtain information about X . This program has been implemented by both
authors in previous papers [5, 4, 17, 18, 15]. The following result had not appeared
before, and its interest is obvious in this context.

Proposition 2.5. Let V be a pseudovariety of semigroups such that V = A©m V. If
L is a factorial language of A+ then L is a factorial subset of ΩAV.

For proving Proposition 2.5 we first prove an useful lemma.

Lemma 2.6. Let S be a topological semigroup whose topology is generated by a
metric. Suppose the multiplication is an open map. Let u, v ∈ S. Let (wn)n be a
sequence of elements of S converging to uv. Then there is a subsequence (wnk

)k

and sequences (uk)k, (vk)k such that wnk
= ukvk for all k, and limuk = u and

lim vk = v.

Proof. We denote by B(t, ε) the open ball in S with center t and radius ε. Let
k ∈ Z+. Since the multiplication is an open map, the set B

(
u, 1

k

)
B
(
v, 1

k

)
is an

open neighborhood of uv. Hence there is pk such that wn ∈ B
(
u, 1

k

)
B
(
v, 1

k

)
if

n ≥ pk. Let nk be the strictly increasing sequence recursively defined by n1 = p1

and nk = max{nk−1 + 1, pk} if k > 1. For each k ∈ Z+ there are uk ∈ B
(
u, 1

k

)
and

vk ∈ B
(
v, 1

k

)
such that wnk

= ukvk. We have limuk = u and lim vk = v. �

Proof of Proposition 2.5. Suppose uv ∈ L. Let (wn)n be a sequence of elements of
L converging to uv. By Lemmas 2.3 and 2.6 there are a subsequence (wnk

)k and
sequences (uk)k, (vk)k such that wnk

= ukvk for all k, limuk = u and lim vk = v.
Since wnk

∈ A+, necessarily uk, vk ∈ A+. And since wnk
∈ L and L is factorial in

A+, we have uk, vk ∈ L. Hence u, v ∈ L. �

2.5. Prefixes and suffixes of pseudowords. Take [1, Sections 3.7 and 5.2] as
reference for this subsection. By a prefix of an element t of a semigroup T we mean
a left factor of t, that is, an element p of T such that s = px for some x ∈ T 1.
Dually, a suffix is a right factor.

Let w be a word of A+ and n a positive integer. If |w| ≥ n then we denote by
tn(w) (respectively in(w)) the unique suffix (respectively prefix) of w with length n;
if |w| < n then we let tn(w) = in(w) = w. If V is a pseudovariety of semigroups
containing D, then the map tn : A+ → A+ has a unique extension to a continuous
homomorphism from ΩAV to A+ relatively to the discrete topology of A+. We also
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denote this extension by tn. Replacing D by its dual pseudovariety, usual denoted
by K, similar considerations hold for in. The least pseudovariety containing D and
K is L I.

Endow AZ
+
0 ∪ A+ (respectively AZ

−

∪ A+) with the topology defined as fol-

lows: AZ
+
0 (respectively AZ

−

) is closed and endowed with the product topology,
the elements of A+ are isolated points, and a sequence (un)n of elements of A+

converges to an element x of AZ
+
0 (respectively AZ

−

) if and only if for all k the
words tk(un) and x[0,k−1] (respectively ik(un) and x[−k,−1]) are equal for all suffi-

ciently large n. The topological space AZ
+
0 ∪ A+ becomes a compact semigroup if

we declare the elements of AZ
+
0 as left zeros and the remaining possible products as

given by concatenation. In this way, AZ
+
0 ∪A+ is isomorphic with ΩAK. The dual

characterization holds for ΩAD.
Finally, endow AZ ∪A+ with the topology where AZ is closed and endowed with

the product topology, the elements of A+ are isolated points, and a sequence (un)n

of elements of A+ converges to an element x of AZ if and only if (tk(un), ik(un))n

converges to (x]−∞,−1], x[0,+∞[) for all k. Take the natural identification between

AZ and AZ
−

×AZ
+
0 Consider in AZ ∪A+ the following multiplication: for w ∈ A+,

x, x′ ∈ AZ
−

and y, y′ ∈ AZ
+
0 , we have

(x, y) · w = (xw, y), w · (x, y) = (x,wy), (x, y) · (x′, y′) = (x′, y).

With this multiplication, AZ ∪A+ becomes a compact semigroup isomorphic with
ΩAL I.

If V contains L I then ΩAK is pro-V. Let w 7→ −→w denote the canonical projection
of ΩAV in ΩAK, that is, the unique continuous homomorphism from ΩAV to ΩAK

extending the identity in A. Dually, denote by w 7→ ←−w the canonical projection of
ΩAV in ΩAD. Note that in(w) = in(−→w ) and tn(w) = tn(←−w ) for all n. An element

(x, y) of AZ
−

×AZ
+
0 will also be denoted by x.y.

For a word u, the left infinite sequence . . . uuuu is denoted by u−∞; dually,
u+∞ = uuuu . . .; and u−∞.v+∞ denotes the bi-infinite sequence . . . uuuu.vvvv . . ..
Finally, u∞ denotes u−∞.u+∞.

2.6. Graphs. By a graph we mean a directed multigraph, that is a disjoint union
G = VG ∪ EG of a set VG of vertices with a set EG of edges together with two
incidence maps α, ω from EG to VG . The pictorial meaning of the incidence maps
is best described by writing α(e)

e
−−→ω(e), (or alternatively e : α(e)→ ω(e)), and

by saying that e goes from α(e) to ω(e), or that the edge starts at α(e) and ends at
ω(e), and so on. Two edges e and f on a graph are co-terminal if α(e) = α(f) and
ω(e) = ω(f). The set of edges from a vertex x to a vertex y is denoted by EG(x, y).
Two edges e and f are said to be consecutive (by this order) if ω(e) = α(f). A path
on a graph is a finite sequence of consecutive edges.

A function between graphs is a graph homomorphism if it maps vertices to ver-
tices, edges to edges, and respects incidence maps. A graph homomorphism is
faithful if it maps co-terminal edges injectively, and it is quotient if it is bijective
in the set of vertices and onto in the set of edges.

A labeled graph on A is a pair (G, λ) where G is a graph and λ is a mapping
assigning to each edge of G a letter of A. One can regard a labeled graph as an
automaton whose vertices are all both initial and final states. A subshift X is called
sofic if the language L(X ) is recognized by a finite labeled graph. In fact, X is sofic
if and only if L(X ) is a rational language. Such a graph is said to be a presentation
of the symbolic system. The graph of Figure 1 labeled with the letters a and b
presents a familiar sofic system called the even subshift.
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Figure 1. Presentation of the even subshift.

Let X be a subshift of AZ. The Rauzy graph of order n of X [33] is the graph
Σn(X ) where the vertices are the elements of Ln(X ), the edges are the elements
of Ln+1(X ), and the incidence maps are given by α(a1a2 · · · anan+1) = a1a2 · · · an

and ω(a1a2 · · · anan+1) = a2 · · · anan+1.
By a (compact) topological graph we mean a graph G endowed with a (compact)

Hausdorff topology such that αG and ωG are continuous maps, and VG and EG

are closed sets. Note that VG and EG are also open sets, since G is the disjoint
union of VG and EG . The product of topological graphs is a topological graph with
respect to the product topology.

For a subshift X , let Σ(X ) denote the graph whose set of vertices is X , whose
set of edges is {(x, σ(x)) ∈ X × X |x ∈ X}, and such that the edge (x, σ(x))
starts in x and ends in σ(x). Considering in EΣ(X ) the topology induced from the
product topology of X × X , the maps α and ω are continuous, whence Σ(X ) has
a structure of topological graph determined by the topology of X . We call Σ(X )
the graph of X . If two subshifts are conjugate then Σ(X ) and Σ(Y) are isomorphic
topological graphs.

A graph is profinite if every pair of distinct elements is separated by a continuous
graph homomorphism into a finite graph. This is equivalent to being the projective
limit of an onto directed system of finite graphs.

Let n and m be positive integers such that m ≥ n. The following map, denoted
by πm,n, is an onto graph homomorphism:

Σ2m(X ) → Σ2n(X )

x[−m,m−1] ∈ L2m(X ) 7→ x[−n,n−1] ∈ L2n(X ), x ∈ X .
x[−m,m] ∈ L2m+1(X ) 7→ x[−n,n] ∈ L2n+1(X ), x ∈ X ,

The family of graph homomorphisms {πm,n |n ≤ m} defines an onto directed sys-
tem. Its projective limit and Σ(X ) are isomorphic and will be identified, according
to the fact that the map

Σ(X ) → lim
←−

Σ2n(X )

x 7→ (x[−n,n−1])n

(x, σ(x)) 7→ (x[−n,n])n, x ∈ X .

is a continuous graph isomorphism. The graph Σ(X ) is therefore profinite.

3. Relatively free profinite semigroupoids

3.1. Semigroupoids. Let S be a graph with a nonempty set of edges. Denote
by DS the set of pairs of consecutive edges of S. We say S is a semigroupoid if
the set of edges of S is endowed with a partial binary operation “ · ” usually called
composition, such that:

(1) given edges s and t of S, the product s · t is an edge which is defined if and
only if (s, t) ∈ DS ;

(2) if (s, t) ∈ DS then α(s · t) = α(s) and ω(s · t) = ω(t);
(3) if (s, t) ∈ DS and (t, r) ∈ DS then (s · t) · r = s · (t · r).
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Figure 2. The homomorphic image of S in T is not a subsemigroupoid.

The product s · t of two consecutive edges will be denoted by st whenever it is clear
that we are not speaking about the path made of s and t.

A subgraph T of a semigroupoid S is a subsemigrupoid of S if T is a semigroupoid
whose composition is the restriction of the operation of S. Given a nonempty
subgraph X of the semigroupoid S, the intersection of all subsemigroupoids of S
containing X is a semigroupoid, called the subsemigroupoid of S generated by X ,
and denoted by 〈X〉. Note that V〈X〉 = VX and that

(3.1) E〈X〉 =
⋃

n≥1

{s1s2 · · · sn | s1, s2, . . . , sn are consecutive edges of X}.

Given two semigroupoids S and T , a homomorphism of semigroupoids from S to
T is a homomorphism of graphs ϕ : S → T such that ϕ(s · t) = ϕ(s) ·ϕ(t) for every
(s, t) ∈ DS . If the restriction of ϕ to the set S of vertices is injective then for every
subsemigroupoid R of S the set ϕ(R) is a subsemigroupoid of T . However, it may
happen that ϕ(S) is not a subsemigroupoid of T .

Example 3.1. Consider the graphs S and T represented in Figure 2. The set DS

is empty, hence S is a semigroupoid for the empty binary operation. On the other
hand, DT = {(c, d)} and T is a semigroupoid for the operation (c, d) 7→ e. Since
DS = ∅, any graph homomorphism from S to T is a semigroupoid homomorphism.
That is the case of the map ϕ : S → T such that ϕ(y1) = ϕ(y2) = y and ϕ(s) = s
for all s ∈ S \ {y1, y2}. The graph ϕ(S) is not a subsemigroupoid of T , because
ϕ(c) · ϕ(d) = c · d = e /∈ ϕ(S).

Given a set C, it is convenient to identify C with the graph G(C) with a single
vertex x not belonging to C and such that EG(C)(x, x) = C. Accordingly, if H is
a graph, a graph homomorphism from H to C will be understood as a map from
EH to C. Likewise, a semigroup S will be identified with the semigroupoid having
G(S) as underlying graph and whose composition is the semigroup operation of S.
Conversely, if T is a semigroupoid and ET (x, x) 6= ∅, then ET (x, x) is a semigroup
for the composition operation, called the local semigroup of T in x.

Let Γ be a graph. The graph Γ+ is the graph whose vertices are those of Γ and
whose edges from a vertex x to a vertex y are the paths of Γ from x to y. Note
that Γ is a subgraph of Γ+. Under the operation of concatenation of paths, Γ+

is the free semigroupoid generated by Γ, in the same sense that justified the use of
the terminology of free semigroup. In fact, if Γ is a set then Γ+ is actually the
free semigroup generated by Γ. Given a homomorphism ϕ of graphs from Γ to a
semigroupoid S, we shall denote by ϕ+ the unique semigroupoid homomorphism
from Γ+ to S extending ϕ.

A congruence on a semigroupoid S is an equivalence relation θ on S such that:

(1) if x is a vertex of S then x/θ = {x}.
(2) for all edges s and t of S, if s θ t then s are t co-terminal edges;
(3) for all edges s, t and r of S, if s θ t and ω(r) = α(s) then rs θ rt;
(4) for all edges s, t and r of S, if s θ t and α(r) = ω(s) then sr θ tr.

The relation identifying co-terminal edges is a congruence, called co-terminality
congruence. If θ is a congruence on a semigroupoid S then the quotient graph
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Figure 3. A sofic subshift Z such that Σ(Z)+ is not a subsemi-
groupoid of any compact semigroupoid in which Σ(Z)+ embeds.

S/θ is naturally endowed with a structure of semigrupoid. The usual isomorphism
theorems hold. It is important to note that if θ is an equivalence relation on S
identifying distinct vertices albeit satisfying the remaining three conditions we gave
for defining a congruence, then it may be impossible to endow the graph S/θ with a
semigroupoid structure. For instance, in Example 3.1 the quotient graph S/Kerϕ
is not a semigroupoid because c1/Kerϕ and c2/Kerϕ are consecutive edges, but
there is no edge in S/Kerϕ from α(c1/Kerϕ) to ω(c2/Kerϕ).

Let G be a topological graph. Then, for any x, y ∈ VG , the set EG(x, y) is
closed; the set DG is also closed. If the topology of VG is the discrete one then
EG(x, y) and DG are open. A (compact) topological semigroupoid is a semigroupoid
S whose underlying graph is a (compact) topological graph and whose composition
is continuous, which means that if (si, ti)i∈I is a net of elements of DS converging
to (s, t), then (siti)i∈I converges to st (note that DS is closed, hence (s, t) belongs
to DS). The product of topological semigroupoids is a semigroupoid with respect
to the product topology and to the composition defined componentwise.

3.2. The closed subsemigroupoid generated by a graph. Let R be a topo-
logical semigroupoid and X a nonempty subgraph of R. Let Q be the set of closed
subsemigroupoids ofR containingX . Note that R ∈ Q. Let ⌈X⌉ be the intersection
of all elements of Q. Then ⌈X⌉ ∈ Q. We say that ⌈X⌉ is the closed subsemigroupoid

of R generated by X . It is routine to check that if DR is open then ⌈X⌉ = 〈X〉.

Proposition 3.2. For a two-letter alphabet {a, b}, let Z be the sofic subshift of
{a, b}Z presented in Figure 3. Suppose Σ(Z)+ is a subsemigroupoid of a compact

semigroupoid S such that Z is a topological subspace of VS . Then Σ(Z)+ is not a
subsemigroupoid of S.

Proof. For each positive integer n, let sn be the unique edge of Σ(Z)+ from
a−∞.b+∞ to σn(a−∞.b+∞), and let tn be the unique edge of Σ(Z)+ from σ−n(b−∞.a+∞)
to b−∞.a+∞. Since S is compact, the sequences (sn)n and (tn)n have accumulation
points s and t in S, respectively. Due to the continuity of α and ω, we have

α(s) = a−∞.b+∞, ω(s) = b∞ = α(t), ω(t) = b−∞.a+∞.

Since s and t are consecutive edges, the product s · t exists in S.
Suppose Σ(Z)+ is a subsemigroupoid of S. Then, since s, t ∈ Σ(Z)+, we have

s·t ∈ Σ(Z)+. Hence, there is a net (ei)i∈I of edges of Σ(Z)+ converging to s·t. Due
to the continuity of α and ω, the nets (α(ei))i∈I and (ω(ei))i∈I converge to a−∞.b+∞

and b−∞.a+∞, respectively. Note that a−∞.b+∞ and b−∞.a+∞ are isolated points
of Z, hence there is i ∈ I such that α(ei) = a−∞.b+∞ and ω(ei) = b−∞.a+∞. But in
Σ(Z)+ there is no edge from a−∞.b+∞ to b−∞.a+∞. We thus reach a contradiction,

which shows that s · t /∈ Σ(Z)+. �

Later on we shall verify that the semigroupoid Σ(Z)+ indeed embeds into a
compact semigroupoid (cf. Corollary 3.25). Once this is done, Proposition 3.2 gives
an example of a nonempty subgraph X of a compact semigroupoid R such that

〈X〉 $ ⌈X⌉: just take X = Σ(Z)+ and note that 〈Σ(Z)+〉 = Σ(Z)+.
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Returning to an abstract setting, let X be a nonempty subgraph of a topological
semigroupoid R. Consider the following definition, by transfinite recursion, of sets
denoted by ⌈X⌉β, where β is an ordinal:

• ⌈X⌉0 = X ;
• ⌈X⌉β+ is the closure in R of the subsemigroupoid generated by ⌈X⌉β;
• if β is a limit ordinal then ⌈X⌉β =

⋃
γ∈β⌈X⌉γ .

Note thatX ⊆ ⌈X⌉β ⊆ ⌈X⌉ for every ordinal β, which is easily proved by transfinite
induction.

For the sake of conciseness, in the following lines the set ⌈X⌉β is denoted by yβ .

Lemma 3.3. Let β0 be an ordinal such that yβ+
0

= yβ0 . Then ⌈X⌉ = yβ0 .

Proof. We have 〈yβ0〉 ⊆ 〈yβ0〉 = yβ0 , thus yβ0 ∈ Q. Moreover, yβ0 ⊆ ⌈X⌉. �

Lemma 3.4. If d is a cardinal greater than the cardinal of ⌈X⌉ then there is an
ordinal β0 belonging to d such that yβ+

0
= yβ0

.

Proof. Let β and γ be distinct ordinals. Then β ∈ γ or γ ∈ β. Suppose β ∈ γ.
Then β+ ⊆ γ. One can easily prove by transfinite induction that the operator y
preserves order, thus yβ+ ⊆ yγ . Similarly, if γ ∈ β then yγ+ ⊆ yβ . Anyway, we have
(yβ+ \ yβ) ∩ (yγ+ \ yγ) = ∅. Therefore the following correspondence is well defined:

f : ⌈X⌉ → d

x 7→

{
β if β ∈ d and x ∈ yβ+ \ yβ ,

0 in the remaining cases.

Suppose the lemma is false. Then, by Lemma 3.3, for every ordinal β belonging
to d, there is an element xβ of yβ+ \ yβ . Note that xβ ∈ ⌈X⌉, since yγ ⊆ ⌈X⌉ for
every ordinal γ. Therefore β = f(xβ), for every ordinal β belonging to d. Hence f
is onto, and therefore d ≤ |⌈X⌉|. This contradicts the hypothesis |⌈X⌉| < d. �

Lemma 3.5. Let R and S be topological semigroupoids. Consider a nonempty
subgraph X of R such that R = ⌈X⌉. Let ψ and η be continuous homomorphisms
of semigroupoids from R to S. If ψ|X = η|X then ψ = η.

Proof. By Lemmas 3.4 and 3.3, it is sufficient to prove by transfinite induction that
ψ|yβ

= η|yβ
for every ordinal β, which is a pure routine task. �

3.3. Pseudovarieties of semigroupoids. A semigroupoid S is a divisor of a
semigroupoid T if there are a faithful homomorphism ϕ : R → T and a quotient
homomorphism ϕ : R → S for some semigroupoid R. A pseudovariety of semi-
groupoids is a class of finite semigroupoids containing the trivial semigroup and
the divisors and finite direct products of its elements1. The intersection of semi-
groupoid pseudovarieties is also a semigroupoid pseudovariety. The pseudovariety
generated by a class C of finite semigroupoids is the intersection of those pseudova-
rieties containing C , and its elements are the divisors of finite direct products of

1 Tilson’s original definition [38] includes the need of a pseudovariety of semigroupoids to

contain the finite disjoint unions of its elements. This results from Tilson’s preference for an
equational theory with graph-identities on finite connected graphs. In [9] it is not imposed any
restriction about connectedness. However, in the same article the definition of semigroupoid
pseudovariety is Tilson’s one. Tilson’s hypothesis about unions can be dropped in order to have
a coherent equational theory with graph-identities over non-connected graphs. This implies some
minor changes in certain arguments made in [9]. For example, in the proof of Theorem 2.7 of [9]
where one finds “let A be a subgraph of C generating C” one puts “let A1, . . . , An be subgraphs
of C generating the connected components C1, . . . , Cn of C, respectively”, since it is not assumed
C is connected. Anyway, choosing or not Tilson’s definition is irrelevant for our purposes.
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members of C (cf. [9, Section 2]). The pseudovariety of semigroupoids generated
by a pseudovariety V of semigroups, called the global of V, is denoted by gV.

Let V be a pseudovariety of semigroupoids. A semigroupoid S is pro-V if every
pair of distinct elements of S is separated by a continuous semigroupoid homomor-
phism into a semigroupoid of V. If V is the class of all finite semigroupoids then S
is said to be profinite.

Note that the projective limit of a directed system of compact semigroupoids is
a compact semigroupoid. We call a directed system of quotient homomorphisms of
semigroupoids a directed quotient system.

Theorem 3.6 (cf. [25, Theorem 4.1]). Let V be a pseudovariety of semigroupoids.
Let S be a finite-vertex topological semigroupoid. Then S is pro-V if and only if S
is isomorphic to a projective limit of a directed quotient system of semigroupoids
of V, if and only if S is isomorphic to a projective limit of a directed system of
semigroupoids of V.

Problem 3.7. Let V be a pseudovariety of finite semigroupoids. A pro-V semi-
groupoid is a projective limit of semigroupoids of V?

Without going into all the details, the difficulty in generalizing the proof of
Theorem 3.6 relies on the fact that in general one cannot consider congruences
identifying vertices (or in another perspective of the same phenomena, that the
image of a semigroupoid homomorphism is not necessarily a semigroupoid).

The consolidate of a semigroupoid S is the semigroup Scd whose elements are
the edges of S and, if S has pairs of nonconsecutive edges, an extra element 0,
the product in Scd of two consecutive edges of S being their composition, and the
remaining products being equal to 0. If S is a topological semigroupoid then we
endow Scd with the topology of ES together with 0 as an isolated point.

Remark 3.8. If S is a finite-vertex topological semigroupoid then Scd is a topolog-
ical semigroup.

Proof. Let (si, ti)i∈I be a net of pairs of elements of Scd converging to (s, t).
If st = 0 then (s, t) /∈ DS . Since DS is closed and 0 is an isolated point, the set

U = (ES × ES) \DS ∪ ES × {0} ∪ {0} × ES ∪ {(0, 0)}

is an open neighborhood of (s, t) in Scd × Scd. Hence there is i0 ∈ I such that if
i ≤ i0 then (si, ti) ∈ U , thus siti = 0. Therefore (siti)i∈I converges to st.

If st 6= 0 then (s, t) ∈ DS . Since DS is open, there is i0 ∈ I such that if i ≤ i0
then (si, ti) ∈ DS , thus siti ∈ ES . By the definition of topological semigroupoid,
the net (siti)i∈I converges to st. �

The semigroup B2 is the syntactic semigroup (see [26] for the definition) of the
language (ab)+ on the two-letter alphabet {a, b}.

Proposition 3.9. Let V be a pseudovariety of semigroups containing B2. Let S be
a finite semigroupoid. Then S ∈ gV if and only if Scd ∈ V.

See [9, Corollary 7.7] for a proof of Proposition 3.9. The converse implication
is trivial, and it follows from it that gS is the pseudovariety Sd of all finite semi-
groupoids.

Suppose ϕ : S → T is a continuous quotient homomorphism of topological
semigroupoids. Clearly 0 ∈ Scd if and only if 0 ∈ Tcd. Consider the map ϕcd :
Scd → Tcd such that ϕcd(s) = ϕ(s) for every s ∈ ES , and ϕcd(0) = 0 if 0 ∈ Scd.
Then ϕcd is a continuous homomorphism. If ϕ : S → T separates s and t then
so does ϕcd. Conversely, if ψ : Scd → Tcd separates s and t then so does ψ ◦ γ,
where γ : S → Scd is the identity map on the edges. These simple facts justify the
following corollary of Proposition 3.9.



INFINITE-VERTEX FREE PROFINITE SEMIGROUPOIDS AND SYMBOLIC DYNAMICS 13

Corollary 3.10. Let V be a pseudovariety of semigroups containing B2. Let S be a
finite-vertex topological semigroupoid. Then S is pro-gV if and only if Scd is pro-V.

3.4. Relatively free profinite finite-vertex semigroupoids. Consider a graph
Γ and a pseudovariety V of semigroupoids. A map κ from Γ into a topological
semigroupoid T is a generating map of T if ⌈κ(Γ)⌉ = T . A pro-V semigroupoid T
is a free pro-V semigroupoid generated by Γ, with generating map κ : Γ→ T , if for
every graph homomorphism ϕ from Γ into a pro-V semigroupoid S there is a unique
continuous semigroupoid homomorphism ϕ̂ : T → S satisfying ϕ̂◦κ = ϕ. Note that
it suffices to consider semigroupoids S such that S = ⌈ϕ(Γ)⌉, and in particular if Γ
is finite-vertex then one may always suppose S is finite-vertex.

By the usual abstract nonsense, up to isomorphism of topological semigroupoids,
there is no more than one free pro-V semigroupoid generated by Γ. For the case
where Γ is finite-vertex, we describe in the following lines a semigroupoid that
turns out to be the free pro-V semigroupoid generated by Γ. Note that when Γ is
a one-vertex graph and V = gW for some pseudovariety W of semigroups, such a
semigroupoid is the free pro-W semigroup generated by Γ. Let ConΓV be the set
of congruences θ on Γ+ such that Γ+/θ belongs to V. If ϑ is the co-terminality
congruence then Γ+/ϑ divides the trivial semigroup, hence ConΓV is nonempty if
and only if Γ is finite-vertex. The intersection of congruences is also a congruence,
hence ConΓV endowed with the partial order ⊇ is a directed set. The family

{qθ,ρ : Γ+/θ → Γ+/ρ | ρ, θ ∈ ConΓV, ρ ⊇ θ}

is a directed system of quotient homomorphisms. Its projective limite is a pro-V
semigroupoid, denoted by ΩΓV. If Γ is finite then ConΓV is countable, and therefore
the topological space ΩΓV is generated by a metric [40, Theorem 22.3].

Let ι : Γ → ΩΓV be the map defined by ι(a) = ([a]θ)θ∈ConΓV. The subsemi-
groupoid of ΩΓV generated by ι(Γ) is the set ι+(Γ+), denoted by ΩΓV.

Theorem 3.11 (cf. [25, Theorem 6.3]). Let V be a pseudovariety of semigroupoids
and let Γ be a finite-vertex graph. The semigroupoid ΩΓV is a free pro-V semi-
groupoid generated by Γ, with generating map ι.

Lemma 3.12. Let Γ be a graph and u a path on Γ. Then there is a semigroup S
in N and a semigroupoid homomorphism ϕ : Γ+ → S such that ϕ−1ϕ(u) = {u}.

Proof. Let Λ be the set of edges of Γ which are factors of u. Let F be the set of paths
of Λ with length less or equal to that of u. Then I = E+

Γ \ F is an ideal of E+
Γ (for

the definition of semigroup ideal and Rees quotient see [26]). The Rees quotient
E+

Γ /I belongs to N. The natural semigroupoid homomorphism ϕ : Γ+ → E+
Γ /I

satisfies ϕ−1ϕ(u) = {u}. �

Proposition 3.13. Let V be a pseudovariety of semigroupoids and let Γ be a finite-
vertex graph. If V contains nontrivial semigroups then ι : Γ→ ΩΓV is an embedding.
If V contains N, then ι+ is a semigroupoid isomorphism from Γ+ to ΩΓV, and the
elements of ΩΓV are isolated points of ΩΓV.

Proof. Let u and v be distinct edges of Γ. Suppose V contains a nontrivial semigroup
S. Then there is a graph homomorphism ψ : Γ→ S such that ψ(u) 6= ψ(v). There is

a unique continuous semigroupoid homomorphism ψ̂ : ΩΓV→ S such that ψ̂◦ι = ψ,
thus ι(u) 6= ι(v). Hence ι is an embedding.

Suppose V contains N. The map ι+ : Γ+ → ΩΓV is a quotient semigroupoid
homomorphism. We want to prove it is injective. Let u and v be distinct edges
of Γ+. By Lemma 3.12 there are a semigroup S in N and a semigroupoid homo-
morphism ϕ : Γ+ → S such that ϕ(u) 6= ϕ(v). Since N ⊆ V, there is a unique
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continuous semigroupoid homomorphism ϕ̂ from ΩΓV to S such that ϕ̂ ◦ ι = ϕ|Γ.
Then ϕ̂ ◦ ι+ = ϕ, thus ι+(u) 6= ι+(v). Therefore ι+ is an isomorphism.

We identify Γ+ with ΩΓV through ι+. Take an arbitrary edge u of Γ+. Let
(uτ )τ∈T be a net of edges of Γ+ converging to u. Let ϕ be as in Lemma 3.12.
Since ϕ̂ is continuous and ϕ̂|Γ+ = ϕ, there is τ0 ∈ T such that if τ0 ≤ τ then
ϕ(uτ ) = ϕ(u). Since ϕ−1ϕ(u) = {u}, if τ0 ≤ τ then uτ = u. Since Γ+ is dense in
ΩΓV, this proves the last assertion. �

3.5. Relatively free profinite semigroupoids generated by profinite graphs.

Let Γ be a profinite graph. A pro-V semigroupoid T is a free pro-V semigroupoid
generated by Γ, if there is a continuous generating map κ : Γ → S such that for
every continuous graph homomorphism ϕ from Γ into a pro-V semigroupoid S there
is a unique continuous semigroupoid homomorphism ϕ̂ : T → S satisfying ϕ̂◦κ = ϕ.
Note that, up to isomorphism of topological semigroupoids, there is no more than
one free pro-V semigroupoid generated by Γ. We shall prove in this section that
such semigroupoid always exist when Γ is profinite. If Γ is a finite-vertex graph,
then we already know this is true by Theorem 3.11.

From hereon, Γ is a projective limit of finite graphs defined by a directed system
{δj,i : Γj → Γi | i, j ∈ I, i ≤ j} of onto graph homomorphisms. The canonical
projection Γ→ Γi is denoted by δi.

Lemma 3.14. If ϕ is a continuous graph homomorphism from Γ into a finite graph
S then the set Iϕ = {i ∈ I | ∀x, y ∈ Γ, δi(x) = δi(y)⇒ ϕ(x) = ϕ(y)} is nonempty.

Proof. Suppose Iϕ = ∅. Then for every i ∈ I there are xi, yi ∈ Γ such that
δi(xi) = δi(yi) and ϕ(xi) 6= ϕ(yi). Since Γ is compact, the nets (xi)i∈I and (yi)i∈I

have subnets (xλ(j))j∈J and (yλ(j))j∈J converging to some elements x and y of Γ,
respectively. Since ϕ is continuous and S is finite, ϕ(x) 6= ϕ(y). Hence x 6= y.
Therefore there is k ∈ I such that δk(x) 6= δk(y). The set {(u, v) ∈ Γk×Γk |u = v}
is closed in Γk × Γk. Hence, since

lim
j∈J

(δk(xλ(j)), δk(yλ(j))) = (δk(x), δk(y)),

there is j0 ∈ J such that if j0 ≤ j then δk(xλ(j)) 6= δk(yλ(j)). There is j1 ∈ J such
that j0 ≤ j1 and k ≤ λ(j1). Let l = λ(j1). Then

δl,k(δl(xl)) = δk(xl) 6= δk(yl) = δl,k(δl(yl)).

But this contradicts the equality δl(xl) = δl(yl). �

Corollary 3.15. Let ϕ be a continuous graph homomorphism from Γ into a finite
graph S. There is i ∈ I for which it exists a unique continuous graph homomorphism
ϕi : Γi → S such that ϕi ◦ δi = ϕ.

Proof. Take i ∈ Iϕ. �

If i and j are distinct elements of I such that i ≤ j then, by Theorem 3.11,

there is a unique continuous semigroupoid homomorphism δ̂j,i such the following

diagram is commutative, where ιk denotes the generating map of ΩΓk
V:

Γj

ιj
//

δj,i

��

ΩΓj
V

δ̂j,i

��

Γi

ιi
// ΩΓi

V

The family {δ̂j,i : ΩΓj
V → ΩΓi

V | i, j ∈ I, i ≤ j} is therefore a directed system of

continuous homomorphisms of profinite semigroupoids. Denote by δ̂i the canonical
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projection of lim
←−j∈I

ΩΓj
V on ΩΓi

V, and by ι the map from Γ into lim
←−j∈I

ΩΓj
V

defined by ι(x) = (ιi ◦ δi(x))i∈I . Note that δ̂i ◦ ι = ιi ◦ δi.

Lemma 3.16. Let ϕ be a continuous graph homomorphism from Γ into a finite
semigroupoid S. Then there is a continuous semigroupoid homomorphism ϕ̄ from
lim
←−j∈I

ΩΓj
V into S such that ϕ̄ ◦ ι = ϕ.

Proof. Let ϕi : Γi → S be as in Corollary 3.15. By Theorem 3.11 there is a unique
continuous semigroupoid homomorphism ϕ̂i from ΩΓi

V into S such that ϕ̂i◦ιi = ϕi.
The following diagram is commutative:

Γ

ϕ
22

δi

��;
;

;

;

;

;

;

;

ι
// lim
←−j∈I

ΩΓj
V

δ̂i

��

Γi
ιi

//

ϕi

%%J
J

J

J

J

J

J

J

J

J

J

J

ΩΓi
V

ϕ̂i

��

S

It suffices to take ϕ̄ = ϕ̂i ◦ δ̂i. �

Theorem 3.17. Let ϕ be a continuous graph homomorphism from Γ into a semi-
groupoid S of V. Then there is a unique continuous semigroupoid homomorphism
ϕ̂ : ⌈ι(Γ)⌉ → S such that ϕ̂ ◦ ι = ϕ.

Proof. It is an immediate consequence of Lemmas 3.16 and 3.5. �

By Theorems 3.11 and 3.17, if Γ has a finite number of vertices then ΩΓV and
⌈ι(Γ)⌉ are isomorphic compact semigroupoids. For that reason, there is no ambigu-
ity in denoting ⌈ι(Γ)⌉ by ΩΓV when Γ is a finite-vertex graph. We shall also denote
by ΩΓV the subsemigroupoid of ΩΓV generated by ι(Γ).

Theorem 3.18. Let V be a pseudovariety of semigroupoids and let Γ be a profinite
graph. The semigroupoid ΩΓV is a free pro-V semigroupoid generated by Γ, with
generating map ι.

For proving Theorem 3.18 we need some auxiliary results.

Lemma 3.19. If S is a pro-V semigroupoid then there are a family F of semi-
groupoids of V and a continuous embedding Ψ : S →

∏
F∈F

F .

Proof. Let P2(S) be the set of the subsets of S with two elements. Since S is pro-V,
for each element {u, v} of P2(S) there is a continuous semigroupoid homomorphism
ψ{u,v} from S to a semigroupoid F{u,v} of V such that ψ{u,v}(u) 6= ψ{u,v}(v). The
map

Ψ : S →
∏

{s,t}∈P2(S) F{u,v}

s 7→ (ψ{u,v}(s)){u,v}∈P2(S).

is a continuous embedding of semigroupoids.
�

Lemma 3.20. Let ψ : S → T be a continuous homomorphism of topological semi-
groupoids. Let X be a nonempty subgraph of S. Then, for every ordinal β,

(3.2) ψ
(
⌈X⌉β

)
⊆ ⌈ψ(X)⌉β

and

(3.3) ψ
(
〈⌈X⌉β

〉
) ⊆ 〈⌈ψ(X)⌉β〉.

If ψ|VS
is injective then ψ

(
⌈X⌉

)
= ⌈ψ(X)⌉ and ψ

(
〈⌈X⌉β

〉
) = 〈⌈ψ(X)⌉β〉.
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Proof. Let us prove (3.2) by transfinite induction on β. The case β = 0 is trivial.
Suppose (3.2) is verified. Since ψ is a continuous map of compact spaces, we have

(3.4) ψ
(
⌈X⌉β+

)
= ψ

(
〈⌈X⌉β〉

)
= ψ

(
〈⌈X⌉β〉

)
.

And since ψ is a homomorphism of semigroupoids, according to equality (3.1) (page
9) we have

(3.5) ψ
(
〈⌈X⌉β〉

)
⊆
〈
ψ
(
⌈X⌉β

)〉
.

Hence, from (3.4) and (3.2) we deduce

ψ
(
⌈X⌉β+

)
⊆
〈
ψ
(
⌈X⌉β

)〉
⊆
〈
⌈ψ(X)⌉β

〉
= ⌈ψ(X)⌉β+ ,

concluding the successor case of the inductive step of (3.2). The limit case is
immediate.

By (3.2) and (3.5), we have ψ
(
〈⌈X⌉β

〉
) ⊆

〈
ψ
(
⌈X⌉β

)〉
⊆ 〈⌈ψ(X)⌉β〉 for every

ordinal β, which proves (3.3).
If ψ|VS

is injective then the proof of the equalities in the statement is similarly
done, the difference being that in (3.5) we now have an equality. �

Corollary 3.21. Let ψ : S → T be a continuous homomorphism of compact semi-
groupoids. Let X be a nonempty subgraph of S. Then ψ

(
⌈X⌉

)
⊆ ⌈ψ(X)⌉. If ψ|VS

is injective then ψ
(
⌈X⌉

)
= ⌈ψ(X)⌉. �

Proof of Theorem 3.18. Let S be a pro-V semigroupoid. Let Ψ and F be as in
Lemma 3.19. For each T ∈ F , let ρT be the canonical projection

∏
F∈F

F → T .
Take an arbitrary continuous graph homomorphism ϕ : Γ→ S. By Theorem 3.17,
for each T ∈ F there is a unique continuous semigroupoid homomorphism ζT from
ΩΓV to T such that ζT ◦ ι = ρT ◦ Ψ ◦ ϕ. Consider the map ζ : ΩΓV →

∏
F∈F

F
such that ζ(u) = (ζF (u))F∈F .

(3.6) Γ
ι

//

ϕ

��

ΩΓV

ζ

��

ζT

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

S
Ψ

//
∏

F∈F
F

ρT

// T

Since for all T ∈ F we have ρT ◦ ζ ◦ ι = ζT ◦ ι = ρT ◦ Ψ ◦ ϕ, we conclude that
ζ ◦ ι = Ψ ◦ ϕ, thus Diagram (3.6) commutes. Then, by Corollary 3.21,

ζ(ΩΓV) = ζ
(
⌈ι(Γ)⌉

)
⊆ ⌈ζ(ι(Γ))⌉ = ⌈Ψ(ϕ(Γ))⌉ ⊆ ⌈Ψ(S)⌉ = Ψ(S).

Hence we can consider the map ϕ̂ = Ψ−1 ◦ ζ, a continuous semigroupoid homo-
morphism from ΩΓV to S. Then ϕ̂ ◦ ι = ϕ. The uniqueness of ϕ̂ follows from
Lemma 3.5. �

Problem 3.22. Is there some projective limit Γ = lim
←−i∈I

Γi of finite graphs such

that ΩΓV 6= lim
←−i∈I

ΩΓi
V?

3.6. Pseudovarieties containing the finite nilpotent semigroups. If i ≤ j,
let δj,i

+ be the unique semigroupoid homomorphism for which the following diagram
commutes:

Γj
�

�

//

δj,i

��

Γ+
j

δj,i
+

��

Γi
�

�

// Γ+
i
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The family {δj,i+ : Γ+
j → Γ+

i | i, j ∈ I, i ≤ j} is a directed system of semigroupoid

homomorphisms. Denote by δi
+ the canonical projection from lim

←−j∈I
Γ+

j to Γ+
i .

The graph Γ is a subgraph of lim
←−j∈I

Γ+
j .

Lemma 3.23. The semigroupoids Γ+ and lim
←−i∈I

Γ+
i can be identified, in the sense

that the unique semigroupoid homomorphism  from Γ+ to lim
←−i∈I

Γ+
i extending the

inclusion is an isomorphism.

Proof. Clearly  is a bijection between the sets of vertices. Let w = w1 · · ·wk be a
path on Γ, where w1, . . . , wk are edges of Γ. Given i ∈ I, we have

(3.7) δi
+ ◦ (w) = δi(w1) · · · δi(wk).

Suppose u = u1 · · ·un and v = v1 · · · vm are paths on Γ, where u1, . . . , un, v1, . . . , vm

are edges of Γ. If (u) = (v) then δi(u1) · · · δi(un) = δi(v1) · · · δi(vm) by (3.7).
Hence n = m and δi

+(ul) = δi
+(vl), for any l ∈ {1, . . . , n}. Since i is arbitrary, we

conclude that ul = vl, for any l ∈ {1, . . . , n}. That is, u = v.
On the other hand, let q be an element of lim

←−i∈I
Γ+

i . Since the directed system

defining Γ is surjective, for every i ∈ I there are qi,1, . . . , qi,ni
∈ Γ such that

δi
+(q) = δi(qi,1) · · · δi(qi,ni

). If i ≤ j then, since δi
+ = δj,i

+ ◦ δj+, we have

δi(qi,1) · · · δi(qi,ni
) = δi(qj,1) · · · δj(qj,nj

).

Therefore

(3.8) j ≥ i⇒
(
nj = ni and δi(qi,l) = δi(qj,l) ∀l ∈ {1, . . . , ni}

)
.

In particular, if i1 and i2 are arbitrary elements of I, then ni1 = ni2 = ni0 , for
every i0 such that i1 ≤ i0 and i2 ≤ i0. Since I is directed, such i0 always ex-
ist, thus the net (ni)i∈I has constant value n. Let F be a finite subset of I.
Then there is k ∈ I such that i ≤ k for any i ∈ F . By (3.8), for all i ∈ F we
have qk,l ∈

⋂
i∈F δ

−1
i δi(qi,l). The set δ−1

i δi(qi,l) is closed for every i ∈ I. Then,

since Γ is compact and
⋂

i∈F δ
−1
i δi(qi,l) 6= ∅ for every finite subset F of I, the set⋂

i∈I δ
−1
i δi(qi,l) is nonempty. Let ql be one of its elements. For l < n,

ω(ql) = (ω(δi(ql)))i∈I = (ω(δi(qi,l)))i∈I = (α(δi(qi,l+1)))i∈I = · · · = α(ql+1).

Since q1, . . . , qn are consecutive edges, we can consider the element (q1 · · · qn) of
the image of . Then

δ+i ((q1 · · · qn)) = δi(q1) · · · δi(qn) = δi(qi,1) · · · δi(qi,n) = δi
+(q).

Since i is arbitrary, we conclude that q = (q1 · · · qn). Hence  is surjective. �

Proposition 3.24. Let V be a pseudovariety of semigroupoids and let Γ be a profi-
nite graph. If V contains nontrivial semigroups then ι : Γ→ ΩΓV is an embedding.
If V contains N then ι+ is a semigroupoid isomorphism from Γ+ onto ΩΓV.

Proof. Suppose V contains nontrivial semigroups. Let u and v be distinct elements
of Γ. Then there is i ∈ I such that δi(u) 6= δi(v). The graph homomorphism ιi
is an embedding, by Proposition 3.13. Hence ιi(δi(u)) 6= ιi(δi(v)). Since ι(w) =
(ιi ◦ δi(w))i∈I , this proves ι is an embedding.

Suppose V contains N. The map ι+ : Γ+ → ΩΓV is a quotient homomorphism of
semigroupoids. We want to prove that it is injective. Let w = w1 . . . wn be a path
on Γ, where w1, . . . , wn are consecutive edges of Γ. Then, for every i ∈ I,

δ̂i(ι
+(w)) = δ̂i(ι(w1)) · · · δ̂i(ι(wn)) = ιi(δi(w1)) · · · ιi(δi(wn)) = ιi

+(δi
+(w)).

Hence if u and v are edges of Γ+ and ι+(u) = ι+(v) then ιi
+(δi

+(u)) = ιi
+(δi

+(v))
for all i ∈ I. From Proposition 3.13 we deduce δi

+(u) = δi
+(v) for all i ∈ I. Then

u = v by Lemma 3.23. �
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We could not prove Proposition 3.24 directly using the arguments in the proof
of Proposition 3.13 because in general one can not expect the homomorphism in
Lemma 3.12 to be continuous. According to Proposition 3.24, one may consider Γ+

as a subsemigroupoid of ΩΓV.

Corollary 3.25. For every pseudovariety of semigroupoids V containing N, there
are profinite graphs Γ such that Γ+ is not dense in ΩΓV.

Proof. Take the graph Σ(Z) in Proposition 3.2 and apply Propositions 3.2 and 3.24.
�

4. Relatively free profinite semigroupoids defined by subshifts

From here on X designates a generic subshift of AZ and V a pseudovariety of
semigroups containing L I. This allow us to define the maps in and tn with domain
ΩAV. The canonical projection Σ(X ) → Σ2n(X ) will be denoted by πn. We shall

denote by Σ̂(X ) the semigroupoid ΩΣ(X )gV. Since gV contains N, we can consider

Σ(X )+ as a subgraph of Γ̂, by Proposition 3.24. Note that since Σ(X ) is a complete

conjugacy invariant then so is Σ̂(X ).

4.1. Labelling. Assign to each edge q = a1 · · · a2na2n+1 (where ai ∈ A) of Σ2n(X )
the letter an, denoted by µn(q). We say that X is a 2n-step subshift of finite
type if L(X ) is recognized by the labeled graph (Σ2n(X ), µn). This means that
X = {x ∈ AZ : L2n+1(x) ⊆ L(X )}. A system is of finite type if it is 2n-step finite
type for some n.

According to Proposition 3.2, there is a subshift Z such that Σ(Z)
+ 6= Σ̂(Z).

This situation is in contrast with the following proposition:

Proposition 4.1. If X is a finite type subshift then lim
←−

Σ̂2n(X ) = Σ̂(X ) = Σ(X )+.

Proof. There is an integer N such that X is 2n-step for every n ≥ N . Consider
a path q = q1 · · · qk in Σ2n(X ). There is x ∈ X such that qi = x[−n+i−1,n+i−1].

Let p be the unique path in Σ(X ) from x to σk(x). We have π̂2n(p) = q. Hence

π̂2n(Σ(X )+) = Σ2n(X )+, thus π̂2n

(
Σ(X )+

)
= Σ2n(X )+. Moreover, Σ2n(X )+ =

Σ̂2n(X ) by Theorem 3.11, because Σ2n(X ) is finite-vertex. The result follows from
Proposition 2.1. �

We shall denote by µ the continuous graph homomorphism from Σ(X ) to A
mapping each edge (x, σ(x)) of Σ(X ) to the letter x0. We have µn ◦ πn = µ, and
if n ≤ m then µn ◦ πm,n = µm. Since ΩAV is a pro-V semigroup, by Theorem

3.11 there is a unique continuous semigroupoid homomorphism µ̂n from Σ̂2n(AZ)
to ΩAV such that µ̂n|Σ2n(AZ) = µn. If n ≤ m then µ̂n ◦ π̂m,n is a continuous

semigroupoid homomorphism whose restriction to Σ2m(AZ) coincides with µm, thus
µ̂n ◦ π̂m,n = µ̂m. Then

µ̂m ◦ π̂m = (µ̂1 ◦ π̂m,1) ◦ π̂m = µ̂1 ◦ (π̂m,1 ◦ π̂m) = µ̂1 ◦ π̂1.

Therefore if q is an edge of lim
←−

Σ̂2n(AZ) then the sequence (µ̂n(π̂n(q)))n has a

constant value which we call the label of q and denote by µ̂(q). The mapping µ̂ thus

defined is a continuous semigroupoid homomorphism from lim←− Σ̂2n(AZ) to ΩAV.

Lemma 4.2. Let q : x[−n,n−1] → y[−n,n−1] be an edge of lim
←−

Σ̂2n(X ), where x, y ∈
X . Let u = µ̂(q). If k = min{|u|, n} then x[0,k−1] = ik(u) and y[−k,−1] = tk(u).

Proof. The result is clear if q ∈ Σ2n(X )+. The general case is straightforwardly

proved once we realize that Σ2n(X )+ is dense in Σ̂2n(X ), which is true by Theo-
rem 3.11 because Σ2n(X ) is finite-vertex. �
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Lemma 4.3. Let q : x → y be an edge of lim
←−

Σ̂2n(X ). Let u = µ̂(q). If u ∈

ΩAV \ A+ then −→u = x[0,+∞[ and ←−u = y]−∞,−1]. If u ∈ A+ then q is the unique

edge of Σ(X )+ from x to σ|u|(x).

Proof. Let n be a positive integer. We have α(π̂n(q)) = π̂n(α(q)) = x[−n,n−1].
Likewise, ω(π̂n(q)) = y[−n,n−1]. Let k = min{|u|, n}. Since µ̂n(π̂n(q)) = u, by
Lemma 4.2 we have x[0,k−1] = ik(u) and y[−k,−1] = tk(u).

If u /∈ A+ then k = n. Since n is arbitrary, we deduce that −→u = x[0,+∞[ and
←−u = y]−∞,−1].

Suppose u ∈ A+. Let (ql)l be a sequence of elements of Σ2n(X )+ converging
to π̂n(q). Then µ̂n(ql) = u for l sufficiently large. Hence, taking subsequences if
necessary, we may suppose that |ql|l is constant equal to |u|. Since there is only
a finite number of elements of Σ2n(X )+ with length |u|, we deduce that π̂n(q) ∈
Σ2n(X )+. Hence q ∈ Σ(X )+, because n is arbitrary (cf. Lemma 3.23). Clearly q is
the unique edge of Σ(X )+ from x to σ|q|(x). Finally, |q| = |µ̂(q)| = |u|. �

Denote by M n(X ) the set of pseudowords of ΩAV whose finite factors of length
n belong to L(X ). Note that M 2n+1(X ) ∩ A+ is the language recognized by
(Σ2n(X ), µn). As observed in [17, Section 3.2], if V contains L Sl then M n(X ) is
both closed and open. We denote by M (X ) the intersection

⋂
n≥1 M n(X ), which

in [17, 18] was called the mirage of X . One always has L(X ) ⊆ M (X ), and the
equality holds if X is of finite type; however if Z is the symbolic system presented
in Figure 1 then L(Z) 6= M (Z) if L(Z) is V-recognizable [17].

Clearly, M (X ) is factorial. It is also easy to see that if u ∈M (X ) then there are
a, b ∈ A such that aub ∈M (X ): if u /∈ A+ and x, y ∈ X are such that −→u = x[0,+∞[

and ←−u = y]−∞,−1], take a = x−1 and b = y0. And since M (X ) is closed, one
deduces the following:

Lemma 4.4. If u ∈M (X ) then there are v, w ∈ ΩAV\A+ such that vuw ∈M (X ).

Since lim
←−

Σ̂2n(X ) is a projective limit of a countable family of metric spaces, its

topology is generated by a metric [40, Theorem 22.3]. Hence one can use sequences
instead of nets, as we do in the proof of the following proposition.

Proposition 4.5. Consider a pseudovariety of semigroups V containing L Sl.

Then L(X ) = µ̂
(
Σ(X )+

)
and M (X ) = µ̂

(
lim
←−

Σ̂2n(X )
)
.

Proof. Clearly µ̂(Σ(X )+) = L(X ), thus L(X ) = µ̂
(
Σ(X )+

)
by continuity of µ̂.

Let q be an edge of lim
←−

Σ̂2n(X ). Let u = µ̂(q). Consider an arbitrary positive

integer n. Then u = µ̂n(π̂n(q)). Since µ̂n(Σ2n(X )+) ⊆ M 2n+1(X ), Σ2n(X )+ =

Σ̂2n(X ) and M 2n+1(X ) is closed, it follows from the continuity of µ̂n that u ∈
M 2n+1(X ). Therefore u ∈

⋂
n≥1 M 2n+1(X ) = M (X ).

Conversely, suppose u belongs to M (X ). By Lemma 4.4 there are v, w ∈ ΩAV \
A+ such that vuw ∈M (X ). Let (vk)k, (uk)k and (wk)k be sequences of elements
of A+ converging to v, u and w, respectively. For eack k, the graph Σ(AZ) has
consecutive paths pk, qk and rk such that µ̂(pk) = vk, µ̂(qk) = uk and µ̂(rk) = wk.
Let n be an arbitrary positive integer. Since vuw ∈ M 2n+1(X ) and M 2n+1(X )
is open, and since v and w have infinite length, there is N such that if k ≥ N
then vkukwk ∈M 2n+1(X ) and vk, wk have length greater than n. Then the edges
forming the path π̂n(qk) belong to L2n+1(X ). Hence π̂n(qk) ∈ Σ2n(X )+. Let q

be an accumulation point of (qk)k. Then π̂n(q) ∈ Σ̂2n(X ), for every n. That is,

q ∈ lim
←−

Σ̂2n(X ). Finally, note that µ̂(q) = u. �
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4.2. Fidelity. Two co-terminal edges of Σ(X )+ with the same length are equal, by
Lemma 4.3. Next we generalize this property proving that two co-terminal edges

of lim
←−

Σ̂2n(X ) with the same label are equal.

Proposition 4.6. Let V be a pseudovariety of semigroups containing B2 and such

that V = V ∗ D. Then the homomorphism µ̂n : Σ̂2n(AZ)→ ΩAV is faithful.

Proof. Since Σ̂2n(AZ) has a finite number of vertices, we can consider the topologi-

cal semigroup T = (Σ̂2n(AZ))cd (cf. Remark 3.8). By Corollary 3.10, we know that
T is pro-V. Hence there is a unique continuous homomorphism Θ : ΩA2n+1V → T
such that Θ(u) = u for every u ∈ A2n+1 = EbΣ2n(AZ). Since V = V ∗ D, by Theo-

rem 2.4 the graph homomorphism Ψ : Σ̂2n(AZ)→ ΩA2n+1V assigning to each edge

q of Σ̂2n(AZ) the pseudoword ΦV
2n[in(α(q)) · µ̂n(q) · tn(ω(q))] is well defined and

continuous. One easily verifies by induction on the length of q that Θ(Ψ(q)) = q,

for any q ∈ EΣ2n(AZ)+ . Since Ψ is a continuous map and Σ2n(AZ)+ = Σ̂2n(AZ),
we conclude that Θ(Ψ(q)) = q, for every q ∈ EbΣ2n(AZ). Clearly, if q1 and q2 are

co-terminal edges with the same label then Ψ(q1) = Ψ(q2), thus q1 = q2. �

Corollary 4.7. Let V be a pseudovariety of semigroups containing B2 and such

that V = V ∗ D. Then the homomorphism µ̂ : lim←− Σ̂2n(AZ)→ ΩAV is faithful. �

If V = V ∗ D then Sl ⊆ V if and only if L Sl ⊆ V. Therefore, if V = V ∗ D then
B2 ∈ V if and only if L Sl ⊆ V, because Sl is generated by a subsemigroup of B2

and B2 ∈ L Sl.

4.3. Good factorizations. Let q be an edge of lim
←−

Σ̂2n(X ). Suppose q1, . . . , qn

are consecutive edges of lim
←−

Σ̂2n(X ) such that q = q1 · · · qn. Let G be a subgraph

of lim
←−

Σ̂2n(X ). If the set
{∏l

i=k qi | 1 ≤ k ≤ l ≤ n
}

of factors of q is contained in
EG then we say that q1 · · · qn is a good factorization of q in G. Note that q ∈ G if
q has a good factorization in G.

Lemma 4.8. Consider a pseudovariety of semigroups V such that V = A©m V. Let
u, v, w, t ∈ ΩAV be such that uv = wt. Then there is z ∈ (ΩAV)1 for which at least
one of the following situations occurs: u = wz and zv = t, or uz = w and v = zt.

Proof. Let (un)n and (vn)n be sequences of elements of A+ converging to u and
v, respectively. The sequence (unvn)n converges to wt. Then, by Lemmas 2.3 and
2.6, there is a subsequence (unk

vnk
)k and sequences (wn)n and (tn)n of elements of

A+ such that unk
vnk

= wktk, limwk = w and lim tk = t. It is clear that for every
k there is zk ∈ A

∗ such that one of the following situations holds: unk
= wkzk and

zkvnk
= tk, or unk

zk = wk and vnk
= zktk. Therefore at least one of the sets

P = {k : unk
= wkzk and zkvnk

= tk}, Q = {k : unk
zk = wk and vnk

= zktk},

is infinite. Suppose P is infinite. Let z be a limit point of the subsequence (zk)k∈P .
Then u = wz and zv = t. Similarly, if Q is infinite then uz = w and v = zt for
some z ∈ (ΩAV)1. �

Theorem 4.9. Consider a pseudovariety of semigroups V such that V = A©m V.

Let q ∈ lim
←−

Σ̂2n(X ). Suppose µ̂(q) = u1 · · ·un, where ui ∈ ΩAV. For an ordinal β,

let G be one of the graphs ⌈Σ(X )⌉β or 〈⌈Σ(X )⌉β〉. If q ∈ G then there is a good
factorization q = q1 · · · qn in G such that µ̂(qi) = ui, for every i ∈ {1, . . . , n}.

Proof. Consider the following propositions:

P (G, q, n): “Suppose µ̂(q) = u1 · · ·un, where ui ∈ ΩAV. Then there is a good
factorization q = q1 · · · qn in G such that µ̂(qi) = ui, for every i ∈ {1, . . . , n}.”
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R(β): ∀q ∈ ⌈Σ(X )⌉β, ∀n, P (⌈Σ(X )⌉β , q, n).
S(β)] ∀q ∈ 〈⌈Σ(X )⌉β〉, ∀n, P (〈⌈Σ(X )⌉β〉, q, n).

We want to prove R(β) ∧ S(β) for every ordinal β. We shall do it by transfinite
induction on β. The case β = 0 is trivial, and the limit case of the inductive step
offers no difficulties.

Let us see the successor case. Take an ordinal β such that R(β) ∧ S(β) is true.
Let q ∈ ⌈Σ(X )⌉β+ and let µ̂(q) = u1 · · ·un, where ui ∈ ΩAV. Then there is a
sequence (qk)k of elements of 〈⌈Σ(X )⌉β〉 converging to q. By Lemma 2.6, there is a

subsequence (qkl
)l and sequences (ui,l)l of elements of ΩAV converging to ui such

that µ̂(qkl
) = u1,lu2,l · · ·un−1,lun,l. Since S(β) is true, there is a good factorization

q = q1,l · · · qn,l in 〈⌈Σ(X )⌉β〉 such that µ̂(qi,l) = ui,l, for every i ∈ {1, . . . , n}.

Since 〈⌈Σ(X )⌉β〉 is compact, the sequence (q1,k, . . . , qn,k)k has some subsequence

converging to a n-tuple (q1, . . . , qn) of consecutive edges of 〈⌈Σ(X )⌉β〉. Clearly
q1 · · · qn is a good factorization of q in ⌈Σ(X )⌉β+ and µ̂(qi) = ui for every i ∈
{1, . . . , }. Hence R(β+) is true.

Let q ∈ 〈⌈Σ(X )⌉β+〉. There are consecutive edges q1, . . . , ql of ⌈Σ(X )⌉β+ such
that q = q1 · · · ql. Let λ(q) be the least possible value for l. Next we prove
P (〈⌈Σ(X )⌉β+〉, q, n) by transfinite induction on λ(q) + n. If λ(q) = 1 then q ∈
⌈Σ(X )⌉β+ , hence P (〈⌈Σ(X )⌉β+〉, q, n) is true for every n, because R(β+) is true.
On the other hand, P (〈⌈Σ(X )⌉β+〉, q, 1) is obviously true, for every q. Therefore
P (〈⌈Σ(X )⌉β+〉, q, n) is true when min{λ(q), n} = 1. For a positive integer k, sup-
pose P (〈⌈Σ(X )⌉β+〉, q, n) is true when λ(q) + n < k. Let q and n be such that

λ(q)+n = k and min{λ(q), n} > 1. Suppose µ̂(q) = u1 · · ·un, where ui ∈ ΩAV. Let
q1, . . . , qλ(q) be consecutive edges of ⌈Σ(X )⌉β+ such that q = q1 · · · qλ(q). Consider
the edge q′ = q1 · · · qλ(q)−1. Since µ̂(q′)µ̂(qλ(q)) = (u1 · · ·un−1)un, by Lemma 4.8

there is z ∈ (ΩAV)1 for which at least one of the following conditions holds:

(1) µ̂(q′) = u1 · · ·un−1z and zµ̂(qλ(q)) = un,
(2) µ̂(q′)z = u1 · · ·un−1 and µ̂(qλ(q)) = zun.

Suppose the first condition holds. Since λ(q′)+n < λ(q)+n, by the induction hy-
pothesis q′ has a good factorization s1 · · · sn−1t in 〈⌈Σ(X )⌉β+〉 such that µ̂(si) = ui

(for i ∈ {1, . . . , n−1}) and µ̂(t) = z (if z = 1 then consider t as an empty path). Let
sn = tqλ(q). Then s1 · · · sn−1sn is a good factorization of q′qλ(q) = q in 〈⌈Σ(X )⌉β+〉.
Since µ̂(si) = ui for every i ∈ {1, . . . , n}, this proves P (〈⌈Σ(X )⌉β+〉, q, n).

Suppose the second condition holds. Since R(β+) is true, there are edges r, t ∈
⌈Σ(X )⌉β+ such that qλ(q) = rt, µ̂(r) = z and µ̂(t) = un. We have λ(q′r) ≤
λ(q′) + 1 ≤ λ(q), thus λ(q′r) + (n − 1) < λ(q) + n. Since µ̂(q′r) = u1 · · ·un−1, by
inductive hypothesis q′r has a good factorization s1 · · · sn−1 in 〈⌈Σ(X )⌉β+〉 such that
µ̂(si) = ui, for every i ∈ {1, . . . , n−1}. Hence s1 · · · sn−1t is a good factorization of
q in 〈⌈Σ(X )⌉β+〉 whose i-th factor has label ui. Hence P (〈⌈Σ(X )⌉β+〉, q, n) holds,
concluding the inductive step on λ(q) + n. Therefore S(β+) is true.

Recapitulating, we proved that R(β+) ∧ S(β+) is true, concluding the proof
verification of the successor case of the inductive step on β. �

Corollary 4.10. Consider a pseudovariety of semigroups V such that V = A©m V =
V ∗ D. For an ordinal β, let G be one of the graphs ⌈Σ(X )⌉β or 〈⌈Σ(X )⌉β〉. Let

p, q, r ∈ lim←− Σ̂2n(X ) be such that p = qr. If p ∈ G then q, r ∈ G.

Proof. If p ∈ G then there is a good factorization p = q′r′ in G such that µ̂(q) =
µ̂(q′) and µ̂(r) = µ̂(r′). By Lemma 4.3, q and q′ are co-terminal, and r and r′ are
also co-terminal. Hence q = q′ and r = r′, since µ̂ is faithful by Corollary 4.7. �
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There are several examples of pseudovarieties of semigroups that are solutions
of the chain of equalities V = A©m V = V ∗ D on the variable V. If H is a pseu-
dovariety of groups then the pseudovariety H of semigroups whose subgroups lie in
H is a solution; in fact, not only H = H ∗ D but also H = L H. The complexity
pseudovarieties Cn, recursively defined by C0 = A and Cn = A ∗ G ∗ Cn−1 if n ≥ 1
are also solutions; in contrast with the previous example, one has Cn 6= L Cn if
n > 0 (see [35] for a recent account on the complexity pseudovarieties).

A subshift X is irreducible if for every u, v ∈ L(X ) there is a word w such that
uwv ∈ L(X ).

Corollary 4.11. Consider a pseudovariety of semigroups V such that V = A©m V.
If X is irreducible then Σ(X )+ \ Σ(X )+ is a strongly connected graph.

Proof. Let x and y be arbitrary elements of X . Since X is irreducible, for each
n ≥ 1 there is zn ∈ A+ such that the word wn = x[−n,n]zny[−n,n] belongs to
L(X ). Let w be an accumulation point of (wn)n. Then w = u1u2u3 for some
accumulations points of the sequences (x[−n,−1])n, (x[0,n]zny[−n,−1])n and (y[0,n])n,

respectively. Since w ∈ L(X )\A+, there is q ∈ Σ(X )+ \Σ(X )+ such that µ̂(q) = w,
by Proposition 4.5. Then by Theorem 4.9 there is a good factorization q = q1q2q3
in Σ(X )+ such that µ̂(qi) = ui, for all i ∈ {1, 2, 3}. By Lemma 4.3, we have
α(q2) = ←−u1.

−→u2 = x. Similarly, ω(q2) = y. Since µ̂(q2) /∈ A+, q2 is an edge of

Σ(X )+ \ Σ(X )+ from x to y. �

The converse of Corollary 4.11 is false. For an example see the subshift of
Proposition 3.2 and the corresponding proof.

5. The ordinal o(Σ(X ))

Let Γ be a nonempty subgraph of a compact semigroupoid. By Lemmas 3.3
and 3.4 the set of those ordinals β such that |β| ≤ |⌈Γ⌉| and ⌈Γ⌉β = ⌈Γ⌉ is nonempty.
Its infimum is denoted by o(Γ).

Since Σ(X ) is a conjugacy invariant, the ordinal o(Σ(X )) is also a conjugacy in-
variant. According to Proposition 4.1, if X is a finite type subshift then o(Σ(X )) = 1.
In Proposition 3.2, we saw a sofic subshift Z such that o(Σ(X )) > 1. We proceed
to try to determine o(Σ(X )) for some cases, or at least to find lower and upper
bounds for o(Σ(X )).

5.1. The ordinal o(Σ(X )) can be very large. We first need some lemmas on
word combinatorics.

Lemma 5.1. Let u, v, z ∈ A+ be such that z2u = vz2 and |u| < |z|. If the length
of z is a prime number then z ∈ a+ for some a ∈ A.

Proof. Since z2u = vz2, there is v′ ∈ A∗ such that zu = v′z. Since |v′| = |u| and
|u| < |z|, the prefix of z with length |u| is v′. Since z2u = vz2, it is also true that
the prefix of z with length |u| is v. Therefore v′ = v and vz2 = z2u = zvz. Hence
vz = zv, which by [26, Corollary 5.3] implies there is w ∈ A+ and k, l > 0 such that
z = wk and v = wl. Since |z| = k|w| and |z| is prime, we have k = 1 or |w| = 1. If
k = 1 then z = w and |v| = l|w| ≥ |z|, a contradiction. Hence w ∈ A. �

Lemma 5.2. Let z be a word of A+ whose length is a prime number, and suppose
that z is not a power of an element of A. Let k ≥ 4 and u, v ∈ A+. If u and v are
respectively a suffix and a prefix of some elements of Azk then uv /∈ Azk.

Proof. Suppose the lemma is false. That means that there are a, b, c ∈ A such that
u is a suffix of azk, v is a prefix of bzk, and uv = czk. Since v 6= 1, there are i ≥ 0
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and a strict prefix v′ of z such that v = bziv′; and there are j ≥ 1 and a strict suffix
u′ of z such that u = u′zj. Hence

czk = u′zjbziv′.

If u′ = 1 then z is a prefix of cz, thus z is a power of the letter c, which is impossible.
Hence u′ 6= 1. We have k|z| = (i + j)|z| + |u′| + |v′|, thus |u′| + |v′| is a multiple
of |z|. Since 0 < |u′| + |v′| < |z| + |z| = |2z|, we have |u′| + |v′| = |z|. Therefore
i+ j = k− 1. If i ≥ 2 then z2v′ is a suffix of zk, which is impossible by Lemma 5.1.
Therefore j ≥ 2, since k ≥ 4. Since u′ 6= 1, there is u′′ ∈ A∗ such that u′ = cu′′.
Then zk = u′′zjbziv′, and u′′z2 is a prefix of zk. Hence u′′ = 1 by Lemma 5.1.
Therefore zk−j = bziv′. If i 6= 0 then bz ∈ zA, thus z is a power of b, which can not
happen. Hence i = 0, j = k− 1 and bv′ = z. But v′ is a prefix of z, thus bv′ ∈ v′A.
This implies v′ ∈ b+, and therefore z ∈ b+, which is impossible. �

It follows from Lemma 5.2 that the set Azk in its statement is a circular code [11].
Given v ∈ A∗, denote by ψv the following mapping from AZ to AZ:

. . . x−2x−1.x0x1x2x3 . . . 7→ . . . vx−2vx−1v.x0vx1vx2vx3v . . . .

Note that ψ1 is the identity on AZ. Observe also that ψv ◦σ = σ|v|+1 ◦ψv. It is easy
to prove that Xv =

⋃
x∈X O(ψv(x)) is the least subshift of AZ containing ψv(X ).

Lemma 5.3. Let z be a word of A+ whose length is a prime number, and suppose
z is not a power of a letter. Let k ≥ 4. If x, y ∈ X and n ∈ Z are such that
ψzk(y) = σn(ψzk(x)) then n is a multiple of k|z|+ 1.

Proof. There are q, r ∈ Z such that n = q(k|z|+ 1) + r and 0 ≤ r < k|z|+ 1. Note
that

ψzk(y) = σn ◦ ψzk(x) = σr ◦ σq(k|z|+1) ◦ ψzk(x) = σr ◦ ψzk ◦ σq(x).

If y = (ai)i∈Z and σq(x) = (bi)i∈Z then

ψzk((ai)i∈Z) = . . . a−3z
ka−2z

ka−1z
k.a0z

ka1z
ka2z

ka3z
k . . . =

σr ◦ ψzk((bi)i∈Z) = . . . b−3z
kb−2z

kb−1z
ku.vb1z

kb2z
kb3z

k . . . .

where u, v are elements of A+ such that b0z
k = uv and |u| = r. Since u is a suffix

of a−1z
k and v is a prefix of a0z

k, from Lemma 5.2 we deduce that r = 0. �

Lemma 5.4. Let z be a word of A+ whose length is a prime number, and suppose
z is not a power of a letter. Let k ≥ 4. Let x ∈ X . If (y(n))n is a sequence of
elements of Xzk converging to ψzk(x) then there is a sequence (x(m))m of elements
of X converging to x and a subsequence (y(nm))m such that y(nm) = ψzk(x(m)), for
any m.

Proof. Since y(n) ∈ Xzk , there are x(n) ∈ X and an integer rn such that y(n) =
σrnψzk(x(n)) and 0 ≤ rn < k|z| + 1. The sequence (x(n))n has some subsequence
(x(ni))i converging to an element x′ of X . Since (rni

)i is a bounded sequence, it
has some subsequence (rnij

)j with constant value C. Then

σCψzk(x′) = lim
j→+∞

σCψzk(x(nij
)) = lim

j→+∞
y(nij

) = ψzk(x).

Hence C = 0, by Lemma 5.3. Since ψzk is injective, we deduce that x′ = x.

Therefore (x(nij
))j converges to x and ψzk(x(nij

)) = y(nij
) for all j. �
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Let v ∈ A+ and x ∈ X . According to Lemma 4.3, there is a unique path of
Σ(Xv)+ with length |v|+ 1 from ψv(x) to σ|v|+1(ψv(x)) = ψv(σ(x)). Denote it by(
ψv(x), ψv(σ(x))

)
. Clearly, the mapping

Ψv : Σ(X ) → Σ(Xv)+

x 7→ ψv(x)

(x, σ(x)) 7→
(
ψv(x), ψv(σ(x))

)
, x ∈ X ,

is a graph homomorphism. Let Ψ̂v be the unique continuous semigroupoid homo-

morphism from Σ̂(X ) to Σ̂(Xv) extending Ψv.

Proposition 5.5. Consider a pseudovariety of semigroups V such that V = A©m V.
Let z be a word of A+ whose length is a prime number, and suppose that z is not
a power of an element of A. Let k ≥ 4. For every ordinal β we have

Ψ̂zk(E⌈Σ(X )⌉
β
(x, y)) = E⌈Σ(X

zk )⌉
β
(ψzk(x), ψzk(y)),

Ψ̂zk(E〈⌈Σ(X )⌉
β
〉(x, y)) = E〈⌈Σ(X

zk )⌉
β
〉(ψzk(x), ψzk (y)),

for all x, y ∈ X .

Proof. For every ordinal β and for every word v, by Lemma 3.20 we know that
Ψ̂v(⌈Σ(X )⌉β) ⊆ ⌈Ψv(Σ(X ))⌉β and Ψ̂v(〈⌈Σ(X )⌉β〉) ⊆ 〈⌈Ψv(Σ(X ))⌉β〉. Hence it
remains to prove the conjunction of the following properties:

P (β) : ∀x, y ∈ X , E⌈Σ(X
zk )⌉

β
(ψzk(x), ψzk (y)) ⊆ Ψ̂zk(E⌈Σ(X )⌉

β
(x, y)),

Q(β) : ∀x, y ∈ X , E〈⌈Σ(X
zk )⌉

β
〉(ψzk(x), ψzk(y)) ⊆ Ψ̂zk(E〈⌈Σ(X )⌉

β
〉(x, y)).

We shall prove P (β) ∧Q(β) by transfinite induction on β.
By Lemma 5.3, we have ψzk(y) 6= σ(ψzk(x)), thus EΣ(X )(ψzk(x), ψzk (y)) =

∅, which proves P (0). Suppose s ∈ EΣ(X
zk )+(ψzk(x), ψzk (y)). Then ψzk(y) =

σ|s|(ψzk(x)). By Lemma 5.3, there is a positive integer n such that |s| = n(k|z|+1).
Then ψzk(y) = ψzk(σn(x)). Since ψzk is injective, it follows that y = σn(x). Hence

EΣ(X )+(x, y) has an element s′ with length n. The length of Ψ̂zk(s′) is equal

to |s′|(k|z| + 1), by the definition of Ψzk . Hence s and Ψ̂zk(s′) are elements of

EΣ(X
zk )+(ψzk(x), ψzk(y)), with the same length, thus s = Ψ̂zk(s′) (cf. Lemma 4.3).

This proves P (0) ∧Q(0).
Suppose P (β)∧Q(β) is true. Let s be an element of E⌈Σ(X

zk )⌉
β+

(ψzk(x), ψzk(y)).

Then there is a sequence (sn)n of elements of 〈⌈Σ(X )⌉β〉 converging to s. The

sequences (α(sn))n and (ω(sn))n converge respectively to ψzk(x) and ψzk(y). By
Lemma 5.4, taking subsequences if necessary, we may assume that α(sn) = ψzk(x(n))
and ω(sn) = ψzk(y(n)) for every n, for some sequences (x(n))n and (y(n))n of ele-
ments of X converging to x and y, respectively. Since Q(β) is true, for each n there

is s′n ∈ E〈⌈Σ(X )⌉
β
〉(x

(n), y(n)) such that sn = Ψ̂zk(s′n). If s′ is a limit point of (s′n)n

then s′ ∈ E⌈Σ(X )⌉
β+

(x, y) and Ψ̂zk(s′) = lim sn = s, which proves P (β+).

For each positive integer l let 〈⌈Σ(Xzk )⌉β+〉l be the set of all edges of Σ̂(X ) of

the form q1 · · · ql, where q1, . . . , ql are consecutive edges of ⌈Σ(Xzk)⌉β+ . Note that

〈⌈Σ(Xzk)⌉β+〉 =
⋃

l≥1

〈⌈Σ(Xzk)⌉β+〉l.

Hence Q(β) shall be proved once we prove by induction on l the following sentence:

Q(β, l) : ∀x, y ∈ X , E〈⌈Σ(X
zk )⌉

β+ 〉l
(ψzk(x), ψzk(y)) ⊆ Ψ̂zk(E〈⌈Σ(X )⌉

β+ 〉l
(x, y)).
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The initial step l = 1 corresponds to proposition P (β+), which we know is true.
Suppose l > 1 and that Q(β, l′) is true when l′ < l. Let r be an element
of E〈⌈Σ(X

zk )⌉
β+ 〉l

(ψzk(x), ψzk (y)). Then there are consecutive edges r1, . . . , rl of

⌈Σ(Xzk)⌉β+ such that r = r1 · · · rl. Since Q(0) is true, we may assume that

r /∈ Σ(X )
+
. Then there is i ∈ {1, . . . , l} such that ri /∈ Σ(X )

+
. Since l > 1,

we have i < l or i > 1. Let us suppose that i < l (the case i > 1 is similar).
There is a positive integer m such that ω(ri) = σm(ψzk(x′)) for some x′ ∈ X . Let

u = tm(µ̂(ri)). Since ri /∈ Σ(X )
+
, the word u has length m. Let (pn)n and (qn)n be

sequences of elements of 〈⌈Σ(X )⌉β〉 converging to ri and ri+1, respectively. Since

(ΩAV)u is open, we may assume that for every n there is wn ∈ ΩAV such that
µ̂(pn) = wnu. By Theorem 4.9, there are edges p′n e p′′n belonging to 〈⌈Σ(X )⌉β〉

such that pn = p′np
′′
n, µ̂(p′n) = wn and µ̂(p′′n) = u. For each n, let q′n be the unique

edge of Σ(X )
+

from σ−m(α(qn)) to α(qn). Let (p′, p′′, q′) be a limit point of the
sequence (p′n, p

′′
n, q

′
n)n. Since (|q′n|)n is the sequence with constant value m, and

since there is a only a finite number of paths on Σ(X ) with length m, we deduce
that q′ is a path of Σ(X ) from σ−m(ω(q′)) to ω(q′). On the other hand, since
µ̂(p′′) = u ∈ A+, by Lemma 4.3 we know that p′′ is the unique path of Σ(X ) from
σ−m(ω(p′′)) to ω(p′′). Since

ω(p′′) = ω(ri) = α(ri+1) = lim
n→∞

ω(q′n) = ω(q′),

one concludes that p′′ = q′. Therefore

r = (r1 · · · ri−1p
′)((q′ri+1)ri+2 · · · rl).

Note that p′ ∈ ⌈Σ(X )⌉β+ and that

ω(p′) = α(p′′) = σ−m(ω(p′′)) = σ−m(ω(ri)) = ψzk(x′),

whence

r1 · · · ri−1p
′ ∈ E〈⌈Σ(X

zk )⌉
β+ 〉i

(ψzk(x), ψzk (x′)).

On the other hand, since q′nq
′′
n ∈ 〈⌈Σ(X )⌉β〉 and q′ri+1 is a limit point of the

sequence (q′nq
′′
n)n, we have q′ri+1 ∈ ⌈Σ(X )⌉β+ . Therefore

(q′ri+1)ri+2 · · · rl ∈ E〈⌈Σ(X
zk )⌉

β+ 〉l−i
(ψzk(x′), ψzk(y)).

Since propertiesQ(β, i) andQ(β, l−i) hold by the induction hypothesis, we conclude
that

r1 · · · ri−1p
′ ∈ Ψ̂zk(E〈⌈Σ(X )⌉

β+ 〉i
(x, x′)), (q′ri+1)ri+2 · · · rl ∈ Ψ̂zk(E〈⌈Σ(X )⌉

β+ 〉l−i
(x′, y)),

thus r1 · · · rl ∈ Ψ̂zk(E〈⌈Σ(X )⌉
β+ 〉l

(x, y)), proving Q(β, l). Hence Q(β+) is true.

The limit case of the inductive step of the proof of P (β) ∧Q(β) is trivial. �

Lemma 5.6. Let z be a word of A+ which is not the power of a letter. Let k and l
be integers such that 0 < k < l, and k|z|+ 1 and l|z|+ 1 are coprime. Then there
is n0 > 0 such that if n > n0 then Ln((AZ)zk) ∩ Ln((AZ)zl) = ∅.

Proof. What we want to prove can be reformulated as (AZ)zk∩(AZ)zl = ∅ (the state-

ment’s formulation will be convenient later). Suppose (AZ)zk ∩ (AZ)zl 6= ∅. Then
there are sequences (ai)i≥1 and (bi)i≥1 of elements ofA such that zka1z

ka2z
ka3 . . . =

vzlb1z
lb2z

lb3 . . .. for some v ∈ A+. Since k|z| + 1 and l|z| + 1 are coprime, there
are integers r, s > 1 such that r(k|z|+ 1)− s(l|z|+ 1) = |v|. Hence

|zka1z
ka2z

k · · · ar−1z
k| = r(k|z|+1)−1 = |v|+s(l|z|+1)−1 = |vzlb1z

lb2z
l · · · bs−1z

l|,

thus zka1z
ka2z

k · · · ar−1z
k = vzlb1z

lb2z
l · · · bs−1z

l. Since 0 < k < l, there is c ∈ A
such that zar−1 = cz, thus z = c|z|, contradicting the hypothesis. �
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The following lemma can be proved quite similarly.

Lemma 5.7. Let z be a word of A+ which is not the power of a letter. For every
k > 0, there is n0 > 0 such that if n > n0 then Ln((AZ)zk) ∩ Ln(z∞) = ∅.

Theorem 5.8. Consider a pseudovariety of semigroups V such that V = A©m V.
Let A be a two-letter alphabet. If β is a countable ordinal then there is a countable
subshift X of AZ such that o(Σ(X )) > β.

Proof. Take A = {a, b}. Let Y be the subshift {a∞}. Consider the following
property:

Q(β,X ,Z, c): β is a countable ordinal, X and Z are subshifts of AZ, and c ∈ A+,
such that

(1) Y ∪ Z ⊆ X , Y ∩ Z = ∅ and X is countable;
(2) b∞ ∈ X and c∞ ∈ Z;
(3) the graphs ⌈Σ(Y)⌉1 and ⌈Σ(Z)⌉1 are strongly connected;
(4) {s ∈ E〈⌈Σ(X )⌉

β+ 〉 : α(s) ∈ Y and ω(s) ∈ Z} 6= ∅;

(5) {s ∈ E〈⌈Σ(X )⌉
β+ 〉 : α(s) ∈ Y and ω(s) ∈ Z} ∩ 〈⌈Σ(X )⌉β〉 = ∅.

We denote the set {s ∈ E〈⌈Σ(X )⌉
β+ 〉 : α(s) ∈ Y and ω(s) ∈ Z} by Eβ(X ,Y,Z).

Let P (β) be the proposition “∃X ∃Y ∃Z ∃c Q(β,X ,Z, c)”. If Q(β,X ,Z, c) is
true then X is a countable subshift of AZ such that o(Σ(X )) > β. Therefore the
theorem will be proved once we prove P (β) by transfinite induction.

Let us verify the initial step β = 0. Consider the subshifts Z = {b∞} and

X = O(a−∞.b+∞). The set of edges of Σ̂(X ) from a∞ to b∞ does not contain
any element of Σ(X )+ = 〈⌈Σ(X )⌉0〉, thus E0(X ,Y,Z) ∩ 〈⌈Σ(X )⌉0〉 = ∅. On the
other hand, denoting by qn the unique path of Σ(X )+ from σ−n(a−∞.b+∞) to
σn(a−∞.b+∞), if q is an accumulation point of (qn)n then q belongs to E0(X ,Y,Z).
Hence P (0) is true.

Suppose P (β) holds. Take subshifts X and Z of AZ and a word c of A+ such
that Q(β,X ,Z, c) is true. Since |X | < |AZ|, there is z ∈ A+ \ L(X ). If necessary
prolonging z, we can suppose |z| is a prime number. By Dirichlet’s Theorem [24,
Section 16.1], the sequence (n|z|+1)n has infinite prime numbers. For each positive
integer k, let ek be the k-th positive integer greater than 3 such that ek|z| + 1 is
prime. We let e0 = 0.

Let h > 0 and c1, . . . , ch ∈ A be such that c = c1 · · · ch. For each nonnegative
integer k, take

tk = ψzek (c)]−∞,−1].ψz
ek+1 (a∞)[0,+∞[

= . . . c1z
ekc2z

ek . . . ch−1z
ekchz

ekc1z
ekc2z

ek . . . ch−1z
ekchz

ek .azek+1azek+1azek+1 . . . .

Denote by Z ′ the subshift
[⋃

d∈A : d is a factor of cO(z−∞.dz+∞)
]
∪O(z∞). The least

subshift X ′ containing
⋃

k≥0(Xzek ∪ {tk}) is the set

X ′ =
[ ⋃

k≥0

(Xzek ∪ O(tk))
]
∪ Z ′.

Note that Y ∪ Z ′ ⊆ X ′, Y ∩ Z ′ = ∅ and that ⌈Σ(Z ′)⌉1 is strongly con-
nected. Moreover X ′ is countable. These observations are the first steps for proving
Q(β+,X ′,Z ′, z).

For each k ≥ 0 and n > 0, let qk,n be the unique path on Σ(X ′)+ from σ−n(tk)
to σn(tn). Let qk be an accumulation point of the sequence (qk,n)n. Then the origin
of qk is an element of the orbit of ψzek (c∞), and its terminus is an element of the
orbit of ψz

ek+1 (a∞). Note that qk ∈ ⌈Σ(X ′)⌉1.



INFINITE-VERTEX FREE PROFINITE SEMIGROUPOIDS AND SYMBOLIC DYNAMICS 27

Figure 4. One step in the proof of Theorem 5.8.

Acording to items (3) and (4) describing Q(β,X ,Z, c), there is an edge s0 of
〈⌈Σ(X )⌉β+〉 from an element of Y to an element of α(q0). By the same items, and

by Proposition 5.5, for each k ≥ 1 there is an edge sk of 〈⌈Σ(Xk)⌉β+〉 from ω(qk−1)

to α(qk) (see Figure 4). For each k, the sequence s0q0s1q1s2q2 · · · skqk is an element
of 〈⌈Σ(X )⌉β+〉. Let q be a limit point of (s0q0s1q1s2q2 · · · skqk)k. Then ω(q) ∈ Z ′

and q ∈ ⌈Σ(X ′)⌉(β+)+ , thus Eβ+(X ′,Y,Z ′) is nonempty.

Suppose there is an element of Eβ+(X ′,Y,Z ′) belonging to 〈⌈Σ(X )⌉β+〉. Such

an element has some factor p belonging to ⌈Σ(X )⌉β+ starting at some element of

X ′ \ Z ′ and ending at some element of Z ′. There is k ≥ 0 such that α(p) ∈ Uk =
O(tk−1) ∪ Xzek ∪ O(tk), where O(t−1) designates the empty set. By Lemmas 5.6
and 5.7, if k 6= l then Xzek ∩Xzel = ∅, and Xzek ∩Z ′ = ∅, for all k, l ≥ 0. Therefore,
relatively to the topology of X ′, the sets Uk and

Vk =
[ ⋃

r≥k+4

(Xzer ∪ O(tr))
]
∪ Z ′,

are open neighborhoods of α(p) and ω(p), respectively. Let (pn)n be a sequence of
edges of 〈⌈Σ(X )⌉β〉 converging to p. Since α and ω are continuous maps, there is

N such that if n ≥ N then α(pN ) ∈ Uk and ω(pN ) ∈ Vk. If necessary changing the
value of k by adding one, we can suppose that

α(pN ) ∈ O(tk−1) ∪ Xzek and ω(pN ) ∈ Xzer ∪ O(tr) ∪ Z
′,

for some r ≥ k + 3.



28 Jorge Almeida andAlfredo Costa

Let us start by the case k > 0. Let m be a positive integer. Since α(pN ) ∈
O(tk−1) ∪ Xzek , every finite prefix of µ̂(pN ) with sufficiently large length has some
factor belonging to (Azek)m (cf. Lemma 4.3). And since

A∗(Azek)mA∗ = (A∗(Azek)m)(A∗ \AzekA∗),

there are ρm ∈ (ΩAS)(Azek)m and νm ∈ (ΩAS)1 \ Azek(ΩAS)1 such that µ̂(pN ) =
ρmνm. Note that if m ≥ n then ρm ∈ (ΩAS)(Azek)n. Let ρ and ν be limit points
of the sequences (ρm)m and (νm)m, respectively. Then

ρ ∈
⋂

n≥1

(ΩAS)(Azek)n and ν ∈ (ΩAS)1 \Azek(ΩAS)1.

The pseudoword has factors of length n for all n ≥ 1, thus it is infinite. By Lemma 4.3
we have ←−ρν = ω(pN )]−∞,−1] ∈ Xzer ∪ O(tr) ∪ Z ′. If ν is finite then (Azek)n ⊆

L((AZ)zer ) for all n ≥ 1, or (Azek)n ⊆ L(Z ′) for all n ≥ 1. But the first case con-
tradicts Lemma 5.6, and the second contradicts Lemma 5.7. Hence ν is an infinite
pseudoword.

Let x =←−ρ .−→ν . Since µ̂(pN ) ∈M (X ′) by Proposition 4.5, we know that x ∈ X ′.
We have

(5.1) x]−∞,−1] = . . . a−3z
eka−2z

eka−1z
ek , for some a−1, a−2, a−3, . . . ∈ A,

and

(5.2) x[0,ek|z|] /∈ Az
ek .

From (5.1) and Lemma 5.7 we deduce that x /∈ Z ′.
Suppose there is l ≥ 0 such that x ∈ Xzel . Then, by (5.1),

(5.3) (Azek)n ∩ L(Xzel ) 6= ∅, ∀n ≥ 1.

Hence k = l, by Lemma 5.6. Therefore there is a sequence (bi)i∈Z of elements of A
and words u, v ∈ A∗ such that uv = b0z

ek and

(5.4) x = . . . b−3z
ekb−2z

ekb−1z
eku.vb1z

ekb2z
ekb3z

ek . . .

By (5.1), there is a suffix w of b−1z
ek such that wu = a−1z

ek . By (5.2) and (5.4),
we have u,w 6= 1. But since ek ≥ 4, this is impossible by Lemma 5.2. The absurd
resulted from supposing that x ∈ Xzel for some l ≥ 0. Therefore x ∈ O(tl), for
some l ≥ 0. Then by (5.1) we have (5.3), thus k = l by Lemma 5.6.

Until now we supposed that k > 0. Next take k = 0. Then z is not a factor of
α(pN ). Since z is a factor of ω(pN )]−∞,−1], and A∗zA∗ = (A+ \A∗zA∗)zA∗, there

are pseudowords ρ ∈ ΩAS\(ΩAS)1z(ΩAS)1 and ν ∈ z(ΩAS)1 such that µ̂(pN ) = ρν.
Since α(pN ) ∈ X , the word z is not a factor of any prefix of µ̂(pN ), by Lemma 4.3.
Hence ρ is infinite. If ν were finite then z would be a factor of ω(pN)]−∞,−1] only
a finite number of times (by Lemma 4.3), which is impossible. Hence ν is infinite.
Since z is a factor of ←−ρ .−→ν but not of ←−ρ , necessarily ←−ρ .−→ν ∈ O(t0).

In any case, k = 0 or k > 0, there are infinite pseudowords ρ, ν such that
µ̂(pN ) = ρν and ←−ρ .−→ν ∈ O(tk). Hence the idempotent f = (azek+1)ω is a factor
of ν, whence µ̂(pN ) = ρ′fν′ for some pseudowords ρ′ and ν′. By Theorem 4.9,
there is a good factorization pN = s1s2 in 〈E⌈Σ(X )⌉β

〉 such that µ̂(s1) = ρ′f and

µ̂(s2) = fν′. Then α(s2) =
←−
f .
−→
f = ψz

ek+1 (a∞) ∈ Xz
ek+1 .

Applying to s2 the same arguments that where applied to pN , we conclude that

µ̂(s2) = ρ′′ν′′ for some pseudowords ρ′′ and ν′′ such that
←−
ρ′′.
−→
ν′′ ∈ O(tk+1). The

idempotent

g = (c1z
ek+1c2z

ek+1 · · · ch−1z
ek+1chz

ek+1)ω

is a factor of ρ′′. Hence, applying again Theorem 4.9, one concludes that there is a
good factorization s2 = s′1s

′
2 in 〈E⌈Σ(X )⌉

β
〉 such that ω(s′1) = ←−g .−→g = ψz

ek+1 (c∞).
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Therefore s′1 belongs to E〈⌈Σ(X )⌉β〉(ψz
ek+1 (a∞), ψz

ek+1 (c∞)). Then, by Proposi-

tion 5.5, the set E〈⌈Σ(X )⌉
β
〉(a

∞, c∞) is nonempty. This contradicts item (5) describ-

ing Q(β,X ,Z, c). The absurd resulted from the assumption that Eβ(X ′,Y,Z ′) ∩
〈⌈Σ(X ′)⌉β〉 6= ∅. Hence property Q(β+,X ′,Z ′, z) holds. Therefore P (β+) is true.

Suppose now that β is a countable limit ordinal and that P (γ) is true for every
ordinal γ ∈ β. For each γ ∈ β, let Xγ , Zγ be subshifts of AZ and let cγ ∈ A

+ be
such that Q(β,Xγ ,Zγ , cγ) is true. Since β is countable, the set X =

⋃
γ∈β Xγ is

countable. Hence there is z ∈ A+ such that z /∈ L(X) and |z| is prime. Likewise in
the proof of the successor case of the inductive step, we define the sequence (ek)k

as follows: e0 = 0, and if k > 0 then ek is the k-th positive integer greater than
3 such that ek|z| + 1 is prime. Take an enumeration γ1, γ2, γ3, . . . of the elements
of β. For each nonnegative integer k, let tk = ψzek (cγk

)]−∞,−1].ψzek+1 (a∞)[0,+∞[.
Let D the set of letters d of A such that {γ ∈ β | cγ ∈ A∗dA∗} is infinite. Let Zβ

be the subshift
[⋃

d∈DO(z−∞.dz+∞)
]
∪ O(z∞). Consider the countable subshift

Xβ =
[ ⋃

k≥0 (Xγk
)
zek
∪O(tk))

]
∪Zβ . Then the proposition Q(β,Xβ ,Zβ , z) is true,

which one proves similarly as we did for the successor case of the inductive step.
Therefore P (β) holds for every ordinal β. �

5.2. Upper bounds for o(Σ(X )). We seek properties on X that imply bounds for
o(Σ(X )). We attack this problem using the trivial observation that if ⌈Σ(X )⌉β =

lim
←−

Σ̂2n(X ) then ⌈Σ(X )⌉ = lim
←−

Σ̂2n(X ) and o(Σ(X )) ≤ β.

Theorem 5.9. Consider a pseudovariety of semigroups V such that V = A©m V =

V ∗ D. Let G be a subgraph of lim
←−

Σ̂2n(X ) equal to ⌈Σ(X )⌉β or to 〈⌈Σ(X )⌉β〉, for

some ordinal β. If µ̂(G) = M (X ) then G = lim←− Σ̂2n(X ).

Proof. Suppose µ̂(G) = M (X ). Consider an edge q : x → y of lim
←−

Σ̂2n(X ). Let

u = µ̂(q). Then u ∈ M (X ), by Proposition 4.5. We want to prove that q ∈ G.
We have Σ(X )+ ⊆ G, since µ̂(Σ(X )) = L1(X ) 6= M (X ). Hence we can suppose
that q /∈ Σ(X )+. Therefore u /∈ A+, by Lemma 4.3. Let v and w be accumulation
points of (x[−n,−1])n and (y[0,n])n in ΩAV, respectively. Then vuw ∈ M (X ). By
hypothesis, there is an edge p of G such that µ̂(p) = vuw. By Theorem 4.9, there
is a good factorization p = p1p2p3 in G such that µ̂(p1) = v, µ̂(p2) = u and
µ̂(p3) = w. By Lemma 4.3, we have α(p2) = ←−v .−→u = x and ω(p2) = ←−u .−→w = y.
Therefore p2 = q, since µ̂ is faithful, by Corollary 4.7. Hence q ∈ G. �

It would be interesting to know if there is some subshift X such that ⌈Σ(X )⌉ 6=

lim
←−

Σ̂2n(X ). Its existence would solve Problem 3.22. If X is such a system and

V = A©m V = V ∗ D then, since µ̂(lim
←−

Σ̂2n(X )) = M (X ), by Theorem 5.9 there

would exist pseudowords in M (X ) quite “far away” from L(X ), in the sense that
they would not belong to µ̂(⌈Σ(X )⌉β) for every ordinal β.

Lemma 5.10. Let (f(k))k be a bounded sequence of integers greater than 1. Take
a sequence (uk,1, uk,2, · · · , uk,f(k)−1, uk,f(k))k of tuples of words of A+ such that

(1) limk→+∞ min{|uk,i|i : 1 ≤ i ≤ f(k)} = +∞,
(2) uk,iuk,i+1 ∈ L(X ), for every i ∈ {1, . . . , f(k)− 1}.

Then the accumulation points of the sequence (uk,1uk,2 · · ·uk,f(k)−1uk,f(k))k belong

to µ̂
(〈

Σ(X )+
〉)

.

Proof. Let wk =
∏f(k)

i=1 uk,i. Let w be an accumulation point of the sequence (wk)k.
Taking subsequences if necessary, on may assume that limk→+∞ wk = w and that
(f(k))k is a constant sequence of value n.
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For every i ∈ {1, . . . , n}, let pk,i, sk,i ∈ A∗ be such that uk,i = pk,isk,i e ||pk,i| −
|sk,i|| ≤ 1. Let (vk,j)j=1,...,2n be the sequence of words given by:

vk,2i−1 = pk,i, vk,2i = sk,i, i ∈ {1, . . . , n}.

Then wk =
∏2n

j=1 vk,j . Let vk,0 = vk,2n+1 = 1. For each j ∈ {1, . . . , 2n} the word

vk,j−1vk,jvk,j+1 belongs to L(X ), by Condition (2). Hence there are zk,j ∈ A
Z
−

and

tk,j ∈ AZ
+
0 such that zk,jvk,j−1.vk,jvk,j+1tk,j is an element of X , briefly denoted by

xk,j . Let qk,j be the unique edge of Σ(X )+ from xk,j to σ|vk,j |(xk,j). Note that
µ̂(qk,j) = vk,j . Taking subsequences if necessary, we may assume that the following
limit exists:

lim
k→+∞

(qk,1, qk,2, . . . , qk,2n−1, qk,2n) = (q1, q2, . . . , q2n−1, q2n)

Moreover, for every j ∈ {1, . . . , 2n−1} we have lim
k→+∞

|vk,j | = lim
k→+∞

|vk,j+1| = +∞,

by Condition (1). Hence

ω(qj) = lim
k→+∞

ω(qk,j) = lim
k→+∞

xk,j+1 = lim
k→+∞

α(qk,j+1) = α(qj+1).

Therefore q = q1q2 · · · q2n−1q2n is an edge of
〈
Σ(X )+

〉
. Finally,

µ̂(q) = µ̂(q1)µ̂(q2) · · · µ̂(q2n−1)µ̂(q2n) = lim
k→+∞

vk,1vk,2 · · · vk,2n−1vk,2n = w. �

Lemma 5.11. If S is a finite semigroup then for every finite collection s1, . . . , sn

of elements of S there is a subset {i1, . . . , ik} of {1, . . . , n} with at most |S| elements
such that s1 · · · sn = si1 · · · sik

.

Proof. Apply the pigeon-hole principle. �

Proposition 5.12. Let V be a pseudovariety of semigroups containing L Sl. Sup-
pose (f(n))n≥1 is an unbounded sequence of positive integers. Let Lf (X ) be the set⋃

n≥1{u ∈ L(X ) : |u| = f(n)}. Suppose there are families of words (pu)u∈Lf (X ),

(zu)u∈Lf (X ) and (su)u∈Lf (X ) such that:

(1) u = puzusu for every u ∈ Lf(X );
(2) for every u, v ∈ Lf(X ), if |u| = |v| then zusv ∈ L(X );

(3) lim
n→+∞

(
min

u∈Lf(n)(X )
|pu|
)

= lim
n→+∞

(
min

u∈Lf(n)(X )
|zu|
)

= lim
n→+∞

(
min

u∈Lf(n)(X )
|su|
)

= +∞.

Then M (X ) = µ̂(⌈Σ(X )⌉2).

Proof. Let v ∈M (X ). If v ∈ A+, then v ∈ L(X ) and therefore v ∈ µ̂(Σ(X )+).
Suppose v /∈ A+. Let (vn)n be a sequence of elements of A+ converging to v.

Since M 3f(k)(X ) is an open neighborhood of v, there is an integer Nk such that

n ≥ Nk ⇒ (vn ∈M 3f(k)(X ) and |vn| ≥ 3f(k)).

Let nk be the sequence of integers recursively defined by n1 = N1 and nk =
max{nk−1 + 1, Nk} if k > 1. Then (vnk

)k is a subsequence of (vn)n such that
vnk
∈M 3f(k)(X ) and |vnk

| ≥ 3f(k), for every k. The word vnk
has a factorization

of the following type:

vnk
= vk,1vk,2 · · · vk,rk−1vk,rk

, |vk,1| = |vk,2| = · · · = |vk,rk−1
| = f(k),

f(k) ≤ |vk,rk
| < 2f(k), rk ≥ 3.

Then

vnk
= pvk,1

zvk,1
·

(
rk−2∏

i=1

svk,i
pvk,i+1

zvk,i+1

)
· svk,rk−1

vk,rk
.
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Let K be a V-recognizable language of A+. Then there is a homomorphism
ϕ : A+ → S from A+ into a semigroup S of V such that K = ϕ−1ϕ(K). By
Lemma 5.11 there exists tk ≤ |S| and a subset {i1, . . . , itk

} of {1, . . . , rk − 2} such
that

(5.5) ϕ(vnk
) = ϕ

(
pvk,1

zvk,1
·

(
tk∏

j=1

svk,ij
pvk,ij+1

zvk,ij+1

)
· svk,rk−1

vk,rk

)
.

The equality (5.5) suggests that we consider the following tuple:

λk = (pvk,1
, zvk,1

, svk,i1
, pvk,i1+1

, zvk,i1+1
, svk,i2

, pvk,i2+1
, zvk,i2+1

, svk,i3
, . . .

. . . , svk,itk
, pvk,itk

+1
, zvk,itk

+1
, svk,rk−1

, vk,rk
).

The number of components of λk is 3tk + 4 ≤ 3|S| + 4. The product of any two
consecutive components of λk is either a factor of a word of the form vk,ivk,i+1 —
which belongs to L(X ) because |vk,ivk,i+1| < 3f(k) and vnk

∈M 3f(k)(X ) — or of
the form zu1su2 with u1, u2 ∈ Lf(k)(X ). Applying Condition (2), we conclude that
the product of any two consecutive components of λk belongs to L(X ). On the
other hand, since

lim
k→+∞

min{|vk,i| : 1 ≤ i ≤ rk} = lim
k→+∞

f(k) = +∞,

by Condition (3), we deduce

lim
k→+∞

min{|(λk)i| : 1 ≤ i ≤ 3tk + 4} = +∞.

Let wk =
∏3tk+4

i=1 (λk)i. Then by Lemma 5.10 there is an element w of µ̂
(〈

Σ(X )+
〉)

which is the limit of a subsequence (wkl
)l of (wk)k. Let ϕ̂ be the unique continuous

homomorphism from ΩAV to S extending ϕ. From (5.5) we deduce that

ϕ̂(v) = lim
l→+∞

ϕ(vnkl
) = lim

l→+∞
ϕ(wkl

) = ϕ̂(w).

Hence

(5.6) ϕ̂−1ϕ̂(v) ∩ µ̂
(〈

Σ(X )+
〉)
6= ∅.

Since ϕ̂−1ϕ(K) is closed and open in ΩAV, and A+ is dense in ΩAV, we have

(5.7) ϕ̂−1ϕ(K) = ϕ̂−1ϕ(K) ∩A+ = ϕ−1ϕ(K) = K.

Therefore, if K contains v then K ∩ µ̂
(〈

Σ(X )+
〉)
6= ∅, by (5.6) and (5.7). Ac-

cording to Proposition 2.2 the topology of ΩAV is generated by the closure of the

V-recognizable languages, whence v ∈ µ̂
(〈

Σ(X )+
〉)

= µ̂(⌈Σ(X )⌉2). �

Corollary 5.13. Let V be a pseudovariety of semigroups containing L Sl. Let
X be a sofic subshift presented by a labeled graph G for which there are a vertex
i and an integer N such that every path on G with length N contains i. Then
M (X ) = µ̂(⌈Σ(X )⌉2).

Proof. Let u be an element of L(X ) with length greater than 4N . Take a path q
on G labeled u. Then there are paths q1, q2, q3 and r such that q = q1q2rq3,
|q1| = |q2| = |r| = N e |q3| > N . By hypothesis, there are paths r1 and r2 such that
ω(r1) = α(r2) = i and r = r1r2. Let pu, zu and su be the labels of q1, q2r1 and r2q3,
respectively. Consider the map f(n) = n + 4N , n ≥ 1. The families (pu)u∈Lf (X ),
(zu)u∈Lf (X ) and (su)u∈Lf (X ) satisfy the conditions of Proposition (5.12). �
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Corollary 5.14. Let V be a pseudovariety of semigroups containing L Sl. Let X be
a subshift such that for each positive integer n there is a word of length n uniformly
recurrent in L(X ). Then M (X ) = µ̂(⌈Σ(X )⌉2).

Proof. For each positive integer n let wn be a word of length n uniformly recurrent
in L(X ). Let g(n) be a positive integer such that every word of L(X ) with length
g(n) has wn as factor. Let (f(n))n be the strictly increasing sequence recursively
defined by f(1) = 2 + g(1) and f(n) = max{f(n− 1) + 1, 2n+ g(n)} if n > 1. For
each u ∈ Lf(n)(X ) there are words u1, u2, u3 such that u = u1u2u3, |u1| = |u3| = n
and |u2| ≥ g(n). Then wn is a factor of u2, thus u = puwnsu for some words pu and
su with length greater or equal to n. Letting zu = wn, the families (pu)u∈Lf (X ),
(zu)u∈Lf (X ) and (su)u∈Lf (X ) satisfy the conditions of Proposition 5.12. �

Corollary 5.15. Whenever V = A©m V = V ∗ D and X satisfies the conditions
described in Corollary 5.14 or in Corollary 5.13 then o(Σ(X )) ≤ 2.

Proof. Apply Theorem 5.9 together with Corollary 5.14 or Corollary 5.13 �

The following result gives an example of a subshift Z such that o(Σ(Z)) = 2.
Note that the language a+∪a∗ba∗, being factorial and prolongable, is the language
of the finite factors of a unique subshift of AZ.

Proposition 5.16. Consider a pseudovariety of semigroups V containing A and
such that V = V ∗ D. Let A be the two-letter alphabet {a, b}. Let Z be the subshift
of AZ such that L(Z) = a+ ∪ a∗ba∗. Then

(5.8) Σ(Z)+ $
〈
Σ(Z)+

〉
$ ⌈Σ(Z)⌉2 = Σ̂(Z) = lim

←−
Σ̂2n(Z).

Proof. Suppose baωb ∈ L(Z). The languages L(Z) and ba∗b are A-recognizable,

thus L(Z) ∩ ba∗b is an open neighborhood of baωb by Proposition 2.2. Hence

L(Z) ∩ ba∗b ∩ A+ 6= ∅, because A+ is dense in ΩAV. But L(Z) ∩ ba∗b ∩ A+ =

L(Z) ∩ ba∗b = ∅. Therefore baωb /∈ L(Z).
Since ban!+n belongs to L(Z), there are consecutive paths qn, pn on Σ(Z) such

that µ̂(qn) = ban! and µ̂(pn) = an. Let q and p be accumulation points of (qn)n and

(pn)n respectively. Then q and p are edges of Σ(Z)+ such that ω(q) = α(p) = a∞,

and µ̂(q) = baω. Similarly, there is an edge r of Σ(Z)+ such that α(r) = a∞ and

µ̂(r) = aωb. Then q and r are consecutive edges of Σ(Z)+ such that µ̂(qr) = baωb.

Therefore baωb is an element of µ̂
(〈

Σ(Z)+
〉)

not in L(Z).

Next, let u = b(aωb)ω = lim b(an!b)n!. Let Kn be the language b(A+b)n. Then

u ∈ Kn. Suppose u ∈ L(Z)n. The languages Kn and L(Z)n are A-recognizable,
since they are the concatenation of the A-recognizable languages L(Z), A+ and

{b}. Hence Kn ∩ L(Z)n is open, and since A+ is dense in ΩAV, we conclude that

Kn∩L(Z)n∩A+ 6= ∅. ButKn∩L(Z)n∩A+ = Kn∩L(Z)n = Kn∩L(Z)n = ∅. Hence

u /∈ L(Z)n, for all n. Having in mind Proposition 4.5 and that L(Z)n =
(
L(Z)

)n

,

we conclude that u /∈ µ̂
(〈

Σ(Z)+
〉)

. On the other hand, u ∈M (Z).

Recapitulating,

L(Z) $ µ̂
(〈

Σ(Z)+
〉)

$ M (Z).

The word an is uniformly recurrent in L(Z). We have L(Z) = µ̂
(
Σ(Z)+

)
and

M (Z) = µ̂(⌈Σ(Z)⌉2) by Proposition 4.5 and Corollary 5.14. Then we deduce (5.8)
using Theorem 5.9. �
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For certain pseudovarieties (like the pseudovariety of all finite semigroups), the
property described in Proposition 5.16 also holds for the even subshift. This is
proved with Corollary 5.13 and similar arguments as detailed in [19].

6. Minimal subshifts

A subshift X is minimal if X does not contain subshifts different from X . The
subshift X is minimal if and only if all words in L(X ) are uniformly recurrent
in L(X ) [23]. Using Corollary 5.14, we shall prove that o(Σ(X )) = 1, whenever X
is minimal and V = A©m V = V ∗ D.

Two elements of a semigroup are J -equivalent if they are a factor of each other.
A J -class is regular if it contains an idempotent. If moreover it contains the
idempotent factors of its elements then it is called maximal regular. Since every
infinite pseudoword has idempotent factors [1, Corollary 5.6.2], the maximal regular
J -classes of ΩAV are the J -classes of infinite pseudowords whose factors not J -
equivalent with them are finite words.

Using the uniform recurrence property, it is not difficult to prove that if X is

minimal then L(X ) \ A+ is contained in a regular J -class, which we denote by
J(X ), whenever V ⊆ L Sl. More precisely, the correspondence X 7→ J(X ) is a
bijection between the set of minimal subshifts and the set of maximal regular J -
classes of ΩAV. This was proved in [5] under the hypothesis V = S, but the proof
also holds for V ⊆ L Sl. A rather different proof appears in [19].

The algebraic structure of a semigroup is normally described in terms of Green’s
relations, one of which is the relation J . We describe the others. Two elements
of a semigroup are R-equivalent (respectively, L-equivalent) if they are a prefix
(respectively, suffix) of each other. The intersection of the R- and L-equivalences is
called theH-equivalence and their join, which by associativity is also their composite
in any order, is called the D-equivalence. A D-class contains an idempotent if
and only if each of its R-classes and L-classes contains an idempotent. The H-
classes of a semigroup S which contain idempotents are precisely the maximal
subgroups of S. Green’s Lemma states that if s and st are R-equivalent then the
correspondence x 7→ xt defines a bijection between the L-classes of s and st. The
following propositions are applications of Green’s Lemma:

Proposition 6.1. For two D-equivalent elements s and t, s R st L t if and only if
there is an idempotent e such that s L e R t.

Proposition 6.2. If e and f are idempotents of a semigroup, then for all x ∈
e/R∩ f/L there is a unique y ∈ f/R∩ e/L such that xy = e and yx = f .

Another application of Green’s Lemma is that all maximal subgroups within a
D-class are isomorphic.

It is well known that, in a compact semigroup, if s is a prefix of t and t is a factor
of s then t is also a prefix of s. This property, which is known as right stability,
together with its dual imply that the D- and J -equivalences coincide. For further
information and the significance of Green’s relations in semigroup theory see, for
instance, [26].

The following theorem was proved in [5, Theorem 2.6] by the first author in a
substantially different manner. The new proof exemplifies how the semigroupoid

lim
←−

Σ̂2n(X ) may be useful for studying relatively free profinite semigroups.

Theorem 6.3. Consider a pseudovariety of semigroups V containing L Sl. Suppose
X is a minimal subshift. Then J(X ) = M (X ) \A+.

Proof. Since L(X ) \A+ ⊆ J(X ), we have J(X ) ⊆M (X ) \A+.
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Let u and v be elements of J(X ) such that uv ∈ M (X ). Let s and p be accu-
mulation points of the sequences (tn(u))n and (in(v))n, respectively. Then u = u′s

and v = pv′, for some pseudowords u′ and v′. Note also that sp ∈ L(X ). Since s
and p are infinite pseudowords, there are factorizations s = s1es2 and p = p1fp2

such that e and f are idempotents [1, Corollary 5.6.2]. Consider the pseudowords
x = u′s1e, y = es2p1f and z = fp2v

′′. The elements of the set W = {e, f, x, y, z}
are infinite factors of elements of J(X ), thus W ⊆ J(X ). Since x = xe, y = ey and
ΩAV is stable, we have x L e and y R e. Hence xy ∈ J(X ), by Proposition 6.1.
Similarly, since xy = xyf and z = fz, we have xyz ∈ J(X ). Note that xyz = uv.
Therefore,

(6.1) (u, v ∈ J(X ) and uv ∈M (X ))⇒ uv ∈ J(X ).

Suppose next that u ∈ L(X ), v ∈ J(X ) and uv ∈ M (X ) (the case vu ∈M (X )
is similar). Since J(X ) is regular, there is an idempotent e such that v R e. There
is t ∈ ΩAV such that v = et. It follows that ev = et = v. Let w be an accumulation
point of the sequence (u in(e))n. Then w ∈ L(X ) \ A+, and hence w ∈ J(X ); on
the other hand, uv = uev = wsv for some suffix s of e. The pseudoword sv is an
infinite factor of v, thus belongs to J(X ). Hence wsv = uv ∈ J(X ), by (6.1). This
concludes the proof of the following implication:

(6.2) (u, v ∈ L(X ) ∪ J(X ) and uv ∈M (X ))⇒ uv ∈ L(X ) ∪ J(X ).

Let q1, . . . , qn be consecutive edges of Σ(X )+. We shall prove by induction on n

that µ̂(q1 · · · qn) ∈ L(X ) ∪ J(X ). By Proposition 4.5 we have µ̂
(
Σ(X )+

)
= L(X ).

Since L(X ) ⊆ L(X ) ∪ J(X ), the initial step is proved. Suppose n > 1 and that
µ̂(q1 · · · qn−1) ∈ L(X ) ∪ J(X ). Since µ̂(qn) ∈ L(X ) ∪ J(X ) and, by Proposition 4.5,
µ̂(q1 · · · qn−1qn) ∈ M (X ), from (6.2) we deduce µ̂(q1 · · · qn−1qn) ∈ L(X ) ∪ J(X ).
That is,

µ̂

(〈
Σ(X )+

〉)
⊆ L(X ) ∪ J(X ).

Since µ̂ is continuous, J(X ) is closed and L(X ) ⊆ L(X ) ∪ J(X ), it follows that

µ̂

(〈
Σ(X )+

〉)
⊆ L(X ) ∪ J(X ).

Hence M (X ) \A+ = J(X ), by Corollary 5.14. �

Corollary 6.4. Consider a pseudovariety of semigroups V such that V = A©m V.
If X is a minimal subshift then M (X ) = L(X ).

Proof. We already know that L(X ) ⊆M (X ) and L(X ) ∩ J(X ) 6= ∅. The set L(X )

is factorial, by Proposition 2.5, thus J(X ) ⊆ L(X ). Since M (X ) ∩A+ = L(X ), the
result follows from Theorem 6.3. �

Corollary 6.5. Consider a pseudovariety of semigroups V such that V = A©m V =

V ∗ D. If X is a minimal subshift then lim
←−

Σ̂2n(X ) = Σ̂(X ) = Σ(X )
+
.

Proof. Apply Corollary 6.4, Proposition 4.5 and Theorem 5.9. �

The two previous corollaries exhibit properties of minimal subshifts shared by
finite type subshifts (cf. Proposition 4.1). However, differently with the finite type
case, it is not reasonable to expect a proof of Corollary 6.5 using Proposition 2.1.

Let us see why. Suppose there is a positive integer n such that π̂n(Σ̂(X )) = Σ̂2n(X ).
Then

L(X ) = µ̂
(
π̂n(Σ̂(X ))

)
= µ̂

(
Σ̂2n(X )

)
= M 2n+1(X ).
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That is, L(X ) = M 2n+1(X )∩A+, thus X is of finite type. But if |A| > 1 then there
are ℵ0 finite type subshifts of AZ, while there are 2ℵ0 minimal subshifts of AZ [28,
Chapter 2].

Lemma 6.6. Suppose X is a minimal subshift. Let u, v ∈ J(X ). Then u R v if
and only if −→u = −→v . Dually, u L v if and only if ←−u =←−v .

Proof. Suppose −→u = −→v . Let e be an accumulation point of the sequence (in(u))n.
By hypothesis in(u) = in(v), for every n. Hence e is a common prefix of u and v.
By the J -maximality of J(X ) and the stability of ΩAV, we conclude that e, u, v are
R-equivalent. The converse is immediate. �

A semigroupoid C is a category if for every vertex x of C there is an edge 1x

such that 1xs = s and t1x = t, for all edges s and t of C such that α(s) = x and
ω(t) = x. A groupoid is a category G such that for every edge s : x → y there is
an edge s′ : y → x for which ss′ = 1x and s′s = 1y. Note that the local semigroups
of groupoids are groups.

The graph Σ̂(X ) \ Σ(X )+ will be briefly denoted by Σ̂∞(X ). Note that Σ̂∞(X )

is a closed subsemigroupoid of Σ̂(X ).

Theorem 6.7. Consider a pseudovariety of semigroups V such that V = A©m V =
V ∗ D. If X is a minimal subshift then Σ̂∞(X ) is a connected groupoid.

Proof. Every minimal subshift is irreducible, hence Σ̂∞(X ) is strongly connected

by Corollary 4.11. It remains to prove that Σ̂∞(X ) is a groupoid.

Let z be an arbitrary element of X . Since Σ̂∞(X ) is strongly connected, there

are edges from z to z, hence one can consider the local semigroup Sz of Σ̂∞(X )
at z. Since Sz is compact, it contains at least one idempotent εz [14, Theorem 3.5].

Let q : x → y be an arbitrary edge of Σ̂∞(X ). Then
−−−−→
µ̂(εxq) = x[0,+∞[ =

−−→
µ̂(q),

and so µ̂(εxq) is R-equivalent to µ̂(q) by Lemma 6.6. Therefore µ̂(q) = µ̂(εxq)w for
some w ∈ (ΩAV)1. Hence

µ̂(εxq) = µ̂(εx)µ̂(q) = µ̂(εx)µ̂(εxq)w = µ̂(ε2xq)w = µ̂(εxq)w = µ̂(q).

Then εxq = q, since µ̂ is faithful. Dually qεy = q. This proves Σ̂∞(X ) is a category.
By Proposition 6.2, there is v ∈ µ̂(εx)/L ∩ µ̂(εy)/R such that vµ̂(q) = µ̂(εy)

and µ̂(q)v = µ̂(εx). Since µ̂(εx) and µ̂(εx) are idempotents, v ∈ µ̂(εx)/L∩ µ̂(εy)/R

implies that v = µ̂(εy)vµ̂(εx). By Proposition 4.5 there is an edge p of Σ(X )+ such
that µ̂(p) = v. Then by Theorem 4.9 there is a good factorization p = p1p2p3 in

Σ(X )+ such that µ̂(p1) = µ̂(εy), µ̂(p2) = v and µ̂(p3) = µ̂(εx). We have α(p2) =
←−−−
µ̂(εy).−→v =

←−−−
µ̂(εy).

−−−→
µ̂(εy) = y, by Lemma 4.3. Hence q and p2 are consecutive. And

µ̂(qp2) = µ̂(q)v = µ̂(εx). Similarly, ω(p2) = x and µ̂(p2q) = vµ̂(q) = µ̂(εy). Since
qp2 and εx are co-terminal and equally labeled, one has qp2 = εx, because µ̂ is
faithful. Similarly, p2q = εy. �

In a forthcoming paper we will show that the local groups of Σ̂∞(X ) are isomor-
phic to the maximal subgroup of J(X ). Note that this implies that the maximal
subgroup of J(X ) is a conjugacy invariant, a fact that is a particular case of a more
general result proved by the second author using rather different methods [17].
The maximal subgroup of J(X ) has been computed for several classes of minimal

subshifts by the first author [5]. Hopefully, the groupoid Σ̂∞(X ) may add a new
geometric perspective on J(X ), and X itself.
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