
NEW DECIDABLE UPPER BOUND OF THE SECOND LEVEL IN
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Abstract. In a recent paper we gave a counterexample to a longstanding conjecture
concerning the characterization of regular languages of level 2 in the Straubing-Thérien
concatenation hierarchy of star-free languages. In that paper a new upper bound for
the corresponding pseudovariety of monoids was implicitly given. In this paper we
show that it is decidable whether a given monoid belongs to the new upper bound. We
also prove that this new upper bound is incomparable with the previous upper bound.

1. Introduction

A well-known result due to Schützenberger [19] gives a syntactic characterization of
star-free regular languages. This prompted both Eilenberg’s identification of the com-
binatorial properties of classes of regular languages [6], leading to a natural correspon-
dence between varieties of languages (excluding the empty word, i.e. +-languages, or
possibly including it, i.e. ∗-languages) and pseudovarieties (respectively of semigroups
or monoids), and Brzozowski’s hierarchical construction of star-free +-languages. As ac-
knowledged by Eilenberg [6, Chapter IX], the reason to stick to +-languages was to avoid
technical difficulties with the empty word, but these were later overcome by Thérien [26]
and Straubing [22], who also established a simple syntactic connection between the Br-
zozowski hierarchy and what came to be known as the Straubing-Thérien hierarchy. The
hierarchies were later refined by Pin [12] by introducing intermediate (half) levels whose
syntactic characterization depends on a stable quasiorder rather than just a congruence.

Starting from the trivial variety of languages, the levels of the refined Straubing-
Thérien hierarchy are defined inductively by alternately taking polynomial and Boolean
closures. While it is decidable whether a given regular language belongs to each of the
levels 0, 1/2, 1 and 3/2, decidability remains an open problem for level 2 or higher.
Via Eilenberg’s correspondence, for the class V2 of all languages from the second level,
the problem translates to decidability of membership of an arbitrary given finite monoid
in the corresponding pseudovariety of monoids V2. This is considered one of the main
longstanding open problems in the algebraic theory of regular languages (cf. [11]).

Pin and Straubing [13] showed that the languages from the second level V2 over a finite
alphabetA are the finite Boolean combinations of languages of the formA∗

0a1A
∗
1a2 · · · akA

∗
k,

where the ai’s are letters and the Aj’s are subsets of A. Work of several authors led to
the conjecture that the equality V2 = B1 ©m Sl holds [16, 17, 23, 24, 25], where ©m is the
Mal’cev product [11, Section 6], B1 is the pseudovariety of finite semigroups correspond-
ing to the +-variety of languages of dot-depth one, and Sl is the pseudovariety of finite
semilattices. Indeed, Straubing [23, 24] established that the classes contain the same
2-generated monoids and Cowan [4, 5] that they contain the same inverse monoids, while
Pin and Weil [16, Theorem 5.9] proved that a similar equality holds for all half levels.
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In the recent paper [2] we disproved the equality V2 = B1©m Sl. We discovered certain
new pseudoidentities which are satisfied by members of V2 and we showed an example
of a monoid M ∈ B1 ©m Sl which does not satisfy one of these pseudoidentities. The new
pseudoidentities are of the form uω = uωvuω where u and v are pseudowords such that
V3/2 satisfies the inequality u ≤ v; here V3/2 is the pseudovariety of ordered monoids cor-
responding to level 3/2 in the Straubing-Thérien hierarchy. These new pseudoidentities
define a pseudovariety of finite monoids F. Now the results from [2] can be summarized
in the following way: V2 ⊆ F, M ∈ B1 ©m Sl, and M 6∈ F, so that M /∈ V2. This implies
B1 ©m Sl 6⊆ F and V2 6= B1 ©m Sl.

In this paper we also provide an example of a monoid which belongs to F and does
not belong to B1 ©m Sl, and so we also have F 6⊆ B1 ©m Sl. Hence the two upper bounds
B1 ©m Sl and F are incomparable and we get a new tighter upper bound for the class
V2, namely (B1 ©m Sl) ∩ F. One can hope that the inclusion V2 ⊆ (B1 ©m Sl) ∩ F turns
out to be an equality. This equality would solve the main problem if one can show
that the membership problem for the pseudovariety (B1 ©m Sl) ∩ F is decidable. The
main contribution of this paper is the decidability of the membership problem for the
pseudovariety F from which the decidability of the membership problem for (B1©m Sl)∩F

follows.
Perhaps surprisingly, the membership problem for the pseudovariety F is not easy to

solve. When we want to test whether the new pseudoidentities are satisfied in a given
finite monoid M then the following relation plays a crucial role. For a finite monoid M
we define a relation τ3/2(M) ⊆ M ×M by the rule (s, t) ∈ τ3/2(M) if there is a pair
of pseudowords u, v such that V3/2 |= u ≤ v and an evaluation ϕ such that ϕ(u) = s,
ϕ(v) = t. Now we see that M ∈ F if and only if for every (s, t) ∈ τ3/2(M) we have
sω = sωtsω. The latter condition is easy to test whenever we know the relation τ3/2(M).
Unfortunately, we do not know whether it is possible to compute this relation in general.
Our solution of the membership problem is based on the trick that it is enough to compute
the transitive closure of τ3/2(M), because the condition sω = sωtsω is satisfied for all
pairs (s, t) from τ3/2(M) if and only if the condition is satisfied for all pairs (s, t) from
the transitive closure of τ3/2(M).

The paper is organized as follows. In Section 2, we recall a few preliminaries and
notation. Then in Section 3 we introduce the relation τ3/2(M) and some other equivalent
descriptions of this relation. Section 4 is devoted to the formal definition of the new
upper bound F and the trick concerning the transitive closure of the relation τ3/2(M). In
Section 5 we prove the difficult part of the crucial characterization of the transitive closure
of the relation τ3/2(M). Here we apply the Factorization Forest Theorem [20]. The
decidability of F is also established, which achieves the purpose of this paper. Section 6
presents an example of a monoid which shows that F 6⊆ B1 ©m Sl.

2. Preliminaries

2.1. Stable quasiorders. In this paper the key notion is stable quasiorder in monoids.
Here we recall some easy observations and we fix notation. Note that in this paper a
monoid is either finite or a free (profinite) monoid.

For an arbitrary set M we say that a relation R, i.e. a subset of M×M , is a quasiorder
if and only if it is reflexive and transitive. Such a relation R determines an equivalence
relation

Re = R ∩R−1 = {(s, t) ∈M ×M | (s, t) ∈ R and (t, s) ∈ R} .
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Then we can consider the factor set M/Re which is naturally ordered by the relation
R, i.e. sRe ≤ tRe if and only if (s, t) ∈ R. We will denote this ordered set (M/Re,≤)
simply by M/R. The number of classes in M/R is called the index of R.

If we take an arbitrary relation R on M then we can consider the smallest transitive
relation containing R, so-called transitive closure, namely R∞ =

⋃

i∈N
Ri, where Ri is

the composition of i copies of R. More formally, for each i ∈ N we define

Ri = {(s, t) ∈M ×M | (∃ s0, s1, . . . , si ∈M)(s = s0 R s1 R s2 R · · · R si = t)} .

Note that if the original relation R is reflexive then we have Ri ⊆ Rj whenever i ≤ j.
This implies that for two arbitrary pairs (s1, s2), (t1, t2) ∈ R∞ there is an exponent i
such that (s1, s2), (t1, t2) ∈ R

i.
For an arbitrary monoid M we say that a relation R is stable if for all s1, s2, t1, t2 ∈M

we have

(2.1)
(

(s1, s2) ∈ R ∧ (t1, t2) ∈ R
)

=⇒ (s1t1, s2t2) ∈ R.

In other words, the relation R is stable if and only if R is a subsemigroup of M ×M . In
some papers a stable relation R on a monoid M is defined by the following condition

(2.2) (s, t) ∈ R =⇒
(

(sz, tz) ∈ R ∧ (zs, zt) ∈ R
)

for all s, t, z ∈ M . Note that (2.2) follows from (2.1) when R is a reflexive relation. On
the other hand if R is a transitive relation then (2.1) is a consequence of (2.2).

If R is a stable reflexive relation on a monoid M then the transitive closure R∞ is a
stable quasiorder on M . Indeed, for each i the relation Ri is a stable relation on M and
the reflexivity of R implies the claim. This basic observation means that if we have a
relation R on M and we want to construct the smallest stable quasiorder containing R
we can first extend R to a reflexive relation, then we generate submonoid in M ×M , and
finally we take the transitive closure.

2.2. Free profinite monoid. According to Reiterman’s Theorem [18], pseudovarieties
of algebras are defined by pseudoidentities, that is formal equalities of implicit opera-
tions. In the case of interest for this paper, implicit operations are operations whose
interpretation in finite monoids commutes with homomorphisms. Reiterman’s Theorem
has been extended independently by Molchanov [9] (see also [10]), via the nonstandard
approach, and by Pin and Weil [15] to first order structures, the latter having partic-
ularly in mind pseudovarieties of ordered monoids, for which the equality (of implicit
operations) is replaced by the order relation. By endowing all unordered monoids from
a given pseudovariety V by all possible stable partial orders, one obtains a pseudovariety
of ordered monoids, which is identified with V.

Simple examples of implicit operations are the so-called explicit operations, given by
words, and the ω-power, which associates to each element s of a finite monoid its unique
idempotent power sω = sn (n > 0).

The implicit operations over a fixed finite set A can be viewed as the elements of the
projective limit FA of all A-generated finite monoids, which is the structure one is led to
consider when trying to identify the “most general” such monoid. Here, finite monoids
are viewed as topological monoids under the discrete topology. In general, projective
limits of finite monoids are called profinite monoids. It turns out that FA is the free
profinite monoid on the set A, in which the discrete submonoid generated by A, whose
elements are the explicit operations, is a free monoid and thus is identified with A∗.
Thus, elements of FA become a generalization of usual words, which prompts calling
them alternatively pseudowords.
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Denote by PA the monoid of all subsets of A under the union operation. The mapping
that sends each letter a ∈ A to the singleton {a} extends to a unique continuous homo-
morphism α : FA → PA. Its restriction to A∗ is the usual content function and, more
generally, a letter a ∈ A belongs to α(u) for a given pseudoword u ∈ FA if and only if
there is a factorization of the form u = xay with x, y ∈ FA (cf. [1, Section 8.1]). For this
reason, α is also called the content function.

Note that PA is a semilattice, i.e. a commutative and idempotent monoid. Moreover,
for u, v ∈ FA, we have Sl |= u = v if and only if α(u) = α(v). For a subset B of an
alphabet A we denote by [B] the set of all words over A such that their content is B,
i.e. [B] = {u ∈ A∗ | α(u) = B} = α−1(B) ∩ A∗. In particular, for B = ∅ we write
[ ] = [∅] = {ǫ} where ǫ is the empty word.

2.3. Regular languages and syntactic quasiorder. We recall the concept of the
syntactic quasiorder, which was introduced by Pin under the name syntactic order (see
e.g. [11]).

For an arbitrary language L ⊆ A∗ we define relation ≤L on A∗ in the following way.
For u, v ∈ A∗ we write u ≤L v if

(∀x, y ∈ A∗) (xvy ∈ L =⇒ xuy ∈ L).

The relation ≤L is a stable quasiorder on the monoid A∗ and it is called the syntactic
quasiorder of L. In this paper we deal only with regular languages, for which ≤L has
finite index. The reason is that for a regular language L there are only finitely many
languages of the form x−1Ly−1 = {u ∈ A∗ | xuy ∈ L}. We denote ML = A∗/≤L which is
a finite ordered monoid, called the ordered syntactic monoid of L. The natural projection
φL : A∗ →ML is called the syntactic morphism. Note that φL(L) is an ideal in (ML,≤)
and that φ−1

L (φL(L)) = L.
Now we consider the extension of φL to the continuous morphism φL : FA → ML of

compact monoids. The relation on FA consisting of the pairs (u, v) such that φL(u) ≤
φL(v) is still denoted by ≤L. Note that it is a stable quasiorder on FA. Thus if we speak
about syntactic quasiorder and syntactic morphism we can consider these extensions to
FA.

Using the continuous morphism φL we see that the topological closure L of L is clopen
in FA and that φ−1

L (φL(L)) = L. An alternative definition of the relation ≤L is given by
the next lemma, whose proof amounts to an easy exercise.

Lemma 2.1. Let L be a regular language over an alphabet A and let u, v ∈ FA be
pseudowords. Then the following statements are equivalent.

(i) u ≤L v,
(ii) (∀x, y ∈ FA) (xvy ∈ L =⇒ xuy ∈ L),
(iii) (∀x, y ∈ A∗) (xvy ∈ L =⇒ xuy ∈ L).

2.4. Some known results on the Straubing-Thérien hierarchy. We recall the
characterizations of V3/2, the level 3/2 of the Straubing-Thérien hierarchy. The first is
implicitly contained in [13].

Proposition 2.2 ([11, Theorem 8.8]). A language over an alphabet A is of level 3/2 if
and only if it is a finite union of languages of the form A∗

0a1A
∗
1a2 · · · akA

∗
k, where each

Ai ⊆ A and each aj ∈ A.

Proposition 2.3 ([16, Theorem 8.7], [11, Theorem 8.9]). A language is of level 3/2 if
and only if its ordered syntactic monoid satisfies the pseudoidentity uωvuω ≤ uω for all
pseudowords u, v over some finite alphabet satisfying α(u) = α(v).
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The following proposition from [2] gives new pseudoidentities for the pseudovariety
V2. The proof is also recalled as it is quite easy.

Proposition 2.4 ([2, Proposition 2]). Let u and v be pseudowords such that V3/2 |= u ≤
v. Then V2 |= uω = uωvuω.

Proof. Since V2 is the Boolean closure of V3/2, we have V2 |= x = y if and only if
V3/2 |= x = y, i.e. if and only if V3/2 |= x ≤ y and V3/2 |= y ≤ x.

From the assumption V3/2 |= u ≤ v, we deduce that α(u) = α(v) because Sl ⊆ V3/2.
From Proposition 2.3, we obtain immediately V3/2 |= uωvuω ≤ uω.

When we multiply u ≤ v by uω from both sides, we obtain uωuuω ≤ uωvuω. Since
V3/2 |= xω+1 = xω, we conclude that V3/2 |= uω ≤ uωvuω. �

3. Relations on monoids related to level 3/2

For each finite alphabet A and natural number m we denote Um(A) the set of all
languages over A of the form

(3.1) [A0] a1 [A1] a2 [A2] · · · [Ak−1] ak [Ak] ,

where k ≤ m, a1, . . . , ak ∈ A and A0, . . . , Ak ⊆ A. Since A is finite, so is each of the sets
Um(A). We denote U(A) their union over all m ≥ 0. The languages of level 3/2 over an
alphabet A are exactly the finite unions of languages from U(A), because for each finite
alphabet B one can express the language B∗ as the finite union of all languages of the
form [C] with C ⊆ B, which in turn are of level 1.

Now, we define a relation �A
m on the free profinite monoid FA in the following way:

u �A
m v ⇐⇒ (∀L ∈ Um(A)) (v ∈ L =⇒ u ∈ L).

Note that if u �A
m v for some u, v ∈ FA then the implication v ∈ L =⇒ u ∈ L is

satisfied also for each language L which is a finite union of finite intersections of languages
from Um(A). One can prove that such languages form a positive variety of languages.
This claim is a special case of [12, Theorem 5.1] or alternatively of [7, Theorem 1]. One
can also prove it directly by showing that each morphic preimage and also each derivative
of a language from the class Um(A) is a finite union of finite intersections of languages
from Um(A). This method is used in [3] to prove that the polynomial closure of a variety
of languages constitutes a positive variety, although the formula for morphic preimage [3,
Lemma 2.2.2] is not correct.1

Lemma 3.1. Let A be an alphabet, m be a number and u, v ∈ FA be pseudowords. Then

u �A
m v ⇐⇒ (∀L ∈ Um(A)) (u ≤L v).

In other words �A
m is the intersection of all relations ≤L for L ∈ Um(A).

Proof. Let u, v ∈ FA be such that u �A
m v and let L ∈ Um(A). We want to show

u ≤L v which is equivalent to condition (iii) in Lemma 2.1. Let x, y ∈ A∗ be such that
xvy ∈ L and we show that also xuy ∈ L. Since the set L is open, we may consider a
sequence of words (vn)n∈N converging to v such that for each n we have xvny ∈ L. Hence
vn ∈ x−1Ly−1 and we see that v ∈ K for K = x−1Ly−1. The language K is a finite
union of finite intersections of languages from Um and the implication v ∈ K ⇒ u ∈ K

1The problem lies in the fact that the formula does not take into account the possibility of a letter
covering several of the distinguished letters. For instance, the formula fails for the homomorphism
ϕ : a∗ → b∗ defined by ϕ(a) = b2, for which ϕ−1([ ] b [ ] b [ ]) = {a} = [ ] a [ ], while the language given by
Arfi’s formula is empty, since at least one of the derivatives in the languages in the union is empty.



6 JORGE ALMEIDA AND ONDŘEJ KLÍMA

follows from u �A
m v. Thus there is a sequence of words (un)n∈N converging to u such

that un ∈ K = x−1Ly−1 for each n ∈ N. Hence xuny ∈ L and we deduce that xuy ∈ L.
On the other hand, for u, v ∈ FA and L ∈ Um(A) we have

(u ≤L v ∧ v ∈ L) =⇒ u ∈ L

because we can consider condition (iii) in Lemma 2.1 with x and y empty words. This
property entails the implication “⇐”. �

Given X ⊆ FA, write u �A
X v if u, v ∈ FA and v ∈ X ⇒ u ∈ X. Then �A

X is
a quasiorder in which the elements of X are minima and the remaining elements are
maxima.

Lemma 3.2. The following hold for every natural number m.

(i) For each A the relation �A
m is a stable quasiorder on FA.

(ii) For every continuous morphism ψ : FA → FB we have

(∀u, v ∈ FA) (u �A
m v =⇒ ψ(u) �B

m ψ(v)).

(iii) The equivalence relation determined by the quasiorder �A
m has index at most 2|Um(A)|.

Proof. By Lemma 3.1, the relation �A
m is the intersection of all stable quasiorders ≤L

with L ∈ Um(A), and therefore it is itself a stable quasiorder, which proves (i). On the
other hand, since �A

m is also the intersection of the quasiorders of the form �A
L
, each of

which has index 2, we obtain (iii).
(ii) Let u, v ∈ FA be such that u �A

m v, let L ∈ Um(B), and suppose that ψ(v) ∈ L.

From the continuity of ψ, we obtain the equality ψ−1(L) = ψ−1(L). Now K = ψ−1(L) ⊆
A∗ is a finite union of finite intersections of languages from Um(A). Since v ∈ K and
u �A

m v we have u ∈ K. Hence ψ(u) ∈ L, which proves that ψ(u) �B
m ψ(v). �

From Lemmas 3.1 and 3.2 one can also state that the ordered monoid FA/�
A
m is a free

(pro)finite ordered monoid in the pseudovariety of ordered monoids corresponding to the
positive variety of languages generated by Um.

By a system of relations ρ we mean an operator which determines, for each finite
alphabet A, a relation ρA on the free profinite monoid FA. E.g. for each m we have a
system of relations �m. We call a system of relations ρ a fully invariant system of stable
quasiorders if it satisfies conditions (i) and (ii) of Lemma 3.2. If it also satisfies condition
(iii) then we speak of a fully invariant system of stable quasiorders of finite index.

Another example of a fully invariant system of stable quasiorders of finite index is
given by the kernel of the content function α. More precisely we consider the relation
≡A on FA given by the rule:

(∀u, v ∈ FA) (u ≡A v ⇐⇒ α(u) = α(v)).

All conditions from Lemma 3.2 can be easily checked for the system of relations ≡.
Further, we define a relation �A on FA as the intersection of all relations �A

m, i.e.

u �A v ⇐⇒ (∀L ∈ U(A)) (v ∈ L =⇒ u ∈ L).

The following is an immediate consequence of Lemmas 3.1 and 3.2.

Proposition 3.3. The system of relations � is a fully invariant system of stable qua-
siorders. For each alphabet A, the relation �A is the intersection of all relations ≤L for
L ∈ U(A). �
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Let ϕ : FA →M be a continuous morphism to finite monoid M . For a binary relation
R on FA, we define the relation ϕ(R) on the monoid M by the rule

ϕ(R) = {(s, t) ∈M ×M | (∃u, v ∈ FA) (u R v ∧ ϕ(u) = s ∧ ϕ(v) = t)} .

Note that if R is a stable relation on FA then ϕ(R) is a stable relation on M . But ϕ(R)
need not be a quasiorder even if R is. We show that the definition of ϕ(R) does not
depend on ϕ or A when we consider a fully invariant system of stable quasiorders.

Lemma 3.4. Let ϕ : FA →M and β : FB → M be a pair of morphisms. Further, let ρ
be a fully invariant system of stable quasiorders.

(i) If β is onto then ϕ(ρA) ⊆ β(ρB).
(ii) If both ϕ and β are onto then ϕ(ρA) = β(ρB).

Proof. The second statement follows from applying the first one twice. So, assume that
β is onto and let (s, t) ∈ ϕ(ρA). Then by the definition of ϕ(ρA) we have u, v ∈ FA

such that (u, v) ∈ ρA, ϕ(u) = s, and ϕ(v) = t. Since β is onto and B∗ is dense in FB ,
we can consider for each a ∈ A a word ua ∈ B∗ such that β(ua) = ϕ(a) ∈ M . Then
there is a continuous morphism ψ : FA → FB such that ψ(a) = ua for all a ∈ A, so that
ϕ = β ◦ψ. Since ρ is fully invariant we obtain (ψ(u), ψ(v)) ∈ ρB from (u, v) ∈ ρA. From
the definition of β(ρB) we get

(s, t) = (ϕ(u), ϕ(v)) =
(

β(ψ(u)), β(ψ(v))
)

∈ β(ρB),

which completes the proof of the lemma. �

Thus, we can define for each fully invariant system of stable quasiorders ρ and every
monoid M the relation ρM on M by taking an arbitrary onto continuous morphism
ϕ : FA → M and putting ρM = ϕ(ρA). In particular, we can consider the relations �M

and �M
m for each m. Useful properties of the relations �M

m and �M are given in the
following lemma. Some of them are formulated in a more general setting.

Lemma 3.5. Let ϕ : FA → M be an arbitrary onto continuous morphism and let ρ
be a fully invariant system of stable quasiorders; in particular ρM = ϕ(ρA). Then the
following properties hold.

(i) The relation ρM is stable.
(ii) If the equivalence relation corresponding to ρA has a finite index then we have

ρM =
{

(s, t) ∈M ×M | (∃u, v ∈ A∗) (u ρA v ∧ ϕ(u) = s ∧ ϕ(v) = t)
}

.

Moreover, if we have an effective description of the finite ordered monoid FA/ρ
A

then ρM is computable.
(iii) For each m we have �M

m+1 ⊆ �M
m and the relation �M is the intersection of all

relations �M
m .

Proof. (i) We already mentioned that ϕ(R) is a stable relation whenever R is a stable
relation.

(ii) The inclusion “⊇” is trivial. If we take (s, t) ∈ ρM then we have (u, v) ∈ ρA for
some u, v ∈ FA such that ϕ(u) = s and ϕ(v) = t. We denote η the natural morphism
from FA to the finite ordered monoid FA/ρ

A. Since ϕ−1(s) and η−1(η(u)) are both clopen
subsets in FA which contain u ∈ FA, it follows that their intersection is also non-empty
and clopen in FA. This means that it contains some word u′ ∈ A∗. Hence we have
ϕ(u′) = s and (u′, u) ∈ ρA (and also (u, u′) ∈ ρA). By the same argument we obtain
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v′ ∈ A∗ such that ϕ(v′) = t and (v, v′) ∈ ρA. Since ρA is a transitive relation we get
(u′, v′) ∈ ρA. We proved the first part of (ii).

For the second part we define a relational morphism π fromM to FA/ρ
A as π = η◦ϕ−1.

In other words π = {(ϕ(u), η(u)) | u ∈ A∗}. In fact π is a submonoid of the finite monoid
M × FA/ρ

A and it is generated by the set G = {(ϕ(a), η(a)) | a ∈ A}.
Since we have an effective description of the finite monoid FA/ρ

A we can compute π
as the submonoid of the finite monoid M × FA/ρ

A generated by G. Now (s, t) ∈ ρM if
and only if there exist uρ, vρ ∈ FA/ρ

A such that uρ ≤ vρ and (s, uρ) ∈ π and (t, vρ) ∈ π.
By the above, the latter condition on the pair (s, t) can be effectively checked.

(iii) From the inclusions �A ⊆ �A
m+1 ⊆ �A

m it follows that �M ⊆ �M
m+1 ⊆ �M

m . It

remains to show that
⋂

m≥0 �
M
m ⊆ �M . So, suppose that s, t ∈M are such that s �M

m t

for all m ≥ 0. Then, for each m ≥ 0 there exist um ∈ ϕ−1(s) and vm ∈ ϕ−1(t) such that
um �A

m vm. Since the space FA is compact, there is a sequence of indices m1 < m2 < · · ·
such that each of the subsequences (umk

)k and (vmk
)k converges to the respective limit u

and v. As ϕ is continuous, we have ϕ(u) = s and ϕ(v) = t. We claim that u �A v, which
will establish that s �M t, as required. Indeed, given a language L ∈ Um(A), consider
the syntactic morphism φL : FA → ML, which is continuous. Hence there is some k
such that mk ≥ m and φL(umk

) = φL(u) and φL(vmk
) = φL(v). Since umk

�A
mk

vmk

and L ∈ Um(A), we conclude in particular that umk
≤L vmk

, whence also u ≤L v, which
proves the claim. �

Recall that we have defined the relation τ3/2(M) ⊆M×M by the rule (s, t) ∈ τ3/2(M)
if there are a finite set of variables X, a pair of pseudowords u, v ∈ FX such that
V3/2 |= u ≤ v, and a continuous morphism ϕ : FX → M such that ϕ(u) = s, ϕ(v) = t.
We show that the inequalities satisfied in V3/2 are exactly given by the system of relations

� and that the relation τ3/2(M) coincides with the previous relation �M .

Proposition 3.6. Let A be a finite alphabet.

(i) For each u, v ∈ FA we have

V3/2 |= u ≤ v ⇐⇒ u �A v.

(ii) For every finite monoid M we have τ3/2(M) = �M .

Proof. (i) Let u, v ∈ FA be such that V3/2 |= u ≤ v. Then for each L ∈ U(A) and its
syntactic morphism φL : FA → ML we have φL(u) ≤ φL(v), i.e. u ≤L v. This shows
that u �A v by Proposition 3.3.

Now, let u �A v. We want to show that for each L ∈ V3/2(B) and its syntactic
morphism φL : FB →ML onto the order syntactic monoidML of L, we haveML |= u ≤ v.
It is enough to prove it for languages L ∈ U(B) because V3/2 is the positive variety of
languages generated by U . So, let L ∈ U(B) with the syntactic morphism φL : FB →ML

and take ψ : FA →ML an arbitrary continuous morphism. Since the syntactic morphism
φL is onto we obtain ψ(�A) ⊆ φL(�B) from Lemma 3.4. Thus, as we are assuming that
u �A v, so that (ψ(u), ψ(v)) ∈ ψ(�A), we conclude that there are u′, v′ ∈ FB such that
ψ(u) = φL(u′), ψ(v) = φL(v′), and u′ �B v′. Proposition 3.3 yields u′ ≤L v

′ and we get
ψ(u) = φL(u′) ≤L φL(v′) = ψ(v) in ML. We have thus proved that ML |= u ≤ v.

(ii) We fix the finite alphabet B = M and onto continuous morphism β : FB → M
given by β|B = idB and we show that τ3/2(M) = β(�B). The inclusion β(�B) ⊆ τ3/2(M)
follows from (i). Let (s, t) ∈ τ3/2(M). Then there are a finite set of variables X, a pair of
pseudowords u, v ∈ FX such that V3/2 |= u ≤ v and a continuous morphism ϕ : FX →M
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such that ϕ(u) = s, ϕ(v) = t. Hence we have u �X v from (i). Lemma 3.4 then yields
(s, t) ∈ ϕ(�X) ⊆ β(�B). �

4. New upper bound

In the first section we have defined the pseudovariety of finite monoids

F =
q

uω = uωvuω | V3/2 |= u ≤ v
y

.

Our goal is to solve the membership problem for F. So, for a fixed monoid M we need
to test whether

(4.1) sω = sωtsω

for all (s, t) ∈ τ3/2(M) = �M . The crucial trick in our contribution is the following
lemma.

Lemma 4.1. Let R be a reflexive stable relation on a given finite monoid M . Then
condition (4.1) is satisfied for each pair (s, t) from R if and only if condition (4.1) is
satisfied for each pair (s, t) from the transitive closure of R.

Proof. Assume that condition (4.1) is satisfied for each pair (s, t) from R. We show by
induction with respect to i that condition (4.1) is satisfied for each pair (s, t) from Ri.
For i = 1, this is given. Let i > 1 and (s, t) ∈ Ri be an arbitrary pair. Thus there
is z ∈ M such that (s, z) ∈ Ri−1 and (z, t) ∈ R. Since R is a stable relation we have
(sωzsω, sωtsω) ∈ R. Condition (4.1) is satisfied for R, hence we have

(sωzsω)ω = (sωzsω)ω(sωtsω)(sωzsω)ω.

On the other hand, by the induction hypothesis, since (s, z) ∈ Ri−1, we have sω =
sωzsω. Hence sω = (sωzsω)ω and we get

sω = (sωzsω)ω = (sωzsω)ω(sωtsω)(sωzsω)ω = sω(sωtsω)sω = sωtsω.

Now since condition (4.1) is satisfied for each pair (s, t) from Ri for every i, condition
(4.1) is satisfied for all pairs (s, t) from R∞ =

⋃

i∈N
Ri. The opposite implication in the

statement is trivial, because R ⊆ R∞. �

If we apply this observation to our relation �M then we obtain the following basic
characterization of the pseudovariety F.

Proposition 4.2. Let M be a finite monoid. Then M ∈ F if and only if the condition
(4.1) is satisfied for each pair (s, t) from the transitive closure of the relation �M .

Proof. It is an easy consequence of the definition of the class F, and Proposition 3.6 and
Lemma 4.1. �

We should show that the transitive closure of �M can be computed. In fact, we give
an alternative characterization of this relation which is motivated by Proposition 2.3.
We define

(4.2) SM = {(s, s) ∈M ×M | s ∈M} ∪
{

(sωtsω, sω) ∈M ×M | s ≡M t
}

.

Furthermore, we denote by 〈SM 〉 the submonoid of the monoid M ×M generated by the
set SM and we denote the transitive closure of the relation 〈SM 〉, i.e. 〈SM 〉∞, by TM .
The two following results clarify the meaning of TM .

Lemma 4.3. For each finite monoid M the relation TM is a computable stable qua-
siorder.
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Proof. Since M is finite and ≡ is a fully invariant system of stable quasiorders of finite
index, the relation ≡M is computable by Lemma 3.5. Hence one can compute also the
relation SM . Generating the submonoid 〈SM 〉 and then the transitive closure 〈SM 〉∞ =
TM is routine. The fact that TM is stable follows from a general observation concerning
the transitive closure of a stable relation. �

Proposition 4.4. Let M be a finite monoid. Then the transitive closure of �M is TM .

Proof. We have SM ⊆ �M by Proposition 2.3 and Proposition 3.6 (ii). By Lemma 3.5 (i),
we have 〈SM 〉 ⊆ �M . Thus the transitive closure of 〈SM 〉, i.e. TM , is a subset of the
transitive closure of �M . Thus we proved that TM ⊆ (�M )∞. The reverse inclusion
(�M )∞ ⊆ TM is much more difficult. By Lemma 3.5 (iii) we know that �M ⊆ �M

m

for every natural number m. Hence we have (�M )∞ ⊆ (�M
m )∞ for every m. To prove

(�M )∞ ⊆ TM it is therefore enough to prove that there is a number m with the property
(�M

m )∞ ⊆ TM . This statement is contained in Proposition 5.2 in the next section. �

5. Application of the Factorization Forest Theorem

To finish the proof of Proposition 4.4 we use the Factorization Forest Theorem of
Imre Simon. In fact, our proof is inspired by the proof concerning polynomial closures
given by Pin and Weil [16]. The following brief introduction to factorization forests is
essentially borrowed from [16, Section 4].

A factorization forest is a mapping from A2A∗ to
⋃

n≥2(A
+)n which associates to every

word x ∈ A∗ of length at least 2 a factorization d(x) = (x1, x2, . . . , xn) of x such that
n ≥ 2, x1, x2, . . . , xn ∈ A+ and x1x2 · · · xn = x. The integer n is called the degree of the
factorization d(x). Thus a factorization forest is a description of a recursive process to
factorize words as products of letters. The height function of a factorization forest d is
a mapping hd : A+ → N defined by the rule

hd(x) =

{

0 if x ∈ A

1 + max{hd(xi) | 1 ≤ i ≤ n} if d(x) = (x1, x2, . . . , xn).

The height of a word x in a factorization forest d is simply hd(x) and the height of d is
given by Hd = sup{hd(x) | x ∈ A+}.

For a given word x ∈ A+, we define recursively the so-called factorization tree of x as
a tree with root x and direct descendants x1, x2, . . . , xn, where d(x) = (x1, x2, . . . , xn),
and the subtree with root xi being the factorization tree of xi.

Let M be a finite semigroup and let ϕ : A+ → M be a morphism. A factorization
forest d is Ramseyan modulo ϕ if, for every word x ∈ A2A∗ such that d(x) is either of
degree 2 or there exists an idempotent e ∈ M such that d(x) = (x1, x2, . . . , xn) with
n ≥ 3 and ϕ(x1) = ϕ(x2) = · · · = ϕ(xn) = e.

These definitions apply in particular if the semigroup M is a monoid. Because there
is no interest in factorizations of the empty word, when we speak about a factorization
forest modulo ϕ : A∗ →M we mean a factorization forest modulo ϕ|A+ : A+ →M .

The Factorization Forest Theorem states that for every morphism ϕ to a given finite
semigroup M there exists a factorization forest of finite height which is Ramseyan modulo
ϕ. Originally the theorem was proved by I. Simon with the upper bound 9|M | in [20]
and with an exponential upper bound but with easier proof in [21]. In successive papers
the upper bound has been improved (see e.g. [8] for references). The last paper on the
topic [8] establishes the upper bound 3|M | − 1 in the general case and the upper bound
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2|M | in the case of aperiodic semigroups, which are both optimal for the respective
classes of semigroups.

In our application the exact upper bound does not play any role, we use just the
existence of it. So we may as well formulate the theorem in existential form.

Theorem 5.1 ([20, 21]). Let M be a finite monoid and ϕ : A∗ → M be a morphism.
Then there exist K ∈ N and a factorization forest d of height Hd < K which is Ramseyan
modulo ϕ.

Now we can return to our considerations. The missing part of the proof of Proposi-
tion 4.4 is the following statement.

Proposition 5.2. Let M be a finite monoid and ϕ : A∗ → M be a morphism. Then
there exists a number m such that (�M

m )∞ ⊆ TM .

Proof. Let d be a factorization forest of height Hd < K which is Ramseyan modulo ϕ,
whose existence is ensured by Theorem 5.1. We prove the statement for m = 2K+1.
Since TM is a transitive relation it is enough to prove that �M

m ⊆ TM .
Let (s, t) ∈ �M

m for s, t ∈ M . By Lemma 3.5 (ii) we can take u, v ∈ A∗ such that
ϕ(u) = s, ϕ(v) = t and u �A

m v.
Intuitively, we take a factorization tree of v, and in every factorization used in this

tree, i.e. d(x) = (x1, x2, . . . , xn) we keep just the first and last factors, i.e. x1 and xn,
which we further factorize and instead of the middle part (x2, . . . , xn−1) we take just the
product x2 · · · xn−1 which we do not factorize any further. Thus at the end of the process
we obtain a factorization of the word v of the form v = a1v1a2v2 · · · vk−1ak where ai ∈ A,
vi ∈ A∗. Moreover, since hd(v) < K we have k < 2K+1 = m. We are led to consider the
language

L = [ ] a1 [α(v1)] a2 · · · ak−1 [α(vk−1)] ak [ ] ∈ Um.

Since v ∈ L and u �A
m v we have u ∈ L. Thus we can write u = a1u1a2u2 · · · ak−1uk−1ak

where the ui ∈ A∗ are such that α(ui) = α(vi) for every i = 1, . . . , k − 1.
Now, if we consecutively replace vi for ui in the mentioned factorization of v, where

the order of replacements is given by the structure of the factorization tree of v, then the
images under φ of the corresponding pairs of words in this sequence are in the relation
TM . Thus at the end of the process we obtain (s, t) = (φ(u), φ(v)) ∈ TM . This is just
the underlying idea of the proof which we now proceed to make more precise.

First, we consider a full binary tree of height K, i.e. T =
⋃K

i=0{1, 2}
i = {p ∈ {1, 2}∗ |

|p| ≤ K}, where each node p ∈ T which is not a leaf, i.e. |p| < K, has left child p1 and
right child p2. The root of T, i.e. the empty word over the alphabet {1, 2}, is denoted by
λ. For technical reasons, we want to distinguish this empty word from the empty word
over the alphabet A, which is denoted ǫ. In fact the tree structure of T is not needed for
the following proof, but it can help to follow it.

We say that a pair (χ, χ) is a compatible labeling on T if the following conditions are
satisfied:

(i) both χ : T → A∗ and χ : T → A∗ are mappings;
(ii) for each leaf p ∈ T, i.e. p such that |p| = K, we have χ(p) = χ(p);
(iii) for each p ∈ T which is not a leaf, i.e. |p| < K, we have χ(p) = χ(p1) · χ(p) · χ(p2).

We call the word χ(λ) ∈ A∗ the value of the compatible labeling on T and we denote it
χ(T). Note that, if χ : T → A∗ is an arbitrary mapping, then there is a unique mapping χ
such that the pair (χ,χ) forms a compatible labeling on T. For this reason a compatible
labeling (χ, χ) is usually referred simply by χ.
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We say that a labeling ξ on T is similar to a labeling χ on T if the following conditions
are satisfied:

(i) for each p ∈ T we have α(ξ(p)) = α(χ(p));
(ii) for each p ∈ T such that χ(p) ∈ A we have ξ(p) = χ(p).

Note that this relation is not symmetric, because for some p ∈ T and a ∈ A we can have
χ(p) = aaa and ξ(p) = a and in this case χ is not similar to ξ but ξ could be similar to
χ.

For the word v we will define a certain compatible labeling (χv, χv) on T. The def-
inition is inductive in top-down direction with respect to the tree T and it reflects the
factorization of v in the factorization forest d. First of all, we put χv(λ) = v. Next, if for
p ∈ T which is not a leaf, i.e. |p| < K, we have defined χv(p) = x ∈ A∗, then we define
the values χv(p), χv(p1) and χv(p2) in this way:

(a) if x = ǫ then we put χv(p1) = χv(p) = χv(p2) = ǫ;
(b) if x ∈ A then we put χv(p1) = ǫ, χv(p) = x and χv(p2) = ǫ;
(c) if d(x) = (x1, x2) then we put χv(p1) = x1, χv(p) = ǫ and χv(p2) = x2;
(d) if d(x) = (x1, x2, . . . , xn), n > 2 then we put χv(p1) = x1, χv(p) = x2x3 · · · xn−1 and

χv(p2) = xn.

Finally, if for a leaf p ∈ T we have defined χv(p) = x ∈ A∗, then we put χv(p) = x. Since
hd(v) < K we can see that in this case χv(p) = χv(p) = x = ǫ.

Directly from the definition of the pair (χv, χv) we see that it is a compatible labeling
on T with the value χv(T) = χv(λ) = v.

We have defined all technical notation and we can formulate the crucial observations
which finish the proof of the proposition.

Lemma 5.3. Let v ∈ A∗ be an arbitrary word and (χv, χv) be the compatible labeling
on T given by the previous definition. Let u ∈ A∗ be such that u �A

m v. Then there is a
compatible labeling ξ on T which is similar to χv and which has the value ξ(T) = ξ(λ) = u.

Lemma 5.4. Let v be an arbitrary word and (χv, χv) be the compatible labeling on T

given by the previous definition. If ξ is a compatible labeling on T similar to χv then
(

ϕ(ξ(T)), ϕ(χv(T))
)

∈ TM .

of Lemma 5.3. By the definition of χ we have that χ(λ) is the product of all χ(p), for
p ∈ T, in a certain order. We describe this order, denoted by ⊑, on the set T in more

formal way and independently on χ. We mention that |T| =
∑K

i=0 2i = 2K+1−1 = m−1.
Now for a pair of nodes p, q ∈ T we denote 〈p, q〉 ∈ T the longest common prefix of p and
q and we put p ⊑ q if one of the following conditions is satisfied:

• p = 〈p, q〉1p′ and q = 〈p, q〉2q′ for some p′, q′ ∈ T,
• p = 〈p, q〉1p′ and q = 〈p, q〉 for some p′ ∈ T,
• p = 〈p, q〉 and q = 〈p, q〉2q′ for some q′ ∈ T,
• p = 〈p, q〉 = q.

We write p ⊏ q if p ⊑ q and p 6= q. Taking arbitrary nodes p, q ∈ T, such that p 6= q,
exactly one of the possibilities p ⊏ q and q ⊏ p occurs. Elementary computations check
that ⊑ is also transitive. Altogether, the relation ⊑ is a linear ordering of T. We write
p ⊏ q if p ⊑ q and p 6= q. We claim that for an arbitrary compatible labeling χ on T we
have

χ(λ) = χ(p1)χ(p2) · · ·χ(pm−1),
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where p1 ⊏ p2 ⊏ · · · ⊏ pm−1 are all notes from T. Indeed, one can prove by induction
with respect to the tree T in bottom-up direction, that for each p ∈ T we have χ(p) =
χ(pp1) · · ·χ(ppi) where pp1 ⊏ · · · ⊏ ppi are all nodes from T with the prefix p.

Let v ∈ A∗ and consider the corresponding compatible labeling χv and u ∈ A∗ such
that u �A

m v. We denote S = {p ∈ T | χv(p) 6= ǫ}. Then for each p ∈ S let ap ∈ A
be the last letter in χv(p) and let vp ∈ A∗ be such that vpap = χv(p). Thus v =
vp1
ap1

vp2
ap2

· · · vpk
apk

, where k < m and p1 ⊏ p2 ⊏ · · · ⊏ pk are all nodes from S. We
denote Ai = α(vpi

) for i = 1, . . . , k. We consider the language

L = [A1] ap1
[A2] ap2

· · · [Ak] apk
[ ].

As v ∈ L ∈ Um(A) and u �A
m v, we deduce that u ∈ L and we can write u =

up1
ap1

up2
ap2

· · · upk
apk

, where for each i = 1, . . . , k we have α(upi
) = α(vpi

) = Ai.
We define a compatible labeling ξ on T in the following way: if p /∈ S, i.e. χv(p) = ǫ,

then we put ξ(p) = ǫ and if p ∈ S then we put ξ(p) = upap. Now for each p ∈ T we have
α(ξ(p)) = α(χv(p)). Moreover, if χv(p) ∈ A then χv(p) = ap and vp = ǫ, which entails
up = ǫ and, consequently, ξ(p) = ap = χv(p). Thus the constructed compatible labeling

ξ on T is similar to χv. We know that ξ(λ) is the product of all ξ(p), for p ∈ T, in the
order ⊏. Since ξ(p) = ǫ for p /∈ S, this product is equal to up1

ap1
up2

ap2
· · · upk

apk
= u

where p1 ⊏ p2 ⊏ · · · ⊏ pk are all nodes from S. �

of Lemma 5.4. We prove the statement by an induction with respect to the structure of
T in bottom-up direction. This means that we want to prove for each p ∈ T that

(5.1)
(

ϕ(ξ(p)), ϕ(χv(p))
)

∈ TM .

First, if p is a leaf in T then χv(p) = χv(p) = ǫ, because for the height we have
hd(v) < K. Thus ξ(p) = χ(p) for this leaf p and (5.1) is trivial.

Now, let p be not a leaf and assume that (5.1) is true for nodes p1 and p2. We
distinguish between the cases (a)–(d) in the definition of χv which were used for the
definition of χv(p).

In case (a), we have χv(p) = ǫ which entails χv(pq) = ǫ for all q ∈ T such that pq ∈ T.
It follows that ξ(pq) = ǫ for all such q ∈ T. Consequently ξ(p) = ǫ and (5.1) is trivially
satisfied.

In case (b), we have χv(p) = x ∈ A, χv(p1) = χv(p2) = ǫ. Since ξ is similar to χv we
have ξ(p) = χv(p) = x and ξ(p1) = ξ(p2) = ǫ. Consequently ξ(p) = χv(p) = x and (5.1)
is again trivially satisfied.

In case (c), we have χv(p) = ǫ which implies ξ(p) = ǫ = χv(p). Then ξ(p) = ξ(p1)ξ(p2)
and χv(p) = χv(p1)χv(p2). Since

(

ϕ(ξ(p1)), ϕ(χv(p1))
)

∈ TM and
(

ϕ(ξ(p2)), ϕ(χv(p2))
)

∈
TM we obtain (5.1) as a consequence of the fact that TM is a stable relation on M .

In case (d), we have χv(p1) = x1, χv(p) = x2 · · · xn−1 and χv(p2) = xn, and con-
sequently χv(p) = x = x1x2 · · · xn. Moreover, ϕ(x1) = ϕ(x2) = · · · = ϕ(xn) = e
is an idempotent in M . Since ξ is similar to χv we have ξ(p) = w ∈ A∗ such that
α(w) = α(x2x3 · · · xn−1). This means that ϕ(w) ≡M ϕ(x2x3 · · · xn−1) = e and we have
(e · ϕ(w) · e, e) ∈ SM ⊆ TM . By induction hypothesis we have

(

ϕ(ξ(p1)), ϕ(χv(p1))
)

∈
TM , where the second coordinate is e because χv(p1) = x1 and ϕ(x1) = e. Thus
(

ϕ(ξ(p1)), e
)

∈ TM and, analogously,
(

ϕ(ξ(p2)), e
)

∈ TM . Since TM is a stable qua-
siorder we get the following sequence of TM -related elements of M . (Here we write TM

in an infix notation to make the presentation more readable.)

ϕ(ξ(p)) = ϕ(ξ(p1)) · ϕ(ξ(p)) · ϕ(ξ(p2)) TM e · ϕ(w) · e TM e = ϕ(x1x2 · · · xn) = ϕ(χv(p)).
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This achieves the proof of Lemma 5.4. �

From Lemmas 5.3 and 5.4 it immediately follows that

(s, t) = (ϕ(u), ϕ(v)) =
(

ϕ(ξ(T)), ϕ(χv(T))
)

∈ TM .

Thus we have proved the inclusion �M
m ⊆ TM and the proof of Proposition 5.2 is finished.

�

Combining Propositions 4.2, 4.4 and 5.2, we obtain the following characterization of
our new upper bound F.

Theorem 5.5. The pseudovariety F consists of all finite monoids M such that sω =
sωtsω whenever (s, t) ∈ TM .

Proof. By Proposition 4.4, which is a consequence of Proposition 5.2, the relation TM is
equal to the transitive closure of �M . Hence we get the statement by applying Proposi-
tion 4.2. �

From Theorem 5.5, we obtain the following main result of this paper.

Theorem 5.6. It is decidable whether a given finite monoid M belongs to the pseudova-
riety F.

Proof. It suffices to observe that the necessary and sufficient condition on a finite monoid
M to belong to F given by Theorem 5.5 can be effectively checked, which follows from
Lemma 4.3. �

Corollary 5.7. It is decidable whether a given finite monoid M belongs to the pseudova-
riety (B1 ©m Sl) ∩ F.

Proof. It is decidable whether M belongs to the pseudovariety B1 ©m Sl. Indeed, Straub-
ing’s description [23, 24] of this upper bound is obviously decidable; alternatively using
the description by the Mal’cev product, the decidability result is contained in [14]. Hence
the statement follows from Theorem 5.6. �

6. The new versus the old upper bound

By [2] there is a monoid M ∈ B1 ©m Sl such that M /∈ F. This means (B1 ©m Sl) 6⊆ F.
In this section we exhibit a monoid N ∈ F such that N /∈ B1 ©m Sl.

Let A = {a, b} and L be the language of all words that after every factor a2 contain
a factor b2. This means that L = (A∗a2(A∗b2A∗)c)c, where the exponent c stands for
complementation in A∗. Note that the language A∗b2A∗ = A∗b ∅∗bA∗ is of level 2. Hence
(A∗b2A∗)c is also of level 2 and consequently L is a language of level 3. We consider the
syntactic monoid N = ML of this language and show that N /∈ B1 ©m Sl and that N ∈ F.
Consequently, N /∈ V2.

In order to compute N , we first note that the minimal automaton of L is the one
described in Figure 1(a), where 1 is the initial state and 1 and 2 are the final states. It
is then routine to compute the presentation

N = 〈a, b : aba = a, bab = b, a3 = ba2 = a2, ab2 = b3 = b2〉

and the eggbox picture of the monoid N , which is represented in Figure 1(b), where the
∗’s mark the idempotents.

We show that N /∈ B1 ©m Sl. It is well known (see e.g. (8.1) at page 732 in [11]) that
B1 ©m Sl is defined by all pseudoidentities

(6.1) (uωw1v
ωw2u

ω)ωw1v
ωw4(u

ωw3v
ωw4u

ω)ω = (uωw1v
ωw2u

ω)ω(uωw3v
ωw4u

ω)ω
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1 2

34

a

b

b

a

a

b

b

a

(a)

∗1

a

∗ba

∗ab

b

∗a2 ∗a2b ∗b2 ∗b2a

(b)

Figure 1. Structural information about the language L

where u, v,wi ∈ FA (i = 1, . . . , 4) are such that α(u) = α(v) = α(w1) = α(w2) = α(w3) =
α(w4). We consider such a pseudoidentity where we put u = v = w3 = w4 = (xy)ω,
w1 = xyx2 and w2 = yxy2 to obtain the pseudoidentity

(6.2)
(

(xy)ωxyx2(xy)ωyxy2(xy)ω
)ω
xyx2(xy)ω =

(

(xy)ωxyx2(xy)ωyxy2(xy)ω
)ω

which is satisfied in B1 ©m Sl. To check that N fails the pseudoidentity (6.2), we simply
evaluate x = a and y = b in N , so that the left hand side of (6.2) evaluates to a2b while
the right hand side gives b2.

It remains to show that N ∈ F. To prove it, in view of Theorem 5.5, it suffices to show
that sω = sωtsω for every pair (s, t) ∈ TN . Recall that TN is the transitive closure of the
submonoid 〈SN 〉 of the monoid N ×N , where SN is defined in (4.2). We start by noting
that the equivalence relation ≡N has two classes, namely {1} and N \ {1}. Taking into
account that the only idempotents in the non-singleton ≡N -class that are not right zeros
are ab and ba, we conclude that the only non-diagonal pairs in SN are the following:
(b2, ab), (a2b, ab), (a2, ba), and (b2a, ba). Hence all non-diagonal pairs (s, t) ∈ TN are
such that s is a right zero, and so sω = sωtsω, thereby showing that N ∈ F.

The constructed monoid N and its properties established above yield the following
statement.

Proposition 6.1. F 6⊆ B1 ©m Sl. �

From the example from [2] and Proposition 6.1 we know that (B1©m Sl)∩F is a smaller
pseudovariety of monoids than each of B1 ©m Sl and F. Hence (B1 ©m Sl) ∩ F is currently
the best known decidable upper bound for V2. We leave as an open question whether
(B1 ©m Sl) ∩ F = V2.
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26. D. Thérien, Classification of finite monoids: the language approach, Theor. Comp. Sci. 14 (1981),

195–208.
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