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Abstract

We consider a compact 3-dimensional boundaryless Riemannian
manifold M and the set of divergence-free (or zero divergence) vector
fields without singularities, then we prove that this set has a C1-
residual (dense Gδ) such that any vector field inside it is Anosov or
else its elliptical orbits are dense in the manifold M . This is the flow-
setting counterpart of Newhouse’s Theorem 1.3 [17]. Our result follows
from two theorems, the first one is the 3-dimensional continuous-time
version of a theorem of Xia [21] and says that if Λ is a hyperbolic
invariant set for some class C1 zero divergence vector field X on M ,
then either X is Anosov, or else Λ has empty interior. The second one
is a version, for our 3-dimensional class, of Theorem 2 of Saghin-Xia
[20] and says that, if X is not Anosov, then for any open set U ⊆ M
there exists Y arbitrarily close to X such that Y t has an elliptical
closed orbit through U .

MSC 2000: Primary: 37D20, 37D30, 37C20; Secondary: 37C27.
keywords: Hyperbolic sets, Dominated splitting, Volume-preserving flows.

1 Introduction and statement of the results

In the beginning of the 1980s Mañé proved ([16]) that C1-robust transitivity
of diffeomorphisms in surfaces lead to hyperbolicity. One of the main ideas to
prove this result was the construction of C0-perturbations of 2-dimensional
linear systems (the dynamical cocycle) over the periodic points. He proved
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that under the presence of a weak form of hyperbolicity it is not possible
to perturb a periodic point in order to obtain a matrix with one Lyapunov
exponent zero (eigenvalue with real part equal to one). Mañé’s result was
extended for 3-flows by Doering ([12]), for 3-diffeomorphisms by Dı́az-Pujals-
Ures ([11]) obtaining partial hyperbolicity instead of hyperbolicity, for n-
diffeomorphisms n ≥ 4 by Bonatti-Dı́az-Pujals ([9]) obtaining an even weaker
form of hyperbolicity (dominated splitting) and finally the n-flows version of
this last result by Vivier ([22]) and its conservative (or volume-preserving)
counterpart ([5]).

If we consider the C1-generic dynamics of systems which preserves a given
volume form, then the ergodic theoretic results in the vein of these previous
ones are the proof of the Bochi-Mañé Theorem ([15, 6]), its generalization
to higher dimensional diffeomorphisms ([7]) and the 3-flows counterpart of
Bochi-Mañé’s theorem ([4]).

We recall that Arbieto-Matheus ([1]) proved that C1-robust transitive
volume-preserving 3-flows must be Anosov with the help of a very usefull per-
turbation lemma for zero divergence (or divergence-free) vector fields and also
that Ali-Horita ([13]) proved that robustly transitive symplectomorphisms
must be partially hyperbolic.

All these results are supported, as we already said, in C1-perturbations of
the action of the tangent map (or flow) along orbits. We also find other exam-
ples of C1-type results by going back to the seventies and recall a theorem of
Newhouse ([17]) fundamental in the generic theory of conservative diffeomor-
phism in surfaces. Newhouse’s theorem says that C1-generic area-preserving
diffeomorphisms in surfaces are Anosov or else the elliptical points are dense.
Note that the proof is strongly supported in the symplectic structure. Later,
in the 4-dimensional symplectomorphisms context, Arnauld presented in [2]
a refined version of [17]. Recently, in [20], Saghin-Xia generalized Arnauld
result for the multidimensional symplectic case. Our aim is to obtain similar
results in the context of volume-preserving 3-flows.

We end this introduction describing our main results here. We start by
generalizing Proposition 1.1 of [21] to the context of 3-dimensional C1 zero
divergence vector fields.

Unless we say something in contrary in this paper M will always denote
a 3-dimensional compact, connected, boundaryless and smooth Riemannian
manifold.

Theorem 1.1 Let Λ be a hyperbolic invariant set for some class C1 zero
divergence vector field X on M . Then either X is Anosov on M , or else Λ
has empty interior.
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Denote by µ the Lebesgue measure induced by the Riemannian volume
form on M . Let X1

µ(M) denote the set of all class C1 zero divergence vector
fields, i.e., those which preserve µ. We assume that X1

µ(M) is endowed with
the C1 topology. This topology is defined by a norm, which we shall denoted
by ‖ · ‖C1 . The subset of X1

µ(M), formed by those vector fields without
singularities, will be denoted here by X1

µ(M)∗. With this notation, we prove
that:

Theorem 1.2 Given ε > 0, p ∈ M , U ⊆ M an open set with p ∈ U , and
X ∈ X1

µ(M)∗ a vector field which is not Anosov, there is Y ∈ X1
µ(M)∗ such

that ‖X − Y ‖C1 < ε, and Y has an elliptic closed orbit through U .

In order to obtain the previous theorem, the main tool is to adapt the per-
turbation techniques developed in [3, 4] to the periodic context together with
the Pasting Lemma in [1]. From this result we are able to prove a dichotomy
which is the continuous-time version of Newhouse’s theorem in [17].

Theorem 1.3 There exists a C1-residual subset R ⊂ X1
µ(M)∗ such that, if

X ∈ R then X is Anosov or else the elliptical periodic points of X t are dense
in M .

2 Preliminaries

We consider Cr, r ≥ 1, class C1 zero divergence vector fields X : M → TM .
Integrating any C1 vector field X we obtain its associated flow X t, which is
a 1-parameter group of C1 conservative diffeomorphisms. The infinitesimal
generator of the flowX t is the vector fieldX say, dXt

dt
|t=s(p) = X(Xs(p)). The

flow X t has a tangent map DX t
p which is the solution of the non-autonomous

linear differential equation u̇(t) = DXXt(p) · u(t) called the linear variational
equation. Given a vector field X ∈ X1

µ(M), we say that x ∈ M is a regular
point if X(x) 6= 0. Otherwise, if X(x) = 0 then x is called a singularity of
X. We shall denote by R the set of all regular points of X. Let RX(x) be
the direction of the vector field. We define the normal sub-bundle at x ∈ R
by Nx = RX(x)⊥. Let ΠXt(x) be the orthogonal projection onto NXt(x). The
map

P t
X(x) : Nx −→ NXt(x)

v 7−→ ΠXt(x) ◦DX t(x) · v,
is called the linear Poincaré flow of X at x. Like the tangent map DX t

p, the
linear Poincaré flow P t

X(x) is solution of the following variational equation:

u̇(t) = ΠXt(x) ◦DXXt(p) · u(t).
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Given a linear map A let

‖A‖ := sup
v 6=~0

‖A(v)‖
‖v‖

denote the norm of A.
We say that a compact X t-invariant set Λ ⊂M , without singularities, is

uniformly hyperbolic for the linear Poincaré flow P t
X(x) if there is, over Λ,

a P t
X-invariant continuous splitting N = Nu ⊕ N s, and there are constants

C > 0 and γ ∈ (0, 1) such that for all x ∈ Λ we have:

‖P−t
X (x)|Nu

x
‖ ≤ Cγt , and also ‖P t

X(x)|Ns
x
‖ ≤ Cγt for all t ≥ 0.

Remark 2.1 It follows by Proposition 1.1 of [12] that the hyperbolicity for
the linear Poincaré flow, over a compact set, is equivalent to the hyperbolicity
of the tangent flow over the same set.

Next we recall a weaker form of uniform hyperbolicity which will be very
useful to prove our results. We say that a compact X t-invariant set Λ ⊂ M
has dominated splitting, or uniformly projective hyperbolicity, for the linear
Poincaré flow of the vector field X if there is, over Λ, a P t

X-invariant contin-
uous splitting N = Nu ⊕ N s, and there are constants C > 0 and γ ∈ (0, 1)
such that for all x ∈ Λ we have:

‖P t
X(x)|Ns

x
‖

‖P t
X(x)|Nu

x
‖ ≤ Cγt for all t ≥ 0. (1)

In the presence of a dominated splitting both sub-bundles may expand. In
such case, Nu expands more than N s. It may also happen that both sub-
bundles contract, in which caseNu contracts less thanN s. For a complete de-
scription of dominated splitting structures see [10] section B.1. The following
simple lemma give us an equivalent characterization of uniformly projective
hyperbolicity. We leave the proof to the reader.

Lemma 2.1 Let Λ ⊂ M be a compact X t-invariant set. Then Λ is uni-
formly projectively hyperbolic if and only if there is m ∈ N such that

‖Pm
X (x)|Ns

x
‖

‖Pm
X (x)|Nu

x
‖ ≤ 1/2 for all Λ. (2)

When the condition (2) is satisfied we shall also say that Λ has m-
dominated splitting, and we will refer tom as the domination time. Lemma 2.1
says that we may either consider the pair of constants (C, γ), or else the pair
(m, 1

2
), to characterize uniformly projective hyperbolicity.
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We denote by Per(X t) the set of all periodic points ofX t, and by Perτ (X
t)

the subset of periodic points with period less or equal than τ . Given p ∈
Per(X t), the real number

λu(p) := lim
t→±∞

1

t
log ‖P t

X(p)‖

is called the upper Lyapunov exponent of the orbit X t(p). If this number is
zero, then, by conservativeness, p is an elliptical periodic point. Otherwise,
the real eigenvalues σ±1 of the map P τ

X(p), where τ is the period of p, satisfy

eλu(p)τ = |σ| > 1 > |σ−1| = e−λu(p)τ .

Let Perhyp(X
t) denote the subset of all hyperbolic periodic points in Per(X t).

Note that any given periodic orbit in Perhyp(X
t) has dominated splitting, but

the domination time m may be very large. Hence, to see the hyperbolic be-
havior of an orbit in Perhyp(X

t) we may have to consider large iterates. The
function m : Perhyp(X

t) → N is in general unbounded. Also, the weak hyper-
bolic behavior relates with the splitting angle being close to zero. Clearly,
given a uniformly hyperbolic invariant set Λ ⊂ Perhyp(X t), the splitting
angle, between Nu and N s, is bounded away from zero over Λ. This tran-
versality follows from the continuity of the splitting N = Nu ⊕N s, and the
compactness of M . Given a vector field X ∈ X1

µ(M), we define

∆m(X) =

{
x ∈ Perhyp(X

t) :
‖Pm

X (x)|Ns
x
‖

‖Pm
X (x)|Nu

x
‖ ≥

1

2

}
,

and

Λm(X) =

{
x ∈ Perhyp(X

t) :
‖Pm

X (X t(x))|Ns
x
‖

‖Pm
X (X t(x))|Nu

x
‖ ≤

1

2
, ∀ t ≥ 0

}
.

By definition, the closure of Λm(X) has m-dominated splitting, and, by con-
servativeness, nonexistence of singularities and the 3-dimensionality, it is a
hyperbolic invariant set. Of course the set Per(X t) decomposes as the dis-
joint union of Λm(X) with the superset of ∆m(X) saturated by the flow:
∪

t∈R
X t(∆m(X)).

We recall the definition of flowbox along a regular orbit segment. Take
p ∈ Per(X t), of period ≥ τ , and the standard Poincaré map based at p, i.e.
the map, P t

X(p) : Vp ⊆ Np → NXt(p), where Np is a surface with tangent
plane Np and Vp is a small enough neighborhood of p. Using the implicit
function theorem, we get a function describing the first-return-time of orbit
trajectories from Vp to Np. Denote it by a : Vp → R. Given B ⊆ Vp, the set

F τ
X(p)(B) := {P t

X(p)(q) : q ∈ B, t = t(q) ∈ [0, a(q)[ },
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is called the time-τ length flowbox at p associated to the vector field X.

We end this section giving some notation for conservative linear differ-
ential systems. Any function A : R → sl(2,R) of class C1, i.e., a traceless
matrix function, defines a linear variational equation

u̇(t) = A(t) · u(t) (t ∈ R) . (3)

We denote by ΦA(t) ∈ SL(2,R) the fundamental solution of (3).

3 Some useful perturbation lemmas

To prove our results in the conservative setting it will be necessary to perform
the perturbations in this context, so the following two lemmas will be central:

Lemma 3.1 (Conservative flowbox theorem) Given a vector field X ∈ Xs
µ(M),

s ≥ 2, and τ > 0 there is some C = C(τ) > 0 such that for any arc of regular
orbit Γτ

X(x) := {X t(x) : 0 ≤ t ≤ τ} of length τ , there exists a Cs-conservative
change of coordinates Ψ from X into T = (1, 0, 0), defined over a neighbor-
hood V of Γτ

X(x), such that ‖Ψ‖Cs ≤ C on V .

Proof: See [4] Lemma 3.4. tu

Lemma 3.2 (Arbieto-Matheus Pasting Lemma) Given ε > 0 there exists
δ > 0 such that if X ∈ X∞

µ (M), K ⊂ M is a compact set and Y ∈ X∞
µ (M)

is δ-C1-close to X in a small neighborhood U ⊃ K, then there exist Z ∈
X∞

µ (M), V and W with K ⊂ V ⊂ U ⊂ W such that:

1) Z|V = Y ;

2) Z|int(W c) = X;

3) Z is ε-C1-close to X.

Proof: See [1] Theorem 3.1. tu
Given any divergence-free vector field X, any regular point p ∈ M and

t ∈ R it is clear that the linear Poincaré flow P t
X(p) : Np → NXt(p) satisfy

the equality:
| detP t

X(p)| · ‖X(X t(p))‖ = ‖X(p)‖. (4)

Thus the linear differential system P t
X based inX t is modified area-preserving,

cf. [3] Section 2.1. Let p ∈M be a regular point and Γτ
X(p) be an injective

orbit segment, where τ is less than the period of p in case p is periodic.
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Define γ : [0, τ ] → M to be the flow parameterization of Γτ
X(p), γ(t) =

X t(p). We denote by NR the normal bundle to the trajectories of the flow
X t, over the invariant set R of all regular points. Let Nγ = γ∗NR be the
pull-back by γ, which has fiber Nγ(t) at each base point t ∈ [0, τ ]. The linear
Poincaré flow P t

X on the normal bundle NR induces the flow of linear maps
P t

γ(s) = P t
X(γ(s)), on the restricted normal bundle Nγ. From (4), we get the

following conservativeness relation for this restricted linear flow

| detP t
γ(s)| · ‖γ′(s+ t)‖ = ‖γ′(s)‖. (5)

Now, the linear bundle Nγ is trivial. We can define an explicit linear
bundle isomorphism

Ψ : [0, τ ]× R2 → Nγ, such that Ψ(t, x, y) = (t, ψt(x, y)) ,

where for each t ∈ [0, τ ], ψt : R2 → Nγ(t) is a linear map with determinant,
i.e., volume dilatation coefficient, equal to 1/‖γ′(t)‖. Such family of linear
maps ψt is not unique. To define one take any non vanishing section η(t)
of Nγ, and normalize it so that ‖η(t)‖ = 1/‖γ′(t)‖ for all t ∈ [0, τ ]. Then
ψt : R2 → Nγ(t) may be defined by

ψt(1, 0) = η(t) and ψt(0, 1) = η(t)× γ′(t) .

Using the isomorphism Ψ we can conjugate the restricted linear flow P t
γ on

Nγ to a linear flow Lt
γ on the constant bundle [0, τ ]×R2. Defining the linear

maps, Lt(s, u, v) = ( s+ t, Mt(u, v) ), with

Mt(u, v) = (ψs+t)
−1 ◦ P t

γ(s) ◦ ψs(u, v) ,

it is clear that they form a linear flow, in the sense that whenever s, s + r
and s + r + t are in [0, τ ], Lt+r

γ (s) = Lt
γ(s + r) ◦ Lr

γ(s). From (5), it follows
that all linear maps Mt have determinant one. Therefore,

Lemma 3.3 The linear maps Lt form a volume-preserving flow.

In the next lemma we consider a change of coordinates useful to perform
volume-preserving perturbations of the linear Poincaré flow along a periodic
orbit. We shall denote by L the zero divergence vector field associated to the
linear flow Lt.

Lemma 3.4 Given a vector field X ∈ Xs
µ(M), s ≥ 2, and τ > 0 there is

some C = C(τ) > 0 such that for any arc of regular orbit Γτ
X(x) of length τ ,

there exists a conservative Cs diffeomorphism Ψ, defined over a neighborhood
of Γτ

X(x), such that L = Ψ∗X and ‖Ψ‖Cs ≤ C.
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Proof: By Lemma 3.1 there exists a conservative C1 diffeomorphism Ψ1

such that T = (Ψ1)∗X, where T is a trivial vector field T = (1, 0, 0). Now
applying the same result we find a conservative Cs diffeomorphism Ψ2 such
that T = (Ψ1)∗L. Finally, we define Ψ := Ψ−1

2 ◦ Ψ1. Hence detDΨ =
detDΨ−1

2 . detDΨ1 = 1. tu
In this lemma, the constant C(τ) grows exponentially with τ , but we

shall always use it with τ = 1. In order to make a lengthy perturbation along
some large periodic orbit, instead of doing a single (and costly) perturbation,
we split the period into many time-one disjoint intervals and then perform
several disjointly supported (local) perturbations. The global perturbation
size is small, because it is just the maximum size of all local perturbations.
All perturbations will be carried out in the linearizing co-ordinates provided
by Lemma 3.4, after which lemma 3.2 is used to extend conservatively the
linear vector field into a zero divergence vector field that coincides with the
original vector field outside a small neighbourhood of the periodic orbit.

Let Rξ denote the ξ-angle rotation in any Euclidean 2-plane.

Lemma 3.5 Given a hyperbolic matrix A ∈ SL(2,R), let θ = ∠(Es, Eu) be
the angle between matrix A eigen-directions. Assume the rotation Rθ of angle
θ takes the unstable direction onto the stable direction of A, i.e., Rθ E

u = Es.
Then the matrix ARθ is elliptic.

Proof: Take a hyperbolic matrix A ∈ SL(2,R). Let θ = ∠(Es, Eu) be the
angle between the eigen-directions of matrix A, and set B = ARθ. Consider
the action of matrices A and B on the projective line P1 = R/π Z, described
by the diffeomorphisms fA : P1 → P1 and fB : P1 → P1. Lift these maps to
diffeomorphisms f̃A : R→ R and f̃B : R→ R such that f̃A(x+π) = f̃A(x)+π
and f̃B(x + π) = f̃B(x) + π, for all x ∈ R. Notice that both f̃A and f̃B are
increasing functions, since A and B have determinant one. The definition
of θ shows that the lifting f̃B can be chosen to satisfy the relation f̃B(x) =
f̃A(x + θ), for all x ∈ R. Since A is hyperbolic, fA has two fixed points: an
expanding fixed point xu, and a contractive fixed point xs. We can choose the
lifting f̃A so that it has two families of fixed points, xu+k π and xs+k π, with
k ∈ Z, and we may assume the fixed points xs, xu ∈ R satisfy |xs − xu| = θ.
In order to prove that B is elliptic it is enough to show that fB has non
zero rotation number, which amounts to say that f̃B(x)−x keeps a constant
sign as x runs through R. Two cases may occur: xs < xu and xu < xs.
Assume first that xs < xu. Then −θ < f̃A(x)− x < 0 for all x ∈]xs, xu[, and
f̃A(x)− x > 0 for all x ∈]xu, xs + π[. This implies that f̃A(x)− x > −θ, for
all x ∈ R. Therefore, f̃B(x) − x = f̃A(x + θ) − (x + θ) + θ > −θ + θ = 0,
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for every x ∈ R, proving that B is elliptic. Assume now that xu < xs. In
this case 0 < f̃A(x) − x < θ for all x ∈]xu, xs[, and f̃A(x) − x < 0 for every
x ∈]xs, xu + π[. But this implies that f̃A(x) − x < θ, for all x ∈ R. Thus,
f̃B(x) − x = f̃A(x + θ) − (x + θ) + θ < −θ + θ = 0, for every x ∈ R, which
proves that B is elliptic. tu

Lemma 3.6 Given C > 0 and ε > 0 there is some δ > 0 such that for
any smooth function A : R → sl(2,R) with ‖A(t)‖ ≤ C for t ∈ R and
a matrix S ∈ SL(2,R) with ‖S − Id‖ ≤ δ there exists a smooth function
B : R→ sl(2,R) such that:

1) ‖A(t)−B(t)‖ ≤ ε for all t ∈ R,

2) A(t) = B(t) for all t /∈]0, 1[, and

3) ΦB(1) = ΦA(1) · S.

Proof: Taking δ > 0 small enough we may assume that S = eQ for some
traceless matrix Q ∈ sl(2,R). Consider now a bump-function α : R → [0, 1]
such that α(t) = 0 for all t ≤ 0, α(t) = 1 for all t ≥ 1 and α′(t) < 2 for
all t ∈ R. We define Φ : R → SL(2,R), Φ(t) = ΦA(t) · eα(t) Q. By taking
derivatives with respect to t we obtain:

Φ′(t) = (ΦA(t) · eα(t) Q)′ =

= Φ′
A(t) · eα(t) Q + α′(t) ΦA(t) ·Q · eα(t) Q =

= A(t) · ΦA(t) · eα(t) Q +

+ α′(t) ΦA(t) ·Q · ΦA(t)−1 · ΦA(t) · eα(t) Q =

= [A(t) +H(t)] · ΦA(t) · eα(t) Q

= [A(t) +H(t)] · Φ(t),

where H(t) = α′(t) ΦA(t) · Q · ΦA(t)−1. Note that Tr(H(t)) = Tr(Q) = 0.
Therefore, we have a map B : R → sl(2,R) defined by B(t) = A(t) +H(t),
such that Φ(t) = ΦB(t) for all t ∈ R. In particular, for t = 1 we have
ΦB(1) = ΦA(1) · eα(1) Q = ΦA(1) · S. Because α′(t) is supported in [0, 1] we
get property 2). Finally, take δ > 0 small enough so that for ‖S − Id‖ ≤ δ
the unique matrix Q ∈ sl(2,R) such that S = eQ satisfies ‖Q‖ ≤ e−2 C ε/2.
Then

‖B(t)− A(t)‖ = ‖H(t)‖
≤ |α′(t)| ‖ΦA(t)‖ ‖Q‖ ‖ΦA(t)−1‖
≤ 2 e2 C ‖Q‖ ≤ ε .

tu
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Remark 3.1 In order to obtain a similar conclusion like in lemma 3.6 but
this time such that in 3) we have ΦB(1) = S·ΦA(1) we just switch ΦA(t)·eα(t) Q

by eα(t) Q · ΦA(t) and proceed analogously.

Lemma 3.7 Given ε > 0 and X ∈ X∞
µ (M) there exists δ > 0 such that

given ξ ∈] − δ, δ[ and given a periodic point p ∈ M with period τ > 1, there
is some perturbation Y ∈ X1

µ(M) of X such that:

i) ‖X − Y ‖C1 < ε;

ii) X = Y outside F τ
X(p)(B(p, r));

iii) P τ
Y (p) = P τ

X(p) ◦Rξ.

Proof: We first use Lemma 3.4 and assume that our flow is the linear one
given by Lemma 3.3. Consider the linear variational equation associated to
the linear Poincaré flow, and let A : R→ sl(2,R) be the equation coefficient
matrix. Then ‖A(t)‖ ≤ C for some constant C > 0, independent of the
chosen periodic orbit. Take δ > 0 given by the previous lemma, and assume
that ξ ∈]− δ, δ[. Consider the rotation

Rξ :=

(
cos(ξ) − sin(ξ)
sin(ξ) cos(ξ)

)
.

which satisfies ‖Rξ−Id‖ ≤ |ξ| ≤ δ. By lemma 3.6, there is a smooth function
B : R→ sl(2,R) satisfying 1), 2) and 3): ΦB(1) = ΦA(1) ·Rξ. By Lemma 3.2
we can extend conservatively the linear vector field induced by B obtaining
the required divergence-free vector field Y in the conditions of the lemma.
tu

Remark 3.2 By Remark 3.1 the same conclusion of Lemma 3.7 holds with
P τ

Y (p) = Rξ ◦ P τ
X(p) in the place of iii).

Proposition 3.8 (Small angle perturbation) Given ε > 0 and X ∈ X1
µ(M),

there is some θ > 0 such that given any periodic hyperbolic point p ∈M with
period τ > 1, and such that ](Nu

q , N
s
q ) < θ for some q = X t(p), 0 ≤ t ≤ τ ,

then there is some perturbation Y ∈ X1
µ(M) of X such that ‖X − Y ‖C1 < ε

and p is an elliptical periodic point for Y t with period τ .
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Proof: We may assume thatX ∈ X∞
µ (M) by some preliminary perturbation

using Zuppa’s Theorem ([23]). This proposition follows from Lemmas 3.5
and 3.7. tu

Now we consider a simple lemma which relates the usual norm and the
norm of the maximum. Given x, y ∈ M and T : R2

x → R2
y any linear map

represented by the matrix

T =

(
a11 a12

a21 a22

)
, (6)

with respect to the invariant 1-dimensional splitting E1
x ⊕ E2

x and E1
y ⊕ E2

y .
We define the norm of the maximum by ‖T‖∗ = max{|a11|, |a12|, |a21|, |a22|}.
Lemma 3.9 Given any linear map T as above, we suppose that ](E1

σ, E
2
σ) >

θ for σ = x, y, then T satisfies:

1) ‖T‖ ≤ 4 sin−1(θ)‖T‖∗.
2) ‖T‖∗ ≤ sin−1(θ)‖T‖.

Proof: See [7] Lemma 4.5. tu

Lemma 3.10 Given X ∈ X∞
µ (M), ε > 0 and θ > 0. There exists m(ε, θ) ∈

N such that if p ∈M is a periodic hyperbolic point, with period τ > m, such
that:

a) ](Nu
xt
, N s

xt
) > θ for all xt := X t(p), 0 ≤ t ≤ τ and

b) for some xt = X t(p), with 0 ≤ t ≤ τ , we have xt ∈ ∆m(X),

then there exists a conservative C1 perturbation Y of X, and a point q =
Xs(p) in the periodic orbit through p, such that:

i) ‖X − Y ‖C1 < ε;

ii) X = Y outside a small neighbourhood of {X t(q) : 0 ≤ t ≤ m};
iii) Pm

Y (Nu
q ) = N s

Xm(q).

Proof: The proof is essentially the same of Lemma 3.15 of [4], nevertheless
we outline it where. Using a) we can consider that the hyperbolic splitting
along the orbit is orthogonal, by just using an area-preserving change of
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coordinates with norm bounded by sin−1(θ). We can choose a constant c =
c(X, ε, θ) > 0 such that if

∃r, t ∈ R : 0 ≤ r + t ≤ m such that
‖P r

X(xt)|Ns
xt
‖

‖P r
X(xt)|Nu

xt
‖ > c (7)

then, there is a direction v ∈ Nxt \ {0} with

](v,N s(xt)) < δ and ](P r
X(xt) · v,Nu(xt+r)) < δ,

where δ = δ(X, ε) is given by Lemma 3.7. In Case (7) we proceed with
two ε-small perturbations: one using Lemma 3.7 which sends Nu

xt
onto v ·R,

another following Remark 3.2 which sends P r
X(xt)(v · R) onto N s

xt+r
, and we

are over.
Otherwise, if (7) is false, then there exists d = d(c) ∈ R such that for all

r ∈ [0,m] we have:

d−1 ≤ ‖P r
X(p)|Ns

p
‖

‖P r
X(p)|Nu

p
‖ ≤ d. (8)

We take m = m(ε, θ) sufficiently large compared with d. Then we can com-
bine m small rotations with disjoint supports and ε-small, obtained through
Lemma 3.7, to achieve the desired effect. Notice that the fact that the per-
turbations were disjointly supported guarantees that the size of the combined
perturbation is the maximum and not the sum of all the m perturbations.
tu

Lemma 3.11 Let X ∈ X∞
µ (M), ε > 0 and θ > 0 be given. Let m = m(ε, θ) ∈

N be given by Lemma 3.10. Then there exist K = K(θ,m) ∈ R such that
given any hyperbolic periodic orbit γ with period τ > m satisfying a) and b)
of Lemma 3.10, then there exists a conservative C1-perturbation Y of X such
that:

1. ‖X − Y ‖C1 < ε;

2. ‖P τ
Y (q)‖ < K, for some q ∈ γ.

Proof: Let j := ‖DX‖ + 1. Notice that for every small enough C1-
perturbation Z of X, and any point z ∈ M , we have ‖P t

Z(z)‖ ≤ ej t. By
lemma 3.9 we also have ‖P t

Z(z)‖∗ ≤ (sin−1 θ) ej t, where the norm ‖ · ‖∗
refers to the P τ

X-invariant decompositions at the points z and X t(z). We set
K(θ,m) = 4 (sin−2 θ) ej m. Once again we assume that our flow is linear by
using Lemma 3.4. Take any hyperbolic periodic orbit γ with period τ > m.

12



Let Y ∈ X∞
µ (M) be the perturbation provided by Lemma 3.10, corresponding

to the same ε and θ of this lemma. Without loss of generality, we may assume
that the point q given in Lemma 3.10 is q = p. Take matrix representations
diagonalizing the linear Poincaré flow. Notice that, by a) of Lemma 3.10,
this representation is conjugated to the original one by a conservative change
of coordinates with norm bounded by sin−1(θ). Given s ∈ [0, τ − m] let
q = X−s(p). Take φ(t), α(t) and σ > 1 such that

P t
X(q) =

(
φ(t) 0
0 φ−1(t)

)
, P τ

X(q) =

(
σ 0
0 σ−1

)
and A(q, t) =

(
α(t) 0
0 −α(t)

)
,

where A(q, t) is the infinitesimal generator of P t
X(q), that is,

d

dt
P t

X(q) = A(q, t) · P t
X(q) .

Clearly, φ(t) = e
R t
0 α(r)dr and φ(τ) = e

R τ
0 α(r)dr = σ. Notice also that for

t ∈ [0, τ ], φ(t) = ‖P t
X(q)‖∗ ≤ (sin−1 θ) ej t.

We consider two cases:
If σ ≤ (sin−1 θ) ej m consider the P τ

X(q)-invariant decomposition of R2.
With respect to such splitting ‖P τ

X(q)‖∗ = σ. Then, applying Lemma 3.9 1),
we have

‖P τ
X(q)‖ ≤ 4 (sin−2 θ) ej m = K ,

and there is no need to perturb X.
Otherwise, if σ > (sin−1 θ) ej m, we define the continuous function

Θ(t) : [0, τ −m] −→ R
t 7−→ ∫ t

0
α(r)dr − ∫ τ

t+m
α(r)dr.

In this case, we have

eΘ(0) = e−
R τ

m α = e
Rm
0 α−log σ =

φ(m)

σ
≤ (sin−1 θ) ej m

σ
< 1 ,

which implies Θ(0) < 0. We also have

eΘ(τ−m) = e
R τ−m
0 α = elog σ−R τ

τ−m α =
σ

e
R τ

τ−m α
≥ σ

(sin−1 θ) ej m
> 1 ,

which implies that Θ(τ −m) > 0. By the intermediate value theorem, there
exists s ∈ [0, τ −m] such that

∫ s

0

α(r)dr =

∫ τ

s+m

α(r)dr. (9)

13



We fix such an s ∈ [0, τ −m] and q = X−s(p). Since

P τ
X(q) = P τ−s−m

X (Xm(p)) ◦ Pm
X (p) ◦ P s

X(q)

we have that P τ
X(q) has the following matrix product representation

(
e
R τ

s+m α(r)dr 0

0 e−
R τ

s+m α(r)dr

) (
e
R s+m

s α(r)dr 0

0 e−
R s+m

s α(r)dr

)(
φ(s) 0

0 φ−1(s)

)
.

Recall that Y , given by Lemma 3.10, is a conservative perturbation of X,
supported in {X t(p) : t ∈ [0,m]}, and such that Pm

Y (Nu
p ) = N s

Xm(p). There-
fore

Pm
Y (p) =

(
0 m1

m2 m3

)
,

for some constants mi, i = 1, 2, 3. A simple computation (one just replaces
the matrix above as the middle matrix in the previous three-fold matrix
composition) shows that P τ

Y (q) = P τ−s−m
X (Xm(p)) ◦ Pm

Y (p) ◦ P s
X(q) is given

by

P τ
Y (q) =

(
0 m1φ

−1(s)e
R τ

s+m α(r)dr

m2φ(s)e−
R τ

s+m α(r)dr m3φ
−1(s)e−

R τ
s+m α(r)dr

)
=

(
0 m1

m2 m′
3

)
,

with |m′
3| = |m3| e−

R s
0 α−R τ

s+m α ≤ |m3|. We have used (9) here. By Lemma 3.9
2)

max
i=1,2,3

|mi| = ‖Pm
Y (p)‖∗ ≤ sin−1(θ)‖Pm

Y (p)‖ ≤ sin−1(θ)ejm ,

which implies that ‖P τ
Y (q)‖∗ ≤ maxi=1,2,3 |mi| ≤ sin−1(θ)ejm. Finally, using

Lemma 3.9 1) we get

‖P τ
Y (q)‖ < 4 sin−1(θ)‖P τ

Y (q)‖∗ < 4 sin−2(θ)ejm = K,

and the lemma is proved.

tu

Lemma 3.12 Let X ∈ X∞
µ (M), ε > 0 and θ > 0. Let m = m(ε/3, θ) ∈ N

be given by Lemma 3.10. There exists T > m such that given any hyperbolic
periodic point q with period τ > T and satisfying a) and b) of Lemma 3.10,
then there exists a conservative C1 perturbation Z of X such that

1. ‖X − Z‖C1 < ε;

2. q is an elliptical point for Z, with the same period τ .

14



Proof: Let the data X ∈ X∞
µ (M), ε > 0 and θ > 0 be given. Set

j := ‖DX‖+1. Let C > 0 be an upper bound for the norm of the infinitesimal
generator of the Poincaré linear flow along any arc of regular orbit with length
≤ 1. The constant C may be taken to be the product of j with the constant
provided by Lemma 3.4 for s = 2 and length one arcs. Take δ := δ(C, ε/3)
given by Lemma 3.6. Recall that m := m(ε/3, θ) ∈ N was taken according to
Lemma 3.10. Take K := K(θ,m) according to Lemma 3.11. Consider now
the following function. For each θ > 0 and α > 0 let ρθ(α) be the Euclidean
norm ‖eQ − I‖, for all matrices Q ∈ sl(2,R) with eigenvalues {α,−α}, and
angle θ between its eigen-spaces. It is clear that all such matrices are or-
thogonally conjugated, and, therefore, have the same Euclidean norm. This
function has the following properties:

1. Fixing θ > 0, the function α 7→ ρθ(α) is a strictly increasing diffeomor-
phism from ]0,+∞[ onto ]0,+∞[.

2. Fixing α > 0, the function θ 7→ ρθ(α) is a strictly decreasing diffeomor-
phism from ]0, π/2[ onto ]α,+∞[.

Now, for δ and θ fixed above, set α := α(δ, θ) = (ρθ)
−1(δ). By definition, the

number α > 0 has the following property: Given any θ1 ≥ θ, we can pick
hyperbolic matrices Q ∈ sl(2,R) such that:

1. ‖eQ − I‖ ≤ δ;

2. α and −α are the eigenvalues of Q; and

3. Q has an angle θ1 between its eigen-spaces.

Finally, we define T := blogK/αc + 2, where b·c denotes the integer part
function. Now, let γ = {X t(p) : 0 ≤ t ≤ τ} be any hyperbolic periodic orbit,
with period τ ≥ T , satisfying a) and b) of Lemma 3.10. Let Y ∈ X∞

µ (M)
be the vector field provided by Lemma 3.11, satisfying (1) ‖X −Y ‖C1 < ε/3
and (2) ‖P τ

Y (q)‖ < K for some point q ∈ γ. Because τ > T , and T is
an integer, we can take T disjoint time-one intervals [ti, ti + 1] inside the
period [0, τ ], i.e., 0 ≤ t1 < t1 + 1 < t2 < t2 + 1 < . . . < tT < tT + 1 ≤ τ .
Consider the corresponding points pi := X ti(q) and p′i := X1(pi) = X ti+1(q).
Take the linear flow maps Φi = P 1

Y (pi) : R2
pi
→ R2

p′i
and let θi ≥ θ be

the angle between the eigen-spaces Nu
pi

and N s
pi

of the P τ
Y (pi), for each i =

1, . . . , T . Take now Qi ∈ sl(2,R) such that ‖eQi − I‖ ≤ δ, and Qi has eigen-
space Nu

pi
with eigenvalue −α, and has eigen-space N s

pi
with eigenvalue α.

Notice these eigen-spaces do make an angle equal to θi. The product linear
map Φi · et Qi : R2

pi
→ R2

p′i
takes the decomposition R2

pi
= Nu

pi
⊕ N s

pi
onto
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the decomposition R2
p′i

= Nu
p′i
⊕ N s

p′i
. Moreover, we have ‖Φi · et Qi|Nu

pi
‖ =

‖Φi|Nu
pi
‖ e−α t and ‖Φi · et Qi|Ns

pi
‖ = ‖Φi|Ns

pi
‖ eα t. Feeding Lemma 3.6 with

the input data C, ε/3 and Si(t) = et Qi , t ∈ [0, 1], and then combining it
with the pasting lemma 3.2, we get a conservative C1 vector field Zi(t) such
that ‖Y −Zi(t)‖ ≤ ε/3, Y = Zi(t) outside a small neighbourhood of the arc
[pi, p

′
i] ⊂ γ, and P 1

Zi(t)
(pi) = P 1

Y (pi) · et Qi . But since all supports of these

perturbations are disjoint, we can glue them into a single conservative C1

perturbation Z̃(t) of X such that ‖Y − Z̃(t)‖ ≤ ε/3 and Y = Z̃(t) outside a
small neighbourhood of γ. By way of construction, the vector field Z̃(t) has
the same invariant decomposition as Y . Moreover, we have

ϕ(t) := ‖P τ
Z̃(t)

(q)|Nu
q
‖ = ‖P τ

Y (q)|Nu
q
‖ e−t T α < K e−t T α , (10)

while, by conservative symmetry, ‖P τ
Z̃(t)

(q)|Ns
q
‖ > K et T α. For t = 0 we have

ϕ(0) = ‖P τ
Z̃(t)

(q)|Nu
q
‖ > 1. But since T > logK/α, we have K e−T α < 1, and

then for t = 1, ϕ(1) < K e−T α < 1. Therefore, there is some t ∈]0, 1[ such
that ϕ(t) = 1. For such t0 we must have P τ

Z̃(t0)
(q) = I.

Finally, applying Lemma 3.7 to the periodic orbit γ of Z̃(t0), and to
some ξ > 0 (any will do), we get a conservative C1 perturbation Z of Z̃(t0)
such that ‖Z − Z̃(t0)‖ ≤ ε/3 and γ is an elliptic periodic orbit of Z. The
perturbation Z satisfies

‖X − Z‖ ≤ ‖X − Y ‖︸ ︷︷ ︸
≤ε/3

+ ‖Y − Z̃(t0)‖︸ ︷︷ ︸
≤ε/3

+ ‖Z̃(t0)− Z‖︸ ︷︷ ︸
≤ε/3

≤ ε ,

which completes the proof. tu
Finally by Lemmas 3.10, 3.11 and 3.12 we obtain:

Proposition 3.13 (Large angle perturbation) Given ε > 0, θ > 0 and X ∈
X1

µ(M), there exist m ∈ N and T ∈ N (with T >> m) such that given a
periodic hyperbolic point p ∈M with period τ > T , satisfying the conditions:

i) ](Nu
q , N

s
q ) ≥ θ for all q = X t(p), 0 ≤ t ≤ τ , and

ii) the orbit X t(p) has not m-dominated splitting, i.e., q = X t(p) ∈
∆m(X) for some 0 ≤ t ≤ τ ,

then there is some perturbation Y ∈ X1
µ(M) of X such that ‖X − Y ‖C1 < ε

and p is an elliptical periodic point for Y t with period τ .
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4 Proof of the main theorems

There are several different ways of defining the topological dimension of topo-
logical space X, which we shall denote by dim(X). For separable metrizable
spaces all these definitions are equivalent. The topological dimension is, of
course, a topological invariant. Reference [14] is a beautiful book on this
subject. We need here a theorem of Edward Szpilrajn relating topological
dimension with Lebesgue measure. See the proof in [14].

Theorem 4.1 (E. Szpilrajn) Given X ⊂ Rn, if X has zero Lebesgue mea-
sure then dim(X) < n.

Proof: (of Theorem 1.1) Let X be a class C1 zero divergence vector field on
a compact boundaryless Riemannian manifold M . Assume X is not Anosov.
Then, with a first small perturbation, we can assume that X is not in the
boundary of Anosov vector fields of M . By [23], we know that X2

µ(M) is
C1-dense in X1

µ(M), where µ stands for the Riemannian volume of M . Thus,
given ε > 0, we can take a class C2 vector field X1 ∈ X2

µ(M) such that ‖X −
X1‖C1 < ε and X1 is still not Anosov. Taking ε small enough, the vector field
X1 has an invariant hyperbolic set Λ1 which is homeomorphically equivalent
to Λ. By the 3-dimensional and continuous-time version of Theorem 14
of [8] (see [4] and the references therein) it follows that Λ1 has zero Lebesgue
measure, and, applying Theorem 4.1, dim(Λ1) < 3. Since Λ and Λ1 are
homeomorphic, we derive that dim(Λ) < 3. But we would have dim(Λ) = 3
in case Λ has non-empty interior. Therefore, Λ has empty interior. tu

Remark 4.1 Exactly the same argument can be used to prove Proposition
1 of [21], using Theorem 14 in [8]. Theorem 1.1 should also be true for n-
dimensional divergence-free vector fields by just adapting to the continuous-
time setting the Theorem 14 of [8].

Proof: (of Theorem 1.2) Let KS ⊂ X1
µ(M) be the residual set given by

Robinson’s conservative version of Kupka-Smale theorem, see [19]. Consider
also the residual set P given by Pugh’s general density theorem [18], say
of divergence-free vector fields X such that Per(X) = Ω(X) = M (where
the last equality follows by Poincaré recurrence). Take any vector field X ∈
X1

µ(M) which is not an Anosov. Through a first small perturbation we may,
and will, assume that X ∈ KS ∩ P and X is not Anosov. Take p ∈ U ⊆ M
where U is an open set. Now, given ε > 0 take θ = θ(ε,X) > 0 according to
Proposition 3.8, and m = m(ε, θ) ∈ N and T (m), satisfying Proposition 3.13.
We consider four cases:
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a) Some elliptic closed orbit of X goes through U .

b) All closed orbits of X which go through U are hyperbolic, and some
of them has a small angle, less than θ, between stable and unstable
directions.

c) All closed orbits of X which go through U are hyperbolic, with an-
gle between stable and unstable directions bounded from bellow by θ,
but some of them has not m-dominated splitting, i.e., it goes through
∆m(X).

d) All closed orbits of X which go through U are hyperbolic, with m-
dominated splitting, and with an angle between stable and unstable
directions bounded from bellow by θ.

In case a) there is nothing to prove, just let Y = X. Case b) follows
from Proposition 3.8. Analogously, case c) follows from Proposition 3.13.
Finally, we prove that case d) is impossible. Let Λ be the closure of all
closed orbits of X which go through U . From d) it follows that Λ has m-
dominated splitting. The dimension of M , plus the volume-preserving and
the absence of singularities assumptions, imply that Λ is hyperbolic for the
linear Poincaré flow, thus hyperbolic for the flow (see Remark 2.1). Because
X ∈ P , we must have U ⊆ Λ. By Theorem 1.1, then X must be Anosov,
which contradicts the assumption on X. tu

Let N be the complement of the C1-closure of Anosov systems in X1
µ(M),

and Φ be the subset of X1
µ(M)×M× R+ of all triples (X, x, ε) such that X

has a closed elliptic orbit going through the ball B(x, ε). This set is open,
because elliptic orbits are stable.

Given any open set U ⊆ N consider the following (also open) set

Φ(U , x, ε) = {Y ∈ U : (Y, x, ε) ∈ Φ } .

Lemma 4.2 Given ε > 0, p ∈ M and an open set U ⊆ N , Φ(U , p, ε) is an
open dense subset of U .

Proof: Follows by Theorem 1.2. tu

Proof: (of Theorem 1.3) Let (xn) be a sequence dense in M , and (εn)
a sequence of positive real numbers such that limn→∞ εn = 0. Defining
recursively

U0 = N and Un+1 = Φ(Un, xn, εn) (n ≥ 1)

18



the residual set R = ∩∞n=1Un is such that for all Y ∈ R, the elliptic closed
orbits of Y are dense in M . Denote by A the subset of all Anosov systems
in X1

µ(M). Then R̃ = A ∪ R is a residual subset of X1
µ(M), for which the

dichotomy of Theorem 1.3 holds. tu
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