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Finite automata have been used effectively in recent years to define infinite groups.
The two main lines of research have as their most representative objects the class of
automatic groups (including “word-hyperbolic groups” as a particular case) and automata
groups (singled out among the more general “self-similar groups”).

The first approach is studied in Section 1 and implements in the language of automata
some tight constraints on the geometry of the group’s Cayley graph. Automata are used to
define a normal form for group elements and to execute the fundamental group operations.

The second approach is developed in Section 2 and focuses on groups acting in a
finitely constrained manner on a regular rooted tree. The automata define sequential per-
mutations of the tree, and can even represent the group elements themselves.

The authors are grateful to Martin R. Bridson, François Dahmani, Rostislav I. Grig-
orchuk, Luc Guyot, and Mark V. Sapir for their remarks on a preliminary version of this
text.

1 The geometry of the Cayley graph

Since its inception at the beginning of the 19th century, group theory has been recognized
as a powerful language to capture symmetries of mathematical objects: crystals in the
early 19th century, for Hessel and Frankenheim [53, page 120]; roots of a polynomial, for
Galois and Abel; solutions of a differential equation, for Lie, Painlevé, etc. It was only
later, mainly through the work of Klein and Poincaré, that the tight connections between
group theory and geometry were brought to light.

Topology and group theory are related as follows. Consider a space X , on which a
group G acts freely: for every g 6= 1 ∈ G and x ∈ X , we have x · g 6= x. If the quotient
space Z = X/G is compact, then G “looks very much like” X , in the following sense:
choose any x ∈ X , and consider the orbit x ·G. This identifies G with a roughly evenly
distributed subset of X .

Conversely, consider a “nice” compact space Z with fundamental group G: then
X = Z̃, the universal cover of Z, admits a free G-action. In conclusion, properties
of the fundamental group of a compact space Z reflect geometric properties of the space’s
universal cover.

We recall that finitely generated groups were defined in §23.1: they are groups G
admitting a surjective map π : FA � G, where FA is the free group on a finite set A.

Definition 1.1. A groupG is finitely presented if it is finitely generated, say by π : FA �
G, and if there exists a finite subset R ⊂ FA such the kernel ker(π) is generated by the
FA-conjugates of R, that is, ker(π) = 〈〈R〉〉; one then has G = FA/〈〈R〉〉. These r ∈ R
are called relators of the presentation; and one writes

G = 〈A | R〉.

Sometimes it is convenient to write a relator in the form ‘a = b’ rather than the more
exact form ‘ab−1’.

Let G be a finitely generated group, with generating set A. Its Cayley graph C (G,A),
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introduced by Cayley [44], is the graph with vertex set G and edge set G × A; the edge
(g, s) starts at vertex g and ends at vertex gs.

In particular, the group G acts freely on C (G,A) by left translation; the quotient
C (G,A)/G is a graph with one vertex and #A loops.

Assume moreover that G is finitely presented, with relator set R. For each r =
r1 · · · rn ∈ R and each g ∈ G, the word r traces a closed path in C (G,A), starting at
g and passing successively through gr1, gr1r2, . . . , gr1r2 · · · rn = g. If one “glues” for
each such r, g a closed disk to C (G,A) by identifying the disk’s boundary with that path,
one obtains a 2-dimensional cell complex in which each loop is contractible — this is a
direct translation of the fact that the normal closure of R is the kernel of the presentation
homomorphism FA → G.

For example, consider G = Z2, with generating set A = {(0, 1), (1, 0)}. Its Cayley
graph is the standard square grid. The Cayley graph of a free group FA, generated by A,
is a tree.

More generally, consider a right G-set X , for instance the coset space H\G. The
Schreier graph C (G,X,A) of X is then the graph with vertex set X and edge set X×A;
the edge (x, s) starts in x and ends in xs.

1.1 History of geometric group theory

In a remarkable series of papers, Dehn [48–50], see also [51], initiated the geometric study
of infinite groups, by trying to relate algorithmic questions on a group G and geometric
questions on its Cayley graph. These problems were described in Definition 23.1.1, to
which we refer. For instance, the word problem asks if one can determine whether a path
in the Cayley graph of G is closed, knowing only the path’s labels.

It is striking that Dehn used, for Cayley graph, the German Gruppenbild, literally
“group picture”. We must solve the word problem in a groupG to be able to draw bounded
portions of its Cayley graph; and some algebraic properties of G are tightly bound to
the algorithmic complexity of the word problem, see §23.3.4. For example, Muller and
Schupp prove (see Theorem 23.3.9) that a push-down automaton recognizes precisely the
trivial elements of G if and only if G admits a free subgroup of finite index.

We consider now a more complicated example. Let Sg be an oriented surface of genus
g > 2, and let Jg denote its fundamental group. Recall that [x, y] denotes in a group the
commutator x−1y−1xy. We have a presentation

Jg = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉. (1.1)
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Let r = [a1, b1] · · · [ag, bg] denote the relator, and let R∗ denote the set of cyclic permu-
tations of r±1. The word problem in Jg is solvable in polynomial time by the following
algorithm: let u be a given word. Freely reduce u by removing all aa−1 subwords. Then,
if u contains a subword v1 such that v1v2 ∈ R∗ and v1 is longer than v2, replace v1 by
v−12 in u and repeat. Eventually, u represents 1 ∈ G if and only if it is the empty word.

The validity of this algorithm relies on a lemma by Dehn, that every nontrivial word
representing the identity contains more than half of the relator as a subword.

Incidentally, the Cayley graph of Jg is a tiling of the hyperbolic plane by 4g-gons,
with 4g meeting at each vertex.

Tartakovsky [122], Greendlinger [67, 68] and Lyndon [98, 99] then devised “small
cancellation” conditions on a group presentation that guarantee that Dehn’s algorithm
will succeed. Briefly said, they require the relators to have small enough overlaps. These
conditions are purely combinatorial, and are described in §24.1.3.

Cannon and Thurston, on the other hand, sought a formalism that would encode the
“periodicity of pictures” of a group’s Cayley graph. Treating the graph as a metric space
with geodesic distance d, already seen in §23.2.4, they make the following definition: the
cone type of g ∈ G is

Cg = {h ∈ G | d(1, gh) = d(1, g) + d(g, gh)}; (1.2)

the translate gCg is the set of vertices that may be connected to 1 by a geodesic passing
through g. Their intuition is that the cone type of a vertex v remembers, for points near v,
whether they are closer or further to the origin than v; for example, Z2 with its standard
generators has 9 cone types: the cone type of the origin (the whole plane), those of vertices
on the axes (half-planes), and those of other vertices (quadrants).

Thurston’s motivation was to get a good, algorithmic understanding of fundamental
groups of threefolds. They should be made of nilpotent (or, more generally, solvable)
groups on the one hand, and “automatic” groups on the other hand.

Definition 1.2. Let G = 〈A〉 be a finitely generated group, and recall that Ã denotes
A t A−1. The word metric on G is the geodesic distance in G’s Cayley graph C (G,A).
It may be defined directly as

d(g, h) = min{n | g = hs1 · · · sn with all si ∈ Ã},

and is left-invariant: d(xg, xh) = d(g, h). The ball of radius n is the set

BG,A(n) = {g ∈ G | d(1, g) 6 n}.

The growth function of G is the function

γG,A(n) = #BG,A(n).

The growth series of G is the power series

ΓG,A(z) =
∑
g∈G

zd(1,g) =
∑
n>0

γG,A(n)zn(1− z).

Growth functions are usually compared as follows: γ - δ if there is a constant C ∈ N
such that γ(n) 6 δ(Cn) for all n ∈ N; and γ ∼ δ if γ - δ - γ. The equivalence class of
γG,A is independent of A.
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Cannon observed (in an unpublished 1981 manuscript; see also [40]) that, if a group
has finitely many cone types, then its growth series satisfies a finite linear system and is
therefore a rational function of z. For Jg , for instance, he computes

ΓJg,A =
1 + 2z + · · ·+ 2z2g−1 + z2g

1 + (2− 4g)z + · · ·+ (2− 4g)z2g−1 + z2g
.

This notion was formalized by Thurston in 1984 using automata, and is largely the topic
of the next section. We will return to growth of groups in §24.2.5; see however [27] for a
good example of growth series of groups computed thanks to a description of the Cayley
graph by automata.

Gromov emphasized the relevance to group theory of the following definition, at-
tributed to Margulis:

Definition 1.3 ([83]). A map f : X → Y between two metric spaces is a C-quasi-
isometry, for a constant C > 0, if one has

C−1d(x, y)− C 6 d(f(x), f(y)) 6 Cd(x, y) + C

for all y ∈ Y such that d(f(X), y) 6 C. A quasi-isometry is a C-quasi-isometry for
some C > 0. Two spaces are quasi-isometric if there exists a quasi-isometry between
them; this is an equivalence relation.

A property of finitely generated groups is geometric if it only depends on the quasi-
isometry class of its Cayley graph.

Thus for instance the inclusion Z → R, and the map R → Z, x 7→ bxc are quasi-
isometries.

Being finite, having a finite-index subgroup isomorphic to Z, and being finitely pre-
sented are geometric properties. The asymptotics of the growth function is also a geomet-
ric invariant; thus for instance having growth function - n2 is a geometric property.

1.2 Automatic groups

LetG = 〈A〉 be a finitely generated group. We will consider the formal alphabet Â = At
A−1 t {1}, where 1 is treated as a “padding” symbol. Following the main reference [54]
by Epstein et al.:

Definition 1.4 ([22, 54, 55]). The group G is automatic if there are finite-state automata
L,M, the language and multiplication automata, with the following properties:

(i) L is an automaton with alphabet Ã;
(ii) M has alphabet Â × Â, and has for each s ∈ Â an accepting subset Ts of states;

callMs the automaton with accepting states Ts;
(iii) the language of L surjects onto G by the natural map f : Ã→ FA → G; words in

L(L) are called normal forms;
(iv) for any two normal forms u, v ∈ L(L), consider the word

w = (u1, v1)(u2, v2) · · · (un, vn) ∈ (Â× Â)∗,
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where n = max{|u|, |v|} and ui, vj = 1 if i > |u|, j > |v|. ThenMs accepts w if
and only if π(u) = π(vs).

In words,G is automatic if the automatonL singles out sufficiently many words which
may be used to represent all group elements; and the automaton Ms recognizes when
two such singled out words represent group elements differing by a generator. The pair
(L,M) is an automatic structure for G.

We will give numerous examples of automatic groups in §24.1.3. Here is a simple one
that contains the main features: the group G = Z2, with standard generators x, y. The
language accepted by L is (x∗ ∪ (x−1)∗)(y∗ ∪ (y−1)∗):

x

x−1

y

y−1

x

y

y−1

x−1 y

y−1

y

y−1

The multiplication automaton, in which states in Ts are labeled s, is

1 x

y

y−1

x−1

(s, s) (x
, y
−1

)

(y
, x
−1

)

(x, y)
(y −

1
, x −

1
)

(y,1)(1, y−1)

(x,1)

(1, x−1)

(x −
1
, y −

1
)

(y, x)

(x
−1

, y
)

(y
−1

, x
)

(1, x)

(x−1,1)

(1, y)
(y−1, 1)

(s, s)

(y−1, 1)

(1, y)

(s, s)

(y,1)

(1, y−1)

(s, s)

(y−1, 1)

(1, y)

(s, s)

(y,1)

(1, y−1)

The definition we gave is purely automata-theoretic. It does, however, have a more
geometric counterpart. A word w ∈ Ã∗ represents in a natural way a path in the Cay-
ley graph C (G,A), starting at 1 and ending at π(w). If w = w1 · · ·wn, we write
w(j) = w1 · · ·wj the vertex of C (G,A) reached after j steps; if j > n then w(j) = w.
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For two paths u, v ∈ Ã∗, we say they k-fellow-travel if d(u(j), v(j)) 6 k for all
j ∈ {1, . . . ,max{|u|, |v|}}.

Proposition 1.1. A group G is automatic if and only if there exists a rational language
L ⊆ Ã∗, mapping ontoG, and a constant k, such that for any u, v ∈ Lwith d(π(u), π(v)) 6
1 the paths u, v k-fellow-travel.

Sketch of proof. Assume first that G has automatic structure (L,M), and let c denote the
number of states ofM. If u, v ∈ L(L) satisfy π(u) = π(vs), let sj denote the stateM is
in after having read (u1, v1) · · · (uj , vj). There is a path of length < c, inM, from sj to
an accepting state (labeled s); let its label be (p, q). Then π(u(j)p) = π(v(j)qs), so u(j)
and v(j) are at distance at most 2c− 1 in C (G,A).

Conversely, assume that paths k-fellow-travel and that an automaton L, with state set
Q is given, with language surjecting onto G. Recall that B(k) denotes the set of group
elements at distance 6 k from 1 in C (G,A). Consider the automaton with state set
Q × Q × Bk. Its initial state is (∗, ∗,1), where ∗ is the initial state of L; its alphabet is
Â × Â, and its transitions are given by (p, q, g) · (s, t) = (p · s, q · t, s−1gt) whenever
these are defined. Its accepting set of states, for s ∈ Â, is Ts = Q×Q× {s}.

Corollary 1.2. If the finitely generated group G = 〈A〉 is automatic, and if B is another
finite generating set for G, then there also exists an automatic structure for G using the
alphabet B.

Sketch of proof. Note first that a trivial generator may be added or removed from A or B,
using an appropriate finite transducer for the latter.

There exists then M ∈ N such that every a ∈ Ã can be written as a word wa ∈ B̃∗
of length precisely M . Accept as normal forms all wa1 · · ·wan such that a1 · · · an is
a normal form in the original automatic structure L. The new normal forms constitute
a homomorphic image of L and therefore define a rational language. If paths in L(L)
k-fellow-travel, then their images in the new structure will kM -fellow-travel.

Note that the language of normal forms is only required to contain “enough” expres-
sions; namely that the evaluation map L(L) → G is onto. We may assume that it is
bijective, by the following lemma. The language L(L) is then called a “rational cross-
section” by Gilman [63]; and (L,M) is called an automatic structure with uniqueness.

Lemma 1.3. Let G be an automatic group. Then G admits an automatic structure with
uniqueness.

Sketch of proof. Consider (L′,M) an automatic structure. Recall the “short-lex” order-
ing on words: u 6 v if |u| < |v|, or if |u| = |v| and u comes lexicographically before v.
The language {(u, v) ∈ Â∗ × Â∗ | u 6 v} is rational. The language

L = L(L′) ∩ {u ∈ Ã∗ | for all v ∈ Â∗, if (u, v) ∈ L(M1) then u 6 v}

is then also rational, of the form L(L). The automatonM need not be changed.

Various notions related to automaticity have emerged, some stronger, some weaker:
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• One may require the words accepted by L to be representatives of minimal length;
the automatic structure is then called geodesic. It would then follow that the growth
series ΓG,A(z) of G, which is the growth series of L, is a rational function. Note
that there is a constant K such that, for the language produced by Lemma 1.3, all
words u ∈ L(L) satisfy |u| 6 Kd(1, π(u)).

• The definition is asymmetric; more precisely, we have defined a right automatic
group, in that the automatonM recognizes multiplication on the right. One could
similarly define left automatic groups; then a group is right automatic if and only if
it is left automatic.

Indeed, let (L,M) be an automatic structure where L recognizes a rational cross
section. Then L′ = {u−1 | u ∈ L(L)} and M ′ = {(u−1, v−1) | (u, v) ∈
L(M)} are again rational languages. Indeed, since rational languages are closed
under reversal and morphisms, it follows easily that L′ is rational. On the other
hand, using the pumping lemma and the fact that group elements admit unique
representatives in L(L), the amount of padding at the end of word-pairs in L(M)
is bounded, and can be moved from the beginning to the end of the word-pairs in
M ′ by a finite transducer. Therefore, L′,M ′ are the languages of a right automatic
structure.

However, one could require both properties simultaneously, namely, on top of an
automatic structure, a third automaton N accepting (in state s ∈ Â) all pairs of
normal forms (u, v) with π(u) = π(sv). Such groups are called biautomatic. No
example is known of a group that is automatic but not biautomatic.

• One might also only keep the geometric notion of “combing”: a combing on a
group is a choice, for every g ∈ G, of a word wg ∈ Ã∗ evaluating to g, such that
the words wg and wgs fellow-travel for all g ∈ G, s ∈ Ã.

In that sense, a group is automatic if and only if it admits a combing whose words
form a rational language; see [30] for details.

One may again require the combing lines to be geodesics, i.e., words of minimal
length; see Hermiller’s work [87–89].

One may also put weaker constraints on the words of the combing; for example,
require it to be an indexed language. Bridson and Gilman [31] proved that all
geometries of threefolds, in particular the Nil (1.3) and Sol geometry, which are not
automatic, fall in this framework.

• Another relaxation is to allow the automatonM to read at will letters from the first
or the second word; groups admitting such a structure are called asynchronously au-
tomatic. Among fundamental groups of threefolds, there is no difference between
these definitions [31], but for more general groups there is.

• Finally, Definition 1.4 can be adapted to define automatic semigroups. Properties
from automatic groups that can be proved within the automata-theoretic framework
can often be generalized to automatic semigroups, or at least monoids [39]. How-
ever, establishing an alternative geometric approach has proved to be a tough task
and success was reached only in restricted cases [90, 119].
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1.3 Main examples of automatic groups

From the very definition, it is clear that finite groups are automatic: one chooses a word
representing each group element, and these necessarily form a fellow-travelling rational
language.

It is also clear that Z is automatic: write t for the canonical generator of Z; the lan-
guage t∗∪ (t−1)∗ maps bijectively to Z; and the corresponding paths 1-fellow-travel. The
automata are

L : t

t−1

tt−1

, M : 1 tt−1

(s, s)

(t,1)

(1, t−1)(t−1, 1)

(1, t)
.

Simple constructions show that the direct and free products of automatic groups are
again automatic. Finite extensions and finite-index subgroups of automatic groups are
automatic. It is however still an open problem whether a direct factor of an automatic
group is automatic.

Recall that we glued disks, one for each g ∈ G and each r ∈ R, to the Cayley graph
of a finitely presented group G = 〈A | R〉, so as to obtain a 2-complex K . The small
cancellation conditions express a combinatorial form of non-positive curvature of K :
roughly, C(p) means that every proper edge cycle in K has length > p, and T (q) means
that every proper edge cycle in the dual K ∨ has length > q; see [98, Chapter V] for
details. If G satisfies C(p) and T (q) where p−1 + q−1 6 1

2 , then G is automatic.
Consider the configurations defined by n strings in R2 × [0, 1], with string #i starting

at (i, 0, 0) and ending at (i, 0, 1); these configurations are viewed up to isotopy preserving
the endpoints. They can be multiplied (by stacking them above each other) and inverted
(by flipping them up-down), yielding a group, the pure braid group; if the strings are
allowed to end in an arbitrary permutation, one obtains the braid group. This group Bn
is generated by elementary half-twists of strings #i, i+ 1 around each other, and admits
the presentation

Bn = 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, [σi, σj ] whenever |i− j| > 2〉.

More generally, consider a surface S of genus g, with n punctures and b boundary compo-
nents. The mapping class group Mg,n,b is the group of maps S → S modulo isotopy, and
Bn is the special case M0,n,1 of mapping classes of the n-punctured disk. All mapping
class groups Mg,n,b are automatic groups [107].

As another generalization of braid groups, consider Artin groups. Let (mij) be a
symmetric n × n-matrix with entries in N ∪ {∞}. The Artin group of type (mij) is the
group with presentation

A(m) = 〈s1, . . . , sn | (sisj)bmij/2c = (sjsi)
bmij/2c whenever mij <∞〉.

The corresponding Coxeter group has presentation

C(m) = 〈s1, . . . , sn | s2i , (sisj)mij/2 = (sjsi)
mij/2 whenever mij <∞〉.
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An Artin group A(m) has finite type if C(m) is finite. Artin groups of finite type are
biautomatic [45]. Coxeter groups are automatic [33].

Fundamental groups of threefolds, except those with a piece modelled on Nil or Sol
geometry [54, chapter 12], are automatic.

1.4 Properties of automatic groups

The definition of automatic groups, by automata, has a variety of interesting conse-
quences. First, automatic groups are finitely presented; more generally, combable groups
are finitely presented:

Proposition 1.4 ([2]). Let G be a combable group. Then G has type F∞, namely, there
exists a contractible cellular complex with free G-action and finitely many G-orbits of
cells in each dimension.

(Finite presentation is equivalent to “finitely many G-orbits of cells in dimension 6 2”).

Sketch of proof. By assumption, G is finitely generated. Therefore, the Cayley graph
contains one G-orbit of 0-cells (vertices), and #A orbits of 1-cells (edges). Consider all
pairs of paths u, v in the combing that have neigbouring extremities. They k-fellow-travel
by hypothesis; so there are for all j paths w(j) of length 6 k connecting u(j) to v(j).
The closed paths u(j)− v(j)− v(j+ 1)−u(j+ 1)−u(j) have length6 2k+ 2, so they
trace finitely many words in FA. Taking them as relators defines a finite presentation for
G. The process may be continued with higher-dimensional cells.

Proposition 1.5. Automatic groups satisfy a quadratic isoperimetric inequality; that is,
for any finite presentation G = 〈A | R〉 there is a constant k such that, if w ∈ FA is a
word evaluating to 1 in G, then

w =
∏̀
i=1

rwii for some ri ∈ R±1, wi ∈ FA and ` 6 k|w|2.

Sketch of proof. Write n = |w|, and draw the combing lines between 1 and w(j). There
are n combing lines, which have lengthO(n); so the gap between neighbouring combing
lines can be filled by O(n) relators. This gives O(n2) relators in total.

Note that being finitely presented is usually of little value as far as algorithmic ques-
tions are concerned: there are finitely presented groups whose word problem cannot be
solved by a Turing machine [25, 110]. By contrast:

Proposition 1.6. The word problem in a group given by an automatic structure is solvable
in quadratic time. A word may even be put into canonical form in quadratic time.

Sketch of proof. We may assume, by Lemma 1.3, that every g ∈ G admits a unique
normal form. Now, given a word u = a1 · · · an ∈ Â∗, construct the following words:
w0 ∈ L(L) is the representative of 1. Treating Ma as a non-deterministic automaton
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in its second variable, find for i = 1, . . . , n a word wi ∈ Â∗ such that the padding of
(wi−1, wi) is accepted byMai . Then π(u) = 1 ∈ G if and only if wn = w0.

Clearly the wi have linear length in i, so the total running time is quadratic in n.

In general, finitely generated subgroups and quotients of automatic groups need not
be automatic — they need not even be finitely presented. A subgroup H of a finitely
generated group G = 〈A〉 is quasi-convex if there exists a constant δ such that every
h ∈ H is connected to 1 ∈ G by a geodesic in C (G,A) that remains at distance6 δ from
H . Typical examples are finite-index subgroups, free factors, and direct factors.

On the other hand, a subgroup H of an automatic group G with language L(L) is
L-rational if the full preimage of H in L(L) is rational. The following is easy but funda-
mental:

Lemma 1.7 ([60]). A subgroup H of an automatic group is quasi-convex if and only if it
is L-rational.

It is still unknown whether automatic groups have solvable conjugacy problem; how-
ever, there are asynchronously automatic groups with unsolvable conjugacy problem, for
instance appropriate amalgamated products of two free groups over finitely generated
subgroups. These groups are asynchronously automatic [22, Theorem E], and have un-
solvable conjugacy problem [102].

Theorem 1.8 (Gersten-Short). Biautomatic groups have solvable conjugacy problem.

Sketch of proof; see [59]. Consider two words x, y ∈ Ã∗. Using the biautomatic struc-
ture, the language

C(x, y) = {(u, v) ∈ Â∗ × Â∗ | u, v ∈ L and π(u) = π(xvy)}

is rational. Now x, y are conjugate if and only if C(x−1, y) ∩ {(w,w) | w ∈ L} is non-
empty. The problem of deciding whether a rational language is empty is algorithmically
solvable.

In fact, the centralizer of an element of a biautomatic group is a quasi-convex sub-
group, and is thus biautomatic [60] (but we remark that it is still unknown whether a
quasi-convex subgroup of an automatic group is necessarily automatic). There is there-
fore a good algorithmic description of all elements that conjugate x to y.

1.5 Word-hyperbolic groups

Gromov [80] introduced the fundamental concept of “negative curvature” to group theory.
This goes further in the direction of viewing groups as metric spaces, through the geodesic
distance on their Cayley graph. The definition is given for geodesic metric spaces, i.e.,
metric spaces in which any two points can be joined by a geodesic segment:

Definition 1.5 ([3,46,61]). LetX be a geodesic metric space, and let δ > 0 be given. The
space X is δ-hyperbolic if, for any three points A,B,C ∈ X and geodesics arcs a, b, c
joining them, every P ∈ a is at distance at most δ from b ∪ c.
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The space X is hyperbolic if it is δ-hyperbolic for some δ. The finitely generated
group G = 〈A〉 is word-hyperbolic if it acts by isometries on a hyperbolic metric space
X with discrete orbits, finite point stabilizers, and compact quotient X/G.

Equivalently, G is word-hyperbolic if and only if C (G,A) is hyperbolic.

Gilman [62] gave a purely automata-theoretic definition of word-hyperbolic groups:
G is word-hyperbolic if and only if, for some regular combing M ⊂ Ã∗, the language
{u1v1w | u, v, w ∈ M, π(uvw) = 1} ⊂ Â∗ is context-free. Using the geometric
definition, we note immediately the following examples: first, the hyperbolic plane H2 is
hyperbolic (with δ = log 3); so is Hn. Any discrete, cocompact group of isometries of Hn

is word-hyperbolic. This applies in particular to the surface group Jg from (1.1), if g > 2.
Note however that some word-hyperbolic groups are not small cancellation groups, for
instance because for small cancellation groups the complex in Proposition 1.4 has trivial
homology in dimension > 3; yet the complex associated with a cocompact group acting
on Hn has infinite cyclic homology in degree n (see [57] for applications of topology to
group theory).

It is also possible to define δ-hyperbolicity for spacesX that are not geodesic (as, e.g.,
a group):

Definition 1.6. Let X be a metric space, and let δ′ > 0 be given. The space X is δ′-
hyperbolic if, for any four points A,B,C,D ∈ X , the numbers

{d(A,B) + d(C,D), d(A,C) + d(B,D), d(A,D) + d(B,C)}

are such that the largest two differ by at most δ′.

Word-hyperbolic groups arise naturally in geometry, in the following way: let M
be a compact Riemannian manifold with negative (not necessarily constant) sectional
curvature. Then π1(M) is a word-hyperbolic group.

Word-hyperbolic groups are also “generic” among finitely-presented groups, in the
following sense: fix a number k of generators, and a constant ε ∈ [0, 1]. For largeN , there
are ≈ (2k− 1)N words of length 6 N in Fk; choose a subset R of size ≈ (2k− 1)εN of
them uniformly at random, and consider the group G with presentation 〈A | R〉.

Then, with probability → 1 as N → ∞, the group G is word-hyperbolic. Further-
more, if ε < 1

2 , then with probability → 1 the group G is infinite, while if ε > 1
2 , then

with probability→ 1 the group G is trivial [111].
Word-hyperbolic groups provide us with a large number of examples of automatic

groups. Better:

Theorem 1.9 (Gersten-Short, Gromov). Let G be a word-hyperbolic group. Then G is
biautomatic. Moreover, the normal form L may be chosen to consist of geodesics.

Even better, the automatic structure is, in some precise sense, unique [28].

Sketch of proof. In a δ-word-hyperbolic group G, geodesics (2δ + 1)-fellow-travel. On
the other hand, G has a finite number of cone types (1.2), so the language of geodesics is
rational, recognized by an automaton with as many states as there are cone types.
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Hyperbolic spacesX have a natural hyperbolic boundary ∂X: fix a point x0 ∈ X , and
consider quasi-geodesics at x0, namely quasi-isometric embeddings γ : N → X starting
at x0. Declare two such quasi-geodesics γ, δ to be equivalent if d(γ(n), δ(n)) is bounded.
The set of equivalence classes, with its natural topology, is the boundary ∂X of X . The
fundamental tool in studying hyperbolic spaces is the following

Lemma 1.10 (Morse). Let X be a hyperbolic space and let C be a constant. There is
then a constant D such that all C-quasi-geodesics between two points x, y ∈ X are at
distance at most D from one another.

The hyperbolic boundary ∂X is compact, under appropriate conditions satisfied e.g.
by X = C (G,A), and X ∪ ∂X is a compactification of X . Now, in that case, the
automaton L provides a symbolic coding of ∂X as a finitely presented shift space (where
the shift action is the “geodesic flow”, following one step along infinite paths ∈ Â∞

representing quasi-geodesics).
We note that, for word-hyperbolic groups, the word and conjugacy problem admit

extremely efficient solutions: they are both solvable in linear time by a Turing machine.
The word problem is actually solvable in real time, namely with a bounded amount of
calculation allowed between inputs [92]. The isomorphism problem is decidable for word-
hyperbolic groups, say given by a finite presentation [47] . Word-hyperbolic groups also
satisfy a linear isoperimetric inequality, in the sense that every w ∈ FA that evaluates to
1 in G is a product of O(|w|) conjugates of relators. Better:

Proposition 1.11. A finitely presented group is word-hyperbolic if and only if it satisfies
a linear isoperimetric inequality, if and only if it satisfies a subquadratic isoperimetric
inequality.

Note that the generalized word problem is known to be unsolvable [113], but the order
problem is on the other hand solvable in word-hyperbolic groups [26]. It follows that the
generalized word problem is unsolvable for automatic groups as well.

There are important weakenings of the definition of word-hyperbolic groups; we men-
tion two. A bicombing is a choice, for every pair of vertices g, h ∈ C (G,A), of a path
`g,h from g to h. Since G acts by left-translation on C (G,A), it also acts on bicombings.
A bicombing satisfies the k-fellow-traveller property if for any neighbours x′ of x and y′

of y, the paths `x,y and `x′,y′ k-fellow-travel.
A semi-hyperbolic group is a group admitting an invariant bicombing by fellow-

travelling words. See [32], or the older paper [4]. In particular, biautomatic, and therefore
word-hyperbolic, groups are semi-hyperbolic.

Semi-hyperbolic groups are finitely presented and have solvable word and conjugacy
problems. In fact, they even have the “monotone conjugation property”, namely, if g and
h are conjugate, then there exists a wordw with gπ(w) = h and |gπ(w(i))| 6 max{|g|, |h|}
for all i ∈ {0, . . . , |w|}.

A group G is relatively hyperbolic [56] if it acts properly discontinuously on a hy-
perbolic space X , preserving a family H of separated horoballs, such that (X \ H)/G
is compact. All fundamental groups of finite-volume negatively curved manifolds are
relatively hyperbolic.
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A non-closed manifold has “cusps”, going off to infinity, whose interpretation in the
fundamental group are conjugacy classes of loops that may be homotoped arbitrarily far
into the cusp. Farb [56] captures combinatorially the notion of relative hyperbolicity as
follows: let H be a family of subgroups of a finitely generated group G = 〈A〉. Modify
the Cayley graph of G as follows: for each coset gH of a subgroup H ∈H , add a vertex
gH , and connect it by an edge to every gh ∈ C (G,A), for all h ∈ H . In addition, require
that every edge in ̂C (G,A) belong to only finitely many simple loops of any given length.
The group G is weakly relatively hyperbolic, relative to the family H , if that modified
Cayley graph ̂C (G,A) is a hyperbolic metric space.

By virtue of its geometric characterization, being word-hyperbolic is a geometric
property in the sense of Definition 1.3 (though beware that being hyperbolic is preserved
under quasi-isometry only if the metric spaces are geodesic). Being combable and being
bicombable are also geometric.

We finally remark that a notion of word-hyperbolicity has been defined for semi-
groups [52,91]; the definition uses context-free languages. As for automatic (semi)groups,
the theory does not seem uniform enough to warrant a simultaneous treatment of groups
and semigroups; again, there is no clear geometric counterpart to the definition of word-
hyperbolic semigroups — except in particular cases, such as monoids defined through
special confluent rewriting systems [43].

1.6 Non-automatic groups

All known examples of non-automatic groups arise as groups violating some interesting
consequence of automaticity.

First, infinitely presented groups cannot be automatic. There are uncountably many
finitely generated groups, and only countably many finitely presented groups; therefore
automatic groups should be thought of as the rationals among the real numbers.

Groups with unsolvable word problem cannot be automatic.
If a nilpotent group is automatic, then it contains an abelian subgroup of finite in-

dex [64]; therefore, for instance, the discrete Heisenberg group

G =

1 Z Z

0 1 Z

0 0 1

 = 〈x, y | [x, [x, y]], [y, [x, y]]〉 (1.3)

is not automatic. Note also that G satisfies a cubic, but no quadratic, isoperimetric in-
equality.

Many solvable groups have larger-than-quadratic isoperimetric functions; they there-
fore cannot be automatic [84]. This applies in particular to the Baumslag-Solitar groups

BS1,n = 〈a, t | an = at〉. (1.4)

Similarly, SLn(Z), for n > 3, or SLn(O) for n > 2, where O are the integers in an
imaginary number field, are not automatic.

Infinite, finitely generated torsion groups cannot be automatic: they cannot admit a
rational normal form, because of the pumping lemma. We will see examples, due to
Grigorchuk and Gupta-Sidki, in §24.2.1.
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There are combable groups that are not automatic [29], for instance

G = 〈ai, bi, ti, s | t1a1 = t2a2, [ai, s] = [ai, ti] = [bi, s] = [bi, ti] = 1 (i = 1, 2)〉,

which satisfies only a cubic isoperimetric inequality. Finitely presented subgroups of
automatic groups need not be automatic [23].

The following group is asynchronously automatic, but is not automatic: it does not
satisfy a quadratic isoperimetric inequality [22, §11]:

G = 〈a, b, t, u | at = ab, bt = a, au = ab, bu = a〉.

2 Groups generated by automata

We now turn to another important class of groups related to finite-state automata. These
groups act by permutations on a set A∗ of words, and these permutations are represented
by Mealy automata. These are deterministic, initial finite-state transducersM with input
and output alphabet A, that are complete with respect to input; in other words,

At every state and for each a ∈ A, there is a unique outgoing edge with input a. (2.1)

The automatonM defines a transformation of A∗, which extends to a transformation
of Aω , as follows. Given w = a1a2 · · · ∈ A∗ ∪ Aω , there is by (2.1) a unique path
in M starting at the initial state and with input labels w. The image of w under the
transformation is the output label along that same path.

Definition 2.1. A map f : A∗ → A∗ is automatic if f is produced by a finite-state
automaton as above.

One may forget the initial state of M, and consider the set of all transformations
corresponding to all choices of initial state ofM; the semigroup of the automaton S(M)
is the semigroup generated by all these transformations. It is closely connected to Krohn-
Rhodes Theory [96]. Its relevance to group theory was seen during Gluškov’s seminar on
automata [65].

The automaton M is invertible if furthermore it is complete with respect to output;
namely,

At every state and for each a ∈ A, there is a unique outgoing edge with output a; (2.2)

the corresponding transformation ofA∗∪Aω is then invertible; and the set of such permu-
tations, for all choices of initial state, generate the group of the automaton G(M). Note
that S(M) may be a proper subsemigroup of G(M), even if M is invertible. General
references on groups generated by automata are [14, 76, 108].
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As our first, fundamental example, consider the automaton with alphabet A = {0, 1}

T : t 11|0
0|1

0|0

1|1

(2.3)

in which the input i and output o of an edge are represented as ‘i|o’. The transformation
associated with state 1 is clearly the identity transformation, since any path starting from
1 is a loop with same input and output. Consider now the transformation t. One has, for
instance, t · 111001 = 000101, with the path consisting of three loops at t, the edge to 1,
and two loops at 1. In particular, G(T ) = 〈t〉. We will see in §24.2.7 that it is infinite
cyclic.

Lemma 2.1. The product of two automatic transformations is automatic. The inverse of
an invertible automatic transformation is automatic.

The proof becomes transparent once we introduce a good notation. If in an automaton
M there is a transition from state q to state r, with input i and output o, we write

q · i = o · r. (2.4)

In effect, if the state set ofM isQ, we are encodingM by a function τ : Q×A→ A×Q.
It then follows from (2.1) that, given q ∈ Q and v = a1 · · · an ∈ A∗, there are unique
w = b1 · · · bn ∈ A∗, r ∈ Q such that q · a1 · · · an = b1 · · · bn · r. The image of v under
the transformation q is w. We have in fact extended naturally the function τ to a function
τ : Q×A∗ → A∗ ×Q.

Proof of Lemma 2.1. GivenM,N initial automata with state setsQ,R respectively, con-
sider the automaton MN with state set Q × R and transitions defined by (q, r) · i =
q · (r · i) = o · (q′, r′). If q0, r0 be the initial states of M,N , then the transformation
q0 ◦ r0 is the transformation corresponding to state (q0, r0) inMN .

Similarly, if q0 induces an invertible transformation, consider the automaton M−1
with state set {q−1 | q ∈ Q} and transitions defined by q−1 · o = i · r−1 whenever (2.4)
holds. The transformation induced by q−10 is the inverse of q0.

This construction applies naturally to any composition of finitely many automatic
transformations. In case they all arise from the same machine M, we de facto extend
the function τ describingM to a function τ : Q∗ ×A∗ → A∗ ×Q∗, and (ifM is invert-
ible) to a function τ : FQ ×A∗ → A∗ × FQ. It projects to a function τ : S(M)×A∗ →
A∗ × S(M), and, ifM is invertible, to a function τ : G(M)×A∗ → A∗ ×G(M).

Note that a function G(M)×A→ A×G(M) naturally gives a function, still written
τ : G(M)→ G(M)AoSym(A); this is the semidirect product of functionsA→ G(M)
by the symmetric group of A (acting by permutation of coördinates), and is commonly
called the wreath product G(M) o Sym(A), see also Chapter 16.

This wreath product decomposition also inspires a convenient description of the func-
tion τ by a matrix embedding; the size and shape of the matrix is determined by the
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permutation of A, and the nonzero entries by the elements in G(M)A; more precisely,
assume A = {1, . . . , d}, and, for τ(q) = ((s1, . . . , sd), π) ∈ G(M)A o Sym(A), write
τ ′(q) = the permutation matrix with si at position (i, iπ). Then these matrices multiply
as wreath product elements. More algebraically, we have defined a homomomorphism
τ ′ : kG → Md(kG), where kG is the group ring of G over the field k. Such an em-
bedding defines an algebra acting on the linear span of A∗; this algebra has important
properties, studied in [118] for Gupta-Sidki’s example and in [12] for Grigorchuk’s ex-
ample.

The action of g ∈ G(M) may be described as follows: given a sequence u =
a1 · · · an, compute τ(g, u) = (w, h). Then g ·u = w; and the image of g ·(uv) = w(h·v);
that is, the action of g on sequences starting by u is defined by an element h ∈ G(M)
acting on the tail of the sequence. More geometrically, we can picture A∗ as an infinite
tree. The action of g carries the subtree uA∗ to wA∗, and, within uA∗ naturally identified
with A∗, acts by the element h. For that reason, G(M) is called a self-similar group.

The formalism expressing a Mealy machine as a map τ : Q×A→ A×Q is completely
symmetric with respect to A and Q; the dual of the automatonM is the automatonM∨
with state set A, alphabet Q, and transitions given by i · q = r · o whenever (2.4) holds.
For example, the dual of (2.3) is

T ∨ : 0 11|1

t|1

t|t

1|1 (2.5)

In case the dualM∨ of the automatonM is itself an invertible automaton,M is called
reversible. IfM,M∨ and (M−1)∨ are all invertible, thenM is bireversible; it then has
eight associated automata, obtained through all combinations of ()−1 and ()∨.

Note thatM∨ naturally encodes the action of S(M) on A: it is a graph with vertex
set A, and an edge, with (input) label q, from a to q · a. More generally, (Mn)∨ encodes
the action of S(M) on the set An of words of length n.

More generally, we will consider subgroups of G(M), namely subgroups generated
by a subset of the states of an automaton; we call these groups automata groups. This is
a large class of groups, which contains in particular finitely generated linear groups, see
Theorem 2.2 below or [35]. The elements of automata groups are, strictly speaking, au-
tomatic permutations of A∗. It is often convenient to identify them with a corresponding
automaton, for instance constructed as a power of the original Mealy automaton (keeping
in mind the construction for the composition of automatic transformations), with appro-
priate initial state.

Theorem 2.2 (Brunner-Sidki). The affine group Zn o GLn(Z) is an automata group for
each n.

This will be proven in more generality in §24.2.7.
We mention some closure properties of automata groups. Clearly a direct product of

automata groups is an automata group (take the direct product of the alphabets). A more
subtle operation, called tree-wreathing in [34, 115], gives wreath products with Z.
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A more general class of groups has also been considered, and is relevant to §24.2.6:
functionally recursive groups. Let A denote a finite alphabet, Q a finite set, and F = FQ
the free group on Q. The “automaton” now is given by a set of rules of the form

q · a = b · r

for all q ∈ Q, a ∈ A, where b ∈ A and r ∈ F . In effect, in the dualM∨ we are allowing
arbitrary words over Q as output symbols.

2.1 Main examples

Automata groups gained significance when simple examples of finitely generated, infinite
torsion groups, and groups of intermediate word-growth, were discovered. Alëshin [6]
studied the automaton (2.7), and showed that 〈A,B〉 is an infinite torsion group. Another
of his examples is described in §24.2.8.

Grigorchuk [70–74] simplified Alëshin’s example as follows: let A be obtained from
the Alëshin automaton by removing the gray states; the state set ofA is {1, a, b, c, d}. He
showed that G(A), which is known as the Grigorchuk group, is an infinite torsion group;
see Theorem 2.9. In fact, G(A) and 〈A,B〉 have isomorphic finite-index subgroups.

Gupta and Sidki [85, 86] constructed for all prime p an infinite, p-torsion group; their
construction, for p = 3, is the automata group G(G) generated by the automaton (2.8).

All invertible automata with at most three states and two alphabet letters have been
listed in [24]; here are some important examples.

The affine group BS1,3 = {z 7→ 3pz + q/3r | p, q, r ∈ Z}, see (1.4) is a linear
group, and an automata group by Theorem 2.15; see also [19]. It is generated by the
automaton (2.9).

As another important example, consider the lamplighter group

G = (Z/2)(Z) o Z = 〈a, t | a2, [a, at
n

] for all n ∈ Z〉. (2.6)

It is an automata group [79], embedded as the set of maps

{z 7→ (t+ 1)pz + q | p ∈ Z, q ∈ F2[t+ 1, (t+ 1)−1]}

in the affine group of F2[[t]]. It is generated by the automaton L in (2.10).
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A

b c d

a 1

A
B

0|1, 1|0

1|1

0|0

1|1

0|0

1|1

0|0

i|i
0|0

1|1

0|1
1|0 0|0

1|1 (2.7)

G : t t−1

a

a−1

1

0|0

1|1

2|2

0|0

1|1

2|2

i|i+ 1

i|i− 1

i|i (2.8)

3z 3z + 1 3z + 20|0

1|1

0|1

1|0

1|1

0|0

(2.9)

L : (t+ 1)z (t+ 1)z + 1

1|0

0|0 1|1

0|1

(2.10)

The Basilica group, see [21, 75], will appear again in §24.2.6. It is generated by the
automaton (2.11).
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B :

a

b

1

0|1

1|0

0|0

1|1 0|0, 1|1 (2.11)

There are (unpublished) lists by Sushchansky et al. of all (not necessarily invertible)
automata with 6 3 states, on a binary alphabet; there are more than 2000 such automata;
the invertible ones are listed in [24].

How about groups that are not automata groups? Groups with unsolvable word prob-
lem (or more generally whose word problem cannot be solved in exponential time, see §24.2.2),
and groups that are not residually finite (or more generally that are not residually (finite
with composition factors of bounded order)) among the simplest examples. In fact, it is
difficult to come up with any other ones.

2.2 Decision problems

One virtue of automata groups is that elements may easily be compared, since (Mealy)
automata admit a unique minimized form, which furthermore may efficiently be computed
in time O(#A#Q log #Q), see [93, 95].

Proposition 2.3. Let G be an automata group. Then the word problem is solvable in G,
in at worst exponential time.

Proof. Let Q be a generating set for G, and for each q ∈ Q compute the minimal au-
tomaton Mq representing q. Let C be an upper bound for the number of states of any
Mq .

Now given a wordw = q1 · · · qn ∈ (QtQ−1)∗, multiply the automataMq1 , . . . ,Mqn .
The result is an automaton with 6 Cn states. Then w is trivial if and only if all states to
which the initial state leads have identical input and output symbols.

It is unknown if the conjugacy or generalized word problem are solvable in general;
though this is known in particular cases, such as the Grigorchuk group G(A), see [78,
97, 114]. The conjugacy problem is solvable as soon as G(A) is conjugacy separable,
namely, for g, h non-conjugate in G(A) there exists a finite quotient of G(A) in which
their images are non-conjugate. Indeed automata groups are recursively presented and
residually finite.

It is also unknown whether the order problem is solvable in arbitrary automata groups;
but this is known for particular cases, such as bounded automata groups, see §24.2.3.

Nekrashevych’s limit space (see Theorem 2.14) may sometimes be used to prove that
two contracting, self-similar groups are non-isomorphic: By [77], some groups admit
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essentially only one weakly branch self-similar action; if the group is also contracting,
then its limit space is an isomorphism invariant.

On the other hand, in the more general class of functionally recursive groups, the very
solvability of the word problem remains so far an open problem.

2.3 Bounded and contracting automata

As we saw in §24.2.2, it may be useful to note, and use, additional properties of automata
groups.

Definition 2.2. An automatonM is bounded if the function which to n ∈ N associates
the number of paths of length n inM that do not end at the identity state is a bounded
function. A group is bounded if its elements are bounded automata; or, equivalently, if it
is generated by bounded automata.

More generally, Sidki considered automata for which that function is bounded by a
polynomial; see [116]. He showed in [117] that such groups cannot contain non-abelian
free subgroups.

Definition 2.3. An automatonM is nuclear if the set of recurrent states ofMM spans
an automaton isomorphic toM; and, for invertibleM, if additionallyM =M−1. Recall
that a state is recurrent if it is the endpoint of arbitrarily long paths.

An invertible automaton M is contracting if G(M) = G(N ) for a (necessarily
unique) nuclear automaton N . The nucleus of G(M) is then N .

For example, the automata (2.7,2.8) are nuclear; the automata (2.3,2.11) are contract-
ing, with nucleus {1, t, t−1} and {1, a±1, b±1, b−1a, a−1b}; the automaton (2.10) is not
contracting.

IfM is contracting, then for every g ∈ G(M) there is a constant K such that (in the
automaton describing g) all paths of length > K end at a state inM. It also implies that
there are constantsL,m and λ < 1 such that, for the word metric ‖·‖ onG(M), whenever
one has g · a1 · · · am = b1 · · · bm · h with h, g ∈ G(M), one has ‖h‖ 6 λ‖g‖+ L.

Proposition 2.4 ([108, Theorem 3.9.12]). Finitely generated bounded groups are con-
tracting.

Consider the following graph X (M): its vertex set is A∗. It has two kinds of edges,
vertical and horizontal. There is a vertical edge (u, ua) for all u ∈ A∗, a ∈ A, and a
horizontal edge (u, q · u) for every u ∈ A∗, q ∈ Q. Note that the horizontal and vertical
edges form squares labeled as in (2.4), and that the horizontal edges form the Schreier
graphs of the action of G(M) on An.

Proposition 2.5 ([108, Theorem 3.8.6]). IfG(M) is contracting then X (M) is a hyper-
bolic graph in the sense of Definition 1.5.

Discrete groups may be broadly separated in two classes: amenable and non-amenable
groups. A group G is amenable if it admits a normalized, invariant mean, that is, a
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map µ : P(G) → [0, 1] with µ(A t B) = µ(A) + µ(B), µ(G) = 1 and µ(gA) =
µ(A) for all g ∈ G and A,B ⊆ G. All finite and abelian groups are amenable; so are
groups of subexponential word-growth (see §24.2.5). Extensions, quotients, subgroups,
and directed unions of amenable groups are amenable. On the other hand, non-abelian
free groups are non-amenable.

In understanding the frontier between amenable and non-amenable groups, the Basil-
ica group G(B) stands out as an important example: Bartholdi and Virág proved that it
is amenable [21], but its amenability cannot be decided by the criteria of the previous
paragraph. We now briefly indicate the core of the argument.

The matrix embedding τ ′ : kG → Md(kG) associated with a self-similar group (see
page 116) extends to a map τ ′ : `1(G) → Md(`

1(G)) on measures on G. A mea-
sure µ gives rise to a random walk on G, with one-step transition probability p1(x, y) =
µ(xy−1). On the other hand, τ ′(µ) naturally defines a random walk on G ×X; treating
the second variable as an “internal degree of freedom”, one may sample the random walk
on G×X each time it hits G× {x0} for a fixed x0 ∈ X . In favourable cases, the corre-
sponding random walk on G is self-similar: it is a convex combination of 1 and µ. One
may then deduce that its “asymptotic entropy” vanishes, and therefore thatG is amenable.
This strategy works in the following cases:

Theorem 2.6 (Bartholdi-Kaimanovich-Nekrashevych [15]). Bounded groups are amena-
ble.

Theorem 2.7 (Amir, Angel, Virág[7]). Automata of linear growth generate amenable
groups.

Nekrashevych conjectures that contracting automata always generate amenable groups,
and proves:

Proposition 2.8 (Nekrashevych, [109]). A contracting self-similar group cannot contain
a non-abelian free subgroup.

We turn to the original claim to fame of automata groups:

Theorem 2.9 (Alëshin-Grigorchuk [6, 74], Gupta-Sidki [85]). The Grigorchuk group
G(A) and the Gupta-Sidki group G(G) are infinite, finitely generated torsion groups.

Sketch of proof. To see that these groups G are infinite, consider their action on A∗, the
stabilizer H of 0 ∈ A ⊂ A∗, and the restriction θ of the action of H to 0A∗. This defines
a homomorphism θ : H → Sym(0A∗) ∼= Sym(A∗), which is in fact onto G. Therefore
G possesses a proper subgroup mapping onto G, so is infinite.

To see that these groups are torsion, proceed by induction on the word-length of an
element g ∈ G. The initial cases a2 = b2 = c2 = d2 = 1, respectively a3 = t3 = 1,
are easily checked. Now consider again the action of g on A ⊂ A∗. If g fixes A, then its
actions on the subsets iA∗ are again defined by elements of G, which are shorter by the
contraction property; so have finite order. It follows that g itself has finite order.

If, on the other hand, g does not fix A, then g#A fixes A; the action of g#A on iA∗ is
defined by an element of G, of length at most the length of g; and (by an argument that
we skip) smaller in the induction order than g; so g#A is torsion and so is g.
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Contracting groups have recursive presentations (meaning the relators R of the pre-
sentation form a recursive subset of FQ); in favourable cases, such as branch groups [8],
the set of relators is the set of iterates, under an endomorphism of FQ, of a finite subset
of FQ. For example [100], Grigorchuk’s group satisfies

G(A) = 〈a, b, c, d | σn(bcd), σn(a2), σn([d, da]), σn([d, d[a,c]a]) for all n ∈ N〉,

where σ is the endomorphism of F{a,b,c,d}

σ : a 7→ aca, b 7→ d 7→ c 7→ b. (2.12)

A similar statement holds for the Basilica group (2.11):

G(B) = 〈a, b | [ap, (ap)b
p

], [bp, (bp)a
2p

] for all p = 2n〉;

here the endomorphism is σ : a 7→ b 7→ a2.

2.4 Branch groups

Some of the most-studied examples of automata groups are branch groups, see [69] or the
survey [14]. We will define a strictly smaller class:

Definition 2.4. An automata group G(M) is regular weakly branch if it acts transitively
on An for all n, and if there exists a nontrivial subgroup K of G(M) such that, for all
u ∈ A∗ and all k ∈ K, the permutation

w 7→

{
u k(v) if w = uv,

w otherwise

belongs to G(M).
The group G(M) is regular branch if furthermore K has finite index in G(M).

If we view A∗ as an infinite tree, a regular branch group G contains a rich supply of
tree automorphisms in two manners: enough automorphisms to permute any two vertices
of the same depth; and, for any disjoint subtrees of A∗, and for (up to finite index) any
elements of G acting on these subtrees, an automorphism acting in that manner on A∗.

In particular, ifG is a regular branch group, thenG andG×· · ·×G, with #A factors,
have isomorphic finite-index subgroups (they are commensurable, see (2.4)).

Proposition 2.10. The Grigorchuk group G(A) and the Gupta-Sidki group G(G) are
regular branch; the Basilica group G(B) is regular weakly branch.

Sketch of proof. For G = G(A), note first that G acts transitively on A; since the stabi-
lizer of 0 acts as G on 0A∗, by induction G acts transitively on An for all n ∈ N.

Define then x = [a, b] and K = 〈〈x〉〉. Consider the endomorphism (2.12), and note
that σ(x) = [aca, d] = [x−1, d] ∈ K using the relation (ad)4 = 1, so σ restricts to an
endomorphism K → K, such that σ(k) acts as k on 1A∗ and fixes 0A∗. Similarly, σn(k)
acts as k on 1nA∗, so Definition 2.4 is fulfilled for u = 1n. Since G acts transitively on
An, the definition is also fulfilled for other u ∈ An.
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Finally, a direct computation shows that K has index 16 in G.
The other groups G(G) and G(B) are handled similarly; for them, one takes K =

[G,G].

Various consequences may be derived from a group being a branch group; in particu-
lar,

Theorem 2.11 (Abért, [1]). A weakly branch group satisfies no identity; that is, if G is a
weakly branch group, then for every nontrivial word w = w(x1, . . . , xk) ∈ Fk, there are
a1, . . . , ak ∈ G such that w(a1, . . . , ak) 6= 1.

2.5 Growth of groups

An important geometric invariant of a finitely generated group is the asymptotic behaviour
of its growth function γG,A(n). Finite groups, of course, have a bounded growth function.
If G has a finite-index nilpotent subgroup, then γG,A(n) is bounded by a polynomial, and
one says G has polynomial growth; the converse is true [81].

On the other hand, if G contains a free subgroup, for example if G is word-hyperbolic
and is not a finite extension of Z, then γG,A is bounded from above and below by expo-
nential functions, and one says that G has exponential growth.

By a result of Milnor and Wolf [104,128], if G has a solvable subgroup of finite index
then G has either polynomial or exponential growth. The same conclusion holds, by
Tits’ alternative [123], if G is linear. Milnor [103] asked whether there exist groups with
growth strictly between polynomial and exponential.

Theorem 2.12 (Grigorchuk [73]). The Grigorchuk groupG(A) has intermediate growth.
More precisely, its growth function satisfies the following estimates:

en
α

- γG,S(n) - en
β

,

with α = 0.515 and β = log(2)/ log(2/η) ≈ 0.767, for η ≈ 0.811 the real root of the
polynomial X3 +X2 +X − 2.

Sketch of proof; see [10, 11]. Recall that G admits an endomorphism σ, see (2.12), such
that σ(g) acts as g on 1A∗ and as an element of the finite dihedral group D8 = 〈a, d〉 on
0A∗.

Given g0, g1 ∈ G of length 6 N , the element g = aσ(g0)aσ(g1) has length 6 4N ,
and acts (up to an element of D8) as gi on iA∗ for i = 0, 1. It follows that g essentially
(i.e., up to 8 choices) determines g0, g1, and therefore that γG,S(4N) > (γG,S(N)/8)2.
The lower bound follows easily.

On the other hand, the Grigorchuk group G satisfies a stronger property than contrac-
tion; namely, for a well-chosen metric (which is equivalent to the word metric), one has
that if g ∈ G acts as gi ∈ G on iA∗, then

‖g0‖+ ‖g1‖ 6 η(‖g‖+ 1), (2.13)

with η the constant above.
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Then, to every g ∈ G one associates a description by a finite, labeled binary tree ι(g).
If ‖g‖ 6 1/(1 − η), its description is a one-vertex tree with g at its unique leaf. Other-
wise, let i ∈ {0, 1} be such that gai fixes A, and write g0, g1 the elements of G defined
by the actions of gai on 0A∗, 1A∗ respectively. Construct recursively the descriptions
ι(g0), ι(g1). Then the description of g is a tree with i at its root, and two descendants
ι(g0), ι(g1).

By (2.13), the tree ι(g) has at most ‖g‖β leaves; and ι(g) determines g. There are
exponentially many trees with a given number of leaves, and the upper bound follows.

Among groups of exponential growth, Gromov asked the following question [82]: is
there a group G of exponential growth, namely such that lim γG,Q(n)1/n > 1 for all
(finite) Q, but such that infQ⊂G lim γG,Q(n)1/n = 1?

Such examples, called groups of non-uniform exponential growth, were first found by
Wilson [126]; see [9] for a simplification. Both constructions are heavily based on groups
generated by automata.

It is known that essentially any function growing faster than n2 may be, asymptot-
ically, the growth function of a semigroup. It is however notable that very small au-
tomata generate semigroups of growth ∼ e

√
n, and of polynomial growth of irrational

degree [16, 18]. However, it is not known whether there exist groups whose growth func-
tion is strictly between polynomial and e

√
n.

2.6 Dynamics and subdivision rules

We show, in this subsection, how automata naturally arise from geometric or topological
situations. As a first step, we will obtain a functionally recursive action; in favourable
cases it will be encoded by an automaton. We must first adopt a slightly more abstract
point of view on functionally recursive groups:

Definition 2.5. A group G is self-similar if it is endowed with a self-similarity biset, that
is, a set B with commuting left and right actions, that is free qua right G-set.

The fundamental example is G = G(M) and B = A×G, with actions

g · (a, h) = (b, kh) if τ(g, a) = (b, k), (a, g) · h = (a, gh).

Conversely, given a self-similar group G, choose a basis A of its biset, i.e., express B =
A×G; then define τ(g, a) = (b, k) whenever g · (a, 1) = (b, k) in B. This vindicates the
notation (2.4).

Two bisets B,B′ are isomorphic if there is a map ϕ : B→ B′ with gϕ(b)h = ϕ(gbh)
for all g, h ∈ G, b ∈ B. They are equivalent if there is a map ϕ : B → B′ and an
automorphism θ : G→ G with θ(g)ϕ(b)θ(h) = ϕ(gbh).

Consider now X a topological space, and f : X → X a branched covering; this
means that there is an open dense subspace X0 ⊆ X such that f : f−1(X0) → X0 is a
covering. The subset C = X \ f−1(X0) is the branch locus, and P =

⋃
n>1 f

n(C ) is
the post-critical locus. Write Ω = X \P , and choose a basepoint ∗ ∈ Ω.

Two coverings (f,Pf ) and (g,Pg) are combinatorially equivalent if there exists a
path gt through branched coverings, with g0 = f, g1 = g, such that the post-critical set of
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gt varies continuously along the path.
We define a self-similarity biset for G = π1(Ω, ∗): set

Bf = {homotopy classes of paths γ : [0, 1]→ Ω | γ(0) = f(γ(1)) = ∗}.

The right action of G prepends a loop at ∗ to γ; the left action appends the unique f -lift
of the loop that starts at γ(1) to γ.

A choice of basis for B amounts to choosing, for each x ∈ f−1(∗), a path ax ⊂ Ω
from ∗ to x. Set A = {ax | x ∈ f−1(∗)}. Now, for g ∈ G, and ax ∈ A, consider a path
γ starting at x such that f ◦ γ = g; such a path is unique up to homotopy, by the covering
property of f . The path γ ends at some y ∈ f−1(∗). Set then

τ(g, ax) = (ay, a
−1
y γax),

where we write concatenation of paths in reverse order, that is, γδ is first δ, then γ.
For example, consider the sphere X = Ĉ, with branched covering f(z) = z2 − 1. Its

post-critical locus is P = {0,−1,∞}. A direct calculation (see e.g. [13]) gives that its
biset is the automaton (2.11); the relevant paths are shown here:

0−1 ∗x1 x0a

b

f−1(a)

f−1(a)

f−1(b)

f−1(b)

ax0

Branched self-coverings are encoded by self-similar groups in the following sense:

Theorem 2.13 (Nekrashevych). Let f, g be branched coverings. Then f, g are combina-
torially equivalent if and only if the bisets Bf ,Bg are equivalent.

This result has been used to answer a long-standing open problem in complex dynam-
ics [17].

If furthermore G is finitely generated and the map f expands a length metric, then
the associated biset may be defined by a contracting automaton. This is, in particular, the
case for all rational maps acting on the sphere Ĉ.

Definition 2.6. Let f : X → X be a branched self-covering. The iterated monodromy
group of f is the automata group G(f) = G(M), whereM is an automaton describing
the biset Bf .

If G = G(M) is a contracting self-similar group, consider the hyperbolic boundary
J = ∂X (M), called the limit space of G. It admits an expanding self-covering map
s : J →J , induced on vertices by the shift map s(au) = u.
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Theorem 2.14 ([108, Theorems 5.2.6 and 5.4.3]). The groups G(s) and G(M) are iso-
morphic.

Conversely, suppose f is an analytic map, with Julia set J , the points near which
{f◦n | n ∈ N} does not form a normal family. Then (J, f) and (J , s) are homeomorphic
and topologically conjugate.

For instance, the Julia set of the Basilica map f(z) = z2 − 1 is depicted above.
Appropriately scaled and metrized, the Schreier graphs of the action of G(M) on Xn

converge to J .
The first appearance of encodings of branched coverings by automata seems to be the

“finite subdivision rules” by Cannon, Floyd and Parry [41]; they wished to know when
a branched covering of the sphere may be realized as a conformal map. In their work, a
finite subdivision rule is given by a finite subdivision of the sphere, a refinement of it, and
a covering map from the refinement to the original subdivision; by iteration, one obtains
finer and finer subdivisions of the sphere. The combinatorial information involved is
essentially equivalent to a self-similarity biset. Contraction of G(M) and combinatorial
versions of expansion have been related in [42].

2.7 Reversible actions

Recall that an automatonM is reversible if its dualM∨ is invertible. In other words, if
g ∈ G(M), the action of g is determined by the action on any subset uA∗, for u ∈ A∗.

We have already seen some examples of reversible automata, notably (2.9,2.10). That
last example generalizes as follows: consider a finite group G, and set A = Q = G.
Define an automaton CG, the “Cayley automaton” of G, by τ(q, a) = (qa, qa). This au-
tomaton seems to have first been considered in [96, page 358]. The automaton L in (2.10)
is the special case G = Z/2Z. The inverse of the automaton CG is a reset machine, in
that the target of a transition depends only on the input, not on the source state. Silva and
Steinberg [120] prove that, if G is abelian, then G(CG) = G o Z.

A large class of reversible automata is covered by the following construction. Let R
be a ring, let M be an R-module, and let N be a submodule of M , with M/N finite.
Let ϕ : N → M be an R-module homomorphism. Define a decreasing sequence of
submodules Mi of M by M0 = M and Mn+1 = ϕ−1(Mn), and denote by EndR(M,ϕ)
the algebra of R-endomorphisms of M that map Mn into Mn for all n. Assume finally
that there is an algebra homomorphism ϕ̂ : EndR(M,ϕ) → EndR(M,ϕ) such that
ϕ(an) = ϕ̂(a)ϕ(n) for all a ∈ EndR(M,ϕ), n ∈ N . Consider

TM = {z 7→ az +m | a ∈ EndR(M,ϕ),m ∈M}

the affine semigroup of M .

Theorem 2.15. Let A be a transversal of N in M . Then the semigroup TM acts self-
similarly on A∗, by

τ(az + b, x) = (y, ϕ̂(a)z + ϕ(ax+ b− y)) for the unique y ∈ A with ax+ b− y ∈ N.

This action is
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(1) faithful if and only if
⋂
nMn = 0;

(2) reversible if and only if ϕ is injective;
(3) defined by a finite-state automaton if ϕ̂ is an automorphism of finite order, and there

exists a norm ‖ · ‖ : M → N such that ‖a+ b‖ 6 ‖a‖+ ‖b‖, for all K ∈ N the ball
{m ∈M | K > ‖m‖} is finite, and a constant λ < 1 satisfies ‖ϕ(n)‖ 6 λ‖n‖ for
all n ∈ N .

We already saw some examples of this construction: the lamplighter automaton L is
obtained by taking R = M = F2[t], N = tM , ϕ(tm) = m, ϕ̂ = 1, and ‖f‖ = 2deg f

with λ = 1
2 . The semigroup S(L) is contained in TM , and the group G(L) is contained

in the affine group of F2[[t]]. More generally, the Cayley automaton of a finite group G is
obtained by taking R = G[[t]] with G viewed as a ring with product xy = 0 unless x = 1
or y = 1.

The adding machine (2.3) generates the subgroup of translations in the affine group of
M with R = M = Z, N = 2M , ϕ(2m) = m, and ‖m‖ = |m|. The same ring-theoretic
data produce the Baumslag-Solitar group (2.9); as above, we use R = Z to obtain a
semigroup, and R = Z2 (or any ring in which 3 is invertible) to obtain a group.

Consider, more generally, R = Z,M = Zn, N = 2M , and ϕ(2m) = m. These data
produce the affine group Zn o GLn(Z), proving Theorem 2.2.

A finer construction, giving an action on the binary tree, is to take again M = Zn and
N = ϕ−1(M) with ϕ−1(x1, . . . , xn) = (2xn, x1, . . . , xn−1); here ϕ̂(a) = ϕ ◦ a ◦ ϕ−1.
This gives a faithful action, on the binary tree, of

Z
n o {a ∈ GLn(Z) | a mod 2 is lower triangular}.

Sketch of proof. (1) The action is faithful if and only if the translation part {z 7→ z +m}
acts faithfully; and z 7→ z +m acts trivially on A∗ if and only if m ∈Mn for all n ∈ N.

(2) For any x ∈ A, the map (not a homomorphism!) TM → TM which to g ∈ TM
associates the permutation of A∗ given by A∗ → xA∗

g→ g(x)A∗ → A∗ is injective
precisely when ϕ is injective.

(3) Without loss of generality, suppose ϕ̂ = 1. Consider g = z 7→ az +m ∈ TM . Let
K be larger than the norms of ax + y for all x, y ∈ A. Then the states of an automaton
describing g are all of the form z 7→ az + m′, with ‖m′‖ 6 (‖m‖ + K)/(1 − λ); there
are finitely many possibilities for such m′.

Note that the transversal A amounts to a choice of “digits”: the analogy is clear in
the case of the adding machine (2.3), which has digits {0, 1} and “counts” in base 2. For
more general radix representations and their association with automata, see e.g. [124].

2.8 Bireversible actions

Recall that an automatonM is bireversible ifM,M∨, (M−1)∨, ((M∨)−1)∨ etc. are all
invertible; equivalently, the map τ : Q× A→ A×Q is a bijection for Q the state set of
MtM−1.

Bireversible automata are interpreted in [101] in terms of commensurators of free
groups, defined in (2.4) of Chapter 23. Consider a free group FA on a set A. Its Cayley
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graph C is a tree, and FA acts by isometries on C , so we have FA 6 Isom(C ). Further-
more, C is oriented: its edges are labeled by A t A−1, and we choose as orientation the
edges labeled A. In this way, FA is contained in the orientation-preserving subgroup of
Isom(C ), denoted

−−−−−→
Isom(C ).

Proposition 2.16. The stabilizer of 1 in Comm−−−−−→
Isom(C )

(FA) is the set of bireversible
automata with alphabet A.

Sketch of proof. The proof relies on an interpretation of finite-index subgroups of FA as
complete automata, see §23.2.2.

LetM be a bireversible automaton with alphabet A. Erase first the output labels from
M; this defines the Stallings automaton of a finite-index subgroup H1 (of index #Q) of
FA. Erase then the input labels fromM; this defines an isomorphic subgroup H2 of FA.
The automaton M itself defines an isomorphism between these two subgroups, which
preserves the Cayley graph.

Conversely, given an isometry g of the Cayley graph of FA which restricts to an iso-
morphism G → H between finite-index subgroups of FA, the Stallings graphs of G and
H and put their labels together, as input and output, to construct a bireversible automa-
ton.

It is striking that all known bireversible automata generate finitely presented groups.
There are, up to isomorphism, precisely two minimized bireversible automata with three
states and two alphabet letters:

a

c

b

E1

0|0

1|10|1
1|0

0|0

1|1

a

c

b

F1

0|1

1|00|0
1|1

0|1

1|0 .

These automata are part of families, whose general term En,Fn has 2n + 1 states. We
describe only Fn:

Fn :

a

b

c d m

nz

0|1

1|0

0|1

1|0

0|0, 1|1 0|0, 1|1

0|0, 1|1

0|0, 1|10|0, 1|1

Alëshin [5] proved that the group generated by the states b1, b2 in F1,F2 respectively
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is a free group on its two generators; but his argument (especially Lemma 8) has been
considered incomplete, and a detailed proof appears in [121]. Alëshin’s idea is to prove
by induction that, for any reduced word w ∈ {b±11 , b±12 }∗, the syntactic monoid of the
corresponding automaton acts transitively on its state set.

Sidki conjectured that in fact G(F1) is a free group on its three generators; this has
been proven in [125]. On the other hand, G(E1) is a free product of three cyclic groups
of order 2. Both proofs illustrate some techniques used to compute with bireversible
automata. They rely on the following

Lemma 2.17. Let L ⊂ Q∗ be a subset mapping to G(M) through the evaluation map. If
L is G(M∨)-invariant, and every G(M∨)-orbit contains a word mapping to a nontrivial
element of G(M), then L maps injectively onto G(M).

To derive the structure of a bireversible group, we therefore seek a G(M∨)-invariant
subset L ⊂ Q∗ that maps onto G(M) \ {1}, and show that every G(M)-orbit contains a
non-trivial element of G(M).

Theorem 2.18 (Muntyan-Savchuk). G(E1) = 〈a, b, c | a2, b2, c2〉.

Note that this result generalizes: G(En) is a free product of 2n+ 1 order-two groups.

Proof. WriteQ = {a, b, c}. We first check the relations a2 = b2 = c2 = 1 inG = G(E1).
Let L ⊂ Q∗ denote those sequences s1 · · · sn with si 6= si+1 for all i.

Consider the group G(E∨1 ), with generators 0, 1. It acts on L, and acts transitively
on L ∩ Qn for all n; indeed already 0 acts transitively on Q = L ∩ Q1, and 1 acts on
{a, c}Qn−1 ∩ L as a 2n-cycle, conjugate to the action (2.3) in the sense that there is an
identification of {a, c}Qn−1 ∩ L with {0, 1}n interleaving these actions. It follows that
the 3 · 2n−1 elements of L ∩An are in the same orbit.

E∨1 : 0 1
a|b
b|c

c|a

a|c
b|b

c|a

It remains to note that L ∩ An contains a word mapping to a nontrivial element of
G; for example, c(ab)(n−1)/2 or c(ab)n/2−1a depending on the parity of n; and to apply
Lemma 2.17.

Theorem 2.19 (Vorobets). G(F2) = 〈a, b, c | ∅〉 ∼= F3.

Note that this result generalizes: G(Fn) is a free group of rank 2n+ 1.

Sketch of proof. Again the key is to control the orbits of G∨ = G(F∨2 ) = 〈0, 1〉 on the
reduced words over Q = {a, b, c} of any given length. Let s ∈ (±1)n be a sequence of
signs, and consider

Ls = {w = ws11 · · ·wsnn ∈ (Q tQ−1)∗ | wsii 6= w
−si+1

i+1 for all i}.
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We show that G∨ acts transitively on Ls for all s, and that Ls contains a word mapping
to a nontrivial element of G. Consider the elements

α = 021−2021−1, β = 120−2120−1, γ = 1−10, δ = 01−1

of G∨, where the products are computed left-to-right; they are described by the automata

α β

γ δ

c±|c±

a|a
b|b

a−1|b−1
b−1|a−1

c±|c±a|b
b|a

a−1|a−1

b−1|b−1

a±|a±
b±|c±
c±|b±

a±|b±
b±|a±
c±|c±

The elements γ, δ generate a copy of Sym(3), allowing arbitrary permutations of Q or
Q−1. In particular, G∨ acts transitively on Ls whenever |s| 6 1, so we may proceed
by induction on |s|. The elements α, β, on the other hand, fix a large set of sequences
(following the bold edges in the automata).

Consider now s = s1 · · · sn, and s′ = s1 · · · sn−1. If sn−1 6= sn, so that #Ls =
2#Ls′ , then there exists w = ws11 · · ·wsnn ∈ Ls, moved by α or β, and such that
ws11 · · ·w

sn−1

n−1 ∈ Ls′ is fixed by α and β; so G∨ acts transitively on Ls.
If s1 6= s2, apply the same argument to Ls−1

n ···s−1
1

and Ls−1
n ···s−1

2
.

Finally, if s1 = s2 and sn−1 = sn, consider a typical w ∈ Ls2···sn−1
, and all wqr =

qs1wrsn , for q, r ∈ Q. Using the action of α and β, the words wqa and wqb are in the
same G∨-orbit for all q ∈ Q, and similarly war and wbr are in the same G∨-orbit for
all r ∈ Q. For all r ∈ Q, finally, war, wbr′ , wcr′′ are in the same G∨-orbit for some
r′, r′′ ∈ Q, and similarly wqa,q′b,q′′c are in the same G∨-orbit. It follows that all wqr are
in the same G∨-orbit, so by induction Ls is a single orbit.

It remains to check that every Ls contains a word w mapping to a nontrivial group
element. If n is odd, set wi = a if si = 1 and wi = b if si = −1; then w acts nontrivially
on A. If n is even, change wn to csn ; again w acts nontrivially on A. We are done by
Lemma 2.17.

Burger and Mozes [36–38] have constructed some infinite, finitely presented simple
groups, see also [112]. From this chapter’s point of view, these groups are obtained as
follows: one constructs an “appropriate” bireversible automatonM with state set Q and
alphabet A, defines

G0 = 〈A ∪Q | aq = rb whenever that relation holds inM〉,

and considers G a finite-index subgroup of G0. We will not explicitly give here the con-
ditions required onM for their construction to work; but note that automata groups can
be understood as a byproduct of their work. Wise constructed finitely presented groups
with non-residual finiteness properties that are also related to automata [127].

Burger and Mozes give the following algebraic construction: consider two primes
p, ` ≡ 1 (mod 4). Let A (respectively Q) denote those integral quaternions, up to a
unit ±1,±i,±j,±k, of norm p (respectively `). By a result of Hurwitz, #A = p + 1
and #Q = ` + 1. Furthermore [94], for every q ∈ Q, a ∈ A there are unique (again
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up to units) b ∈ A, r ∈ Q with qa = br. Use these relations to define an automaton
Mp,`. Clearly Mp,` is bireversible, with dual M∨p,` = M`,p. Again thanks to unique
factorization of integral quaternions of odd norm,

Proposition 2.20. G(Mp,`) = F(`+1)/2.

Glasner and Mozes [66] constructed an example of a bireversible automata group with
Kazhdan’s property (T).
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Progress in Mathematics, vol. 83, Birkhäuser Boston Inc., Boston, MA, 1990 (French). Papers from the
Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR1086648 (92f:53050) ↑111

[62] Robert H. Gilman, On the definition of word hyperbolic groups, Math. Z. 242 (2002), no. 3, 529–541.
MR1985464 (2004b:20062) ↑112

[63] , Groups with a rational cross-section, Combinatorial group theory and topology (Alta, Utah,
1984), Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 175–183.
MR895616 (88g:20065) ↑107

[64] Robert H. Gilman, Derek F. Holt, and Sarah Rees, Combing nilpotent and polycyclic groups, Internat. J.
Algebra Comput. 9 (1999), no. 2, 135–155. MR1703070 (2001a:20063) ↑114

[65] Victor M. Gluškov, Abstract theory of automata, Uspehi Mat. Nauk 16 (1961), no. 5 (101), 3–62 (Rus-
sian). MR0138529 (25 #1976) ↑115

[66] Yair Glasner and Shahar Mozes, Automata and square complexes, Geom. Dedicata 111 (2005), 43–64.
MR2155175 (2006g:20112) ↑132

[67] Martin Greendlinger, On Dehn’s algorithms for the conjugacy and word problems, with applications,
Comm. Pure Appl. Math. 13 (1960), 641–677. MR0125020 (23 #A2327) ↑104

[68] , Dehn’s algorithm for the word problem, Comm. Pure Appl. Math. 13 (1960), 67–83.
MR0124381 (23 #A1693) ↑104

[69] Rostislav I. Grigorchuk, Just infinite branch groups, New horizons in pro-p groups, Progr. Math., vol. 184,
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[100] I. G. Lysënok, A set of defining relations for the Grigorchuk group, Mat. Zametki 38 (1985), no. 4, 503–
516, 634 (Russian). MR819415 (87g:20062) ↑123
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Abstract.
Finite automata have been used effectively in recent years to define infinite groups. The two

main lines of research have as their most representative objects the class of automatic groups (in-
cluding word-hyperbolic groups as a particular case) and automata groups (singled out among the
more general self-similar groups).

The first approach implements in the language of automata some tight constraints on the ge-
ometry of the group’s Cayley graph, building strange, beautiful bridges between far-off domains.
Automata are used to define a normal form for group elements, and to monitor the fundamental
group operations.

The second approach features groups acting in a finitely constrained manner on a regular rooted
tree. Automata define sequential permutations of the tree, and represent the group elements them-
selves. The choice of particular classes of automata has often provided groups with exotic behaviour
which have revolutioned our perception of infinite finitely generated groups.
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