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Abstract. We give some general results concerning the computation of the

generalized Feng-Rao numbers of numerical semigroups. In the case of a nu-
merical semigroup generated by an interval, a formula for the rth Feng-Rao

number is obtained.

1. Introduction

The Feng-Rao distance for a numerical semigroup was introduced in coding the-
ory as a lower bound for the minimum distance of a one-point algebraic geometry
(error-correcting) code (see [8]). This order bound , computed from Weierstrass
semigroups, improves the lower bound for the minimum distance given by Goppa
with the aid of the Riemann-Roch theorem. Moreover, the Feng-Rao distance is
essential in a majority voting decoding procedure, that is the most efficient one for
such kind of codes (see [11]).

Even though the Feng-Rao distance was introduced for Weierstrass semigroups
and for decoding purposes, it is just a combinatorial concept that makes sense for
arbitrary numerical semigroups. This problem has been broadly studied in the
literature for different types of semigroups (see [2], [3] or [12]). In numerical terms,
the above mentioned improvement of the Goppa distance in coding theory means
the following: For a semigroup S with genus g and m ∈ S the Feng-Rao distance
satisfies

δFR(m+ 1) ≥ m+ 2− 2g

if m > 2g − 2, and equality holds for m >> 0.
On the other hand, the concept of minimum distance for an error-correcting

code has been generalized to the so-called generalized Hamming weights. They were
introduced independently by Helleseth et al. in [10] and Wei in [14] for applications
in coding theory and cryptography, respectively.

The natural generalization of the Feng-Rao distance to higher weights was intro-
duced in [9]. The computation of these generalized Feng-Rao distances turns out to
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be a very hard problem. Actually, very few results are known about this subject,
and they are completely scattered in the literature (see for example [1], [9] or [7]).

This paper studies the asymptotical behaviour of the generalized Feng-Rao dis-
tances, that is, δrFR(m) for r ≥ 2 and m >> 0. In fact, it was proven in [7]
that

(1) δrFR(m) = m+ 1− 2g + Er

for m >> 0 (details in the next section). The number Er ≡ E(S, r) is called the
r-th Feng-Rao number of the semigroup S, and they are unknown but for very few
semigroups and concrete r’s. For example, it was proven in [6] that

E(S, r) = ρr

for hyper-elliptic semigroups S = 〈2, 2g+1〉, with multiplicity 2 and genus g, and for
Hermitian-like semigroups S = 〈a, a+ 1〉, where S = {ρ1 = 0 < ρ2 < · · · }. In fact,
it is not even known yet if this formula holds for arbitrary numerical semigroups
generated by two elements S = 〈a, b〉. Nevertheless, our experimental results point
in this direction.

The main purpose of this paper is precisely to compute E(S, r) for semigroups
generated by intervals, as a certain generalization of the Hermitian-like case. As
a byproduct, we provide some general algorithms, implemented in GAP [5], to
compute Feng-Rao numbers.

The paper is written as follows. Section 2 presents the general definitions con-
cerning numerical semigroups, Feng-Rao distances and Feng-Rao numbers, and
some convenient visualizations of integers for a given semigroup. The reader may
find useful to see some images in Subsection 2.3.

The concept of amenable subset of a numerical semigroup is introduced in section
3. It consists of a set that is closed for taking divisors. It implies that distances
between elements are somehow controlled. Amenable sets play a fundamental role in
some general results on Feng-Rao numbers of numerical semigroups. These results
allowed the implementation of a function to compute the Feng-Rao numbers of a
numerical semigroup which works quite well. It uses some of the functionalities of
the GAP package numericalsgps [5] and will hopefully be part of a future release of
that package. We give in this way some general results. Among them, an important
lemma shows that the divisors of a configuration are the divisors of the shadow plus
the elements above the ground.

Many examples computed with the referred function helped us to gain the nec-
essary intuition to obtain a formula for the rth Feng-Rao number of a numerical
semigroup generated by an interval, which is presented in Section 4. This is the
last and main result of this paper, and we briefly explain it in the sequel.

Recall that we are aiming to find a formula for δr(m), when S is a semigroup
generated by an interval of integers. The strategy will be as follows: Suppose that
there is an amenable set M which is an optimal configuration whose shadow LM =
[m,m+ a+ b)∩M does not contain the ground (that is, LM 6= [m,m+ a+ b)∩N).
Then, using the results of Subsection 4.2, we can construct an r-amenable set N
(said to be ordered amenable) whose shadow LN is an interval starting in m and
has no more elements than ]LM . Furthermore, by Lemma 30, ]D(LN ) ≤ ]D(LM )
which implies that the number of divisors of N is no bigger than the number of
divisors of M and therefore N is also an optimal configuration. It follows that
ordered amenable sets are optimal configurations. Thus, the problem of computing
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the generalized Feng-Rao numbers is reduced to counting the divisors of intervals
of the form [m,m+ `] ∩ N, with ` ≤ a+ b− 1. This is done by Corollary 26. The
main result, which gives a formula, then follows.

2. Definitions and basic results

This section is divided into several subsections. We start with several basic
definitions and we introduce some notation. The reader is referred to the book [13]
for details. Then we give the definition of generalized Feng-Rao numbers and end
the section by giving a way to visualize the integers which is convenient for our
purposes.

2.1. Basic definitions and notation. Let S be a numerical semigroup, that is,
a submonoid of N such that ](N \ S) < ∞ and 0 ∈ S. Denote respectively by
g := ](N \S) and c ∈ S the genus and the conductor of S, being c by definition the
(unique) element in S such that c− 1 /∈ S and c+ l ∈ S for all l ∈ N. Note that if
S is the Weierstrass semigroup of a curve χ at a point P , g equals to the geometric
genus of χ, and the elements of G(S) := N \ S are called the Weierstrass gaps at
P . For an arbitrary semigroup, these elements are simply called gaps.

It is well known (see for instance [13, Lemma 2.14]) that c ≤ 2g, and thus the
“largest gap” of S is c − 1 ≤ 2g − 1. The number c − 1 is precisely the Frobenius
number of S. The multiplicity of a numerical semigroup is the least positive integer
belonging to it.

We say that a numerical semigroup S is generated by a set of elements G ⊆ S if
every element x ∈ S can be written as a linear combination

x =
∑
g∈G

λgg,

where finitely many λg ∈ N are non-zero. In fact, it is classically known that
every numerical semigroup is finitely generated, that is, we can find a finite set
G generating S. Furthermore, every generator set contains the set of irreducible
elements, x ∈ S being irreducible if x = u + v and u, v ∈ S implies u · v = 0, and
this set actually generates S, so that it is usually called “the” generator set of S,
whose cardinality is called embedding dimension of S (more details in [13]). Most
of the times, we will suppose S is minimally generated by {n1 < · · · < ne}. Its
embedding dimension is e. Note that if a and b are integers, with b < a, and S is
minimally generated by the interval [a, a+ b]∩N, then n1 is a, ne−n1 is b and the
embedding dimension is b+ 1.

Finally, if we enumerate the elements of S in increasing order

S = {ρ1 = 0 < ρ2 < · · · },

we note that every x ≥ c is the (x+ 1− g)-th element of S, that is x = ρx+1−g .

The last part of this paper will be devoted to semigroups generated by intervals.
Let a be a positive integer and b an integer with 0 < b < a. Let S = 〈a, a +

1, . . . , a+ b〉. Then S is a numerical semigroup with multiplicity a and embedding
dimension b+ 1. As usual, let c denote the conductor of S and m ≥ 2c− 1.

2.2. Feng-Rao numbers. Next we introduce the definitions for generalized Feng-
Rao distances. Although there is a subsection dedicated to the concept of divisor,
we already need the definition.
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Definition 1. Given x ∈ S, we say that α ∈ S divides x if x− α ∈ S. We denote
by D(x) = {α ∈ S | x− α ∈ S} the set of divisors of x.

Definition 2. Let S be a numerical semigroup. For m1 ∈ S, let ν(m1) := ]D(m1).
The (classical) Feng-Rao distance of S is defined by the function

δFR : S −→ N
m 7→ δFR(m) := min{ν(m1) | m1 ≥ m, m1 ∈ S}.

There are some well-known facts about the functions ν and δFR for an arbitrary
semigroup S (see [11], [12] or [2] for further details). An important one is that
δFR(m) ≥ m+1−2g for all m ∈ S with m ≥ c, and that equality holds if moreover
m ≥ 2c− 1 (see also Proposition 9).

The classical Feng-Rao distance corresponds to r = 1 in the following definition.

Definition 3. Let S be a numerical semigroup. For any set of distinct m1, . . . ,mr ∈
S, let ν(m1, . . . ,mr) := ]D(m1, . . . ,mr), where D(m1, . . . ,mr) := D(m1) ∪ · · · ∪
D(mr).

For any integer r ≥ 1, the r-th Feng-Rao distance of S is defined by the function

δrFR : S −→ N
m 7→ δrFR(m)

where δrFR(m) = min{ν(m1, . . . ,mr) | m ≤ m1 < · · · < mr, mi ∈ S}.

Very few results are known for the numbers δrFR, and their computation is very
hard from both a theoretical and computational point of view. The main result we
need describes the asymptotical behavior for m >> 0, and was proven in [7]. This
result tells us that there exists a certain constant Er = E(S, r), depending on r and
S, such that

δrFR(m) = m+ 1− 2g + Er

for m ≥ 2c− 1.

Definition 4. This constant E(S, r) is called the r-th Feng-Rao number of the
semigroup S.

Furthermore, it is also true that δrFR(m) ≥ m+ 1− 2g + E(S, r) for m ≥ c (see
[7]).

Note that, for any non-negative integer k and m ≥ 2c − 1, δrFR(m + k) =
k + δrFR(m).

We will simplify the notation by writting δr(m) for δrFR(m).

Definition 5. Let S be a numerical semigroup and let m ∈ S. A finite sub-
set of S ∩ [m,∞) is called a (S,m)-configuration, or simply a configuration. A
configuration M of cardinality r is said to be optimal if δr(m) = ]D(M), where
D(M) := ∪x∈MD(x).

2.3. A convenient visualisation of the integers. We can think of the integers
as points disposed regularly on a cylindrical helix (Figure 1).

As using the sketch of Figure 1 some of the integers would be hidden, we will
consider planifications of the cylinder instead. They are usually obtained by cutting
the cylinder through a vertical line passing through a point previously chosen. Note
that a planification corresponds to taking a partition of the integers. The reader
may think on the letters m, a, b as being 2c − 1, n1 and ne − n1 for a semigroup
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Figure 1. The integers on an helix

generated by {n1 < · · · < ne} whose conductor is c. This will be the case when
dealing with semigroups generated by intervals.

We shall use this drawings to depict the most relevant parts of the sets considered.
For instance, if we want to highlight the elements of a numerical semigroup, we do
not add any information by depicting the points below 0 and those above the
conductor.

The parallelograms in Figure 2 highlight the elements of the semigroup S =
〈9, 13, 15〉, and the elements of 60− S, respectively.

54 55 56 57 58 59 60 61 62

45 46 47 48 49 50 51 52 53

36 37 38 39 40 41 42 43 44

27 28 29 30 31 32 33 34 35

18 19 20 21 22 23 24 25 26

9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8

54 55 56 57 58 59 60 61 62

45 46 47 48 49 50 51 52 53

36 37 38 39 40 41 42 43 44

27 28 29 30 31 32 33 34 35

18 19 20 21 22 23 24 25 26

9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8

Figure 2. The semigroup S = 〈9, 13, 15〉 and 60− S, respectively

Most times we are interested in finite sets of integers which are non smaller than a
given integer m. In this case we prefer to draw all the points from m to m+ a+ b
at the same level. See Figure 3 for an example. Its caption will soon become clear.
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For convenience, the columns are numbered. Having such a picture in mind, we
can think on a partition of the set of integers greater than m whose classes are the
columns (the ith column of a set is the set its elements congruent with i modulo
a).

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 3. An amenable set

3. A generic algorithm

We shall start the section by giving a quite efficient algorithm to compute the
divisors of an element of a numerical semigroup. The aim is then to find an optimal
configuration. Note that if M is wanted to be an optimal configuration, we just have
to control the cardinality of the difference D(M) \D(m), for all possible m ∈M .

Among the optimal configurations there is an amenable set (Proposition 12).
Thus, one can search for an optimal configuration among the amenable sets, which
can be constructed using Algorithm 2. Due to the results in Section 3.3 (Corol-
lary 16, to be more specific), one only needs to consider one amenable set for each
shadow.

3.1. Divisors. Recall that given x ∈ S, we say that α ∈ S divides x if x− α ∈ S.
We denote by D(x) the set of divisors of x.

Note that D(x) ⊆ [0, x] and s ∈ D(x) implies D(s) ⊆ D(x).

Lemma 6. D(x) = S ∩ (x− S).

Proof. Let α ∈ D(x). By definition, α ∈ S and x−α ∈ S. But then α = x−(x−α) ∈
x− S.

Conversely, let α ∈ S be such that there exists β ∈ S for which x− β = α. But
then x− α = β ∈ S, proving that α divides x. �

We observe that elements greater than x need not to be used to compute the
divisors of x. Denoting Sx = {n ∈ S | n ≤ x}, we get the following:

Corollary 7. D(x) = Sx ∩ (x− Sx).

The computation of the divisors of an element can be easily implemented (Algo-
rithm 1) due to this consequence of Lemma 6. Note also that, once we compute the
elements of S smaller than x (which can easily be done if the conductor is known),
the computation of the divisors is immediate.

The highlighted elements in Figure 4 represent the divisors of 60 ∈ 〈9, 13, 15〉.
They are obtained intersecting the highlighted elements of the pictures in Figure 2.

Another immediate consequence of Lemma 6, which has interest in concrete
implementations, is the following corollary:
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Algorithm 1: Divisors

Input : A numerical semigroup S, x ∈ S
Output: The divisors of x

1 Sx := {s ∈ S | s ≤ x}/* Compute the elements of S smaller than x */

2 return {s ∈ Sx | x− s ∈ Sx}

54 55 56 57 58 59 60 61 62

45 46 47 48 49 50 51 52 53

36 37 38 39 40 41 42 43 44

27 28 29 30 31 32 33 34 35

18 19 20 21 22 23 24 25 26

9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8

Figure 4. The divisors of 60 in the semigroup S = 〈9, 13, 15〉

Corollary 8. If c ≤ x ≤ y, then D(y) ∩ [x,∞) = (y − S) ∩ [x,∞).

We remember that

D(m1, . . . ,mr) = D(m1)∪· · ·∪D(mr) = {p ∈ S | mi−p ∈ S for some i ∈ {1, . . . , r}}
The highlighted elements in Figure 3 are the elements of D(235, 199, 247, 229)

which are greater than 189, when S is the semigroup 〈19, 20, 21, 22, 23〉.
Observe that x− S contains all the integers not greater than x− c and that the

number of integers smaller than x not belonging to x− S is precisely the genus of
S. As the number of non-negative integers not greater than x is x + 1, one gets
immediately the well known fact (see [11], [12] or [2]):

Proposition 9. If x ≥ 2c− 1, then ]D(x) = ]S ∩ (x− S) = x+ 1− 2g.

3.2. Amenable sets.

Definition 10. Let S be a numerical semigroup with conductor c. Let M =
{m1, . . . ,mr} ⊆ S with 2c − 1 ≤ m = m1 < · · · < mr. We say that the set
M is (S,m, r)-amenable if:

(2) for all i ∈ {1, . . . , r},D(mi) ∩ [m,∞) ⊆M.

We will refer a set satisfying (2) as being m-closed under division. So, a subset
of S ∩ [m,∞) with cardinality r is (S,m, r)-amenable if and only if it contains m
and is m-closed under division.

As a convention, the empty set is considered an (S,m, 0)-amenable set, for anym.
When no confusion arises or only the concept is important, we say (m, r)-amenable
set or simply amenable set.

Example 11. (1) Let S = 〈19, 20, 21, 22, 23〉. Its conductor is c = 95. Take
m = 2c − 1 = 189. The set M consisting of the highlighted elements in
Figure 3 is an amenable subset of S.
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(2) Let S be a numerical semigroup with conductor c. Let m ≥ 2c − 1, and r
a non negative integer. Then the interval [m,m+ r − 1] ∩ N is a (S,m, r)-
amenable set.

The importance of amenable sets comes from the following result, which states
that among the optimal configurations of cardinality r there is at least one (S,m, r)-
amenable set.

Proposition 12. Let S be a numerical semigroup with conductor c and let m ≥
2c− 1. Let r be a positive integer. Among the optimal configurations of cardinality
r there is one (S,m, r)-amenable set.

Proof. Let M = {m1, . . . ,mr} be an optimal configuration. As m ≥ 2c− 1, δr(m)
is strictly increasing in m, and thus m cannot be less than m1, which implies that
m1 = m.

If M is not m-closed under division, we may assume that for some i ∈ {1, . . . , r}
there exists t ∈ S such that mi−t > m and mi−t 6∈ {m1, . . . ,mr}. Clearly D(mi−
t) ⊂ D(mi), and thus D(m1, . . . ,mi−1,mi − t,mi+1, . . . ,mr) ⊆ D(m1, . . . ,mr). In
other words, we can change mi by mi − t and the number of divisors does not
increase. Now we can repeat the process with the set obtained until we reach a
m-closed under division set. Note that this must happen in a finite number of steps
(Nr has no infinite descending chains). �

The definition of amenable set, which seems to be suitable for proofs, does not
seem to help very much to do computations unless we can prove some consequences.
The following one, showing that the distances between elements is somehow con-
trolled, guarantees that the search of the amenable sets can be done in a bounded
subset of S, and therefore amenable sets can be effectively computed. An algorithm
will be presented (Algorithm 2).

Proposition 13. Let S be a numerical semigroup with conductor c and let m ≥
2c − 1. Let M = {m1, . . . ,mr} ⊆ S be an (S,m, r)-amenable set and suppose that
S = {0 = ρ1 < ρ2 < · · · }. Then

(a) mi ≤ m+ ρi, for all i ∈ {1, . . . , r},
(b) mi+1 −mi ≤ ρ2, for all i ∈ {1, . . . , r − 1}.

Proof. (a) Suppose that there exists i0 ∈ {1, . . . , r} such that mi0 − ρi0 > m. Let
D = {mi0 − ρj | j ∈ {1, . . . , i0}}. All the elements of D are bigger than m, that
is, D ⊆ (m,∞). On the other hand, by using Lemma 6, D ⊆ D(mi0). Thus
D ⊆ D(mi0) ∩ (m,∞) $ {m1, . . . ,mi0}. The containment is strict since m1 = m.
But this is absurd, since the two ends of the chain have the same cardinality.

(b) Note that mi+1−ρ2 is a divisor of mi+1. This implies that, if mi+1−ρ2 ≥ m,
then mi+1 − ρ2 ∈ M . As mi+1 − ρ2 < mi+1 and there is no element in M strictly
between mi and mi+1, mi+1 − ρ2 must be non greater than mi. �

For efficiency reasons, the following result is important. It shows that we do not
have to consider all divisors.

Proposition 14. A subset M = {m = m1, . . . ,mr} of a numerical semigroup S is
(S,m, r)-amenable if and only if

(3)
for all i ∈ {1, . . . , r} and g minimal generator of S,
if mi − g ≥ m, then mi − g ∈ {m1, . . . ,mr}.
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Proof. Let mi ∈ M and u ∈ D(mi) ∩ [m,∞), with u 6= mi. We shall prove
that if (3) holds, then u ∈ M , thus concluding that M is (S,m, r)-amenable. We
can write u = mi − γ, with γ ∈ S \ {0}. Assume as induction hypothesis that
mi − α ∈ D(mi) ∩ [m,∞) implies mi − α ∈ M , for all α less than γ. Let g be a
minimal generator that divides γ. As γ − g < γ, and mi − (γ − g) = mi − γ + g ∈
D(mi) ∩ [m,∞), we have, by hypothesis, that mi − γ + g ∈ M . But then, by (3),
mi − γ = (mi − γ + g)− g ∈M . �

Propositions 13 and 14 led to an algorithm to compute the set of (S,m, r)-
amenable sets. Pseudo-code is presented in Algorithm 2 .

Algorithm 2: (S,m, r)-amenable sets

Input : A numerical semigroup S, m ≥ 2c− 1 and r an integer
Output: The set of (S,m, r)-amenable sets

SM := [[m]]/* the set of amenable sets */

Compute the generators gens = {n1 < . . . < ne} and the elements
{0 = ρ1 < ρ2 < . . .} of S

1 for i in [2..r] do
newM := [ ]

2 for x in SM do
min := Minimum(x[Length(x)] + ρ2,m+ ρi)/* the consequences

in Proposition 13 should be satisfied: the next element

to be added must not be greater than the last + rho2

neither m+el[i] */

3 for mj in [x[Length(x)] + 1..min] do
4 divs := {d ∈ mj − gens | d > m} /* strict divisors of mj

greater than m */

5 if divs ⊆ x then
/* in order to get condition (3) of Proposition 14

satisfied */

Append(newM, [Union(x, [mj])])

SM := newM ;

return SM

As we will see in the next subsection, we do not need all the amenable sets.

3.3. The ground. We continue considering S a numerical semigroup minimally
generated by {n1 < · · · < ne} with conductor c. Let m ≥ 2c − 1. The set
{m, . . . ,m+ ne − 1} is called the (S,m)-ground, or simply ground.

The intersection of an (S,m, r)-amenable set M with the (S,m)-ground is called
the shadow of M .

Note that the shadow of an amenable set is amenable.

Lemma 15. Let S be a numerical semigroup minimally generated by {n1 < · · · <
ne} with conductor c. Let m ≥ 2c − 1 and let M = {m = m1 < · · · < mr} be an
amenable set. Let L = M ∩ [m,m+ ne) be the shadow of M . Then

D(M) = (M \ L) ∪D(L),
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and furthermore ]D(M) = ](M \ L) + ]D(L).

Proof. The inclusion (M \ L) ∪ D(L) ⊆ D(M) is clear. For the other inclusion,
let x ∈ D(M) \ (M \ L) = (D(M) \M) ∪ L. We want to prove that x ∈ D(L).
Since L ⊆ D(L), we can assume that x ∈ D(M) \M . Then x ∈ D(mi) for some
i ∈ {1, . . . , r} and mi ≥ m + ne. As mi − x ∈ S \ {0}, there exists j ∈ {1, . . . , e}
such that mi − x− nj ∈ S. Hence x ∈ D(mi − nj). By hypothesis M is amenable
and thus mi − nj ∈M , since mi − nj ∈ D(mi) ∩ [m,∞). If needed, we can repeat
the process until mi − nj ∈ L, that is, x ∈ D(L).

The second assertion follows easily since the above union is disjoint. �

As an easy but useful consequence, we get the following corollary.

Corollary 16. Let M and N be (m, r)-amenable sets with shadows LM and LN

respectively. LM ⊆ LN =⇒ ]D(M) ≤ ]D(N).

Proof. Suppose that LN is the disjoint union of LM and a set K of cardinality k.
Observe that ](M \ LM ) = ](N \ LN ) + k.

As D(LN ) = D(LM )∪D(K) ⊇ D(LM )∪K, it follows that ]D(LN ) ≥ ]D(LM )+k,
that is, ]D(LM ) ≤ ]D(LN )− k.
]D(M) = ](M \ LM ) + ]D(LM ) ≤ ](N \ LN ) + k + ]D(LN )− k. �

Corollary 17. Let S be a numerical semigroup minimally generated by {n1 <
· · · < ne} with conductor c. Let m ≥ 2c − 1 and let M ⊂ [m,∞) be an amenable
set which is an optimal configuration of cardinality r. Let L = M ∩ [m,m+ ne) be
the shadow of M . Then δr(m) = ]D(L) + ](M \ L).

Corollary 18. In particular, if there exists an optimal configuration M of cardi-
nality r such that [m,m + ne) ∩ N ⊆ M , then [m,m + r − 1 + k] ∩ N is also an
optimal configuration of cardinality r + k.

3.4. An algorithm to compute generalized Feng-Rao numbers. In the cases
where computing divisors is “easy”, finding optimal configurations is as difficult as
computing generalized Feng-Rao numbers. This problem is referred to as “hard”
in the literature, even from the computational point of view.

Algorithm 3 can be used to compute generalized Feng-Rao numbers of any nu-
merical semigroup. Note that its efficiency depends on the number of amenable
sets. Due to Corollary 16, it can be sharpened, since we only need to consider one
amenable set for each possible shadow.

This algorithm (even preliminary versions of it) has been extensively used by
the authors to perform computations which gave the intuition that ultimately led
to the main results of this paper.

4. Numerical semigroups generated by intervals

From now on we assume that S = 〈a, . . . , a + b〉 with a and b positive integers,
and b < a.

4.1. Some counting lemmas. As we have seen above, it is crucial to know the
number of divisors of subsets of the ground (this is obtained in Remark 24). In this
section we prove some technical lemmas on counting the divisors of elements, and
then apply them for elements in the ground. The main result (Lemma 30) shows
that the minimum is obtained when the elements form an interval starting in m.
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Algorithm 3: Generalized Feng-Rao numbers

Input : A numerical semigroup S, m ∈ S, r ∈ N
Output: δrFR(m)

SM := ∅
1 AM := {M ⊂ S |M is a (S,m, r)-amenable set}/* Compute the

(m, r)-amenable sets, by making a call to Algorithm 2 */

2 For each possible shadow s, add to SM an element of AM with shadow s, if

it exists

ν := m+ r/* an obvious upper bound */

3 for M in SM do
D :=

⋃
{Divisors(x) | x ∈M}/* Compute the divisors of M, by

using Algorithm 1 */

ν := minimum(]D, ν)

4 return ν

Membership problem for semigroups generated by intervals is trivial as the fol-
lowing known result (and with many different formulations) shows.

Lemma 19. [4, Lemma 10, for d = 1] Let k and r be integers such that 0 ≤ r ≤
a− 1. Then ka+ r ∈ S if and only if r ≤ kb.
Lemma 20. Let m ≥ 2c−1. Let q be a nonnegative integer and j ∈ {0, . . . , a−1}.

D(m,m+ qa+ j) = D(m)

∪
{
m− (ka+ r) | 0 ≤ r ≤ a− j − 1,

r + j

b
− q ≤ k < r

b

}
∪
{
m− (ka+ r) | a− j ≤ r ≤ a− 1,

r + j − (a+ b)

b
− q ≤ k < r

b

}
,

and this union is disjoint.

Proof. We describe the set D(m + qa + j) \ D(m). Let x be an integer such that
m + qa + j − x ∈ S and m − x 6∈ S. In particular, as m ≥ 2c − 1, m − x 6∈ S
implies that m − x < c, and thus c − 1 ≤ m − c < x, which leads to x ∈ S. Thus
x ∈ D(m + qa + j) \ D(m). Set n = m − x, and let k and r be integers such
that n = ka + r (x = m − (ka + r)). Then n = ka + r 6∈ S and n + qa + j =
(q + k)a+ (j + r) ∈ S. In view Lemma 19, this implies that kb < r < a and

• if r + j ≤ a− 1, then 0 ≤ r + j ≤ (q + k)b,
• if r + j ≥ a, by writing (q + k)a+ (j + r) = (q + k + 1)a+ (j + r − a), we

obtain 0 ≤ r + j − a ≤ (q + k + 1)b.

�

Figure 5 shows how are the divisors of D(m,m + λ) with λ ∈ {42, 59} and
S =< 9, 10, 11, 12, 13 >.

Remark 21. For the particular case q = 0 and 0 < j < a, we get

D(m,m+ j) = D(m)∪{m− (ka+ r) | a− j ≤ r ≤ a− 1, 0 < r− kb ≤ (a+ b)− j}.
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divisors of m divisors of v divisors of v ∩ divisors of m

divisors of m ∩ ground divisors of v ∩ ground

Other elements in ground Other elements

36 37 38 39 40 41 42 43 44

27 28 29 30 31 32 33 34 35

18 19 20 21 22 23 24 25 26

9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8

54 55 56 57 58 59 60 61 62

45 46 47 48 49 50 51 52 53

36 37 38 39 40 41 42 43 44

27 28 29 30 31 32 33 34 35

18 19 20 21 22 23 24 25 26

9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8

Figure 5. D(m,m+ λ)

For q = 1 and j = 0,

D(m,m+ a) = D(m) ∪ {m− (ka+ r) | 0 ≤ r ≤ a− 1, 0 < r − kb ≤ b},

which is the same as above by taking j = a.
For the case q = 1, we get

D(m,m+ a+ j) = D(m)

∪ {m− (ka+ r) | 0 ≤ r ≤ a− j − 1, 0 < r − kb ≤ b− j}
∪ {m− (ka+ r) | a− j ≤ r ≤ a− 1, 0 < r − kb ≤ (a+ b) + b− j} .

This describes all elements D(m,m+ `), with ` ∈ {1, . . . , a+ b− 1} (i.e., m+ `
in the ground).

Lemma 22. Let 0 = i0 < i1 < · · · < it < it+1 < a + b be such that {m,m +
i1, . . . ,m+ it+1} is amenable. Then

D(m,m+ i1, . . . ,m+ it+1) = D(m,m+ i1, . . . ,m+ it)∪
{m− (ka+ r) | a− it+1 ≤ r ≤ a− 1− it, 0 < r − kb ≤ (a+ b)− it+1}.

Proof. Assume first that it+1 ≤ a. Note that D(m+ it+1) \ (D(m,m+ i1, . . . ,m+

it)) =
⋂t

j=0 D(m+ it+1) \D(m+ ij), and this equals

t⋂
j=0

{m+ij−(ka+r′) | a−(it+1−ij) ≤ r′ ≤ a−1, 0 < r′−kb ≤ (a+b)−(it+1−ij)}

(Remark 21). If we make the change of variables r = r′ − ij for each j, we obtain

t⋂
j=0

{m− (ka+ r) | a− it+1 ≤ r ≤ a− 1− ij , −ij < r − kb ≤ (a+ b)− it+1}.
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Intersecting means choosing the least intervals for r and r − kb, and we get the
desired result.

Now assume that a < it+1 < a + b. By hypothesis there exists s such that
it+1 − is < a and it+1 − is−1 ≥ a (by amenability). For it+1 − ij ≥ a, write

it+1 − ij = a+ hj . Hence
⋂t

j=0 D(m+ it+1) \D(m+ ij) equals

t⋂
j=s

{m+ij−(ka+r′) | a−(it+1−ij) ≤ r′ ≤ a−1, 0 < r′−kb ≤ (a+b)−(it+1−ij)}

⋂( s−1⋂
j=0

(
{m+ij−(ka+r′) | 0 ≤ r′ ≤ a−(it+1−ij−a)−1, 0 < r′−kb ≤ b−(it+1−ij−a)}

∪{m+ij−(ka+r′) | a−(it+1−ij−a) ≤ r′ ≤ a−1, 0 < r′−kb ≤ (a+b)+b−(it+1−ij−a)}
))
.

If we perform again the change of variables r = r′ − ij , we obtain that C =⋂t
j=s{m+ij−(ka+r′) | a−(it+1−ij) ≤ r′ ≤ a−1, 0 < r′−kb ≤ (a+b)−(it+1−ij)} =

{m−(ka+r) | a−it+1 ≤ r ≤ a−it−1, −is < r−kb ≤ (a+b)−it+1}. Analogously,
for every j ∈ {0, . . . , s− 1},

{m+ij−(ka+r′) | 0 ≤ r′ ≤ a−(it+1−ij−a)−1, 0 < r′−kb ≤ b−(it+1−ij−a)}
∪{m+ij−(ka+r′) | a−(it+1−ij−a) ≤ r′ ≤ a−1, 0 < r′−kb ≤ (a+b)+b−(it+1−ij−a)}

equals

{m− (ka+ r) | − ij ≤ r ≤ 2a− it+1 − 1, −ij < r − kb ≤ a+ b− it+1}
∪ {m− (ka+ r) | 2a− it+1 ≤ r ≤ a− ij − 1, −ij < r − kb ≤ 2(a+ b)− it+1}.

Observe that a − it − 1 ≤ 2a − it+1 − 1 if and only if it+1 − it ≤ a, which is the
case since we are using an amenable set. Hence C does not cut the second set in
the above union, and the whole intersection is as in the case it+1 < a. �

Corollary 23. Let 0 = i0 < i1 < · · · < it < it+1 < a+ b. Then

]D(m,m+i1, . . . ,m+it+1) = ]D(m,m+i1, . . . ,m+it)+

it+1∑
j=it+1

⌈
a+ b− j

b

⌉
−
⌈
it+1 − j

b

⌉
.

Proof. We compute the cardinality of {m − (ka + r) | a − it+1 ≤ r ≤ a − 1 −
it, 0 < r − kb ≤ (a + b) − it+1}. Note that m − (ka + r) = m − (k′a + r′)
with 0 ≤ r, r′ < a implies that k = k′ and r = r′. Thus we must calculate
]{(k, r) | a − it+1 ≤ r ≤ a − 1 − it, 0 < r − kb ≤ (a + b) − it+1}, which equals

]{(k, r) | it + 1 ≤ a− r ≤ it+1,
it+1+r−(a+b)

b ≤ k < r
b}. By taking j = a− r, we get

it+1∑
j=it+1

]
{
k | it+1 − j

b
−1 ≤ k < a− j

b

}
=

it+1∑
j=it+1

((⌈a− j
b

⌉
−1
)
−
(⌈ it+1 − j

b

⌉
−1
)
+1
)
,

and the proof follows easily. �

Remark 24. Recall that

]D(m,m+i1, . . . ,m+it) = ]D(m,m+i1, . . . ,m+it−1)+

it∑
j=it−1+1

⌈
a+ b− j

b

⌉
−
⌈
it − j
b

⌉
,
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and by applying several times this process we obtain

]D(m,m+ i1, . . . ,m+ it) = ]D(m) +

t∑
k=1

ik∑
j=ik−1+1

⌈
a+ b− j

b

⌉
−
⌈
ik − j
b

⌉

= ]D(m) +

it∑
j=1

⌈
a+ b− j

b

⌉
−

t∑
k=1

ik∑
j=ik−1+1

⌈
ik − j
b

⌉
.

And thus

]D(m,m+i1, . . . ,m+it) = ]D(m)+

it∑
j=1

⌈
a+ b− j

b

⌉
−

t∑
k=1

ik−ik−1∑
j=1

⌈
(ik − ik−1)− j

b

⌉
.

If we write dk = ik − ik−1, this rewrites as

]D(m,m+ i1, . . . ,m+ it) = ]D(m) +

it∑
j=1

⌈
a+ b− j

b

⌉
−

t∑
k=1

dk∑
j=1

⌈
dk − j
b

⌉
.

Hence the value of ]D(m,m + i1, . . . ,m + it) depends on d1, . . . , dt, subject to∑t
k=1 dk = it.

Corollary 25. Let t ∈ {1, . . . , a+ b− 1}. Then

]D(m,m+ 1, . . . ,m+ t) = ]D(m) +

t∑
j=1

⌈
a+ b− j

b

⌉
.

As a consequence of this, when the shadow of a configuration is an interval
containing m, then we can compute the number of divisors of its elements.

Corollary 26. Let m be an integer greater than or equal to 2c− 1. Let m = m1 <
m2 < · · · < mt be integers such that {m1,m2, . . . ,mt} is amenable. Assume that
l = ]{m1, . . . ,mt} ∩ [m,m+ a+ b) = {m,m+ 1, . . . ,m+ l − 1}. Then

]D(m1, . . . ,mt) = m− 2g + t+

l−1∑
j=1

⌈
a− j
b

⌉
.

Proof. This is a direct consequence of Proposition 9, Lemma 15, and Corollary
25. �

Indeed, we will show that among these configurations there is an optimal one.
To do this, we first prove that the best shadows are those of the form {m,m +
1, . . . ,m + l − 1}, and later (in the next section) we will have to compute the
smallest possible value of l.

Let us see how to compute sums of the form
∑t

j=1

⌈
a−j
b

⌉
.

Lemma 27. Let x and y be postive integers. Assume that y = cb + r with c an
integer and 0 ≤ r < b, and that k is an integer such that kb ≤ x − r < (k + 1)b.
Then

(1) if r 6= 0,
∑x

j=1

⌈
y−j
b

⌉
= (c+1)(r−1)+b

∑k−1
i=0 (c−i)+(x−(kb+r)+1)(c−k) =

x(c− k) + (k + 1)(r − 1) + bk(k+1)
2 ,

(2) if r = 0,
∑x

j=1

⌈
y−j
b

⌉
= −c + b

∑k−1
i=0 (c − i) + (x − kb + 1)(c − k) =

(x+ 1)(c− k) + bk(k+1)
2 − c.
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Proof. Observe that

x∑
j=1

⌈
y − j
b

⌉
=

r−1∑
j=1

⌈
y − j
b

⌉
+

r+b−1∑
j=r

⌈
y − j
b

⌉
+· · ·+

kb+r−1∑
j=(k−1)b+r

⌈
y − j
b

⌉
+

x∑
j=kb+r

⌈
y − j
b

⌉
,

and
(l+1)b+r−1∑

j=r+lb

⌈
y − j
b

⌉
=

b−1∑
j=0

⌈
y − (r + lb)− j

b

⌉
=

b−1∑
j=0

⌈
(c− l)b− j

b

⌉
= b(c− l).

In the same way the first and last summand are computed. If r = 0, the first
summand does not appear, and the second sum starts on 0, and so we have to
decrease the total amount by

⌈
cb
b

⌉
= c. �

Actually, as we see next it suffices to consider the following type of sums.

Remark 28. For the case x = y, we get k = c and

(1) if r 6= 0,
∑x

j=1

⌈
x−j
b

⌉
= (c+ 1)(r − 1) + b c(c+1)

2 = c+1
2 (x+ r)− c− 1,

(2) if r = 0,
∑x

j=1

⌈
x−j
b

⌉
= c+1

2 x− c.
Observe also that

∑x
j=1

⌈
x−j
b

⌉
=
∑x−1

j=1

⌈
j
b

⌉
.

The following trick will allow us to prove that the best possible shadows are
those that are intervals starting in m.

Remark 29. Let dk = ik − ik−1, i ∈ {1, . . . , t}. Then
∑t

k=1 dk = it. If we replace
{d1, d2} with {1, d1 + d2 − 1}, the total sum of the dk’s remains the same (we are
thus assuming that both d1 and d2 are greater than one). Let us see what happens
to

t∑
k=1

ik−ik−1∑
j=1

⌈
(ik − ik−1)− j

b

⌉
=

t∑
k=1

dk∑
j=1

⌈
dk − j
b

⌉
.

Write dk = ckb+rk, with ck and integer and 0 ≤ rk < b. Set sk =
∑dk

j=1

⌈
dk−j

b

⌉
.

Then sk = ck+1
2 (dk + rk) − 1 − ck, if rk 6= 0, and sk = ck+1

2 dk − ck, otherwise.
Let c and r be the quotient and remainder of the division of d1 + d2 − 1 by b. Let

∆ =
∑d1+d2−1

j=1

⌈
d1+d2−1−j

b

⌉
− s1 − s2. If b = 1, then r1 = r2 = r = 0, ci = di,

c = d1 + d2 − 1, and ∆ = d1d2, which is a nonnegative integer. For b > 1 we
distinguish three cases depending on the value of r1 + r2.

• If r1 + r2 = 0 (this means r1 = r2 = 0), then d1 = c1b, d2 = c2b, c =
c1 + c2 − 1, and r = b − 1. Then ∆ = bc1c2 − (c1 + c2). Since we are
assuming that b ≥ 2, and c1 and c2 are positive integers, this amount is
nonnegative.
• If 0 < r1 + r2 ≤ b, then c = c1 + c2 and r = r1 + r2 − 1. Thus if rr1r2 6= 0,

∆ = bc1c2 + c1(r2 − 1) + c2(r1 − 1), which is greater than or equal to zero.
For r = 0, either r1 = 0 (and r2 = 1) or r2 = 0 (and r1 = 1). Assume
without loss of generality that r1 = 0. We obtain ∆ = (bc1− 1)c2, which is
again nonnegative.
• Finally if r1 +r2 ≥ b+1, then c = c1 +c2 +1 and r = r1 +r2−b−1. In this

setting r1 6= 0 6= r2. If r 6= 0, then ∆ = bc1c2 + c1(r2−1)+ c2(r1−1)+r1 +
r2 − (b+ 2), which is nonnegative since r1 + r2 ≥ b+ 2. For r1 + r2 = b+ 1
(r = 0), we obtain a nonnegative ∆ = bc1c2 + c1(r2 − 1) + c2(r1 − 1).
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With all this in mind, we are able to prove the main result of this section, that
is, if the elements in the ground form an interval containing m, then we get the
least possible number of divisors.

Lemma 30. Let 0 = i0 < i1 < · · · < it < a+ b. Then

]D(m,m+ i1, . . . ,m+ it) ≥ ]D(m,m+ 1, . . . ,m+ t).

Proof. Let dk = ik − ik−1 for k ∈ {1, . . . , t} (i0 = 0). We know that (see Remark
24)

]D(m,m+ i1, . . . ,m+ it) = ]D(m) +

it∑
j=1

⌈
a+ b− j

b

⌉
−

t∑
k=1

dk∑
j=1

⌈
dk − j
b

⌉
.

By applying several times the above remark, we obtain that ]D(m,m+ i1, . . . ,m+
it) ≥ ]D(m,m + i′1,m + i′2, . . . ,m + i′t), with it = i′t and d′k = i′k − i′k−1 = 1 for
k ∈ {2, . . . , t}. By using again the above expression, but now for d′k instead of dk,
we get

]D(m,m+ i′1, . . . ,m+ i′t) = ]D(m) +

it∑
j=1

⌈
a+ b− j

b

⌉
−

i′1∑
j=1

⌈
i′1 − j
b

⌉
.

Hence by Corollary 25, in order to prove the inequality of the statement, it suffices
to show that

it∑
j=1

⌈
a+ b− j

b

⌉
−

i′1∑
j=1

⌈
i′1 − j
b

⌉
≥

t∑
j=1

⌈
a+ b− j

b

⌉
,

or equivalently,
it∑

j=t+1

⌈
a+ b− j

b

⌉
−

i′1∑
j=1

⌈
i′1 − j
b

⌉
≥ 0.

Now, if we take into account that
∑it

j=t+1

⌈
a+b−j

b

⌉
=
∑it−t

j=1

⌈
a+b−t−j

b

⌉
, that

∑i′1
j=1

⌈
i′1−j
b

⌉
=∑i′1−1

j=1

⌈
i′1−j
b

⌉
, and that i′1+(t−1) = i′t = it, we get

∑it
j=t+1

⌈
a+b−j

b

⌉
=
∑i′1−1

j=1

⌈
a+b−t−j

b

⌉
.

Since a+ b− t ≥ it + 1− t = i′1, we obtain the desired inequality. �

4.2. Ordered amenable sets. As we have seen above, the minimum number of
divisors of elements in the ground is reached when these elements form an interval
starting in m. In this section we study configurations fulfilling this condition.

Let M be a configuration and let

j0 = max{j ∈ {0, . . . , a− 1} | x− (m+ b) = qa+ j, for some q ∈ Z and x ∈M}.
Let us call wagon of M the set {x ∈M | x− (m+ b) = qa+ j0, for some integer q}.

An element P of a configuration M is said to be the pivot of M if either (P <
m+ b and P is the maximum of M) or, P is the maximum of the wagon.

Note that the wagon so as the pivot element of a configuration can be determined
in an algorithmic way.

Checking Figure 6 may be useful. The wagon is column 22 and the pivot is 305.
The wagon consists of the rightmost elements of M . The highest of these is the

pivot element. Note that the index of the column containing the wagon is b+ j0.
An (S,m, r)-amenable set M with pivot element P is said to be ordered amenable

if its shadow is of the form {m,m+1, . . . ,m+t}, for some integer t, 0 ≤ t < a+b−1,
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and the only element that can possibly be added to obtain an (S,m, r+1)-amenable
set without increasing the shadow is P + ρ2.

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
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202

14

203

15

204

16

205

17

206

18

207

19

208

20

209

21

210

22

211

23

Figure 6. The biggest ordered amenable.

We now show how to construct (S,m, r)-amenable sets.

Remark 31. In view of Lemma 20, for every positive integer q with qb < a,

D(m+ qa+ qb) = D(m)∪{m− (ka+ r) | a− qb ≤ r ≤ a− 1,
r − (a+ b)

b
≤ k < r

b
}.

By performing a change of variables (change a− r to r and −k− 1 to k), we obtain
that

D(m+ qa+ qb) = D(m) ∪ {m+ ka+ r | 1 ≤ r ≤ qb,−a− r
b
− 1 < k ≤ r

b
}.

Hence

D(m+ qa+ qb) ∩ [m,∞) = {m} ∪ {m+ ka+ r | 1 ≤ r ≤ qb, 0 ≤ k ≤ r

b
}

and
D(m+ qa+ qb) ∩ [m,m+ a+ b) = {m,m+ 1, . . . ,m+ qb}

(observe that for k to be one, r must be at least b, and in this case we obtain
m+ a+ b which is not in [m,m+ a+ b)).

Moreover,

]D(m+ qa+ qb) ∩ [m,∞) = 1 + q +
b

2
q(q + 1),

since the cardinality of the set {m+ka+r | 1 ≤ r ≤ qb, 0 ≤ k ≤ r
b} is

∑qb
r=1(b rb c+1),

which can be rewritten as qb+
∑q−1

i=0

∑b−1
j=0b

ib+j
b c+ b qbb c, and this equals qb+ q +∑q−1

i=0 bi = qb+ q+ b q(q−1)
2 = q+ b

2q(q+ 1). By adding now the cardinality of {m},
we obtain the desired equality.

Clearly the sets D(m + λ) ∩ [m,∞) are amenable sets. The following lemma
shows that some of these are indeed ordered amenable sets. The problem is that
their cardinalities do not cover all possible r’s.

Lemma 32. Let q be a positive integer such that qb < a. Then D(m+ qa+ qb) ∩
[m,∞) is an ordered amenable set.
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Proof. We already know that its shadow is an interval containing m (the condition
qb < a, ensures that the shadow is not the whole ground), and as pointed out
above, it is amenable. In order to conclude the proof, we show that for all s > m,
s 6∈ D(m + qa + qb), if the set D(m + qa + qb) ∪ {s} is amenable, then its shadow
is larger than {m,m+ 1, . . . ,m+ qb}. Write s = m+ ua+ v, with 0 ≤ v < a. If u
is zero, as s 6∈ D(m+ qa+ qb), we obtain that v > qb, obtaining in this way a new
element in the shadow. So u must be positive. We distinguish to cases.

• If v ≤ qb, then as s 6∈ D(m+ qa+ qb), by the preceding remark, we deduce
that u must be greater than v

b . But then m+ ua+ v − (m+ a+ b− 1) =
(u−1)a+(v−b)+1, and this element is in S if and only if v−b+1 ≤ (u−1)b
(Lemma 19), or equivalently, v < ub, which holds since u > v

b . This proves
that m + a + b − 1 is in the shadow of D(m + qa + qb) ∪ {s} (under the
assumption that this set is amenable), and it is not in {m,m+1, . . . ,m+qb},
a contradiction.
• Now assume that v > qb. Then the element m + v is in the shadow of

D(m+ qa+ qb) ∪ {s}, obtaining again a contradiction.

�

From an (S,m, r)-ordered amenable set, we can construct another (S,m, r− 1)-
ordered amenable set, just by removing its pivot.

Lemma 33. If M is an ordered amenable set, which shadow is not the whole
ground, and P is its pivot, then M \ {P} is ordered amenable.

Proof. Observe that P does not belong to D(M \ {P}), and thus M \ {P} is still
amenable. From the definition of pivot, it follows easily that this set is also ordered
amenable. �

Let r be a positive integer, there exists q ∈ Z such that

q +
1

2
bq(q − 1) ≤ r < 1 + q +

1

2
bq(q + 1).

Define h(r) = q. Thus we can write r = h(r) + 1
2bh(r)(h(r)− 1) + s, with 0 ≤ s ≤

h(r)b. Hence

(4) r = h(r) +
1

2
bh(r)(h(r)− 1) + kh(r) + j,

with −1 ≤ k ≤ b − 1 and 0 < j ≤ h(r) (k = −1 only in the case r = h(r) +
1
2bh(r)(h(r)− 1), and then j = h(r)). Note that h(r) = 0 leads to r = 0, so we may
assume that h(r) > 0. Observe also that j + k = 0 only when h(r) = 1 = j and
k = −1.

Proposition 34. Let r be a positive integer. Let k and j be as above. If b(h(r)−
1) + k + 1 < a+ b− 1, then the set

(D(m+ (h(r)− 1)(a+ b)) ∩ [m,∞))

∪ {m+ ua+ v | (h(r)− 1)b+ 1 ≤ v ≤ (h(r)− 1)b+ k, 0 ≤ u ≤ h(r)− 1}
∪ {m+ ((h(r)− 1)b+ k + 1)a+ v | 0 ≤ v < j}

is an r-ordered amenable set.

Proof. This set is obtained from D(m + h(r)(a + b)) by repeating the Lemma 33
1 + h(r) + b

2h(r)(h(r) + 1)− r times. �
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Next we prove that ordered (S,m, r)-amenable sets have minimal shadow in
the set of all (S,m, r)-amenable sets with shadow an interval containing m. As a
consequence any two (S,m, r)-ordered amenable sets have the same shadow.

Proposition 35. Let M be an ordered (S,m, r)-amenable subset of S whose shadow
has t elements and let N be another (S,m, r)-amenable subset of S whose shadow
is an interval containing m. Then, the shadow of N has at least also t elements.

Proof. Suppose that the shadow of N has less than t elements. This implies that
the set N \M is non empty (since both sets have cardinality r) and therefore it
has a minimum z. Furthermore, N has no elements in the wagon of M . It is
straightforward to observe that M ∪ {z} is amenable.
In fact, as N is amenable, we have that D(z)∩ [m,∞) ⊂ N ; (D(z)\{z})∩ [m,∞) ⊂
M because z is minimum. So D(z)∩ [m,∞) ⊂M ∪ {z}. As z is not in the column
containing the wagon of M we conclude that z 6= P + ρ2, which contradicts the
assumption that M is ordered. �

Considering M and N ordered amenable sets in the above proposition and ap-
plying it in both directions, we get the following consequence.

Corollary 36. The shadows of ordered (S,m, r)-amenable sets coincide.

With all these ingredients we can effectively compute the cardinality of the
shadow of an ordered (S,m, r)-amenable set.

Corollary 37. Let M be an ordered (S,m, r)-amenable set, and let k and j be as
in (4), then #(M ∩ [m,m+ a+ b)) = (h(r)− 1)b+ k + 2.

Proof. As any two ordered amenable sets with the same cardinality have the same
elements in the ground, we can use the ordered ameneable set of the preceding
proposition. Observe that the ground for this set is {m,m + 1, . . . ,m + (h(r) −
1)b,m+ (h(r)− 1)b+ 1, . . . ,m+ (h(r)− 1) + k + 1}. �

Observe that this result gives a bound for integers r such that there exists an
ordered (S,m, r)-amenable set.

Now we prove that if M is an (S,m, r)-amenable set whose shadow is not an
interval containing m, then we can remove the trailing spaces in the shadow without
increasing the number of divisors, that is we can find N , an (S,m, r)-amenable with
shadow an interval containing m and such that ]D(N) ≤ ]D(M). By using what we
already know for ordered (S,m, r)-amenable set, as a consequence we will obtain
that they are optimal configurations. To this end we need several tools.

The first one enables us to push an (S,m, r)-amenable set to the right, obtaining
an (S,m+ 1, r)-amenable set.

Lemma 38. Let M be an (S,m, r)-amenable set. Then N = M + 1 = {x+ 1 | x ∈
M} is an (S,m+ 1, r)-amenable set.

Proof. Let x = y + 1 ∈ N , with y ∈ M , and suppose that h ∈ S is such that
the divisor x − h of x is greater than m. We have to prove that x − h ∈ N . As
y − h is greater than or equal to m, we have that y − h ∈ M . It follows that
x− h = (y + 1)− h = (y − h) + 1 ∈M + 1 = N . �

If we shift an (S,m, r)-amenable set to the left, we get an (S,m−1, r)-amenable
set (provided m− 1 ≥ 2c− 1).
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Lemma 39. Let M be an (S,m, r)-amenable set with m ≥ 2c. Then M − 1 =
{x− 1 | x ∈M} is an (S,m− 1, r)-amenable set.

Proof. Let y ∈ M − 1, say y = x − 1, with x ∈ M . Note that y ≥ m. Now we
use Corollary 8. By hypothesis D(x) ∩ [m,∞) = (x − S) ∩ [m,∞) ⊆ M , but then
D(y) ∩ [m,∞) = ((x− 1)− S) ∩ [m,∞) ⊆ (M − 1). �

If we add the element m to an (S,m+1, r)-amenable set, we get an (S,m, r+1)-
amenable set.

Lemma 40. Let N be an (S,m + 1, r)-amenable set. The set M = {m} ∪ N is
(S,m, r + 1)-amenable.

Proof. If N = {m + 1 = m2 < . . . < mr+1} then M = {m < m2 < . . . < mr+1}.
Write m1 = m.

We have to check that M is m-closed under division. It clearly holds for i = 1.
Let i ≥ 2. The divisors of mi non smaller than m+ 1 belong to N and thus to M .
Therefore, divisors of mi non smaller than m belong to M . �

It is immediate that if we remove the biggest element of an (m, r)-amenable set,
then we get an (m, r − 1)-amenable set (provided r > 1).

Lemma 41. Let M be an (m, r)-amenable set and suppose that r > 1. Let u be
the maximum of M . Then M \ {u} is an (m, r − 1)-amenable set.

Before removing the trailing spaces of an (S,m, r)-amenable set, we need it to
no contain the last element in the ground, that is m+ a+ b− 1. If this is the case,
next we give a procedure to obtain another (S,m, r)-amenable set whose shadow is
at most as large as the original set, but not containing m+ a+ b− 1.

Proposition 42. Given an (S,m, r)-amenable set M with shadow LM not coin-
ciding with the ground, we can construct an (S,m, r)-amenable set N with shadow
LN not containing m+ a+ b− 1 and such that ]LN ≤ ]LM .

Proof. Assume that M is an (S,m, r)-amenable set containing m+ a+ b− 1, and
with a shadow different to the ground. Then, there is at least an element x in
the ground, such that x is not in M , and thus x < m + a + b − 1. Let N =
{m} ∪ (M + 1) \ {max{{m} ∪ (M + 1)}}. Thus N is a shifting to the right, and
then its maximum is replaced by m. So N is by the preceding lemmas an (S,m, r)-
amenable set. Observe also that x+ 1 6∈ N . Hence we repeat this procedure until
x+ k becomes m+ a+ b− 1. �

Suppose we have a configuration not containing m + a + b − 1. We can shrink
it so that the shadow of the configuration obtained is an interval containing m. It
can be done using the following results.

Lemma 43. Let M be an (S,m, r)-amenable set not containing m + a + b − 1.
Assume there exists a column c, such that c∩M = ∅, and if M1 are the elements in
M in the columns to the left of c, and M2 = M \M1, then M2 6= ∅ (c is a splitting
column for M). Let r1 = ]M1, r2 = ]M2 and m2 = minM2. Then

(1) M1 is an (S,m, r1) amenable set,
(2) M2 is an (S,m2, r2) amenable set,
(3) M1 ∪ (M2 − 1) is an (S,m, r) amenable set.
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Proof. It suffices to show that no element in M1 divides an element in M2, and
vice-versa. Assume that there is x ∈ M1 and y ∈ M2 such that y − x ∈ S, that
is, y − x = ka + r for some r, k nonnegative integers with r ≤ min{a − 1, kb}
(Lemma 19). Hence y = x+ ka+ r, and y− (ka+ i) ∈ D(M)∩ [m,∞) = M for all
i ∈ {0, . . . , r}. Assume that c corresponds with the elements s in [m,∞) ∩ N such
that s− (m+ b) mod a = j. Then, by hypothesis

y − r − (m+ b) mod a = y − (ka+ r)− (m+ b) mod a

= x− (m+ b) mod a < y − (m+ b) mod a,

and thus there is i ∈ {0, . . . , r} such that y − (ka + i) − (m + b) mod a = y − i −
(m+ b) mod a = j, contradicting that c was an empty column of M .

Now assume that x ∈M1 and y ∈M2 are such that x− y = ka+ r for some r, k
as above. In this setting, x − (ka + i) ∈ M for all i ∈ {0, . . . , r}. By hypothesis
x− (m+ b) mod a < y − (m+ b) mod a. And

y + r − (m+ b) mod a = y + ka+ r − (m+ b) mod a

= x− (m+ b) mod a < y − (m+ b) mod a.

It follows that for some i ∈ {0, . . . , r}, y + i − (m + b) mod a = a − 1, but this is
impossible, since asm+a+b−1 6∈M , the column {s ∈M | s−(m+b) mod a = a−1}
is empty. �

Proposition 44. Let M be an (S,m, r)-amenable set whose shadow LM has t
elements. There exists an (S,m, r)-amenable set T whose shadow LT is an interval
containing m and has no more than t elements, i.e., ]LT ≤ ]LM .

Proof. Every time you find a splitting column as in the statement of Lemma 43,
change M with M1 ∪ (M2 − 1). This procedure does not increase the number of
elements in the shadow of M . �

Lemma 45. Let M be an (S,m, r)-amenable set whose shadow LM has t elements.
There exists an (S,m, r)-amenable set T whose shadow is an interval containing
m, and ]D(T ) ≤ ]D(M).

Proof. Let T be as in Proposition 44, and assume that ]LT = t − k. In view of
Lemma 30, ]D(LM ) ≥ ]D(m,m + 1, . . . ,m + t − 1). By Corollary 25, ]D(m,m +

1, . . . ,m + t − 1) = ]D(m) +
∑t−1

j=1

⌈
a+b−j

b

⌉
, and as

⌈
a+b−j

b

⌉
≥ 1, this amount is

greater than or equal to ]D(m)+
∑t−k−1

j=1

⌈
a+b−j

b

⌉
+k, which according to Corollary

25 equals ]D(m,m+ 1, . . . ,m+ t− k − 1) + k = ]D(LT ) + k. Now we use Lemma
15, having ]D(M) = ]D(LM ) + ]M \LM = ]D(LM ) + r− t ≥ ]D(LT ) + k+ r− t =
]D(LT ) + ]T \ LT = ]D(T ). �

Theorem 46. Let S be a numerical semigroup with conductor c, and let m ≥ 2c−1.
Then every ordered (S,m, r)-amenable set is an optimal configuration.

Proof. Let M be an ordered (S,m, r)-amenable set. By Proposition 12, among
the optimal configurations, there is always an (S,m, r)-amenable set. Let N be an
(S,m, r)-amenable set that is an optimal configuration. In light of Lemma 45, we
can assume that its shadow is an interval containing m. By Proposition 35, the
shadow of M is contained in that of N , and by Corollary 16, we get that #D(M) ≤
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#D(N). As N is an optimal configuration we deduce that #D(M) = #D(N), and
thus M is also an optimal configuration. �

Corollary 47. Let S = 〈a, a+ 1, . . . , a+ b〉 with integers a, b such that 0 < b < a.
Write r as in formula (4), that is, r = h(r) + 1

2bh(r)(h(r) − 1) + kh(r) + j, with
−1 ≤ k ≤ b− 1 and 0 < j ≤ h(r). Then E(r, 〈a, a+ 1, . . . , a+ b〉) equals

r − 1 +

{ ∑b(h(r)−1)+k+1
i=1

⌈
a−i
b

⌉
, if b(h(r)− 1) + k + 2 < a+ b,∑a+b−1

i=1

⌈
a−i
b

⌉
, otherwise.

Proof. Assume that b(h(r)− 1) + k+ 1 < a+ b− 1. Then by Proposition 34, there
exists an ordered (S,m, r)-amenable set. In this setting the proof follows from
Corollaries 26 and 37 and Theorem 46.

Observe also that if b(h(r)− 1) + k + 1 = a+ b− 2, by Proposition 34, the set

M = (D(m+ (h(r)− 1)(a+ b)) ∩ [m,∞))

∪ {m+ ua+ v | (h(r)− 1)b+ 1 ≤ v ≤ (h(r)− 1)b+ k + 1, 0 ≤ u ≤ h(r)− 1}

is an ordered amenable set, and thus by Theorem 46 an optimal configuration
for r = #M . As D(M ∪ {m + a + b − 1}) = D(M) ∪ {m + a + b − 1}, the set
M ∪{m+ a+ b− 1} is an optimal configuration of cardinality r+ 1, whose shadow
fills the whole ground. By using now Corollary 18, we get optimal configurations
for cardinalies greater than r+ 1. And the proof follows easily by Corollary 26. �

Needless to say that, by using this formula for numerical semigroups generated by
intervals, we have no need of the general Algorithm 3, speeding-up the computation
of Feng-Rao distances for such semigroups.

Remark 48. The reader can check that we have E(r, S) = ρr exactly in the following
cases:

(A) If either r = bσ(p) + 1, . . . , bσ(p) + p+ 1 and the ground is not completely
filled, or

(B) r ≥ r0, where r0 is the first r filling the ground,

being σ(p) := 1 + · · ·+ p = 1
2p(p+ 1) and p ≥ 1.

Besides, since both sequences E(r, S) and ρr are strictly increasing, the largest
difference between them is for r = 2 and for the first r after each element in the
first case, that is, r = bσ(p) + p+ 2 where ρr jumps from one interval to the next.

References

[1] A. Barbero and C. Munuera, “The weight hierarchy of Hermitian codes”, SIAM J. Discrete

Math. vol. 13, no. 1, pp.79-104 (2000).
[2] A. Campillo and J.I. Farrán, “Computing Weierstrass semigroups and the Feng-Rao distance

from singular plane models”, Finite Fields and their Applications 6, pp. 71-92 (2000).

[3] A. Campillo, J.I. Farrán and C. Munuera, “On the parameters of algebraic geometry codes

related to Arf semigroups”, IEEE Trans. of Information Theory 46, pp. 2634-2638 (2000).
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