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Abstract

We describe all heteroclinic networks in R
4 made of simple hete-

roclinic cycles of types B or C, with at least one common connecting
trajectory. For networks made of cycles of type B, we study the sta-
bility of the cycles that make up the network as well as the stability of
the network. We show that even when none of the cycles has strong
stability properties the network as a whole may be quite stable. We
prove, and provide illustrative examples of, the fact that the stability
of the network does not depend a priori uniquely on the stability of
the individual cycles.
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1 Introduction

Ever since symmetry provided a way of constructing robust heteroclinic cy-
cles, the study of stability properties of such objects has been of interest.
See, for instance, the work of Krupa and Melbourne [1, 2, 3], Melbourne [4]
and, more recently, that of Ashwin and Podvigina [5, 6].

It is clear that when joining heteroclinic cycles to produce a network none
of the cycles can be asymptotically stable. In this instance, several interme-
diate notions of stability have been introduced by Melbourne [4], Brannath
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[7], Podvigina and Ashwin [5]. The strongest of these is predominant asym-
totic stability, p.a.s. in the sequel. A p.a.s. invariant object will attract a set
of points in its neighbourhood big enough so that the invariant object may
be visible in numerical simulations and experiments. We therefore focus on
this kind of stability.

Recently, Podvigina and Ashwin [5] have defined the stability index of a
trajectory and the second author [9] has been making use of this to deter-
mine necessary and sufficient conditions for p.a.s. of heteroclinic cycles. We
make extensive use of these results to study not only stability of each cycle
in a network, but, by combining stability indices at a local and global level,
to determine which cycle attracts more trajectories in a neighbourhood of
the network, that is, which cycle may be visible in simulations. A similar
question has been addressed by Kirk and Silber [8] who have shown by ex-
ample that when looking at attraction properties of cycles which are part
of a heteroclinic network, these are patent even when none of the cycles is
stable. We contribute to a better understanding of this phenomenon by pro-
viding an exhaustive treatment of the stability and attractiveness of simple
cycles making up a network in R

4. It is important to notice that we need
the stability index at two levels in order to draw conclusions.

Additionally, we show that a network may be p.a.s. while only one or both
of the two cycles it is made of are non-p.a.s.. While this might induce the
thought that joining heteroclinic cycles into heteroclinic networks has some
stabilizing effect, we also present a non-p.a.s. network constructed from two
cycles, only one of which is p.a.s.. Thus, the stability of each cycle does not
condition the stability of the heteroclinic network meaning that the study of
the stability of heteroclinic networks and cycles in heteroclinic networks is
still at its onset.

In the next section we provide definitions and results which will be used in
subsequent sections. Some of the results were obtained by the second author
alone and their proof will appear elsewhere. See also Lohse [9]. Section 3 is
devoted to the description of all possible networks in R

4 consisting of simple
cycles of types B and C with at least one common connecting trajectory.
There are only three such networks, one of them being the one extensively
studied by Kirk and Silber [8]. In Appendix A we construct and study the
remaining network involving only type B cycles. Section 4 provides results
for calculating the stability indices along connections of a cycle. In section 5
we study a network made of two cycles of type B−

3 , already looked at in [8].
We determine the stability of each cycle and decide when the network as a
whole has some kind of stability. In such cases, we establish which cycle is
more likely to be observed in the network. On the one hand, this provides
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an alternative, more systematic, description of the results obtained in [8]
(subsection 5.1). On the other hand, we address some unstudied cases, thus
completing the study of competition between cycles in the network of [8]
(subsections 5.2 and 5.3). Section 6 concludes by building on results of the
previous section to show that the stability of the network does not depend a
priori solely on the stability of each cycle.

2 Preliminary results

Consider a vector field in R
4 described by a set of differential equations

ẏ = f(y), where f is Γ-equivariant for some finite Lie group Γ, that is,

f(γ.y) = γ.f(y), ∀ γ ∈ Γ ∀ y ∈ R
4.

A heteroclinic cycle consists of equilibria ξi, i = 1, . . . , m together with tra-
jectories which connect them:

[ξi → ξi+1] ⊂ W u(ξi) ∩W s(ξi+1) 6= ∅.

We assume ξm+1 = ξ1 and use X to represent the heteroclinic cycle. It is
well-known that demanding that the connection [ξi → ξi+1] be of saddle-sink
type in an invariant subspace is enough to ensure robustness of the cycle.

Heteroclinic cycles are called simple if the connections between consecu-
tive equilibria are contained in a 2-dimensional subspace. We use the defini-
tion of [3, p. 1181]: let Σj ⊂ Γ be an isotropy subgroup and let Pj = Fix(Σj).
Assume that for all j = 1, . . . , m the connection [ξj → ξj+1] is a saddle-
sink connection in Pj . Write Lj = Pj−1 ∩ Pj. A robust heteroclinic cycle
X ⊂ R

4\{0} is simple if

(i) dimPj = 2 for each j;

(ii) X intersects each connected component of Lj\{0} in at most one point.

We focus on simple cycles with no double eigenvalues, which seems to
have been silently assumed in most of the literature. Recently, these cycles
have been renamed very simple by Podvigina and Chossat [10]. We shall
retain the designation simple and say that a heteroclinic network is simple if
it is made of simple heteroclinic cycles.

A classification of simple cycles into types A, B and C appears in Chossat
et al. [11] who are concerned with bifurcations of cycles. The same classifi-
cation is used in the context of stability of cycles by Krupa and Melbourne
[3] and Podvigina and Ashwin [5]. Some type B and C cycles are grouped
into a further type, Z, which appears in Podvigina [6]. We use the original
classification into types A, B and C, which we reproduce here from [3].
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Definition 2.1 (Definition 3.2 in Krupa and Melbourne [3]). Let X ⊂ R
4

be a simple robust heteroclinic cycle.

(i) X is of type A if Σj = Z2 for all j.

(ii) X is of type B if there is a fixed-point subspace Q with dimQ = 3, such
that X ⊂ Q.

(iii) X is of type C if it is neither of type A nor of type B.

We are at present going to consider networks consisting of cycles only
of types B and/or C. Networks involving cycles of type A will be treated
separately.

Criteria for the asymptotic stability of the cycles, depending on the eigen-
values of the vector field at each equilibrium, have been established by Krupa
and Melbourne [1, 3]. When more than one cycle is put together in a hetero-
clinic network, none of the cycles is asymptotically stable. Instead, interme-
diate notions of stability have been introduced by Melbourne [4], Brannath
[7], Kirk and Silber [8]. These have recently been revisited by Podvigina and
Ashwin [5], which we use as a reference for those concepts relevant for our
results, and Podvigina [6].

In the following, we denote by Bε(X) an ε-neighbourhood of a (compact,
invariant) set X ⊂ R

n. We write B(X) for the basin of attraction of X , i.e.
the set of points x ∈ R

n with ω(x) ⊂ X . For δ > 0 the δ-local basin of
attraction is Bδ(X) := {x ∈ B(X) | φt(x) ∈ Bδ(X) ∀t > 0}, where φt(.) is
the flow generated by the system of equations. By ℓ(.) we denote Lebesgue
measure.

The following is the strongest intermediate notion of stability.

Definition 2.2 (Definition 4 in Podvigina and Ashwin [5]). A compact in-
variant set X is called predominantly asymptotically stable (p.a.s.) if it is
asymptotically stable relative to a set N ⊂ R

n with the property that

lim
ε→0

ℓ(Bε(X) ∩N)

ℓ(Bε(X))
= 1.

The same authors have introduced the following stability index as a means
of quantifying the attractiveness of a compact, invariant setX . See Definition
5 and section 2.3 in Podvigina and Ashwin [5].

Definition 2.3. For x ∈ X and ε, δ > 0 define

Σε(x) :=
ℓ(Bε(x) ∩ B(X))

ℓ(Bε(x))
, Σε,δ(x) :=

ℓ(Bε(x) ∩ Bδ(X))

ℓ(Bε(x))
.
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Then the stability index at x with respect to X is defined to be

σ(x) := σ+(x)− σ−(x),

where

σ−(x) := lim
ε→0

[

ln(Σε(x))

ln(ε)

]

, σ+(x) := lim
ε→0

[

ln(1− Σε(x))

ln(ε)

]

.

The convention that σ−(x) = ∞ if Σε(x) = 0 for some ε > 0 and σ+(x) = ∞
if Σε(x) = 1 is introduced. Therefore, σ(x) ∈ [−∞,∞]. In the same way the
local stability index at x ∈ X is defined to be

σloc(x) := σloc,+(x)− σloc,−(x),

with

σloc,−(x) := lim
δ→0

lim
ε→0

[

ln(Σε,δ(x))

ln(ε)

]

, σloc,+(x) := lim
δ→0

lim
ε→0

[

ln(1− Σε,δ(x))

ln(ε)

]

.

Figure 1: Geometry of the basin of attraction (shaded region) at x when
σ(x) < 0 (left), σ(x) > 0 (right)

The stability index σ(x) quantifies the local extent (at x ∈ X) of the
basin of attraction of X . If σ(x) > 0, then in a small neighbourhood of x an
increasingly large portion of points is attracted to X , see Figure 1 (right),
where the grey area is B(X). If on the other hand σ(x) < 0, then the portion
of such points goes to zero as the neighbourhood shrinks, also shown in Figure
1 (left).

Podvigina and Ashwin prove (see Theorem 2.2 in [5]) that both σ(x) and
σloc(x) are constant along trajectories. This allows us to characterize the
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attraction properties of a heteroclinic cycle in terms of the stability index by
calculating only a finite number of indices. Moreover, Podvigina and Ashwin
also show that the calculation of the indices can be simplified by restricting
to a transverse section (see Theorem 2.4 in [5]).

Given Theorem 2.6 below we calculate only local stability indices, which
is why from section 3 onwards we drop the subscript loc. These may be
calculated using a cycle or the whole network as the invariant set X . In
order to distinguish these two cases, we write σ or σc when the stability
index is calculated with respect to a cycle and refer to it as a c-index. If the
stability index is calculated with respect to the whole network we write σn

and refer to it as a n-index.
We now state two elementary results, that help us determine stability

indices with respect to heteroclinic networks in section 4.

Lemma 2.4. Let X be a heteroclinic network and C ⊂ X a heteroclinic
cycle. Then for all x ∈ C we have σn(x) ≥ σc(x).

Proof. The proof is straightforward and can be found in [9].

Lemma 2.5. Let X ⊂ R
n be a heteroclinic cycle (or network) and x ∈ X a

point on a connecting trajectory. Suppose that for all points y = (y1, ..., yn) ∈
Bε(x), stability with respect to X depends only on their (y1, y2)-components.
Furthermore, assume that

B(X) ∩ Bε(x) = Bε(x) \
⋃

m∈N

Em,

where Em are non-empty, disjoint sets of the form

Em =

{

y ∈ Bε(x)

∣

∣

∣

∣

kmy
αm

1 ≤ y2 ≤ k̂my
αm

1

}

,

with constants km, k̂m > 0. Suppose that (αm)m∈N is bounded away from 1
and not all αm are negative. Then with αmax := max{αm | 0 < αm < 1} and
αmin := min{αm | αm > 1} we have

σ(x) = −1 + min

{

1

αmax
, αmin

}

> 0.

Proof. For each αm there is ε > 0 small enough such that by straightforward
integration we obtain

ℓ(Em ∩ Bε(x)) =

{

cmε
n−1+αm if αm > 1

c̃mε
n−1+ 1

αm if αm < 1.
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Here (and in the following) we use cm, c̃m > 0 to group together all constant
terms. Since ℓ(Bε(x)) is of order ε

n this yields

Σε(x) = 1−
∑

αm<1

c̃mε
−1+ 1

αm −
∑

αm>1

cmε
−1+αm .

Thus, σ−(x) = 0, and calculating the limit σ+(x) gives the claimed result.
For more details see [9].

When looking for the stability of the network the following result is very
useful.

Theorem 2.6 (see [9]). Let X ⊂ R
n be a heteroclinic cycle or network with

finitely many equilibria and connecting trajectories. Suppose that the local
stability index σloc(x) exists and is not equal to zero for all x ∈ X. Then
X is predominantly asymptotically stable if and only if σloc(x) > 0 along all
connecting trajectories.

We note that the result does not hold if we consider global stability indices
instead of local ones. For global stability indices we have the following:

Lemma 2.7. Let [ξi → ξj ] be a common connecting trajectory between two
non-homoclinic cycles constituting a simple heteroclinic network X in R

4.
Suppose that for at least one of the cycles the return maps are contractions.
Let σij and σ̃ij be the global stability indices for each cycle and σn

ij the global
stability index with respect to the whole network. We have σn

ij > 0 if and only
if σij > 0 or σ̃ij > 0.

Proof. That σij > 0 ⇒ σn
ij > 0 and σ̃ij > 0 ⇒ σn

ij > 0 is Lemma 2.4.
Assume σn

ij > 0. For a point x, that contributes to the index σn
ij , we

have ω(x) ⊂ X , so ω(x) is compact, non-empty and connected, leaving three
possibilities:
(a) ω(x) is an equilibrium.
(b) ω(x) is one of the cycles.
(c) ω(x) is the whole network X .

The set of points for which (a) holds is the union of the stable manifolds of the
equilibria and thus of measure zero. Case (c) does not occur: the trajectory
through x would have to follow around both cycles infinitely many times,
which is impossible since for at least one of the cycles the return maps are
contractions. So almost all x with ω(x) ⊂ X fall into case (b). Therefore,
one of the cycles has a large enough basin of attraction to make the index
with respect to only this cycle positive.

It will be shown in case (ii) of Proposition 5.3 and Lemma 5.5 that the
local stability index σn

ij may be positive even though both local c-indices σij

or σ̃ij are negative.
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3 Simple networks in R
4

This section is concerned with the construction of all possible simple net-
works, involving cycles of types B and/or C, with at least one common
connecting trajectory in R

4. The demand of one common connecting tra-
jectory excludes networks made of cycles with only equilibria in common.
These will be studied elsewhere.

Because we want to concentrate on the dynamics associated with the
network, we consider only dynamical systems for which there are no critical
elements other than the origin and the equilibria in the network.

Given the definition of cycles of types A, B and C it is easily seen that,
in a 4-dimensional space, a cycle of type A and a cycle of type B or C cannot
exist simultaneously in the same network. This is due to the fact that when
a cycle is of type A, no element of the symmetry group acts as a reflection
on R

4 (see Corollary 3.5 in [3]), whereas for B and C cycles there are always
reflections.

Type B cycles can be put together to form a heteroclinic network in two
ways: the network studied by Kirk and Silber [8] made of two B−

3 -cycles and
the one we construct in appendix A made of two B+

2 -cycles. There is only
one way to combine cycles of different types, B and C, to form a network,
as the following proposition shows.

Proposition 3.1. Let X be a simple heteroclinic network in R
4 that con-

sists of two non-homoclinic cycles of type B or C, which have at least one
connecting trajectory in common. Suppose that there are no critical elements
other than the origin and the equilibria belonging to the cycles. Then the only
possible networks are of type (B+

2 , B
+
2 ), (B

−
3 , B

−
3 ) and (B−

3 , C
−
4 ).

Proof. According to [3, section 3.2], there are four distinct non-homoclinic
type B and C cycles and they can exist only under equivariance of the system
ẏ = f(y) with respect to the following symmetry groups:

B+
2 (Z

3
2), B−

3 (Z
4
2), C−

2 (Z2 ⋉ Z
4
2), C−

4 (Z
4
2)

Therefore, the only cycles of different type that may exist simultaneously are
B−

3 and C−
4 , under equivariance with respect to Z

4
2.

The proof consists of two steps. In step 1, we exclude the existence of
some combinations of the above cycles. In step 2, we show how we can
combine cycles of types B−

3 and C−
4 to produce a network.

Step 1: We show that the combinations (C−
2 , C

−
2 ) and (C−

4 , C
−
4 ) are not

possible, starting with (C−
4 , C

−
4 ). Suppose we have a system with a C−

4 -cycle
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joining equilibria ξ1 → ξ2 → ξ3 → ξ4 → ξ1, which, without loss of generality,
lie on the respective coordinate axes. Now, also without loss of generality,
there are three possibilities to introduce a second C−

4 -cycle with at least one
common connecting trajectory:

(a) add a connection ξ4 → ξ1;
(b) add an equilibrium ξ∗ and connections ξ3 → ξ∗ → ξ1;
(c) add two equilibria ξ∗, ξ∗∗ and connections ξ2 → ξ∗ → ξ∗∗ → ξ1.

In case (a), the new connection ξ4 → ξ1 has to lie in the coordinate plane
P14, so the phase portrait in this plane looks like that in Figure 2. Applying
the Poincaré-Bendixson Theorem within the invariant plane P14, one of the
following holds:

(i) ξ4 is connected to ξ1 by a two-dimensional set of trajectories.
(ii) There exists another equilibrium or periodic orbit inside P14.

Figure 2: Phase portrait in P14 for case (a).

Case (i) does not occur since, for a simple robust cycle the connection is
of saddle-sink type and therefore 1-dimensional in P14. Case (ii) is excluded
by our assumption. Hence, a connection added as in case (a) is not possible.

In case (b), the new equilibrium ξ∗ must lie in a one-dimensional fixed-
point subspace. The only such subspaces are the coordinate axes. So ξ∗ must
lie on the y4-axis, since a C−

4 -cycle is not contained in a three-dimensional
subspace. Thus, the phase portrait in P14 looks like that in Figure 3. By a
Poincaré-Bendixson argument similar to the one above, case (b) is impossible
as well.

In case (c), there are two subcases: (c-i) ξ∗ lies on the y3-axis and ξ∗∗
on the y4-axis. (c-ii) ξ∗ lies on the y4-axis and ξ∗∗ on the y3-axis. For (c-i),
the phase portrait in P14 looks exactly like the one in case (b), replacing
ξ∗ with ξ∗∗. For (c-ii), dynamics in P34 are shown in Figure 4. Again, a
Poincaré-Bendixson argument yields that case (c) is not possible.
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Figure 3: Phase portrait in P14 for case (b).

Figure 4: Phase portrait P34 for case (c-ii).

The reasoning for a (C−
2 , C

−
2 )-network is similar. A single cycle of type

C−
2 occupies the whole of R4 in the same way that a C−

4 -cycle does. There
are also four equilibria, only now there are two pairs which are related by
symmetry. Thus, analogous to the above, it follows that no additional C−

2 -
cycle can be introduced to the system through adding connections and/or
equilibria.

Step 2: A (B−
3 , C

−
4 )-network may be put together in the following way.

Suppose we have a system ẏ = f(y), equivariant under the action of Z4
2,

with a heteroclinic cycle of type C−
4 . As above we assume it consists of four

equilibria ξi on the xi-axis, joined by connecting trajectories in the coordinate
planes in the following way: ξ1 → ξ2 → ξ3 → ξ4 → ξ1. It is impossible
to introduce a B−

3 -cycle to this system by adding an equilibrium (and two
connections), for the same reasons as before. However, the existence of the
C−

4 -cycle places no a priori restrictions on the dynamics in P13. So we may
consider the case, where there is a connection ξ3 → ξ1 within P13, making
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ξ1 a sink in the three-dimensional coordinate space S134 and ξ3 expanding in
the x1- and x4-directions. Then we have a second cycle ξ1 → ξ2 → ξ3 → ξ1,
contained in the three-dimensional fixed-point subspace S123 and thus of type
B−

3 . It has two connections in common with the C−
4 -cycle.

We concentrate on the study of the (B−
3 , B

−
3 )-network extending the work

of [8]. The study of the (B+
2 , B

+
2 )-network, because it follows closely that of

the (B−
3 , B

−
3 )-network, appears in appendix A.

4 Stability

In this section we make extensive use of the results that Podvigina and
Ashwin [5] obtained in subsection 4.2.1. of their paper concerning how to
calculate the stability indices for cycles of types B+

2 and B−
3 . We transcribe

their results, for ease of reference, in the following two lemmas. We recall,
also from [5], that near ξj the linearization of the vector field has eigenvalues
denoted by −cj , ej and tj , giving rise to the quantities aj = cj/ej and
bj = −tj/ej which will be used next. The function f index is used to express
some of the indices, it can be found in [5], p. 905.

Lemma 4.1 (Stability indices for type B+
2 ([5], p. 906)). For a cycle of type

B+
2 , the stability indices along connecting trajectories are as follows:

(i) If b1 < 0 and b2 < 0, then the cycle is not an attractor and all stability
indices are −∞.

(ii) Suppose b1 > 0 and b2 > 0.

(a) If a1a2 < 1, then the cycle is not an attractor and all indices are
−∞.

(b) If a1a2 > 1, then the cycle is locally attracting and the stability
indices are +∞.

(iii) Suppose b1 < 0 and b2 > 0.

(a) If a1a2 < 1 or b1a2+ b2 < 0, then the cycle is not an attractor and
all indices are −∞.

(b) If a1a2 > 1 and b1a2 + b2 > 0, then the stability indices are σ1 =
f index(b1, 1) and σ2 = +∞.

Lemma 4.2 (Stability indices for type B−
3 ([5], pp. 906–907)). For a cycle

of type B−
3 , the stability indices along connecting trajectories are as follows:
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(i) If b1 < 0, b2 < 0 and b3 < 0, then the cycle is not an attractor and all
stability indices are −∞.

(ii) Suppose b1 > 0, b2 > 0 and b3 > 0.

(a) If a1a2a3 < 1, then the cycle is not an attractor and all indices
are −∞.

(b) If a1a2a3 > 1, then the cycle is locally attracting and the stability
indices are +∞.

(iii) Suppose b1 < 0, b2 > 0 and b3 > 0.

(a) If a1a2a3 < 1 or b1a2a3 + b3a2 + b2 < 0, then the cycle is not an
attractor and all indices are −∞.

(b) If a1a2a3 > 1 and b1a2a3 + b3a2 + b2 > 0, then the stability indices
are σ1 = f index(b1, 1), σ2 = +∞ and σ3 = f index(b3 + b1a3, 1).

(iv) Suppose b1 < 0, b2 < 0 and b3 > 0.

(a) If a1a2a3 < 1 or b2a1a3 + b1a3 + b3 < 0 or b1a2a3 + b3a2 + b2 < 0,
then the cycle is not an attractor and all indices are −∞.

(b) If a1a2a3 > 1 and b2a1a3+b1a3+b3 > 0 and b1a2a3+b3a2+b2 > 0,
then the stability indices are σ1 = min{f index(b1, 1), f

index(b1 +
b2a1, 1)}, σ2 = f index(b2, 1) and σ3 = +∞.

Note that compared to the statement in [5], in Lemma 4.2 (iv) (b) we
have replaced σ3 = f index(b3 + b1a3, 1) by σ3 = +∞. This is true since
b2a1a3+b1a3+b3 > 0 implies b1a3+b3 > −b2a1a3 > 0 and f index(α, β) = +∞
for α, β > 0.

When the above results are applied to networks with a common connec-
tion, further simplifications arise as detailed next. Without loss of generality,
we assume that the common connection is [ξ1 → ξ2] and that the stability
indices for this connection depend on the values of a1 and b1. Name the
cycles in the network C3 and C4.

Lemma 4.3. Let X be a heteroclinic network made of two cycles of type B−
3

and/or C−
4 , with one trajectory, [ξ1 → ξ2], common to both cycles. In the

calculation of the stability indices, cases (i) and (ii) in Lemma 4.2 do not
occur.

Proof. We start by showing that at least one of the quantities bi is negative
for both cycles thus excluding (ii). Without loss of generality, let b1 be the
symmetric of the quotient between the transverse and expanding eigenvalues
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at the common node ξ2. At this node, there exist one radial eigenvalue, one
contracting eigenvalue (negative), an expanding eigenvalue (positive) and a
transverse eigenvalue, which must be positive for both cycles. In fact, the
expanding eigenvalue for cycle C3 is the transverse eigenvalue for cycle C4

and vice-versa. Therefore b1 < 0.
It remains to show that (i) does not take place. Let, again without loss

of generality, b3 be the symmetric of the quotient between the transverse and
expanding eigenvalues at the common node ξ1. In this case, the transverse
eigenvalue for cycle C3 is the contracting eigenvalue for cycle C4 and vice-
versa. Therefore, b3 > 0.

Whether (iii) or (iv) occur in Lemma 4.2 depends on whether the trans-
verse eigenvalue at the non-common node is negative or positive, respectively.

Lemma 4.4. Let X be a heteroclinic network made of two cycles of type B+
2

with one trajectory, [ξa → ξb], common to both cycles. In the calculation of
the stability indices, cases (i) and (ii) in Lemma 4.1 do not occur. Further-
more, for one of the cycles the calculations fall in case (iii)(a) of Lemma
4.1.

Proof. In this case, there are only two nodes, both of which are common to
both cycles. Similar arguments to the above exclude (i) and (ii).

We denote by ea2, −ca3, −ca4 the non-radial eigenvalues at ξa and by eb3,
eb4, −cb2 those at ξb, where all quantities are positive. Note that in case (iii)
of Lemma 4.1 ξa and ξb now take the role of ξ2 and ξ1, respectively. Then we
obtain for cycle C3

b1a2 + b2 =
ca4
ea2

−
eb4ca3
ea2eb3

,

and for cycle C4

b1a2 + b2 =
ca3
ea2

−
eb3ca4
ea2eb4

.

It is clear that the above quantities have opposite signs, so (iii)(a) applies.

The above results provide the necessary information for determining the
stability indices of each cycle per se, that is, when the basin of attraction
B(X) takes X to be only the cycle which we refer to by c-indices. We are
also interested in calculating the stability indices when the basin of attraction
B(X) takes X to be the whole network, that is, the n-indices. In order to
determine σn

ij , we use Lemmas 2.4 and 2.5.

When joining together two or more cycles in a heteroclinic network, sta-
bility may be gained by one or both of the cycles. The n-index of connections
of each cycle provides information about the relative stability of the cycles
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in a network. Cycles with higher n-indices are more stable and hence, more
likely to be observed in experiments or simulations. We are particularly in-
terested in illustrating how the association of two cycles into a network can
affect their stability properties. When one cycle is per se p.a.s., its indices
will remain positive with respect to the whole network. This case does not
provide an insight into the different stability when a cycle is considered on
its own and when it is seen as part of a network. Kirk and Silber [8] have
illustrated this point in their Lemma 3. There, one of the cycles in the net-
work has all stability indices equal to −∞, while the other is either p.a.s.
(case (i)) or has all stability indices but one equal to +∞ (case (ii)). See also
Propositions 5.3 and 5.5 below. In case (ii), neither cycle is p.a.s. but the
network is p.a.s.. This illustrates the existence of what we call a stabilizing
mechanism or effect in joining two cycles in a network.

Note that infinite values for the stability index denote extreme stability
characteristics and they are a feature in the networks we consider. In fact, we
have the following generic results which are direct observations of Lemmas
4.1 and 4.2, since all three possible networks involve a cycle of type B+

2 or
B−

3 . Note that the values of f index(α, 1) in the lemmas are finite if and only
if α < 0.

Lemma 4.5. For the three possible heteroclinic networks in R
4, at least one

connecting trajectory has stability index equal to +∞, unless all indices are
equal to −∞.

Lemma 4.6. For the three possible heteroclinic networks in R
4, if one trajec-

tory has stability index equal to −∞ then all connecting trajectories of that
cycle have stability index equal to −∞.

5 The (B−
3 , B

−
3 )-network

This network has been studied, for a subset of parameter values, by Kirk and
Silber [8]. We briefly recall their notation. The two cycles have a common
connection, namely, [ξ1 −→ ξ2] and are referred to as the ξ3- and ξ4-cycle,
depending on which is the remaining node in the cycle. Locally near each
node, ξi (i 6= 2), the eigenvalues of the linearized vector field are denoted
by −cij , −cik, −ri and eil (contracting, transverse, radial and expanding,
respectively). Near ξ2, the eigenvalues are −cij , eik, −ri and eil (contracting,
transverse, radial and expanding, respectively). While in [8] all constants are
positive, we allow some of them to become negative.

In what follows, maps from and to cross-sections of the flow along con-
nections are extensively used. We list these maps in appendix B.

14



ξ3-cycle ξ4-cycle

values at ξ1 a3 = c13/e12; b3 = c14/e12 a3 = c14/e12; b3 = c13/e12
values at ξ2 a1 = c21/e23; b1 = −e24/e23 a1 = c21/e24; b1 = −e23/e24
values at ξ3 a2 = c32/e31; b2 = c34/e31
values at ξ4 a2 = c42/e41; b2 = c43/e41

Table 1: Parameter values at the nodes required in the calculation of the
stability index for each cycle in the network. Notation of the eigenvalues as
in [8].

Associated to each cycle there are parameters depending on the eigenval-
ues, where those for the ξ3-cycle are distinguished by a tilde, as follows:

ρ =
c42c14c21
e24e41e12

ρ̃ =
c32c13c21
e23e31e12

ν =
e23
e24

+
c21c43
e24e41

+
c13c42c21
e41e24e12

ν̃ =
e24
e23

+
c21c34
e23e31

+
c14c32c21
e31e23e12

δ =
c43
e41

+
c13c42
e12e41

−
e23c14c42
e12e41e24

δ̃ =
c34
e31

+
c14c32
e12e31

−
e24c13c32
e12e31e23

τ =
c13
e12

−
e23c14
e12e24

+
c14c21c43
e12e41e24

τ̃ =
c14
e12

−
e24c13
e12e23

+
c13c21c34
e12e31e23

σ =
c14
e12

(

e23
e24

−
c13
c14

)

σ̃ =
c13
e12

(

e24
e23

−
c14
c13

)

We preserve the use of ˜ to distinguish stability indices for the ξ3-cycle from
those for the ξ4-cycle and maintain the assumption that ρ, ρ̃ > 1. We also
preserve the assumption that 0 < e24/e23 < 1.

The constants required in order to use Lemma 4.2 are given in Table 1.

5.1 Another view of “A competition between hetero-

clinic cycles” [8]

This subsection provides a systematic treatment of the network for the pa-
rameter values considered in [8], calculating c-indices in both cases treated
in [8]: when both cycles have c-indices greater than −∞ and when one cycle
has all c-indices equal to −∞. In what concerns the n-indices, this section
provides them, also in the case not addressed in [8] (that of c-indices greater
than −∞).
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With the assumptions made in [8], namely that cij, eij > 0 for all i and
j, we need only look at case (iii) of Lemma 4.2. Note that

ρ = a1a2a3 = ρ̃ (1)

and
δ = b1a2a3 + b3a2 + b2 = δ̃, (2)

where the equality between ρ and ρ̃ is merely symbolic as an expression.
Analogously for δ and δ̃.

The following result provides generic information about the stability in-
dices.

Lemma 5.1. All stability indices for the ξ3- (respectively, ξ4-) cycle are equal
to −∞ if and only if δ̃ < 0 (respectively, δ < 0).

Proof. Straightforward given Lemma 4.2. In fact, since ρ, ρ̃ > 1, and given
(1) and (2), we have all stability indices equal to −∞ for the cycle corre-
sponding to δ or δ̃ negative.

With the choices of sign made in [8], we have the following two proposi-
tions concerning c-indices.

Proposition 5.2. Let δ, δ̃ > 0. The stability indices are as follows:

σ̃23 = σ24 = +∞

0 < σ̃12 < +∞

−∞ < σ12 < 0

and either σ̃31 = +∞ or σ41 = +∞, but not both. The remaining c-index is
finite and can take either sign.

The case σ̃31 = +∞ corresponds to the first two lines in Figure 5 of [8],
depending on the sign of σ41, while the case σ41 = +∞ corresponds to the
last two lines of the same table, also depending on the sign of σ̃31.

Proof. We are looking at case (iii)(b), given the assumptions. In Figure 5 of
[8], it is also δ, δ̃ > 0. Then, from Lemma 4.2, we obtain for the ξ3-cycle

σ1 = σ̃12 = f index(b1, 1) = f index

(

−
e24
e23

, 1

)

=
e23
e24

− 1 > 0

since e24 < e23; σ2 = σ̃23 = +∞ and

σ3 = σ̃31 = f index(b3+b1a3, 1) = f index(−σ̃, 1) =







+∞ if σ̃ ≤ 0
1
σ̃
− 1 > 0 if σ̃ ∈ (0, 1)

1− σ̃ < 0 if σ̃ > 1
.
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Figure 5: The stability indices for the network in Proposition 5.2. Exactly
one of σ41 and σ̃31 is equal to +∞.

For the ξ4-cycle we obtain in a similar way

σ1 = σ12 = f index(b1, 1) = f index

(

−
e23
e24

, 1

)

= 1−
e23
e24

< 0

since e24 < e23; σ2 = σ24 = +∞ and

σ3 = σ41 = f index(−σ, 1) =







+∞ if σ ≤ 0
1
σ
− 1 > 0 if σ ∈ (0, 1)

1− σ < 0 if σ > 1
.

If we relax the hypothesis that δ, δ̃ > 0, we have the following two possi-
bilities.

Proposition 5.3. Depending on the sign of δ the stability indices are as
follows:

Case (i) (δ < 0): σ12 = σ24 = σ41 = −∞, σ̃23 = σ̃34 = +∞, σ̃12 > 0

and

Case (ii) (δ > 0): σ12 < 0, σ24 = σ41 = +∞, σ̃12 = σ̃23 = σ̃34 = −∞.

The proof is straightforward using Lemma 4.2 and omitted.
In Proposition 5.2, all return maps around each cycle are contractions.

In the case studied in Proposition 5.3, we have the competition between the
cycles described by Kirk and Silber [8]. However, we note that, in either
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Figure 6: The stability indices for the network in Proposition 5.3. Case (i)
is depicted on the left, whereas case (ii) appears on the right.

case, there is one cycle with all stability indices equal to −∞. That is, one
of the cycles attracts hardly anything in its neighbourhood. It follows from
Lemma 4.5 that then the other cycle has at least one stability index equal
to +∞, that is, the other cycle attracts almost all points near at least one of
its connections.

The competition between the cycles addressed in [8] becomes apparent
when we calculate the stability indices with respect to the whole network.
We include in Lemma 5.4 the case of the parameter values in Proposition
5.2, not addressed in [8], thus completing their study.

Recall that we use the superscript n when the stability index is calculated
with respect to the whole network. For the common trajectory we write
simply σn

12.

Lemma 5.4. Let δ, δ̃ > 0. The stability indices, with respect to the network,
are all positive. Furthermore, no connection with a finite c-index has an
infinite n-index.

Proof. Because δ, δ̃ > 0 all return maps are contractions and we need only
calculate along each connection the set of points taken outside dom(h̃1) ∪
dom(h1) by the local maps. All maps and domains from [8] can be found in
the appendix.

By Lemma 2.4 we know that σ̃n
23 = σn

24 = +∞ and σn
12 > 0. That σn

12 is
finite follows from the observation that the union of the domains of definition
of the return maps around each cycle starting at this connection excludes a
cusp-shaped region.

The proof proceeds by determining σ̃n
31 and σ41, case by case correspond-

ing to each line of Figure 5 in [8].
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Line 1: Because of σ > 1 and σ̃ < 0 we have σ41 < 0 and σ̃31 = +∞,
which implies σ̃n

31 = +∞. We calculate σn
41 by looking at the set of points

E0 = {(x, y) ∈ H in,4
1 | φ412(x, y) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) ∈ H in,4
1 | (yxc13/e12 , xc14/e12) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) ∈ H in,4
1 | x−σ̃ < y < x−σ̃}.

Since −σ̃ > 0, the set E0 is a thin cusp and we have σn
41 > 0 and finite.

Line 2: As in the previous case σ̃n
31 = +∞. Moreover, σn

41 ≥ σ41 > 0
and finite because of 0 < σ < 1.

Line 3: In this case and the next we have σ41 = +∞ due to σ < 0, so
σn
41 = +∞. Because of 0 < σ̃ < 1 it follows that σ̃n

31 ≥ σ̃31 > 0.

Line 4: Since σ̃ > 1 we have σ̃31 < 0 and thus determine σ̃n
31 by calcu-

lating

E0 = {(x, y) ∈ H in,3
1 | φ312(x, y) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) ∈ H in,3
1 | (xc13/e12 , yxc14/e12) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) ∈ H in,3
1 | xσ̃ < y < xσ̃}.

As in the first case this is a thin cusp and therefore we obtain σ̃n
31 > 0 and

finite.

When σ̃31 > 0, corresponding to lines 1, 2 and 3, the ξ3-cycle is p.a.s. while
the ξ4-cycle is not. Hence, the ξ3-cycle is trivially more visible in the network
(it is more relatively stable), even though in the case corresponding to line 3
the ξ4-cycle has two stability indices equal to +∞. Note that the behaviour
along the common connecting trajectory is of the utmost importance in this
case: although with respect to the network the stability index along this
trajectory is positive, it is negative with respect to only the ξ4-cycle and
positive with respect to only the ξ3-cycle, indicating that most points near
this common connection are taken to ξ3 rather than to ξ4. The positive
stability index with respect to the network merely informs that points not
taken to ξ4 still remain near the network (being taken to ξ3 rather than away
from the network).

Note also that, even when the c-index σ̃31 is negative the ξ3 cycle fails to
be p.a.s.. However, the corresponding n-index, σ̃n

31 is positive. Thus, being
part of a network produces a stabilizing effect in the cycles in the sense that
two non p.a.s. cycles give rise to a p.a.s. network.
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Lemma 5.5. The stability indices, with respect to the network, are as follows:

Case (i) (δ < 0): σn
12, σ

n
24, σ

n
41 > 0, σ̃n

23 = σ̃n
31 = +∞.

Case (ii) (δ > 0): σn
12, σ̃

n
23, σ̃

n
31 > 0, σn

24 = σn
41 = +∞.

The proof is given in Lemma 3 of [8].
For the parameter values of case (i) above the ξ3-cycle is p.a.s.. It is

therefore not surprising that the stability indices along the connections be-
longing to this cycle are all positive. In case (ii) none of the cycles is p.a.s.
even though the network as a whole is p.a.s.. The attraction properties ob-
served for the ξ4-cycle are patent in the positive n-indices for the connections
of this cycle. Again, the common connection is essential for understanding
the visibility (or victory under competition) of the ξ4-cycle. The fact that
σn
12 > 0 ensures that most points remain near the network, while σ12 > σ̃12

indicates that most of these points have trajectories which eventually come
close to ξ4. Again, case (ii) exhibits a stabilizing effect of the network.

5.2 Positive transverse eigenvalues

The existence of a common connecting trajectory ensures that, relative to
one cycle, there is always a positive transverse eigenvalue at ξ2. In this
subsection, we consider the possibility of having another positive transverse
eigenvalue, either at ξ3 or at ξ4. In order to do this, we admit that either c34
or c43 may be negative, thus creating a positive transverse eigenvalue at ξ3 or
ξ4, respectively. We assume that the positive transverse eigenvalue is weaker
than the expanding eigenvalue at the node: |c34| < e31 at ξ3 and |c43| < e41
at ξ4.

In the following four results, we assume that τ, τ̃ , δ, δ̃ > 0, to avoid the
extreme case of c-indices equal to −∞ and, as usual, ρ, ρ̃ > 1 and 0 <
e24/e23 < 1.

Proposition 5.6. If c34 < 0, then |σ̃12|, |σ41| < ∞, σ̃23 > 0, σ̃31 = σ14 = +∞
and σ12 < 0.

Proof. The stability indices for the ξ4-cycle are as in Proposition 5.2. For the
ξ3-cycle, given the imposed signs of the parameters, we are in case (iv)(b) of
Lemma 4.2. Since b1, b2 < 0, we have f index(b1 + b2a1, 1) < f index(b1, 1) and

σ1 = σ̃12 = f index(b1+b2a1, 1) =

{

− 1
b1+b2a1

− 1 > 0 if b1 + b2a1 ∈ (−1, 0)

b1 + b2a1 + 1 < 0 if b1 + b2a1 < −1
.
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Figure 7: The c-indices for the network in Proposition 5.6. Stability indices
σ̃12 and σ41 are finite but have no predetermined sign.

The assumption that |c34| < e31 ensures that

σ2 = σ̃23 = −
e31
c34

− 1 > 0.

Since we assume δ, δ̃ > 0, their expressions as functions of, respectively, σ̃
and σ impose σ̃ < 0 and σ > 0. Then σ̃31 = +∞ and |σ41| < ∞.

We remark that in this case it is possible to choose signs for σ̃12 and σ41 so
that the signs of the stability indices coincide for the connecting trajectories
in both cycles: σ̃12 < 0 and σ41 > 0. In this case, neither cycle is p.a.s.. Note
that if σ̃12 > 0 then the ξ3-cycle is p.a.s. and therefore always more visible.

Proposition 5.7. If c43 < 0, then |σ̃31| < ∞, σ̃12, σ24 > 0, σ̃23 = σ41 = +∞
and σ12 < 0.

Proof. In this case, the stability indices for the ξ3-cycle are as in Proposition
5.2. For the ξ4-cycle, given the imposed signs of the parameters, we are in
case (iv)(b) of Lemma 4.2. Since b1, b2 < 0, we have

σ1 = σ12 = f index(b1 + b2a1, 1) = f index

(

−
e23
e24

+
c43c21
e41e24

, 1

)

< 0,

where the inequality holds since e23 > e24. The assumption that |c43| < e41
ensures that

σ2 = σ̃24 = −
e41
c43

− 1 > 0.

Since we assume δ, δ̃ > 0, their expressions as functions of σ̃ and σ impose
σ̃ > 0 and σ < 0. Then σ41 = +∞ and |σ̃31| < ∞.
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Figure 8: The c-indices for the network in Proposition 5.7. Stability index
σ̃31 is finite but has no predetermined sign.

If σ̃31 > 0 then the ξ3-cycle is again p.a.s., thus dominating the ξ4-cycle
within the network. Note however that σ̃ > 1 implies σ̃31 < 0, in which
case each cycle has one stability index equal to +∞, one positive and one
negative. Neither cycle is p.a.s..

In order to understand the relative stability of each cycle in the network
and look for a stabilizing effect, we next calculate the stability indices with
respect to the whole network in the cases where one of c34 or c43 is negative.
For c34 < 0, an interesting case arises when we choose (see Proposition 5.6)
σ̃12 < 0 and σ41 > 0. This is the case when the cycles have, independently,
the same collection of stability indices and neither is p.a.s.. In this case, as
seen from the following theorem, the network is not p.a.s.. The negative value
for the stability index along the common connection is preserved due to the
existence of a positive transverse eigenvalue at ξ3, preventing a stabilizing
effect from taking place.

Theorem 5.8. Let c34 < 0. The stability indices with respect to the network
when σ̃12 < 0 and σ41 > 0 are as follows:

σ̃n
31 = σn

24 = +∞; σ̃n
23, σ

n
41 > 0; σn

12 < 0.

Proof. Changing the sign of c34 does not affect the results on the return maps
in Lemma 2 of [8]: If δ > 0, the return maps around the ξ4-cycle are contrac-
tions. And if δ̃ > 0, the return maps around the ξ3-cycle are contractions.
Their domains of definition, however, do not remain unchanged. Now that

c34 < 0, the local map φ231 is defined only on a cusp given by y < x
−

c34

e31 .
All other points near the trajectory from ξ2 to ξ3 leave the neighbourhood
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of the network in the transverse direction. This obviously affects dom(h̃2),
restricting it by the same inequality, which shows that σ̃n

23 is finite.
The domains of definition of the other local maps remain the same. But

the change in dom(φ231) influences the domains of all return maps around the
ξ3-cycle. For h̃1 we now need to make sure that φ123(.) lands in dom(φ231).

This changes the restriction on dom(h̃1) from y < x
e24

e23 to y < x
e24

e23
−

c21c34

e23e31 .
The domain of h̃3 has to be modified in the same way. Thus, the domains of
the return maps around the ξ3-cycle become

h̃1 : y < x
e24

e23
−

c21c34

e23e31 = x−(b1+b2a1)

h̃2 : y < x
−

c34

e31

h̃3 : y < x−τ̃ .

The domains of the maps around the ξ4-cycle are the same as before.
Points in the complement of dom(h̃1)∪dom(h1) inside an ε-ball in Hout,2

1

satisfy

x−(b1+b2a1) < y < x
e24

e23 . (3)

From the definition of the stability index, we obtain σ−(x) > 0 so that
σn
12 < 0, when −(b1 + b2a1) > 1. This is precisely the case when σ̃12 < 0.
The preimage of the set of points that satisfy (3) under φ412 has positive

measure in any ε-neighbourhood in Hout,1
4 , so σn

41 is finite.

In this instance, a feature appears that has not been observed before: the
common connection in the network has negative c- and n-index, meaning
that many trajectories stop following the network at this point; the network
is not p.a.s..

In fact, we notice an interesting feature about the way in which the net-
work may fail to be predominantly asymptotically stable. The sign of the sta-
bility index along the common trajectory is determined by −(b1 + b2a1) ≶ 1.

It is positive when −(b1+b2a1) < 1 which is the same as 0 > c34 >
e31(e24−e23)

c21
.

This means, as long as c34 is negative, but not too small, the network is p.a.s..
In this instance, the stabilizing effect is apparent. However, once c34 becomes
smaller than e31(e24−e23)

c21
, we have σn

12 < 0 and neither the ξ3-cycle nor the net-
work is p.a.s. anymore. Thus, cycle and network lose predominant stability
through an increasing transverse eigenvalue at ξ3 — but the actual loss of
trajectories occurs along the connection from ξ1 to ξ2.

We now also give the n-indices for c43 < 0. Again we focus on the
most competitive case where the cycles have qualitatively equal indices. In
contrast with what we found for the case c34 < 0, we observe the existence of
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parameter values ensuring p.a.s. of the network while neither cycle is p.a.s.,
the network providing a stabilizing effect.

Theorem 5.9. Let c43 < 0. The stability indices with respect to the network
when σ̃31 < 0 are as follows:

σ̃n
23 = σn

41 = +∞; σn
12, σ

n
24 > 0; |σ̃n

31| < ∞.

Proof. That σ̃n
23 = σn

41 = +∞ and σn
12, σ

n
24 > 0 follows from Lemma 2.4. The

latter two indices are not equal to +∞ because the domains of the respective
return maps exclude a cusp-shaped region of points that move away from
the network. Determining the domains is analogous to the previous theorem,
yielding

h1 : x < y
e23

e24
−

c21c43

e24e41 = y−(b1+b2a1)

h2 : y < x
−

c43

e41

h4 : y < x−τ .

We need to investigate what happens along the connection from ξ3 to ξ1. A
point (x, y) ∈ Hout,1

3 belongs to the basin of attraction of the network if and

only if φ312(x, y) = (x
c13

e12 , yx
c14

e12 ) ∈ dom(h̃1)∪dom(h1), which is equivalent to

yx
c14

e12 < x
c13e24

e12e23 ∨ x
c13

e12 <
(

yx
c14

e12

)

e23

e24
−

c21c43

e24e41

and thus y < xσ̃ ∨ y
−

e23

e24
+

c21c43

e24e41 < x−τ .

The first condition describes the thin side of a cusp, since σ̃ > 1 was the
condition for σ̃31 < 0. Whether the second condition describes the thin or
the thick side of a cusp depends on α := −e23

e24
+ c21c43

e24e41
≶ −τ . For α < −τ ,

we have σ̃n
31 < 0. Note that

α < −τ ⇔ α < −
c13

e12 + c14

and both this inequality and its reverse are compatible with σ̃ > 1 which is
equivalent to

−
c13

e12 + c14
< −

e23
e24

.

The stabilizing effect is apparent for c43 < 0, but not too small, when the
network may be p.a.s., but once c43 is so small that α < −τ , the network
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loses its stability along the trajectory [ξ3 → ξ1]. In either case, none of the
individual cycles is p.a.s..

It is straightforward to see from the calculations in the previous proof
that, when α > −τ , most points, that follow the network from a neighbour-
hood of [ξ3 → ξ1], end up in dom(h1), that is, they switch from the ξ3- to
the ξ4-cycle. Analogous calculations show that points (x, y) ∈ Hout,1

4 will

follow the network if φ412(x, y) = (yx
c13

e12 , x
c14

e12 ) ∈ dom(h̃1) ∪ dom(h1). We
have φ412(x, y) ∈ dom(h̃1) if

y > xσ

and φ412(x, y) ∈ dom(h1) if
y < x−τ .

Since σ < 0 to have the stability indices in Theorem 5.9, almost all points
coming from [ξ4 → ξ1] will remain close to the network by following the
ξ4-cycle.

5.3 The stabilizing mechanism

We now focus on the existence of what we have been referring to as a stabi-
lizing mechanism or effect, for positive transverse eigenvalues, in the extreme
situation when one cycle has all c-indices equal to −∞ and neither cycle is
p.a.s.. We consider case (ii) in Proposition 5.3 with the sole change given by
c34 < 0. We thus have δ̃ < 0 < δ. Note that we no longer need to have σ < 0
(which we did when c34 > 0) and so σ41 can have any sign or be equal to +∞.
The value of σ24 remains unchanged and equal to +∞. Thus, σn

24 = +∞ as
well.

The main challenge, in terms of calculations, is that return maps no
longer are contractions. The following lemmas provide the possible informa-
tion about the n-index for each connection. The proof is analogous for the
first three lemmas so we present only the first one in detail. The quantities
required for these results are given next for ease of reference:

γn = ρ̃nα− ν̃
∑n−1

k=0 ρ̃
k γ̄n = ρ̃n e24

e23
− ν̃

∑n−1
k=0 ρ̃

k

ζn = −τ̃
∑n

k=0 ρ̃
k ζ̄n = ρ̃nσ̃ − τ̃

∑n−1
k=0 ρ̃

k

ηn = − c34
e31

ρ̃n − δ̃
∑n

k=0 ρ̃
k η̄n = −δ̃

∑n
k=0 ρ̃

k

Lemma 5.10. If there exists an n ∈ N such that γ̄n < 1 < γn then σn
12 < 0.

Otherwise, 0 < σn
12 < +∞.

25



Proof. Consider the set

E0 = (dom(h1) ∪ dom(h̃1))
c ⊂ Hout,2

1 ,

describing the points along the connection [ξ1 → ξ2] which are removed from
a neighbourhood of the network. The domains are given by the following
inequalities, where α = e24

e23
− c21c34

e23e31
> 0

h̃1 : y < xα

h1 : x < y
e23

e24

This gives

E0 = {(x, y) | xα < y < x
e24

e23 }

Note that e24
e23

< 1 and e24
e23

< α. Define the preimages, describing points which
leave a neighbourhood of the network after a finite number of iterates,

En := h̃−n
1 (E0)

which can be described by

En = {(x, y) | xγn < y < xγ̄n}

with γn and γ̄n as above. Both these sequences are monotonically increasing
as can be seen by the fact that

γn+1 − γn = (ρ̃n+1 − ρ̃n)α− ν̃ρ̃n

= ρ̃n
(

(ρ̃− 1)α−
e24
e23

(ρ̃− 1)−
c21
e23

δ̃

)

= ρ̃n
(

(ρ̃− 1)(α−
e24
e23

)−
c21
e23

δ̃

)

= ρ̃n
(

(ρ̃− 1)(−
c21c34
e23e31

)−
c21
e23

δ̃

)

> 0,

and analogously for γ̄n+1 − γ̄n = − c21
e23

δ̃ρ̃n > 0.
As long as either γn, γ̄n < 1 or γn, γ̄n > 1 the set En is a thin cusp-shaped

region, and we get σn
12 > 0 by the standard argument from Lemma 2.5, which

we use in these cases. However, if there is an n ∈ N such that γ̄n < 1 < γn,
then En is a thick cusp, and we get σn

12 < 0 by similar arguments as above.
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Note that a sufficient condition for σn
12 < 0 is that α > 1 in which case

we have γ̄0 < 1 < γ0.

Lemma 5.11. If there exists an n ∈ N such that ζ̄n < 1 < ζn then σ̃n
31 < 0.

Otherwise, 0 < σ̃n
31 < +∞.

Proof. The points in Hout,1
3 that do not stay near the network are those in

F0 = {(x, y) | φ312(x, y) = (x
c13

e12 , yx
c14

e12 ) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) | x
α

c13

e12 < yx
c14

e12 < x
e24

e23

c13

e12 }

= {(x, y) | x
α

c13

e12
−

c14

e12 < y < x
e24

e23

c13

e12
−

c14

e12 }

= {(x, y) | x−τ̃ < y < xσ̃}

Note that c34 < 0 ensures σ̃ < −τ̃ so that F0 is non-empty. The preimages
of F0 under the return map h̃3 are given by

ζn = −τ̃

n
∑

k=0

ρ̃k and ζ̄n = ρ̃nσ̃ − τ̃

n−1
∑

k=0

ρ̃k

where ζn and ζ̄n are as above. These sequences are again monotonically
increasing and the result follows.

Lemma 5.12. If there exists an n ∈ N such that η̄n < 1 < ηn then σ̃n
23 < 0.

Otherwise, 0 < σ̃n
23 < +∞.

Proof. The set of points in Hout,3
2 that do not remain close to the network is

G0 = {(x, y) ∈ dom(φ231) | φ312 ◦ φ231(x, y) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) ∈ dom(φ231) | (x
c32c13

e31e12 , yx
c34

e31
+

c32c14

e31e12 ) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) ∈ dom(φ231) | x
α

c32c13

e31e12 < yx
c34

e31
+

c32c14

e31e12 < x
e24

e23

c32c13

e31e12 }

= {(x, y) ∈ dom(φ231) | x
−δ̃−

c34

e31
ρ̃
< y < x−δ̃}.

Preimages under iteration of h̃2(x, y) = (xρ̃, yxδ̃) are of the form

h̃−n
2 (G0) = {(x, y) ∈ dom(φ231) | x

ηn < y < xη̄n}

with ηn and η̄n as above. Both sequences increase monotonically concluding
the proof.

Lemma 5.13. If σ < 0 then σ̃n
41 = +∞. If σ ∈ (0, 1) then 0 < σ̃n

41 < +∞.
If σ > 1 then σ̃n

41 < 0.
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Proof. We want to look at

H0 = {(x, y) | φ412(x, y) = (yx
c13

e12 , x
c14

e12 ) /∈ dom(h̃1) ∪ dom(h1)}

= {(x, y) | yαx
α

c13

e12 < x
c14

e12 < y
e24

e23 x
e24

e23

c13

e12 }

= {(x, y) | xσ < y < xβ}

where

β = −
1

α

(

α
c13
e12

−
c14
e12

)

=
1

α

c14
e12

−
c13
e12

=
τ̃

α
.

Since τ̃ < 0 < α, we have β < 0.1 Therefore, it does not place a restriction on
the intersection of H0 with small neighbourhoods. Since h4 is a contraction
(δ > 0) we do not have to worry about preimages. Thus, following our earlier
reasoning we get

(a) If σ < 0, then H0 = ∅ and σn
41 = +∞;

(b) If σ ∈ (0, 1), then H0 is a thin cusp and σn
41 > 0 (but finite);

(c) If σ > 1, then H0 is a thick cusp and σn
41 < 0.

Notice that the sign of σn
41 depends on σ in the same way as that of σ41

in Proposition 5.2.
We can now describe under which conditions the stabilizing effect of join-

ing the cycles in a network is apparent to produce a p.a.s. network with two
positive transverse eigenvalues.

Proposition 5.14. Assuming −c34 < e31, all n-indices are positive provided

σ < min{−
e23
e24

,−
e23

e24c32
(e31 + c34)}

and

1−
c21
e23

<
e24
e23

< 1−
c21
e23

−c34
e31

.

Proof. A sufficient condition for σ̃n
31 > 0 is σ̃ > 1. Then it is always ζn, ζ̄n > 1.

Note that σ̃ > 1 is equivalent to

σ < −
e23
e24

.

1The fact that τ̃ < 0 follows from the two ways of writing it: as τ̃ = σ̃(ρ̃− 1) + c13c21

e12e23

δ̃

or as τ̃ = −σ̃+ c34

c32
ρ̃. If τ̃ were positive then the first expression would imply σ̃ > 0, while

the second would give σ̃ < 0.
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Note that this condition is satisfied only if σ < 0 in which case σ41 = σn
41 =

+∞.
A sufficient condition for σ̃n

23 > 0 is η̄0 = −δ̃ > 1. This is equivalent to

−
c34
e31

− σ
c32e24
e23e31

> 1 ⇔

⇔ σ
c32e24
e23e31

< −1−
c34
e31

⇔

⇔ σ < −
e23

c32e24
(e31 + c34)

The last inequality is compatible with the upper bound for σ.
A sufficient condition for σ̃n

12 > 0 is that α < 1, providing the last in-
equality in the statement of the theorem, and γ̄1 > 1. We have, using the
last upper bound for σ,

γ̄1 =
e24
e23

−
c21c34
e23e31

− σ
c21c34c32
e223e31

>
e24
e23

+
c21
e23

and
e24
e23

+
c21
e23

> 1 ⇔ 1−
c21
e23

<
e24
e23

.

6 Stability of each cycle versus stability of

the network

We have seen that it is possible to join two cycles in a network in the following
stability-related ways:

• only one p.a.s. cycle leading to a p.a.s. network;

• two non-p.a.s. cycles to produce a p.a.s. network.

The second case illustrates a stabilizing effect of joining cycles into networks
which appears common. However, as the next theorem demonstrates, it is
possible to obtain a non-p.a.s. network by joining a p.a.s. cycle with a non-
p.a.s. cycle.

Theorem 6.1. A non-p.a.s. network may be constructed from a p.a.s. cycle
and a non-p.a.s. cycle.

Proof. We find a network that is not p.a.s. even though one of its cycles is.
Therefore, we look at the case c34 < 0 as in Proposition 5.6. We choose

29



• b1 + b2a1 ∈ (−1, 0), such that σ̃n
12 ≥ σ̃12 > 0,

• σ > 1, such that σ41 < 0 by Proposition 5.2.

The other stability indices are σ24 = σ̃31 = +∞ and σ̃23 > 0. So the ξ3-cycle
is p.a.s. and we need to find conditions such that σn

41 < 0.
From the calculations in the proof of Theorem 5.8 we know that the

complement of dom(h1) ∪ dom(h̃1) in Hout,2
1 is given by

x−(b1+b2a1) < y < x
e24

e23 (4)

So a sufficient condition for σn
41 < 0 is that the preimage of (4) under φ412

is the thick side of a cusp in Hout,1
4 . With φ412(x, y) = (x

c13

e12 y, x
c14

e12 ) we find
that φ412(x, y) fulfilling (4) is equivalent to

x
−

c13

e12
(b1+b2a1)y−(b1+b2a1) < x

c14

e12 < x
c13e24

e12e23 y
e24

e23

⇔ x
−

c13

e12
(−

e24

e23
+

c34c21

e31e23
)−

c14

e12 < y
−

e24

e23
+

c34c21

e31e23 ∧ xσ < y

⇔ x−τ̃ < y
−

e24

e23
+

c34c21

e31e23 ∧ xσ < y

Because of σ > 1 the second condition describes the thick side of a cusp. The
same is true for the first one if −τ̃ (−e24

e23
+ c34c21

e31e23
)−1 > 1. This is the same as

−τ̃ < −
e24
e23

+
c34c21
e31e23

Both sides of the inequality are less than zero and this is compatible with
τ̃ > 0.

We thus conclude with the observation that, even though the local sta-
bility index for heteroclinic connections is a useful tool, there is still a lot to
be learnt about stability of heteroclinic networks.

Acknowledgements: The first author benefitted from financial support
from the European Regional Development Fund through the programme
COMPETE and from the Portuguese Government through the Fundação
para a Ciência e a Tecnologia (FCT) under the project PEst-C/MAT/UI0144/2011.
This research was partly carried out during a visit of the second author to the
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A A simple (B+
2 , B

+
2 )-network

We construct a network with two B+
2 -cycles and provide the set-up for the

study of the dynamics near the network by defining local and global maps.
Consider the finite Lie group Z

3
2 generated by the following elements of

order 2:

κ2.(x1, x2, x3, x4) = (x1,−x2, x3, x4)

κ3.(x1, x2, x3, x4) = (x1, x2,−x3, x4)

κ4.(x1, x2, x3, x4) = (x1, x2, x3,−x4).

It is easily seen that, for i 6= j, Fix(〈κi, κj〉) is a two-dimensional space of
the form

P1k = {(x1, x2, x3, x4) ∈ R
4 : xi = xj = 0, k 6= i, j}.

We further have Fix(〈κ2, κ3, κ4〉) = L1 = {(x1, 0, 0, 0) : x1 ∈ R}. Let f
be a vector field equivariant under this group action. Then, when restricted
to one of the invariant planes, the vector field has the form (we write the
equations in P12 for concreteness):

{

ẋ1 = a1x1 + b1(x
2
1 + x2

2) + c1x
3
1

ẋ2 = a2x2 + b2(x
2
1 + x2

2)x2 + d1x1x2
.

The origin is always an equilibrium. Assume a2b2 > 0 so that there are
no equilibria on the x2-axis. Assume further that b21 − 4a1c1 > 0 so that
there are two equilibria, other than the origin, on the x1-axis. Set c1 < 0 and
label these ξa and ξb, where the first coordinate of ξa is negative and the first
coordinate of ξb is positive. Choose a1, a2 > 0 so that the origin is a source
and the remaining coefficients so that ξa is a saddle and ξb is a sink in P12.
In P13 and P14 coefficients can be chosen so that ξa is a sink and ξb a saddle.

We thus obtain a heteroclinic cycle made of three connections as follows:

[ξa → ξb] in P12; [ξb → ξa] in P13; [ξb → ξa] in P14.

There are two cycles: C3 = [ξa → ξb → ξa] ⊂ P12 ∪ P13 and C4 = [ξa → ξb →
ξa] ⊂ P12 ∪ P14. These correspond to the ξ3- and ξ4-cycles of [8].

Dynamics near the network of B+
2 -cycles: In a way analogous to that

used by Kirk and Silber [8], we use the linearization at each equilibrium
on the network to define local maps. Global maps are defined as small
perturbations of the identity, conditioning the domain of definition of the
return maps around each cycle in the network.
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Figure 9: The B+
2 -cycles in the network.

Near ξa the local maps are defined for points in an incoming section to
the flow approaching ξa, H

in
ai for i = 3, 4, with image in an outgoing section

to the flow leaving ξa, H
out
a2 . Linearize the flow near ξa to obtain















ẋ1 = −rax1

ẋ2 = ea2x2

ẋ3 = −ca3x3

ẋ4 = −ca4x4,

where all the constants are positive.
Near ξb, the local maps are analogously defined but now we have two out-

going sections, Hout
b3 and Hout

b4 , and one incoming section, H in
b2. Linearization

of the flow near ξb provides















ẋ1 = −rbx1

ẋ2 = −cb2x2

ẋ3 = eb3x3

ẋ4 = eb4x4,

where again all the constants are positive. Assume from now on, and without
loss of generality, that eb3 > eb4.

The coordinates for the sections to the flow are as follows:

Hout
a2 = H in

b2 = {(x1, 1, x3, x4)}

H in
a3 = Hout

b3 = {(x1, x2, 1, x4)}

H in
a4 = Hout

b4 = {(x1, x2, x3, 1)}.
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The standard construction of the local maps using the linearized flow
gives the following:

ϕa3 : H
in
a3 → Hout

a2 , ϕa3(x1, x2, 1, x4) =
(

x1x
ra

ea2

2 , 1, x
ca3

ea2

2 , x4x
ca4

ea2

2

)

ϕb3 : H
in
b2 → Hout

b3 , ϕb3(x1, 1, x3, x4) =
(

x1x
rb

e
b3

3 , x
cb2

e
b3

3 , 1, x4x
−

eb4

e
b3

3

)

ϕa4 : H
in
a4 → Hout

a2 , ϕa4(x1, x2, x3, 1) =
(

x1x
ra

ea2

2 , 1, x3x
ca3

ea2

2 , x
ca4

ea2

2

)

ϕb4 : H
in
b2 → Hout

b3 , ϕb4(x1, 1, x3, x4) =
(

x1x
r
b

eb4

4 , x
c
b2

eb4

4 , x3x
−

e
b3

eb4

4 , 1
)

The domain of definition of the maps ϕb3 and ϕb4 is, respectively, constrained
by the inequalities

(1− ǫ)x
e
b4

eb3

3 > x4 ≥ 0 and (1− ǫ)x
e
b3

eb4

4 > x3 ≥ 0,

in the respective (local) coordinates. By composing these local maps with
global maps analogous to those used by [8], without resorting to polar coordi-
nates however, we obtain four return maps, one for each connection belonging
to each cycle. These are, for C3,

g3a : H in
a3 → H in

a3

g3b : H in
b2 → H in

b2

and, for C4,

g4a : H in
a4 → H in

a4

g4b : H in
b2 → H in

b2.

The return maps are given by:

g3a(x1, x2, 1, x4) =
(

A1x1x
ra

ea2
+

ca3rb

ea2eb3

2 , B1x
ρ̃
2, 1, C1x4x

δ̃
2

)

,

with 0 ≤ x4 < k3a
1 (1− ǫ)x

ca3

ea2
(
eb4

e
b3

−
ca4

ca3
)

2 ;

g3b(x1, 1, x3, x4) =
(

A2x1x
r
b

eb3
+

c
b2

ra

ea2eb3

3 , 1, B2x
ρ̃
3, C2x4x

e
b4

eb3
(ρ−1)

3

)

,

with 0 ≤ x4 < k3a
2 (1− ǫ)x

e
b4

eb3

3 ;

g4a(x1, x2, x3, 1) =
(

D1x1x
ra

ea2
+

ca4rb

ea2eb4

2 , E1x
ρ
2, x3x

δ
2, 1

)

,
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with 0 ≤ x3 < k3a
2 (1− ǫ)x

ca4

ea2
(
eb3

e
b4

−
ca3

ca4
)

2 ;

g4b(x1, 1, x3, x4) =
(

D2x1x
r
b

eb4
+

c
b2

ra

eb4ea2

4 , 1, E2x3x
e
b3

eb4
(ρ̃−1)

4 , F2x
ρ
4

)

,

with 0 ≤ x3 < k3a
2 (1− ǫ)x

e
b3

eb4

4 , where

ρ :=
ca4cb2
ea2eb4

, δ :=
ca3
ea2

−
eb3ca4
ea2eb4

ρ̃ :=
ca3cb2
ea2eb3

, δ̃ :=
ca4
ea2

−
eb4ca3
ea2eb3

.

Notice that δδ̃ < 0.

Stability indices: In the terminology of Lemma 4.1 we have ρ̃ = a1a2
for C3 and ρ = a1a2 for C4. Since we do not want all indices along one of
the cycles to be equal to −∞, from now on we assume ρ, ρ̃ > 1. Note that
precisely one of δ̃ and δ is positive. In Theorem A.1 we give the stability
indices for cases (i) δ < 0 (⇒ δ̃ > 0) and (ii) δ > 0 (⇒ δ̃ < 0).

Subscripts indicate the direction of the connection and the cycle: σij,3

for the connection in C3 and the stability index relative only to this cycle,
whereas we write σn

ij,3 for the stability index along the same connection but
now calculated for the network. Note that, when calculating the stability
index of the common connection with respect to the network, we have σn

ab,3 =
σn
ab,4. In this case, we use σn

ab.

Theorem A.1. Generically, the stability indices for connecting trajectories
in the network are

Case (i) (δ < 0): σab,4 = σba,4 = −∞, σab,3 > 0, σba,3 = +∞;

σn
ab, σ

n
ba,4 > 0, σn

ba,3 = +∞.

Case (ii) (δ > 0): σab,4 < 0, σba,4 = +∞, σab,3 = σba,3 = −∞;

σn
ab, σ

n
ba,3 > 0, σn

ba,4 = +∞.

Proof. The stability indices relative to the cycles follow from Lemma 4.1 (iii),
where a1a2 = ρ̃ and b1a2 + b2 = δ̃ for C3, while a1a2 = ρ and b1a2 + b2 = δ
for C4.

For the indices with respect to the network, we show how to calculate
σn
ba,3 in case (ii), the others can be determined in a similar manner. In case

(ii) we have δ > 0, which together with ρ, ρ̃ > 1 implies that the return maps
around C4 are contractions.
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This allows us to determine all points in H in
a3, that are not attracted to

the network, in two steps: First we calculate the preimage E0 ⊂ H in
a3 under

ϕa3 of the complement of dom(g3b) ∪ dom(g4b), the union of the domains of
the return maps g3b and g4b in H in

b2. Then we take the union of preimages of
E0 under the return map g3a, En := g−n

3a (E0). In the same way as the authors
of [8] do, we restrict the calculations (and notation) to the two relevant
components. Also, we adjust the constants k, k̂ in every step.

E0 =
{

(x2, x4) ∈ H in
a3 | ϕa3(x2, x4) /∈ D(g3b) ∪D(g4b)

}

=
{

(x2, x4) ∈ H in
a3 | (x

ca3

ea2

2 , x4x
ca4

ea2

2 ) /∈ D(g3b) ∪D(g4b)
}

=
{

(x2, x4) ∈ H in
a3 | kx

e
b4

eb3

ca4

ea2

2 ≤ x4x
ca4

ea2

2 ≤ k̂x
e
b4

eb3

ca4

ea2

2

}

=
{

(x2, x4) ∈ H in
a3 | kx

−δ̃
2 ≤ x4 ≤ k̂x−δ̃

2

}

⇒ E1 =
{

(x2, x4) ∈ H in
a3 | g3a(x2, x4) ∈ E0

}

=
{

(x2, x4) ∈ H in
a3 | (B1x

ρ̃
2, C1x4x

δ̃
2) ∈ E0

}

=
{

(x2, x4) ∈ H in
a3 | kx

−δ̃ρ̃−δ̃
2 ≤ x4 ≤ k̂x−δ̃ρ̃−δ̃

2

}

Iteration leads to

En =
{

(x2, x4) ∈ H in
a3 | kx

αn

2 ≤ x4 ≤ k̂xαn

2

}

,

where αn = −δ̃
n

∑

j=0

ρ̃j.

The sequence of exponents (αn)n∈N is monotonically increasing and unbounded
since αn+1 − αn = −δ̃ρ̃n+1 > 0. Therefore, in the generic case αn 6= 1 for all
n ∈ N, by Lemma 2.5 we obtain σn

ba,3 > 0.
For the calculation of σn

ab the sequence of exponents turns out to be
βn = eb4

eb3
ρ̃n − (ρ − 1)

∑n−1
j=0 ρ̃

j. This gives βn+1 − βn = eb4
eb3

ρ̃n(ρ̃ − ρ) and
since δ > 0 ⇔ ρ̃ > ρ, this sequence is also monotonically increasing, giving
σn
ab > 0.

B Maps between cross-sections

For the (B−
3 , B

−
3 )-network the standard construction using the linearized flow

gives the following local maps. They have been determined by [8], but not
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all of them are listed explicitly in their work.

φ123 : H
in,1
2 → Hout,3

2 , φ123(1, x2, x3, x4) =
(

x
c21

e23

3 , x2x
r2

e23

3 , 1, x4x
−

e24

e23

3

)

φ231 : H
in,2
3 → Hout,1

3 , φ231(x1, 1, x3, x4) =
(

1, x
c32

e31

1 , x3x
r3

e31

1 , x4x
c34

e31

1

)

φ312 : H
in,3
1 → Hout,2

1 , φ312(x1, x2, 1, x4) =
(

x1x
r1

e12

2 , 1, x
c13

e12

2 , x4x
c14

e12

2

)

φ124 : H
in,1
2 → Hout,4

2 , φ124(1, x2, x3, x4) =
(

x
c21

e24

4 , x2x
r2

e24

4 , x3x
−

e23

e24

4 , 1
)

φ241 : H
in,2
4 → Hout,1

4 , φ241(x1, 1, x3, x4) =
(

1, x
c42

e41

1 , x3x
c43

e41

1 , x4x
r4

e41

1

)

φ412 : H
in,4
1 → Hout,2

1 , φ412(x1, x2, x3, 1) =
(

x1x
r1

e12

2 , 1, x3x
c13

e12

2 , x
c14

e12

2

)

Only φ123 and φ124 are not defined on a whole neighbourhood of the tra-
jectory. Their domains of definition within the transverse section H in,1

2 are

bounded by the inequalities x4 < x
e24

e23

3 and x3 < x
e23

e24

4 , respectively. Combin-
ing local and global maps in the appropriate order gives the return maps as
found in [8]. Reduced to the two components relevant for stability, these are:

h̃1 : H
out,2
1 → Hout,2

1 , h̃1(x, y) = (xρ̃, yxν̃) for y < x
e24

e23

h̃2 : H
out,3
2 → Hout,3

2 , h̃2(x, y) = (xρ̃, yxδ̃) for y < x−δ̃

h̃3 : H
out,1
3 → Hout,1

3 , h̃3(x, y) = (xρ̃, yxτ̃) for y < xσ̃

h1 : H
out,2
1 → Hout,2

1 , h1(x, y) = (xyν , yρ) for x < y
e23

e24

h2 : H
out,4
2 → Hout,4

2 , h2(x, y) = (xρ, yxδ) for y < x−δ

h4 : H
out,1
4 → Hout,1

4 , h4(x, y) = (xρ, yxτ) for y < xσ

Note that we ignore technicalities such as constant coefficients induced by
non-identity global maps. These do not influence the calculation of stability
indices.
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