
Local bifurcation in symmetric coupled cell networks: linear theory

Ana Paula S. Dias1 and Jeroen S.W. Lamb2
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Abstract

We consider a coupled cell network of differential equations with finite symmetry group Γ,
where Γ permutes cells transitively. We show how the structure of the coupled cell network,
represented by a directed graph whose vertices represent individual cells and edges represent
couplings, can be taken into account in the bifurcation analysis of a fully symmetric steady-state
solution.

We focus on the analysis of the linearized vector field at a fully symmetric equilibrium and
show that in the case of active cells, if Γ is Abelian the network structure does not influence the
types of codimension one local bifurcations. We also show that beyond this context, when Γ
is not Abelian, cells are passive, or when considering local bifurcations of higher codimensions,
anomalies due to the network structure may arise.

1 Introduction

Coupled cell networks are dynamical systems comprising of components, called cells, which are
coupled together by connections. The corresponding networks structure is specified by a labelled
directed graph, see for instance Golubitsky et al. [11, 10, 20, 13] and Field [8].

Coupled cell networks naturally arise in the context of many applications in engineering, physics
and biology, and the corresponding relevant literature is enormous. For example networks of coupled
dynamical systems have been used to model biological oscillators [25, 17, 21, 4], Josephson junction
arrays [3, 24], excitable media [9], neural networks [1, 5, 14], spatial games [18], genetic control
networks [16] and many other self-organizing systems.

Recently coupled cell networks have received increased attention in view of the question in
what way - if any - the network structure influences the dynamics of a coupled cell network, see
for instance Wang [22], Stewart [19]. As pointed out by Watts and Strogatz [23], although the
connection topology is usually assumed to be either completely regular or completely random,
many biological, technological and social networks lie somewhere between these two extremes.

1.1 Coupled cell networks

For the purpose of this paper, coupled cell networks are described by differential equations whose
structure is represented by a directed graph, with vertices representing cells and directed edges
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representing the connections between cells. We denote the phase space for a coupled cell network
as Ω1 × · · · × Ωn, where n denotes the number of cells and Ωi is a manifold representing the phase
space for the internal dynamics of cell i. We represent the state of the network by (x1, . . . ,xn)
where xi ∈ Ωi.

We consider the equations of the jth cell to be given by the differential equation
d

dt
xj = fj(x1, . . . ,xn).

Graphically, we may represent the coupled cell network by a directed graph with n vertices
and a directed edge from vertex i to vertex j if fj depends on xi. Note that the absence of
a directed edge from vertex i to vertex j thus means that fj(x1, . . . ,xi−1,xi,xi+1, . . . ,xn) =
fj(x1, . . . ,xi−1, 0,xi+1, . . . ,xn) for all x1, . . . ,xi−1,xi+1, . . . ,xn. We naturally assume that the
network is connected, in the sense that the network is not a disjoint union of smaller networks.

Instead of drawing edges from a vertex to itself to indicate the fact that the dynamics of cells
depend on their own state, we refer to the this property as cells being active. If cells are not
active, we call them passive. In the latter case, coupled cell network dynamics preserves volume
(as it is readily verified that the vector field has vanishing divergence). As a consequence, in this
case it is not surprising that codimension one local bifurcations may not follow those of general Γ-
equivariant vector fields (fully connected coupled cell networks). Some illustrations are given below
in Section 1.3. In the context of certain applications, for instance in certain types of electronic
networks, coupled cell networks with passive components may well be of interest.

Our definition of a coupled cell network appears the least restrictive one relating directly to the
structure of a directed graph. We note that other concepts of coupled cell systems with additional
structure have been proposed in the literature, for instance the networks defined by the “symmetry
groupoid” formalism of Stewart et al. [20, 13]. It turns out that for the purpose of the linear
analysis discussed in this paper the difference between these types of coupled cell networks and the
ones discussed here is irrelevant, as differences in the equations of motion appear only at the level
of nonlinear terms.

We are interested in the consequences of a coupled cell network structure on local bifurcations.
This appears a hard problem in general, and as a starting point we make an important assumption
concerning the homogeneity of the coupled cell network: we assume that the network is such that
from the point of view of each individual cell, the network appears identical. More precisely, we
assume that for each pair of cells {i, j} there exists a permutation of the set of cells T , such that
the image of cell i under T is cell j, and T leaves the equations of motion invariant. The latter
requirement is equivalent to stating that the coupled cell network is T -equivariant.

We thus assume the existence of a permutation group Γ ⊆ Sn of network symmetries acting
faithfully and transitively as permutations on the n cells. We recall that transitivity implies that
for each pair {i, j} there exists γ ∈ Γ such that γ(i) = j, and Γ acts faithfully if γ(i) = i for all
γ ∈ Γ and i = 1, . . . , n implies that γ is the identity element of Γ.

During the last decade, there has been a number of studies [6, 7, 10, 11] where assumptions of
symmetry properties of a coupled cell network were used to explain the occurrence of spatially and
spatiotemporally symmetric patterns in coupled cell networks. The formal setting for this theory
centred upon the symmetry group of the network, ignoring to a large extend the network structure.
However, in case coupled cell networks which are not fully connected, they possess a structure that
is independent of the symmetry which should naturally be taken into account when analyzing the
(typical) dynamics of coupled cell networks.
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Figure 1: Two examples of graphs representing Z4-equivariant coupled cell networks. The left one
is fully connected, while the right one has nearest neighbor coupling.

We thus would like to address the question how the network architecture may affect the kinds of
bifurcations that can be expected to occur in a coupled cell network. It turns out that the problem
is quite a complicated one, and in this paper we focus on networks with a symmetry group that
permutes cells transitively, and local bifurcation from a fully symmetric equilibrium solution. In
this context, we assume without loss of generality that Ωi = R

l for all i and that the equilibrium
is represented by (0, . . . , 0).

The first concern is with the spectrum of the linearized vector field (Jacobian matrix) at the
equilibrium solution when parameters are varied, in particular with the analysis of how eigenvalues
typically cross the imaginary axis iR. The main aim of this paper is to discuss this problem. Before
discussing this in more detail, we first illustrate the problem with some examples.

Example 1.1 (Networks of four cells with Z4 symmetry.) An example of the difficulties that
can arise is given in a ring of four cells with Z4 symmetry. We assume that each cell is one-
dimensional. The network architecture is shown in Figure 1 (left) with all possible couplings. We
assume that the network dynamics have a group invariant equilibrium. The Jacobian matrix at
such an equilibrium has the form

M =


a b c d
d a b c
c d a b
b c d a


where a is the linearized internal cell dynamics. The eigenvalues of M are

λ1 = a + b + c + d λ2 = a + c − (b + d) λ3,± = a − c ± i(b − d).

Consider the case of nearest-neighbor coupling (c = 0) as shown in Figure 1 (right). The
eigenvalues of M are then

λ1 = a + (b + d) λ2 = a − (b + d) λ3,± = a ± i(b − d).

It is straightforward to show that any one of these three eigenvalues can lie on the imaginary axis
while the other two have nonzero real part. Thus, the same three types of bifurcation that can
occur as codimension one bifurcations in the fully connected system also occur as codimension one
bifurcations in the nearest neighbor coupled system and no others.
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Figure 2: Schematic representations of two D3-equivariant coupled cell network structures where
D3 acts transitively on six cells (divided in two three-cycles F1 = {1, 2, 3} and F2 = {4, 5, 6}). The
first network (a) has couplings between cells within each three-cycle (and admits Hopf bifurcation),
whereas the second network (b) has not (and does not admit Hopf bifurcation from a D3-invariant
equilibrium in the case of one-dimensional cells).

Note, however, that anomalous behavior can occur in codimension two. Consider the steady-
state/steady-state mode interaction given by λ1 = λ2 = 0 (a mode interaction between the trivial
and nontrivial one dimensional representations of Z4). In this case a = 0 = b + d; these equalities
force λ3,± = ±i(b− d) to also lie on the imaginary axis, producing, in effect, a steady-state/steady-
state/Hopf mode interaction. In the fully connected case (c not constrained by network architecture
to be zero), λ1 = λ2 = 0 implies that a + c = 0 and b + d = 0. Then, typically, the eigenvalues
λ3,± = 2(a±ib) do not lie on the imaginary axis. Note, however, that if the internal dynamics of each
cell is two-dimensional, the triple mode interaction is no longer forced by the steady-state/steady-
state mode interaction. ♦

Example 1.2 (Networks of six cells with D3 symmetry.) In Figure 2 we present two exam-
ples of D3-equivariant coupled cell networks with six cells, represented by the corresponding directed
graphs.

We assume that D3 permutes the six cells transitively, generated by the two group elements
acting on the cells as the following permutations:

α = (123)(456), β = (14)(26)(35).

We suppose that the cells are one-dimensional. The Jacobian matrix at a fully symmetric equilib-
rium solution for the network of Figure 2 (left) has the following structure:

M =
(

A B
BT AT

)
where

A =

 a b 0
0 a b
b 0 a

 , B =

 c d 0
0 c d
d 0 c


and AT denotes the transpose of the matrix A. The eigenvalues of M are

λ1 = a + b + c + d, λ2 = a + b − c − d, λ3,4,± = a − b

2
±
√

−3b2 + 4c2 − 4cd + 4d2.
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The analysis for the network of Figure 2 (right) is obtained by setting b = 0. In this case, all
eigenvalues of M are real, since 4c2 − 4cd + 4d2 = 3c2 + (2d − c)2 ≥ 0. This can also be deduced
directly from the fact that, if b = 0, M is symmetric, that is, M = MT , and eigenvalues of
symmetric matrices are always real.

Thus, in the network of Figure 2 (right) a fully symmetric equilibrium cannot undergo a Hopf
bifurcation. It is thus possible for the network architecture to suppress the occurrence of Hopf
bifurcation. It is readily verified that in the network of Figure 2 (left), when in general b �= 0, no
suppression of Hopf bifurcation occurs. ♦

1.2 Codimension one eigenvalue movements.

We consider coupled cell networks with symmetry group Γ permuting cells transitively. Identical
couplings are thus induced by symmetry only, and no other conditions on the couplings are assumed
to hold. We recall that we say that a type of local bifurcation has codimension m if the corre-
sponding set of (smooth) vector fields satisfying the bifurcation condition has codimension m in the
ambient space. By usual considerations of transversality, this implies that within an m-parameter
family of vector fields the bifurcation condition is typically satisfied at isolated points and that
the occurrence of such isolated bifurcation points is persistent (as a consequence of the fact that
the m-parameter family is typically transverse to the bifurcation set in a bifurcation point). In
the context of this paper, the bifurcation conditions will always involve a statement about the
eigenvalues of the Jacobian matrix at a fully symmetric equilibrium.

The main question we address is the following:

Are the codimension one bifurcations associated to a symmetric coupled cell network
dependent on the network structure?

Examples 1.1 and 1.2 illustrate the fact that a general affirmative answer to this question is not
possible. But in case the symmetry group is Abelian, we show that the question, under some mild
assumption on the network, has an affirmative answer:

Theorem 1.3 Consider a symmetric connected coupled cell network, where the symmetry group
of the network is Abelian and acts transitively by permutation on the cells of the network. Then,
codimension one eigenvalue movements across the imaginary axis of the Jacobian matrix at a fully
symmetric equilibrium are independent of the network structure if the cells are assumed to be active.

Remark 1.4 In analogy with general equivariant linear systems [12], typically (codimension zero)
eigenvalues do not lie on the imaginary axis, and in the case of codimension one eigenvalue crossings
with the imaginary axis, the center subspace is either absolutely irreducible (in the case of steady-
state bifurcation) or Γ-simple (in the case of Hopf bifurcation). See Section 3 for details. ♦

Remarks 1.5 (i) Once the codimension one eigenvalue movements described in Theorem 1.3
occur, one may directly deduce the existence of certain branches of equilibria and periodic
solutions whose existence can be obtained by application of the Equivariant Branching Lemma
and the Equivariant Hopf Theorem, as in [12]. It should be noted that although solution
branches are guaranteed to exist, due to possible anomalies in higher order terms, detailed
properties of the branches (like direction, growth, stability properties) may depend on the
network structure.
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(ii) In Example 1.2 it was shown that the network structure may cause suppression of Hopf
bifurcation. This illustrates the fact that the validity of Theorem 1.3 does not extend to
coupled cell networks with non-Abelian symmetry.

(iii) It is natural to address local bifurcations with codimension higher than one. From Example 1.1
it follows that Theorem 1.3 does not extend to local bifurcations of coupled cell networks with
Abelian symmetry with codimension higher than one.

(iv) The occurrence of anomalous local bifurcations appears related to the cell dimension. It
appears that the higher the cell dimension, the less influence the network structure has on local
bifurcations. It would be interesting if this observation could be quantified more precisely,
but such is beyond the content of this paper.

♦

1.3 Passive coupled cell networks

In the case of passive coupled cell networks, when fj does not depend on xj , the vector field
is divergence free, so that the flow preserves volume. As generic equivariant systems are rarely
volume preserving, it is not surprising that correspondence with generic equivariant systems may
not be always observed in such networks. This observation raises the question whether eigenvalue
bifurcations of symmetric passive coupled cell networks correspond to eigenvalue bifurcations of
volume preserving equivariant systems. This turns out to be not the case, as is illustrated below.

Example 1.6 (Passive four-cell Z4 network.) We revisit the four-cell Z4 network discussed in
Section 1, but now assume that it is passive so that a = 0.

When we consider such a network, the eigenvalues of M are

λ1 = b + c + d, λ2 = c − (b + d), λ3,± = −c ± i(b − d).

We thus observe that when one of the eigenvalues is passing through the imaginary axis, this does
not imply that any of the other eigenvalues passes at the same time, like in the case of general
Z4-equivariant linear systems.

If we consider the same network, but now with only nearest neighbor coupling (c = 0), the
eigenvalues of L are

λ1 = b + d, λ2 = −(b + d), λ3,± = ±i(b − d).

Now, whenever λ1 = 0 we have at the same time λ2 = 0.
Surprisingly, the pair of eigenvalues λ3,± is always positioned on the imaginary axis. The

eigenvalues here thus do behave very differently than in generic volume preserving Z4-equivariant
systems. ♦

1.4 From cells to isotypic components

We briefly sketch the approach we take to understand the implications of the network structure on
the eigenvalues of the linearized vector field M at a fully symmetric equilibrium.

The vector space R
nl � R

l ⊗ R
n, as the phase space of a coupled cell network whose cells are

permuted transitively by a symmetry group Γ, has a natural basis {cj ⊗ ei}j=1,...l, i=1,...n where the
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index i labels the cells and Ωi = R {cj ⊗ ei}j=1,...l. It is then natural to choose the basis such that
a permutation γ ∈ Γ acts as γ(cj ⊗ ei) = (cj ⊗ eγ−1(i)).

The absence of a connection from cell k to cell m implies the following condition on the linear
vector field M ∈ gl(Rnl) commuting with Γ:

〈ci ⊗ em,M(ct ⊗ ek)〉 = 0, i, t = 1, . . . l, (1.1)

where 〈·, ·〉 denotes the standard (Euclidean) inner product on R
nl.

The consequences of the Γ-equivariance on M are best viewed in relation to the Γ-isotypic
decomposition of its domain. Recall that an irreducible subspace is an indecomposable Γ-invariant
subspace of R

nl. When Γ is a finite group the number of different (that is, non-isomorphic) irre-
ducible subspaces is finite, and the span of the union of one irreducible subspace Vα together with
all others that are isomorphic, is called a Γ-isotypic component of R

nl. We denote the corresponding
isotypic decomposition by

R
nl = ⊕αWα.

Because Γ acts essentially on R
n, we have in fact Wα = R

l ⊗ Uα where R
n = ⊕αUα is the isotypic

decomposition for the transitive permutation representation of Γ on R
n. It follows from a real

version of Schur’s Lemma [2] that M preserves the isotypic decomposition, and that the set of Γ-
equivariant real matrices in gl(Rl⊗Uα) is isomorphic (as an algebra) to gl(ml,k) with k ∈ {R, C, H}
if dim Uα = m dimVα and Vα is of type K. We write the blockdiagonalization M = ⊕αMα.

The equivariant linear vector fields thus decouple into a set of independent linear equivariant
vector fields Mα on isotypic components Wα.

For a symmetric coupled cell network, the absence of certain connections between cells leads to
relations between the otherwise independent linear vector fields Mα. These relations can be derived
from (1.1), and using projections to isotypic components. Such projections are well known from
group representation theory, see for instance James and Liebeck [15]. In the following sections,
these relations will be derived, and the consequences – in particular Theorem 1.3 – discussed.

Example 1.7 We return to Example 1.1 and recall we are assuming the cells are one-dimensional
and so the total phase space is V = R

4. This space is decomposed into 3 isotypic components
that in this case are irreducible: the trivial and nontrivial one-dimensional representations, and
the two-dimensional representation which is of type C. That is, V = V1 ⊕ V2 ⊕ V3, where V1, V3

are one-dimensional irreducibles where Z4 acts trivially on V1, and non-trivially on V3, and V2 is
the two-dimensional irreducible subspace of V where the action of Z4 is generated by an element
that corresponds to the rotation by π/2 on the plane. It follows then that M = M1 ⊕ M2 ⊕ M3.
Here M1,M3 are linear maps corresponding to the restrictions of M to V1, V3, respectively and M2

corresponds to the restriction of M to V2. Since V2 is of complex type and M2 commutes with Z4,
a basis of V2 can be chosen such that M2 with respect with this basis is:

M2 =
(

M2
R M2

I

−M2
I M2

R

)
which has eigenvalues M2

R ± iM2
I . Recall the expressions for the eigenvalues of M obtained at

the beginning of Example 1.1: M1 ≡ λ1 = a + b + c + d, M3 ≡ λ2 = a + c − (b + d) and
M2

R + iM2
I ≡ λ3,− = a − c − i(b − d).
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Corollary 2.10 of Section 3 applied to the Example 1.1 gives the following equivalences:

M1 + M3 + 2M2
R = 0 ⇔ a = 0,

M1 − M3 − 2M2
I = 0 ⇔ b = 0,

M1 + M3 − 2M2
R = 0 ⇔ c = 0,

M1 − M3 + 2M2
I = 0 ⇔ d = 0,

which are easily verified. If we assume the cells are l-dimensional, the same relations hold, where
now the matrices M1,M3,M2

R,M2
I are l × l-matrices. ♦

The remainder of this paper is organized as follows. In Section 2 we discuss in some detail the
projections to isotypic components and the corresponding conditions imposed on the Mαs by the
absence of connections. Moreover, we illustrate in detail the implications of these conditions for
networks with cyclic and dihedral symmetry groups. Finally, in Section 3 we prove Theorem 1.3
on codimension one eigenvalue movements across the imaginary axis for coupled cell networks with
Abelian symmetry.

2 Linear analysis

In this section we describe the restrictions on the eigenvalue structure of linear transformations
M ∈ gl(Rl ⊗ R

n) commuting Γ ⊆ Sn, where Γ acts trivially on R
l, and transitively and faithfully

on R
n, satisfying restrictions of the type

〈ci ⊗ e1,M(ct ⊗ ek)〉 = 0, i, t = 1, . . . l.

Here ci, i = 1, . . . , l is a basis of R
l, ej , j = 1, . . . , n is a basis of R

n and 〈·, ·〉 is an inner product
on R

l ⊗ R
n.

We start by addressing the question for M ∈ gl(Rn) commuting with Γ, where Γ acts transitively
and faithfully on R

n. We begin by complexifying the state space to V = C
n in order to use the

theory of complex representations of finite groups. See for example [15] for the basic definitions
and results on this subject, which we use throughout this section. We then interpret the results in
terms of real representations. Finally, we generalize our results to C

l ⊗ C
n (and R

l ⊗ R
n) and we

illustrate them with the cyclic and dihedral groups.

2.1 Linear analysis on Cn

Let Γ be a subgroup of the symmetric group Sn permuting transitively and faithfully the set
{1, . . . , n}. Consider a n-dimensional complex vector space V , a basis b = {e1, . . . , en} of V ,
and the action of Γ on V given by permutation of the corresponding coordinates. Thus we can
assume that V = C

n and this action corresponds to a representation T of Γ on V through a linear
homomorphism from Γ to the group GL(V ) of invertible linear transformations on V defined by

T (γ)(v1, . . . , vn) =
(
vγ−1(1), . . . , vγ−1(n)

)
, γ ∈ Γ, (v1, . . . , vn) ∈ V. (2.2)

A subspace W of V is said to be Γ-invariant if T (γ)W ⊆ W for all γ ∈ Γ. If V possesses
a proper invariant subspace we say that V is reducible, otherwise V is called irreducible. Two
Γ-invariant vector spaces W1,W2 are Γ-isomorphic if the corresponding representations, say T1 and
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T2, are equivalent. That is, there exists an invertible linear transformation S from W2 to W1 such
that T1(γ) = ST2(γ)S−1 for all γ ∈ Γ.

Since Γ is finite there appear in V at most s distinct complex irreducible representations, where
s is the number of conjugacy classes of Γ. Denote those that appear by V1, . . . , Vr and so r ≤ s.
We can decompose V into isotypic components

V = U1 ⊕ · · · ⊕ Ur

where each Uj is the isotypic component of type Vj for the action of Γ on V . Thus if W is a
Γ-invariant subspace of V and Γ-isomorphic to Vj then W ⊆ Uj.

Suppose now that M ∈ gl(V ) commutes with Γ:

MT (γ) = T (γ)M, ∀γ ∈ Γ.

Since M commutes with Γ, it preserves the isotypic components for the action of Γ on V . Thus
M(Uj) ⊆ Uj for j = 1, . . . , r. Denote by M j the restriction of M to Uj :

M j ≡ M |Uj : Uj → Uj .

It follows that M j commutes with Γ.
Consider the vector space V equipped with the following inner product:

〈(λ1, . . . , λn), (α1, . . . , αn)〉 =
n∑

j=1

λjαj

where (λ1, . . . , λn), (α1, . . . , αn) ∈ V . Thus 〈ej , ek〉 = 1 if j = k, and 0 otherwise. Observe that the
inner product is Γ-invariant. That is,

〈T (γ)w1, T (γ)w2〉 = 〈w1, w2〉

for all γ ∈ Γ and w1, w2 ∈ V .
Given an irreducible Γ-invariant vector space Vj, then the character of Vj is the function χj :

Γ → C defined by
χj(γ) = tr

(
T (γ)|Vj

)
, γ ∈ Γ.

The dimension of Vj is called the dimension (or degree) of χj . Characters of dimension 1 are called
linear characters. We review the following properties of the characters: if e denotes the identity
element of the group Γ then χj(e) = dim Vj; if γ ∈ Γ has order m, then χj(γ) is a sum of mth roots
of unity; if χj is linear then it is a homomorphism from Γ to the multiplicative group of non-zero
complex numbers {z ∈ C : |z| = 1}.

Definition 2.1 Define the projection operator of V onto the Γ-isotypic component Uj by

P j =
dimVj

|Γ|
∑
γ∈Γ

χj(γ) T (γ),

where χj is the character corresponding to the irreducible Vj. ♦
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For i, j = 1, . . . , n denote
Mij ≡ 〈ei,Mej〉.

We use now the projection operators P j to describe the restrictions on the M j imposed by a
condition of the type

M1k = 0. (2.3)

Observe that since M commutes with Γ, if M1k = 0 then Mγ(1)γ(k) = 0 for all γ ∈ Γ.
Denote by H the subgroup of Γ defined by

H = {γ ∈ Γ : γ(1) = 1}.
Choose permutations γ2, . . . , γn ∈ Γ such that

j = γj(1)

(recall that Γ acts transitively on {1, . . . , n}) and set γ1 = e. It follows then that

Γ = H ∪̇ γ2H ∪̇ · · · ∪̇ γnH

where ∪̇ denotes disjoint union and

ej = T (γj)e1, j = 1, . . . , n.

In the following lemma, given z ∈ C we denote |z|2 = zz.

Lemma 2.2 For j = 1, . . . , r, let P j denote the projection of V onto the isotypic component Uj of
type Vj, χj the character of the irreducible Γ-invariant vector space Vj and dj the dimension of Vj.
Then:

〈P je1, P
je1〉 =

(
dj

|Γ|
)2 n∑

k=1

∣∣∣∣∣∣
∑

γ∈γkH

χj(γ)

∣∣∣∣∣∣
2

,

P jek = T (γk)P je1, k = 1, . . . , n.

In particular, if χj is a linear character of Γ, then

P jek = χj(γk)P je1, k = 1, . . . , n.

Proof: By definition of P j we have

P je1 =
dj

|Γ|
∑
γ∈Γ

χj(γ)T (γ)e1 =
dj

|Γ|

 n∑
k=1

∑
γ∈γkH

χj(γ)ek

 .

As 〈ei, ej〉 = 0 if i �= j, and 〈ei, ei〉 = 1, the formula for 〈P je1, P
je1〉 follows. Now for the second

equality, recall that ek = T (γk)e1 for k = 1, . . . , n. Therefore

P jek =
dj

|Γ|
∑
γ∈Γ

χj(γ)T (γ)T (γk)e1 = T (γk)

 dj

|Γ|
∑
γ∈Γ

χj(γ−1
k γγk)T

(
γ−1

k γγk

) e1 = T (γk)P je1.

Moreover, if χj is linear, as P je1 ∈ Uj , it follows that T (γk)P je1 = χj(γk)P je1. �
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Proposition 2.3 Suppose the conditions of Lemma 2.2 and let I = {1, . . . , r}. Given k ∈ {1, . . . , n}
then

M1k = 0 ⇔
∑
j∈I

〈P je1,M
jP jek〉 = 0 ⇔

∑
j∈I

〈P je1, T (γk)M jP je1〉 = 0. (2.4)

Proof: Recall that M1k = 〈e1,Mek〉, and U1, . . . , Ur are the isotypic components for the ac-
tion of Γ on V , of type V1, . . . , Vr, respectively. Thus

∑
j∈I P j = IdV and so 〈e1,Mek〉 =

〈∑j∈I P je1,M
∑

l∈I P lek〉. As P lek ∈ Ul, it follows that

M
∑
l∈I

P lek =
∑
l∈I

M lP lek.

Also 〈uj , ul〉 = 0 if uj ∈ Uj, ul ∈ Ul and j �= l. (This property is valid for any Γ-invariant inner
product defined on V .) Moreover by Lemma 2.2 and because M l commutes with Γ we obtain (2.4).
�

Remark 2.4 Observe that if Γ ⊆ Sn is Abelian and acts transitively on {1, . . . , n} then if γ(i) = i
for some i, then γ(j) = j for all j. That is, γ is the identity. To verify this point use transitivity
to choose δ ∈ Γ such that δ(i) = j. Since Γ is Abelian, it follows that

γ(j) = γδ(i) = δγ(i) = δ(i) = j.

We have then that |Γ| = n. Moreover, all the irreducible Γ-invariant vector spaces are one-
dimensional and r = n, see for example [15, Proposition 9.5]. We obtain that Uj = Vj for
j = 1, . . . , n, where the Vj form a complete set of non-isomorphic irreducible and one-dimensional
Γ-invariant vector spaces. The representation V is called the regular representation of Γ. ♦

Corollary 2.5 Suppose the conditions of Lemma 2.2 and assume that Γ is an Abelian group (of
order n). Given k ∈ {1, . . . , n} then

M1k = 0 ⇔
∑

j∈{1,...,n}
χj(γk)M j = 0. (2.5)

Proof: By Proposition 2.3 and Remark 2.4 we get

M1k = 0 ⇔
∑

j∈{1,...,n}
〈P je1, χj(γk)M jP je1〉 = 0 ⇔

∑
j∈{1,...,n}

χj(γk)M j〈P je1, P
je1〉 = 0.

As 〈P je1, P
je1〉 = 1/|Γ| by Lemma 2.2, formula (2.5) follows. �

2.2 Linear analysis on C
l ⊗ C

n

We extend now the action of Γ on V = C
n to the space C

ln ∼= C
l ⊗ V given by

T(γ)(y ⊗ v) = y ⊗ (T (γ)v), γ ∈ Γ, y ∈ C
l, v ∈ V.

11



Thus Γ acts trivially on C
l and on V as in (2.2). It follows then that the isotypic decomposition of

C
l ⊗ V for the action of Γ on C

l ⊗ V is

C
l ⊗ V =

(
C

l ⊗ U1

)
⊕ · · · ⊕

(
C

l ⊗ Ur

)
where U1, . . . , Ur are the isotypic components of the action of Γ on V . Observe that if Pj denotes
the projection operator onto the isotypic component C

l ⊗ Uj, we have that

Pj(y ⊗ v) = y ⊗ P j(v)

where P j is the projection operator defined on V and onto the isotypic component Uj for the action
of Γ on V .

Suppose now that M ∈ gl(Cl ⊗ V ) commutes with Γ. Thus we have that

M(Cl ⊗ Uj) ⊆ C
l ⊗ Uj.

Denote by Mj the restriction of M to C
l ⊗ Uj .

We can define an inner product 〈·, ·〉 on C
l ⊗ V by extending the inner product 〈·, ·〉 on V in

the following way. Denote by c1 = (1, 0, . . . , 0, 1), . . . , cl = (0, 0, . . . , 0, 1). Thus {c1, . . . , cl} is the
canonical basis of C

l. Define then:

〈ci ⊗ v1, ct ⊗ v2〉 = δit〈v1, v2〉, i, t = 1, . . . , l; v1, v2 ∈ V,

where δit is equal to 1 if i = t and 0 otherwise. This corresponds to the standard (Euclidean) inner
product on C

ln and so we use the same symbol.
Given k ∈ {1, . . . , n}, we are now interested in using the projection operators Pj to describe

the restrictions on the Mj imposed by the set of l2 conditions of the type

〈ci ⊗ e1,M(ct ⊗ ek)〉 = 0, i, t = 1, . . . , l.

We have the following generalization of Lemma 2.2:

Lemma 2.6 For j = 1, . . . , r, let P j denote the projection of V onto the isotypic component Uj of
type Vj, χj the character of the irreducible Γ-invariant vector space Vj and dj the dimension of Vj.
Given i, t ∈ {1, . . . , l} we have:

〈Pj(ci ⊗ e1),Pj(ct ⊗ e1)〉 = δit〈P je1, P
je1〉 = δit

(
dj

|Γ|
)2 n∑

k=1

∣∣∣∣∣∣
∑

γ∈γkH

χj(γ)

∣∣∣∣∣∣
2

,

Pj(ct ⊗ ek) = ct ⊗ P jek = ct ⊗ T (γk)P j , k = 1, . . . , n.

In particular, if χj is a linear character of Γ, then

Pj(ct ⊗ ek) = ct ⊗ χj(γk)P je1, k = 1, . . . , n.

The generalization of Proposition 2.3 is:

12



Proposition 2.7 Suppose the conditions of Lemma 2.6 and let I = {1, . . . , r}. Given k ∈ {1, . . . , n}
and i, t ∈ {1, . . . , l} then

〈ci ⊗ e1,M(ct ⊗ ek)〉 = 0 ⇔
∑
j∈I

〈Pj(ci ⊗ e1),MjPj(ct ⊗ ek)〉 = 0,

⇔
∑
j∈I

〈ci ⊗ P j(e1),Mj(ct ⊗ P j(ek))〉 = 0,

⇔
∑
j∈I

〈ci ⊗ P j(e1),Mj(ct ⊗ T (γk)P j(e1))〉 = 0.

(2.6)

Corollary 2.8 Suppose the conditions of Lemma 2.6 and assume that Γ is an Abelian group (of
order n). Given k ∈ {1, . . . , n} and i, t ∈ {1, . . . , l} then

〈ci ⊗ e1,M(ct ⊗ ek)〉 = 0 ⇔
∑

j∈{1,...,n}
χj(γk)M

j
it = 0 (2.7)

where Mj
it = 〈ci ⊗ P j(e1),Mj

(
ct ⊗ P j(e1)

)〉.
Proof: By Proposition 2.7 and Remark 2.4 we get

〈ci ⊗ e1,M(ct ⊗ ek)〉 = 0 ⇔
∑

j∈{1,...,n}
〈ci ⊗ P j(e1),Mj(ct ⊗ χj(γk)P j(e1))〉 = 0,

⇔
∑

j∈{1,...,n}
χj(γk)M

j
it = 0.

�

2.3 Examples

We apply the above results to the cyclic and dihedral groups.

2.3.1 The cyclic group Zn

Let Zn be a cyclic group of order n generated by an element a satisfying an = e. Put ω = ei2π/n.
Then Zn has n distinct linear characters χj, j = 1, . . . , n, given by

χj (ar) = ω(j−1)r, j = 1, . . . , n.

Here r ∈ {1, . . . , n − 1} where a0 = e. Consider now Γ the subgroup of Sn isomorphic to Zn

permuting transitively (and faithfully) the set {1, . . . , n} and generated by

α = (1 2 . . . n).

Let V = C
n and b = {e1, . . . , en} a basis of V and consider the action of Γ on V given by

permutation of the corresponding coordinates (recall (2.2)). Thus if γk = αk−1 for k = 1, . . . , n
then ek = T (γk)e1. The action of Γ on V corresponds to the regular representation of Γ ∼= Zn: each
distinct Γ-irreducible appears in the Γ-isotypic decomposition of V , with multiplicity one. Thus

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn

where each irreducible Vj has character type χj. Direct application of Corollary 2.5 leads to:

13



Proposition 2.9 Suppose M ∈ gl(V ) and assume that M commutes with the above action of Γ.
For k, j = 1, . . . , n denote by M1k = 〈e1,Mek〉 and M j the restriction of M to Vj. Then

M1k = 0 ⇔
∑

j∈{1,...,n}
ω(j−1)(k−1)M j = 0. (2.8)

Corollary 2.10 Suppose the conditions of Proposition 2.9 and write M j = M j
R + iM j

I where
M j

R,M j
I ∈ R. Assume M ∈ gl(Rn).

(i) If n is odd then

M1k = 0 ⇔ M1 + 2
(n−1)/2+1∑

j=2

(
cos
(

2π(k − 1)(j − 1)
n

)
M j

R − sin
(

2π(k − 1)(j − 1)
n

)
M

j

I

)
= 0.

(ii) If n is even then

M1k = 0 ⇔ M1+
Mn/2+1

(−1)k−1
+2

n/2∑
j=2

(
cos
(

2π(k − 1)(j − 1)
n

)
M j

R − sin
(

2π(k − 1)(j − 1)
n

)
M

j

I

)
= 0.

Proof: Let Vj be an isotypic component. Thus Vj is Γ-irreducible and has character χj . If χj is
real, then M j ∈ gl(R). If χj is not real , then there is another isotypic component Vi = Vj, so that
M j = M i. The decomplexification acts on V̂j = Vj ⊕ Vi, as

M̂ j =

(
M j

R M j
I

−M j
I M j

R

)
where M j = M j

R +iM j
I . Accordingly, let us write χj ∈ C as χj = (χj)R +i(χj)I with (χj)R, (χj)I ∈

R. In (2.8) the sum χjM
j + χjM

i yields 2(χj)RMR − 2(χj)IMI , so that∑
j∈{1,...,n}

ω(j−1)(k−1)M j = 0 ⇔

∑
j s.t.

χj real

χj(γk)M j + 2
∑

j s.t.
χj complex

(
(χj)R(γk)M

j
R − (χj)I(γk)M

j
I

)
= 0, (2.9)

where we note that in the latter sum, for each real irreducible V̂j, only one irreducible representation
is taken. �

Example 2.11 Revisiting the Z4-symmetric networks used as examples in the Introduction, one
readily verifies that

k = 1 ⇒ M1 + M3 + 2M2
R = 0 ⇔ a = 0,

k = 2 ⇒ M1 − M3 − 2M2
I = 0 ⇔ b = 0,

k = 3 ⇒ M1 + M3 − 2M2
R = 0 ⇔ c = 0,

k = 4 ⇒ M1 − M3 + 2M2
I = 0 ⇔ d = 0.

♦
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2.3.2 The dihedral group Dm

Consider Dm the dihedral group of order n = 2m. Recall that Dm is the symmetry group of a
regular m-sided polygon generated by elements a, b satisfying the relations am = b2 = (ab)2 = e.
If m is odd then Dm has (m + 3)/2 conjugacy classes with representatives e, a, a2, · · · , a(m−1)/2, b,
and so (m + 3)/2 distinct non-isomorphic irreducible Γ-invariant vector spaces: two of dimension
one and (m − 1)/2 of dimension two. If m is even then Dm has m/2 + 3 conjugacy classes with
representatives e, a, a2, · · · , am/2−1, am/2, b, ab, and so m/2 + 3 distinct non-isomorphic irreducible
Γ-invariant vector spaces: four of dimension one and m/2− 1 of dimension two. See Table 1 where
the linear characters are denoted by χj and the two-dimensional by ψj .

m is odd
γ e at(1 ≤ t ≤ (m − 1)/2 b

|CDm(γ)| 2m m 2
χ1 1 1 1
χ2 1 1 −1
ψj 2 εjt + εjt 0

(j = 1, . . . , (m − 1)/2)
m is even

γ e at(1 ≤ t ≤ m/2 − 1) a
m
2 b ab

|CDm(γ)| 2m m 2m 4 4
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 (−1)t (−1)

m
2 1 −1

χ4 1 (−1)t (−1)
m
2 −1 1

ψj 2 εjt + εjt 2(−1)j 0 0
(j = 1, . . . , m/2 − 1)

Table 1: Character table for the dihedral group Dm according to the parity of m [15]. Here
ε = e2πi/m and CDm(γ) is the centralizer of γ in Dm.

Throughout let

p =
{

2 if m is odd,
4 if m is even,

q =
{

m−1
2 if m is odd,

m
2 − 1 if m is even.

(2.10)

There are essentially two ways that Γ ∼= Dm acts faithfully and transitively on a finite set. As
before, let H = {γ ∈ Γ : γ(1) = 1}. Either H is the trivial group. This corresponds to the regular
representation of Dm and Γ ⊆ Sn where n = 2m. Or H ∼= {e, aib} for some integer i between 0 and
m − 1 and Γ ⊆ Sm. Observe that only the trivial group and the subgroups of Dm of type {e, aib}
do not contain nontrivial normal subgroups of Dm.

Regular representation

Consider Γ the subgroup of Sn permuting transitively and faithfully the set {1, . . . , n} and generated
by

α = (1 2 . . . m)(m + 1 m + 2 . . . 2m),
β = (1 m + 1)(2 2m)(3 2m − 1) . . . (m m + 2)
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where n = 2m. Note that Γ is isomorphic to Dm and the group H is trivial.
Let V = C

n and b = {e1, . . . , en} a basis of V and consider the action of Γ on V given by
permutation of the corresponding coordinates (recall (2.2)). Observe that if we denote

γk =
{

αk−1 if k = 1, . . . ,m,
αk−m−1β if k = m + 1, . . . , 2m,

where γ1 = α0 ≡ e then
ek = T (γk)e1, k = 1, . . . , 2m.

Moreover, the action of Γ on V corresponds to the regular representation of Γ ∼= Dm. That is, each
distinct Γ-irreducible appears in the Γ-isotypic decomposition of V , with multiplicity equals to its
dimension. The decomposition of V as a sum of its isotypic components is then given by:

V = U1
0 ⊕ · · · ⊕ Up

0 ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Uq

where U1
0 , . . . , Up

0 are one-dimensional (distinct) irreducible Γ-invariant subspaces of V of type
χ1, . . . , χp, and U1, . . . , Uq are each the sum of two irreducible Γ-invariant subspaces of V of dimen-
sion 2 and of type ψ1, . . . , ψq. Recall that p, q are defined by (2.10).

Given j between 1 and q, define

wj
1 = 1

m

(
e1 + εje2 + · · · + ε(m−1)jem

)
, wj

4 = 1
m

(
e1 + εje2 + · · · + ε(m−1)jem

)
,

wj
2 = 1

m

(
em+1 + εjem+2 + · · · + ε(m−1)je2m

)
, wj

3 = 1
m

(
em+1 + εjem+2 + · · · + ε(m−1)je2m

)
,

where ε = ei2π/m and
bj = {wj

1, w
j
2, w

j
3, w

j
4}.

The vectors wj
1, w

j
2, w

j
3, w

j
4 ∈ V are linearly independent, 〈wj

k, w
j
l 〉 = 0 if k �= l, and 〈wj

l , w
j
l 〉 =

1/m for l = 1, . . . , 4. Moreover, C
(
{wj

1, w
j
2}
)

and C
(
{wj

3, w
j
4}
)

are Γ-isomorphic irreducible
subspaces of V of character type ψj . It follows then that

Uj = C
(
{wj

1, w
j
2, w

j
3, w

j
4}
)

= C
(
{wj

1, w
j
2}
)
⊕C

(
{wj

3, w
j
4}
) ∼= Vj ⊕ Vj.

Moreover, if we consider the projection operator P j : V → V onto the isotypic component Uj:

P j =
2

|Dm|
∑

γ∈Dm

ψj(γ)T (γ)

we obtain

P jek =

{
εj(k−1)wj

1 + εj(k−1)wj
4 if 1 ≤ k ≤ m,

εj(k−1−m)wj
3 + εj(k−1−m)wj

2 if m + 1 ≤ k ≤ 2m.
(2.11)

Suppose M ∈ gl(V ) commutes with Γ. For j = 1, . . . , q denote by M j the restriction of M
to the isotypic component Uj with respect to the basis bj . Thus each M j is a 4 × 4 matrix with
complex entries commuting with Γ of the following form:

M j = (M |Uj )bj
=


M j

1,1 0 M j
1,3 0

0 M j
1,1 0 M j

1,3

M j
3,1 0 M j

3,3 0
0 M j

3,1 0 M j
3,3

 . (2.12)
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For k = 1, . . . , p denote by Mk
0 = M |Uk

0
. We have the following result:

Proposition 2.12 (i) If 1 ≤ k ≤ m then

M1k = 0 ⇔ 1
2

p∑
j=1

χj (γk) M j
0 +

q∑
j=1

(
εj(k−1)M j

1,1 + εj(k−1)M j
3,3

)
= 0.

(ii) If m + 1 ≤ k ≤ 2m then

M1k = 0 ⇔ 1
2

p∑
j=1

χj (γk)M j
0 +

q∑
j=1

(
εj(k−1−m)M j

1,3 + εj(k−1−m)M j
3,1

)
= 0.

Proof: We apply Proposition 2.3. Denote by Pj the projections onto the one-dimensional Γ-
irreducibles U j

0 , for j = 1, . . . , p. By Lemma 2.2 we have Pjek = χj(γk)Pje1 and 〈Pje1, P
je1〉 =

1/|Γ| = 1/2m. Thus

〈Pje1,M
j
0Pjek〉 = 〈Pje1,M

j
0χj(γk)Pje1〉 = χj(γk)M

j
0 〈Pje1, Pje1〉 =

1
2m

χj(gk)M
j
0 .

Recall that P j denotes the projection onto the isotypic component Uj, for j = 1, . . . , q, and
M j = (M |Uj )bj

is given by (2.12). Using (2.11), if k ∈ {1, . . . ,m} then

〈P je1,M
jP jek〉 = εj(k−1)〈wj

1,M
jwj

1〉 + εj(k−1)〈wj
1,M

jwj
4〉+

εj(k−1)〈wj
4,M

jwj
1〉 + εj(k−1)〈wj

4,M
jwj

4〉.

As 〈wj
i , w

j
i 〉 = 1/m for i = 1, 2, 3, 4 and 〈wj

r, w
j
s〉 = 0 if r �= s, it follows that

〈P je1,M
jP jek〉 =

1
m

(
εj(k−1)M j

1,1 + εj(k−1)M j
3,3

)
.

The proof of (ii) is similar. �

Corollary 2.13 Suppose the conditions of Proposition 2.12 where now M ∈ gl(Rn).
(i) If 1 ≤ k ≤ m then

M1k = 0 ⇔ 1
2

p∑
j=1

χj (γk)M j
0 + 2

q∑
j=1

Re
(
εj(k−1)M j

1,1

)
= 0.

(ii) If m + 1 ≤ k ≤ 2m then

M1k = 0 ⇔ 1
2

p∑
j=1

χj (γk) M j
0 + 2

q∑
j=1

Re
(
εj(k−1−m)M j

1,3

)
= 0.
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Proof: For j = 1, . . . , q define

Bj = {wj
1 + wj

4, wj
2 + wj

3, i(wj
1 − wj

4), i(wj
2 − wj

3)}.
It follows that Bj is a basis of Uj. Moreover, since M ∈ gl(Rn) we have that M |Uj with respect to
this basis has real entries. Comparing the matrices of M |Uj with respect to bj (recall (2.12)) and
Bj we obtain that

M j
3,3 = M

j
1,1, M j

3,1 = M
j
1,3.

The result now follows from Proposition 2.12. �

Example 2.14 Revisiting the D3-symmetric networks used as examples in the Introduction, ob-
serve that the absence of connections from cells 2, 3 to cell 1 leads to the following two conditions:

k = 2 ⇒ 1
2
M1

0 +
1
2
M2

0 + 2Re
(
εM1

1,1

)
= 0,

k = 3 ⇒ 1
2
M1

0 +
1
2
M2

0 + 2Re
(
ε2M1

1,1

)
= 0,

where ε = ei2π/3. Subtracting these equations, we obtain

Re
(
(ε2 − ε)M1

1,1

)
= 0 ⇔ Im(M1

1,1) = 0 ⇔ M1
1,1 ∈ R.

Thus the eigenvalues of M1 as in (2.12) for j = 1, and where M1
1,1 = M1

3,3 ∈ R, M1
1,3 = M1

3,1 ∈ C,
are the eigenvalues of the matrix (

M1
1,1 M1

1,3

M1
1,3 M1

1,1

)
each with multiplicity two. Moreover, this matrix has real eigenvalues. Thus no Hopf bifurcation
can occur for coupled cell networks with the structure given by Figure 2 (right) as we had shown
before in the Introduction by other method. ♦

Suppose now that M ∈ gl(Cl ⊗ V ) commutes with Γ where the action of Γ on C
l is trivial.

For j = 1, . . . , p, if {wj} is a basis of U j
0 then {c1⊗wj , . . . , cl ⊗wj} is a basis of C

l ⊗U j
0 . Denote

by Mj
0 the restriction of M to the isotypic component C

l ⊗ U j
0 with respect to this basis which is

a l × l matrix of complex entries.
For j = 1, . . . , q, since bj = {wj

1, w
j
2, w

j
3, w

j
4} is a basis of Uj, it follows then that

bj = {c1 ⊗ wj
1, . . . , cl ⊗ wj

1, c1 ⊗ wj
2, . . . , cl ⊗ wj

2, c1 ⊗ wj
3, . . . , cl ⊗ wj

3, c1 ⊗ wj
4, . . . , cl ⊗ wj

4}
is a basis of C

l ⊗ Uj . Denote by Mj the restriction of M to the isotypic component C
l ⊗ Uj with

respect to this basis which is a 4l × 4l matrix with complex entries of the following form:

Mj ≡ (M|Cl⊗Uj
)bj

=


Mj

1,1 0 Mj
1,3 0

0 Mj
1,1 0 Mj

1,3

Mj
3,1 0 Mj

3,3 0
0 Mj

3,1 0 Mj
3,3

 (2.13)

where Mj
1,1,M

j
1,3,M

j
3,1,M

j
3,3 are l × l matrices with complex entries.
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Proposition 2.15 (i) If 1 ≤ k ≤ m then

(ci ⊗ e1,M(ct ⊗ ek)) = 0
∀i, t ∈ {1, . . . , l}

}
⇔ 1

2

p∑
j=1

χj (γk)M
j
0 +

q∑
j=1

(
εj(k−1)Mj

1,1 + εj(k−1)Mj
3,3

)
= 0.

(ii) If m + 1 ≤ k ≤ 2m then

(ci ⊗ e1,M(ct ⊗ ek)) = 0
∀i, t ∈ {1, . . . , l}

}
⇔ 1

2

p∑
j=1

χj (γk)M
j
0 +

q∑
j=1

(
εj(k−1−m)Mj

1,3 + εj(k−1−m)Mj
3,1

)
= 0.

Proof: Direct application of Proposition 2.7. �

Nonregular representation

We consider now Γ ∼= Dm permuting transitively and faithfully the set {1, . . . ,m}. Thus Γ ⊆ Sm

and H ∼= {e, aib} for some integer i between 0 and m − 1.
(i) Let m be odd and consider Γ the subgroup of Sm generated by

α = (1 2 . . . m),
β = (2 m)(3 m − 1) . . . ((m + 1)/2 (m + 1)/2 + 1) .

(2.14)

Note that H = {e, β}. Let V = C
m and {e1, . . . , em} a basis of V and consider the action of Γ on

V given by permutation of the corresponding coordinates (2.2).
Observe that if we denote by γk = αk−1, k = 1, . . . ,m where γ1 = α0 ≡ e then ek = T (γk)e1.
We have the following general result:

Lemma 2.16 Let χi be an irreducible character of Γ and H a subgroup of Γ acting trivially on e1.
Then the multiplicity of the irreducible χi that appears in the Γ-isotypic decomposition of V is the
number 1/|H|∑h∈H χi(h).

Proof: Denote by ψΓ the character of the action of Γ on V as defined above, and let ψH be the
trivial character of H.

The action of H on U = C({e1}) is trivial. Thus U ⊆ V is H-invariant and has character
ψH . Now observe that V = C ({γu : γ ∈ Γ, u ∈ U}). That is, V is the Γ-invariant subspace of V
induced from U and it is denoted by U ↑ Γ. Also, ψΓ is denoted by ψH ↑ Γ.

Now as V is Γ-invariant, then V is H-invariant and V ↓ H is called the restriction of V to H.
The character of V ↓ H is obtained from the character χ on the elements of H only and is denoted
by χ ↓ H.

Recall that if χj and χk are two functions from Γ to C, then

〈χj , χk〉Γ =
1
|Γ|
∑
g∈Γ

χj(g)χk(g)

is an inner product on the complex vector space of functions from Γ to C.
The multiplicity of an irreducible with character χi appearing in the Γ-isotypic decomposition

of V is given by 〈ψΓ, χi〉Γ = 〈ψH ↑ Γ, χi〉Γ. Now by the Frobenius Reciprocity Theorem [15, page
232] we have that 〈ψH ↑ Γ, χi〉Γ = 〈ψH , χi ↓ H〉H . �
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Recall Table 1, where χ1, χ2 are the one-dimensional characters of Γ ∼= Dm (m is odd), and ψj

for j = 1, . . . , q where q = (m − 1)/2 are the two-dimensional irreducible characters of Γ. Taking
H = {e, β} ∼= {e, b} we obtain

χ1(e) = 1, χ1(αiβ) = 1,
χ2(e) = 1, χ2(αiβ) = −1,
ψj(e) = 2, ψj(αiβ) = 0, j = 1, . . . , q.

Here i = 0, . . . ,m−1. Using Lemma 2.16 the irreducibles that appear in V are of type χ1, ψ1, . . . , ψq,
and all appear once:

ψΓ = χ1 + ψ1 + · · · + ψq

and
V = U1

0 ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Uq

where U1
0 , Uj are irreducible with character type χ1, ψj , respectively. Other transitive and faithful

actions of Γ ∼= Dm on {1, . . . ,m} where m is odd and such that H = {e, αiβ} ∼= {e, aib} give the
same representation.
(ii) Let m be even and consider Γ the subgroup of Sm isomorphic to Dm permuting transitively and
faithfully the set {1, . . . ,m} and generated by

α = (1 2 . . . m),
β = (2 m)(3 m − 1) . . . (m/2 m/2 + 2) .

(2.15)

Again, we take γk = αk−1 and so ek = T (γk)e1 for k = 1, . . . ,m.
Recall Table 1, where χ1, χ2, χ3, χ4 are the one-dimensional characters of Γ ∼= Dm (m is even),

and ψj for j = 1, . . . , q where q = m/2 − 1 are the two-dimensional irreducible characters of Γ.
Taking H = {e, β} ∼= {e, b}, we have that

χ1(e) = 1, χ1(α2iβ) = 1, χ1(α2i+1β) = 1,
χ2(e) = 1, χ2(α2iβ) = −1, χ2(α2i+1β) = −1,
χ3(e) = 1, χ3(α2iβ) = 1, χ3(α2i+1β) = −1,
χ4(e) = 1, χ4(α2iβ) = −1, χ4(α2i+1β) = 1,
ψj(e) = 2, ψj(αiβ) = 0, j = 1, . . . , q.

By Lemma 2.16 the Γ-irreducibles that appear (once) in V are χ1, χ3, ψ1, . . . , ψq:

ψΓ = χ1 + χ3 + ψ1 + · · · + ψq

and
V = U1

0 ⊕ U3
0 ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Uq

where U1
0 , U3

0 , Uj are Γ-irreducible with character types χ1, χ3, ψj respectively.
Taking another transitive and faithful action of Γ ∼= Dm on {1, . . . ,m} such that H = {e, α2iβ} ∼=

{e, a2ib} corresponds to the same representation of Γ. If H = {e, α2i+1β} ∼= {e, a2i+1b} then we ob-
tain a quasi-equivalent representation, that is, equivalence composed with an outer automorphism
of Γ:

ψΓ = χ1 + χ4 + ψ1 + · · · + ψq

and
V = U1

0 ⊕ U4
0 ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Uq

where U1
0 , U4

0 , Uj are Γ-irreducible with character type χ1, χ4, ψj .
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Proposition 2.17 Let Γ ∼= Dm and V = C
m with basis b = {e1, . . . , em}, and consider the action

of Γ on V by permutation of coordinates given by (2.14) if m is odd, and (2.15) if m is even. Let
M ∈ gl(V ) commuting with Γ. For 1 ≤ k ≤ m let γk = αk−1 and recall that ek = T (γk)e1.
(i) Suppose that m is odd, and let V = U1

0 ⊕U1⊕U2⊕· · ·⊕Uq, where U1
0 is irreducible of trivial type

and Uj is Γ-irreducible with character type ψj . Consider M1
0 = M |U1

0
and M j = M |Uj

∼= M j
1,1Id2×2.

Then

M1k = 0 ⇔ M1
0 +

q∑
j=1

ψj(γk)M
j
1,1 = 0.

(ii) Suppose that m is even and let V = U1
0 ⊕ U3

0 ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Uq, where U1
0 , U3

0 , Uj are
Γ-irreducible with character types χ1, χ3, ψj and M j

0 = M |
Uj

0
, M j = M |Uj

∼= M j
1,1Id2×2. Then

M1k = 0 ⇔ M1
0 + χ3(γk)M3

0 +
q∑

j=1

ψj(γk)M
j
1,1 = 0.

Proof: We apply Proposition 2.3. Denote by Pj the projection of V onto the isotypic component
U j

0 with linear character type χj. By Lemma 2.2, if χj is linear then Pjek = χj(γk)Pje1. If j = 1,
or if j = 3 and m is even, then 〈Pje1, Pje1〉 = 1/m.

For j = 1, . . . , q, consider

wj
1 =

1
m

(
e1 + εje2 + · · · + ε(m−1)jem

)
, wj

4 =
1
m

(
e1 + εje2 + · · · + ε(m−1)jem

)
(2.16)

where ε = ei2π/m. Then 〈wj
1, w

j
1〉 = 〈wj

4, w
j
4〉 = 1/m and 〈wj

1, w
j
4〉 = 0. Moreover, C({wj

1, w
j
4})

is an irreducible Γ-invariant subspace of V with character type ψj . Thus Uj = C({wj
1, w

j
4}) and

P j(ek) = εj(k−1)wj
1 + εj(k−1)wj

4. The proof now follows as in the proof of Proposition 2.12.
�

Corollary 2.18 Suppose the conditions of Proposition 2.17 where now M ∈ gl(Rm).
(i) If m is odd then

M1k = 0 ⇔ M1
0 +

q∑
j=1

2 cos
(

2πj(k − 1)
m

)
M j

1,1 = 0.

(ii) If m is even then

M1k = 0 ⇔ M1
0 + (−1)k−1M3

0 +
q∑

j=1

2 cos
(

2πj(k − 1)
m

)
M j

1,1 = 0.

Proof: Recall Table 1. Note also that from (2.16) we get that {wj
1 + wj

4, i(w
j
1 −wj

4)} is a basis of
Uj = C({wj

1, w
j
4}) where M j = M |Uj has real entries. Comparing with M j

1,1Id2×2 we obtain that
M j

1,1 ∈ R. �
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3 Codimension one eigenvalue movements

In this section we show that codimension one eigenvalue movement through the imaginary axis
for coupled cell networks with Abelian symmetry are independent of the network structure, if the
network is connected and the cells are active, thus proving Theorem 1.3.

Suppose G is a coupled cell network with n cells, and assume that the phase space of the
cells is R

l and so the total phase space is R
nl. To facilitate the analysis we first consider the

complexification C
nl of R

nl and later deduce the consequences implied by the fact that the phase
space is real.

Assume that the network is equivariant with respect to a transitive and faithful permutation
action of an Abelian group Γ on the set of cells {1, . . . , n}. Thus the total phase space is C

l ⊗ V
where V = C

n and we assume that with respect to the cell coordinates v1, . . . , vn the action of Γ is
given by the homomorphism T from Γ to GL(Cl ⊗ V ) defined by

T(γ)(y ⊗ v) = y ⊗ (T (γ)v), γ ∈ Γ, y ∈ C
l, v ∈ V,

where T : Γ → GL(V ) is

T (γ)(v1, . . . , vn) =
(
vγ−1(1), . . . , vγ−1(n)

)
, γ ∈ Γ, (v1, . . . , vn) ∈ V. (3.17)

Following the notation of Section 2, the isotypic decomposition of C
l ⊗ V under the action of Γ is

C
l ⊗ V = (Cl ⊗ V1) ⊕ · · · ⊕ (Cl ⊗ Vn)

where V1, . . . , Vn form a complete set of Γ-isomorphic irreducible spaces under the action of Γ on
V . Recall Remark 2.4.

The linearization M ∈ gl(Cl ⊗ V ) at a fully symmetric equilibrium of a system of ordinary
differential equations defined on C

l ⊗ V corresponding to the network G is assumed to be Γ-
equivariant and hence M leaves each isotypic component C

l ⊗ Vj invariant. As before we denote
by Mj the restriction of M to C

l ⊗ Vj .
Since Γ is Abelian, each irreducible Vj has complex dimension one. In view of the complexifi-

cation, we need to be aware that there are two types of irreducible representations. Either χj is
real and Vj corresponds to the complexification of an irreducible real space Wj with character χj

and the real commuting matrices on Wj are the real scalar multiples of the identity on Wj. In this
case, Wj is called Γ-absolutely irreducible and Vj is said to be of real type. The other case is when
χj is complex. Then the conjugate χj is also an irreducible character distinct from χj, associated
say with Vj . Moreover, Vj ⊕ Vj is a real Γ-irreducible with character χj + χj and the vector space
of the real commuting matrices defined on Vj ⊕ Vj is isomorphic to C. In this case Vj is said to be
of complex type. For details, see for instance [15]. A space W is called Γ-simple if W is the direct
sum of two isomorphic absolutely irreducible spaces, or if it is irreducible of complex type.

In the case of general equivariant linear vector fields, it is well known that codimension one
eigenvalue movements through the imaginary axis can be characterized by the following conditions
[12]: a one-parameter family M(µ), where M(0) satisfies:

(a) The critical eigenspace Ec of M(0) is Γ-simple (in case eigenvalues intersect iR away from 0)
or Γ-absolutely irreducible (in the case eigenvalues intersect at 0).
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(b) The eigenvalues λ(µ) of M(µ) such that Re(λ(0)) = 0 satisfy:

d

dµ
Re(λ(µ))|µ=0 �= 0.

We now consider how the codimension one movement of eigenvalues through the imaginary axis
is affected by the absence of network connections.

Recall that we say that a coupled cell network is connected if there exists a path (formed by
concatenation of edges, not necessarily uni-directional) connecting i and j (for all i �= j). We
say that the network is disconnected otherwise. Note that if Γ is transitive then the network is
connected if and only if there are directed paths from any cell to any other cell.

We may summarize the connectivity information of an n-cell network in an n × n connectivity
matrix C, where

Ci,j =
{

1 if there is a connection from j to i,
0 otherwise.

As the network is Γ-equivariant, we have Cγ(i),γ(j) = Ci,j for all γ ∈ Γ. We note that because of
the transitivity of the action of Γ, the connectivity matrix C is fully determined by its first row (or
first column).

By Remark 2.4, the number n of cells equals the order of Γ. Moreover, the representation of
Γ on V corresponds to the regular representation. We consequently may identify cells uniquely
with group elements once we have identified for example cell 1 with the identity element in Γ. In
particular, we may label each cell i by a unique element γi ∈ Γ such that γi(1) = i, so that γ1 = e,
etc. With this identification we have C1,γ(1) ≡ Ce,γ .

There exists a group theoretic description of connectedness for a network with transitive sym-
metry group Γ.

Lemma 3.1 The network with transitive symmetry group Γ is connected if and only if Γ =< S >,
where

S = {γ ∈ Γ : Ce,γ = 1}. (3.18)

Proof: Let C be the connected component of cell e, that is, the set of cells γ that are connected
to cell e. We show that C =< S > and the lemma then follows.

It is obvious that S ⊂ C.
Next we show that C ⊆ Γ is a subgroup and hence that < S >⊆ C, that is, we show that the

subgroup generated by S is contained in C. Note that if δ ∈ C and δk = e, then δ, . . . , δk−1 are all
connected to cell e. Thus δ−1 = δk−1 is connected to e and that e is connected to δ−1; so δ−1 ∈ C.
Suppose that γ, δ ∈ C. We must show that γδ ∈ C. By assumption there is a path of coupled cells
from e to δ. It follows that there is a path of coupled cells from γ to γδ. Since there is also a path
of coupled cells from e to γ there is a path from e to γδ. A similar argument shows that there is a
path of coupled cells from γδ to e and γδ ∈ C.

Finally, we show that C ⊆< S >. Let δ ∈ C and let e, δ1, . . . , δs = δ be a directed path of coupled
cells, which exists because Γ is transitive. It follows that δ1 ∈ S. In addition, 1 = Cδ1,δ2 = Ce,δ−1

1 δ2
.

So δ−1
1 δ2 ∈ S and δ2 = δ1(δ−1

1 δ2) is in < S >. By induction, δ ∈< S >. �
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By Corollary 2.8, the matrix M satisfies the following conditions (corresponding to the absence
of the connections between cells γ ∈ Γ \ S with e):∑

j∈{1,...,n}
χj(γ)Mj

it = 0, ∀i, t ∈ {1, . . . , n}, ∀γ ∈ Γ \ S. (3.19)

Here Mj
it =

(
ci ⊗ P j(e1),Mj(ct ⊗ P j(e1))

)
where Mj is the restriction of M to the isotypic com-

ponent C
l ⊗ Vj.

Lemma 3.2 Let S denote the set of group elements corresponding to the present couplings, so that
if γ ∈ S there is a coupling from cell γ to cell e. Then for all i, j ∈ {1, . . . , l}

(M1
it, . . . ,M

n
it) =

∑
γ∈S

cit(γ)
(
χ1(γ), . . . , χn(γ)

)
(3.20)

where cit : S → C are arbitrary.

Proof: By standard application of the character theory for compact Lie groups it is known that
the character vectors χ(γ) = (χ1(γ), . . . , χn(γ)), γ ∈ Γ form an orthonormal basis of C

n. Hence,
the solution space to (3.19) is spanned by all character vectors corresponding to group elements
whose couplings are present. �

We incorporate now the fact that in the context of coupled cell networks we work with real
linear maps, rather than with their complexification. We thus need to decomplexify the answer
obtained above.

Let Vj be an isotypic component for the action of Γ on V . Then:

• If Vj is of real type, then Mj should be interpreted as a matrix in gl(Rl).

• If Vj is of complex type, then there is another isotypic component Vi = Vj, so that Mj = Mi.
The decomplexification acts on R

l ⊗ V̂j where V̂j = Vj ⊕ Vi
∼= R

2, as

M̂j =

(
Mj

R Mj
I

−Mj
I Mj

R

)
where

Mj = Mj
R + iMj

I .

Accordingly, let us write χj ∈ C as χj = (χj)R + i(χj)I with (χj)R, (χj)I ∈ R. In (3.19) the
sum χjMj + χjMj yields 2(χj)RMj

R − 2(χj)IM
j
I , so that∑

j

χj(γ)Mj = 0 ⇔

∑
Vj real

χj(γ)Mj + 2
∑

Vj complex

(
(χj)R(γ)Mj

R − (χj)I(γ)Mj
I

)
= 0 (3.21)

where we note that in the latter sum, for each real invariant V̂j , only one irreducible repre-
sentation is taken.
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In general equivariant systems with Abelian symmetry, we have the following result [12]: If in
a one-parameter family of real linear equivariant vector fields, an eigenvalue crosses the imaginary
axis then, typically, one of the following scenarios applies:

(a) The eigenvalues are restricted to the real axis, crossing the imaginary axis at zero, and the
associated eigenvectors lie in one absolutely irreducible representation of Γ. The number
of eigenvalues simultaneously crossing the imaginary axis is equal to the dimension of the
irreducible representation, and they all have the same value.

(b) The eigenvalues are not restricted to lie on the real axis, crossing the imaginary axis at
±iω (ω �= 0). The associated eigenvectors lie in the direct sum of two isomorphic absolutely
irreducible representations of Γ. The number of eigenvalues simultaneously crossing the imag-
inary axis is equal to twice the (complex) dimension of the irreducible representation, half
taking one same value and the remaining half its complex conjugate.

(c) The eigenvalues are not restricted to lie on the real axis, crossing the imaginary axis at ±iω
(ω �= 0). The associated eigenvectors lie in one irreducible representation of Γ of complex
type. The number of eigenvalues simultaneously crossing the imaginary axis is equal to twice
the (complex) dimension of the irreducible representation, half assuming one value and the
remaining half its complex conjugate.

The eigenvalue movement in (a) is associated with steady-state bifurcation, and the remaining
cases (b) and (c) with Hopf bifurcation.

We now make the following observation:

Lemma 3.3 Codimension one movements of eigenvalues crossing the imaginary axis in an Abelian
symmetric coupled cell network, are identical to the corresponding eigenvalue movements in general
equivariant vector fields, if the conditions (3.21) for γ ∈ Γ \ S on the Mj (if Vj is of real type),
Mj

R, Mj
I (if Vj is of complex type) imposed by the absence of connections, do not imply one of the

following relations:

(i) Mj = cMi, where Vj and Vi are distinct absolutely irreducible representations and c ∈ R.

(ii) Mj = cMi
R where Vi is absolutely irreducible, and Vj is an irreducible representation of

complex type and c ∈ R.

(iii) Mj
R = cMi

R, where Vj, Vi are distinct irreducible representations of complex type and c ∈ R.

Proof: If we have linear relations between more than two of the matrices Mj ∈ gl(Rl) (where
V j is absolutely irreducible) and Mi

R ∈ gl(Rl) and/or Mi
I ∈ gl(Rl) (where V̂ i is irreducible of

complex type), there are no forced degenerate codimension one eigenvalue movements through the
imaginary axis.

Before we demonstrate this, we first remark that if we make perturbations of the form Mi
R+εRId

and Mi
I + εIId, then the eigenvalues λ of M̂i change to λ + εR ± iεI .

We assert that if we have a relation between four or more matrices, no forced degenerate
codimension one eigenvalue movements across the imaginary axis will arise.
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To illustrate this, suppose we have a relation of the type

4∑
j=1

ajAj = 0 (3.22)

where aj ∈ R for all j, and the Aj ∈ gl(Rl) are of the above mentioned types.
First suppose that in this equation Mi

I features, but not Mi
R. Then it is immediate that if M̂i

has eigenvalues on the imaginary axis, they can be moved off this axis by a small perturbation of
the form Mi

R + εRId without affecting the relation.
Now suppose that Mi

I and Mi
R both appear. Then if M̂i has eigenvalues on the imaginary axis,

they can be moved off this axis by a small perturbation of the form Mi
R + εRId and Mi

I + εIId,
where εR and εI can now be chosen such that the relation holds without changing any of the other
matrices involved.

Let us assume that the relation involves no matrix of the type Mi
I . Suppose there is more than

one isotypic component containing eigenvectors with corresponding eigenvalues on the imaginary
axis that are involved in the relation. Then there exists a perturbation after which eigenvectors
with corresponding eigenvalues on the imaginary axis occur in only one isotypic component. For
instance, we can fix A1 and make the perturbation A2 + εId and A3 − εa2/a3Id. The latter
perturbations change the real parts of eigenvalues of the other isotypic components involved (and ε
can always be chosen such that they come to lie off the imaginary axis) while leaving A1 invariant.

Now suppose that eigenvectors with corresponding eigenvalues on the imaginary axis occur in
only one isotypic component, but that the centre subspace is not Γ-simple or absolutely irreducible.
Then, by [12] there exists a perturbation of M restricted to this isotypic component such that the
centre subspace is of the desired form. By adjusting the size of this perturbation, we can adjust M
so as to satisfy the relation without enlarging the centre subspace.

Subsequently, the obtained linear system M can be unfolded by the perturbation M + µId,
yielding the desired codimension one eigenvalue crossing through the imaginary axis. �

We now will state two lemmas that, in connection with Lemma 3.3 lead to a proof of Theorem 1.3
of the Introduction.

Lemma 3.4 Suppose a coupled cell network is active, then in Lemma 3.3 we have c = 1.

Proof: If the network is active (e ∈ S), then the identity vector field Id is admissible as a coupled
cell network. For this vector field, Mj is the identity on C

l ⊗ Vj for all j, from which the values of
c directly follow. �

Lemma 3.5 Suppose a coupled cell network is connected and active. Then the conditions (3.21)
for γ ∈ Γ \ S on the Mj (if Vj is of real type), Mj

R, Mj
I (if Vj is of complex type) imposed by the

absence of connections, do not imply the conditions (i), (ii) or (iii) of Lemma 3.3.

Proof: By Corollary 2.5, the character vectors χ(γ) =
(
χ1(γ), . . . , χn(γ)

)
with γ ∈ S must

satisfy the above conditions. All the components of these vectors have modulus one. A condition
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of type Mj = Mi, where V j , Vi are of type R, implies that the corresponding components of the
character vectors must satisfy

χj(γ) = χi(γ)

for all γ ∈ S. As S generates Γ since the network is connected it follows that χj = χi, a contra-
diction. In the condition of type Mj = Mi

R, where V j is of type R and Vi is of complex type, this
implies that the corresponding components of the character vectors must satisfy

±1 = (χi)R(γ)

where χi(γ) = (χj)R(γ) + i(χj)I(γ) ∈ C is the character, which has modulus one. In turn this
implies that (χj)I(γ) = 0. Consequently, as this property holds for all γ ∈ S and S generates Γ, it
follows that χi is of real type, a contradiction.

In a similar way, the condition of type Mj
R = Mi

R, leads to the equation

(χj)R(γ) = (χi)R(γ)

for γ ∈ S, which implies that χj = χi or χj = χi, equivalently, V̂i = V̂j , a contradiction. �

Proof of Theorem 1.3: From the above lemmas we see that with active cells, conditions (i), (ii),
(iii) of Lemma 3.3 leading to degenerate codimension one eigenvalue behavior, can not happen,
unless the network is not connected.

By Lemma 3.3, hence with active cells, in one-parameter families, we generically have eigen-
value movements through the imaginary axis, following the codimension one eigenvalue behavior
in generic (general) equivariant vector fields. �
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