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Periodic patterns of synchrony are lattice networks whose cells are coloured
according to a local rule, or balanced colouring, and such that the overall system
has spatial periodicity. These patterns depict the finite-dimensional flow-invariant
subspaces for all the lattice dynamical systems, in the given lattice network, that
exhibit those periods. Previous results relate the existence of periodic patterns
of synchrony, in n-dimensional Euclidean lattice networks with nearest neighbour
coupling architecture, with that of finite coupled cell networks that follow the same
colouring rule and have all the couplings bidirectional. This paper addresses the
relation between periodic patterns of synchrony and finite bidirectional coloured
networks. Given an n-dimensional Euclidean lattice network with nearest neighbour
coupling architecture, and a colouring rule with k colours, we enumerate all the
periodic patterns of synchrony generated by a given finite network, or graph. This
enumeration is constructive and based on the automorphisms group of the graph.
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1. introduction

Lattice networks are coupled cell networks whose spatial positions of the cells, or
copies of a dynamical system, form a lattice L. Each cell is connected to a set of
neighbours such that the global structure, called lattice dynamical system, has the
symmetries of L. See [Stewart et al. 2003, Golubitsky et al. 2005] and the review
paper [Golubitsky and Stewart 2006] for the general theory of coupled cell systems,
[Antoneli et al. 2005, Antoneli et al. 2007] for the particular case of lattice dynam-
ical systems and Section 1.a, below, for examples.

There are finite-dimensional flow-invariant subspaces of lattice dynamical sys-
tem that only depend on the lattice network and do not vary with specific properties
of the dynamical system in each cell. Any of these subspaces is represented by a
pattern of synchrony, a classification of the cells into k classes, or colours, such
that the colour of each cell rules the colours of its neighbours. These are called
balanced k-colourings and, for a nearest neighbour coupling architecture, each bal-
anced colouring is described by a k × k matrix, or colouring rule.
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part by Centro de Matemática da Universidade do Porto (CMUP) financed by FCT through
the programmes POCTI and POSI, with Portuguese and European Community structural funds.
EMP was supported by FCT Grant SFRH/BPD/29975/2006.
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There are several results concerning patterns of synchrony in lattice networks.
We refer, for example, [Golubitsky et al. 2004, Wang and Golubitsky 2005], on the
enumeration of two-colour patterns of synchrony in planar lattice networks. In these
papers, periodicity is a common feature and there is no colouring rule corresponding
uniquely to non-periodic patterns. Moreover, [Antoneli et al. 2005] study k-colour
patterns of synchrony in n-dimensional Euclidean lattices and their results show
that, considering sufficiently extensive couplings, spatial periodicity always appears.
Here Euclidean stands for lattices that are generated by a set of vectors with equal
norm.

In this article we consider periodic patterns of synchrony with k colours, for
n-dimensional Euclidean lattice networks. The periodicity is spatial, along n non-
colinear directions, and the lattice networks have nearest neighbour coupling archi-
tecture.

Fixing a colouring rule and an Euclidean lattice network L, with nearest neigh-
bour coupling architecture, [Dias and Pinho 2009, Theorem 5.4] establish an if and
only if result between the existence of a periodic balanced colouring of L and that
of a finite bidirectional network with the same colouring rule and specific proper-
ties. These properties concern the graph associated with the finite network and its
decomposition into factors that are identifiable with the nearest neighbours of the
origin, in the lattice. Thus, a homomorphism is defined between the paths in the
coloured lattice network and those in the finite network.

This result suggests the classification of periodic patterns of synchrony based on
finite bidirectional coupled cell networks, which we describe as a three step method:

1. To enumerate all the different colouring rules with k colours and respecting
the number of neighbours fixed by the architecture of the lattice network. For the
particular case of nearest neighbour coupling architecture, if each element in the
lattice network has v nearest neighbours, this step corresponds to the enumeration
of k × k matrices with entries in Z+

0 and whose lines sum v, that are not the same
up to permutations in Sk.
2. For each colouring rule, to enumerate all the finite bidirectional networks with
valence v and a balanced colouring, that are not related by symmetries.
Given one of the finite bidirectional networks, it is possible to construct an infinite
number of other finite bidirectional networks that would generate exactly the same
patterns of synchrony. To avoid redundant cases we define the root networks, the
smallest networks that can describe the particular relations between coloured cells
that characterise the different patterns of synchrony.
3. For each root network, to enumerate all the periodic patterns of synchrony that
it generates.

In this article we address the second and third steps. Our main results solve the
third step.

Theorem 5.2 states the number of periodic patterns of synchrony, generated by
a root network, for Zn lattices, and gives a least upper bound for the remaining
lattice networks, with nearest neighbour coupling architecture. The enumeration of
periodic patterns of synchrony, given a root network with m cells, stands on the
enumeration of the order m abelian subgroups, of the automorphism group for the
graph associated with the network, that act transitively on the set of cells and are
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not related by symmetries. In the example below we illustrate this step, referring
to the results that are proved along the paper.

Theorem 5.1 establishes the correspondence between equivalence classes of the
decompositions of root networks and equivalence classes of periodic patterns of
synchrony, clarifying the role of the decompositions not related by a symmetry
in the construction of different periodic patterns of synchrony. The definition of
equivalence classes is a major tool in the enumeration problem, preventing us from
considering, for example, a planar pattern of synchrony and its reflection in a line,
as two different cases.
Structure of the paper. We continue the introduction with an example illustrating
the enumeration method and applying our main results. In Section 2 we present
the basic concepts and notation on coupled cell networks and balanced colourings.
We also define (Section 2.a) equivalence classes of coloured networks, either finite
networks or lattice networks, whose elements are related by symmetries.

The restrictions imposed by the fixed colouring rule on the finite bidirectional
networks, based in [Dias and Pinho 2009], are summarised in Section 3. We de-
fine root networks in Section 3.a, after the statement of important results on the
decompositions of a finite bidirectional network, or graph, and on the relation be-
tween the possible decompositions and the automorphisms group of the graph (see
Proposition 3.9).

In Section 4 we describe the procedures to generate periodic patterns of syn-
chrony from finite bidirectional networks, derived by [Dias and Pinho 2009]. These
procedures depend on suitable decompositions of the graph that corresponds to
the finite bidirectional network. Corollary 4.6 states that every periodic pattern of
synchrony can be generated by a root network.

Our main results, Theorem 5.1 and Theorem 5.2, are stated in Section 5 and
proved in Section 6.

(a) example

Consider the matrix A = (aij) with valence v = 4,

A =

0

@
0 2 2
1 1 2
1 2 1

1

A (1.1)

and let it describe a 3-colouring rule of the cells of a 4-regular graph in the following
way: the colours are indexed by U = {1, 2, 3} and each cell of colour i is connected to
aij cells of colour j. Thus, A can be a 3-colouring rule for coupled cell networks with
valence 4 that are identical-edge, homogeneous and bidirectional (IEHB), either
finite networks or lattice networks. Figures 1 and 4 show three coloured IEHB
networks, whose colourings respect that rule.

Let ξ be the colouring function, having the set of cells as domain, and range
U . By [Dias and Pinho 2009, Lemmas 4.3 and 4.8], the proportion of cells for each
colour is given by the coordinates of the probability left eigenvector of A corre-
sponding to the eigenvalue v = 4, pT = (1/5, 2/5, 2/5). Thus, the smallest IEHB
networks with this colouring rule have 5 cells. Consider the IEHB network with set
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Figure 1. One finite IEHB coupled cell network with the colouring rule defined by the
matrix A.

Figure 2. Two possible representations of the planar square lattice network with nearest
neighbour coupling architecture.

of cells C = {c1, . . . , c5}, with adjacency matrix

B =

0

BBBB@

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

1

CCCCA
,

and colour the cells using the colouring function ξ(c1) = 1, ξ(c2) = ξ(c3) = 2 and
ξ(c4) = ξ(c5) = 3. See figure 1, where the colours 1, 2 and 3 are, respectively, black,
white and grey, and denote the network by GB .
Question. Let GL be the lattice network defined by the planar lattice L = {(1, 0), (0, 1)}Z
and the couplings between each cell and its four nearest neighbours, see Figure 2.
The question we pose now is the following: how many different periodic colourings
of the lattice network GL based on GB and having the colouring rule A can we con-
struct? Using the results of [Dias and Pinho 2009, Sections 4 and 5], we perceive
that the answer to this question depends on the number of ways of decomposing
GB into cycles and of associating these cycles with the directions of the lattice. In
this paper we show that the answer is based on the subgroups of Aut(B) with given
properties.
Symmetries. In enumerating the periodic colourings of GL, we identify colourings
that are related by symmetries of the colouring rule A and by Euclidean symmetries
leaving L invariant.

Since the matrix A commutes with the matrix

Mµ =

0

@
1 0 0
0 0 1
0 1 0

1

A ,

corresponding to the permutation µ = (1)(23) that swaps colours 2 and 3, then
µ · ξ is another colouring with the colouring rule A. In fact, µ is the only nontrivial
permutation of S3 such that Mµ commutes with A. We denote by PA = {Id3, µ} ⊂
S3 the set of permutations that preserve the colouring rule A.
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Denote by Pξ the set of permutations of cells with the same colour, that leave
the colouring ξ invariant and, thus, do not change the colouring rule. Since there is
one cell with colour 1 and there are two cells with each one of the two remaining
colours, we have Pξ = S1 × S2 × S2.

Therefore, the network GB defines an equivalence class of eight networks, that
have the same colouring rule A:

{GB′ : B′ = MλBMT
λ : λ ∈ Pξ+̇PA}

where λ is either (τ, Id3) or (τ, µ), for τ ∈ Pξ and Id3, µ ∈ PA. We compute the
elements of Pξ+̇PA explicitly:

Pξ+̇PA = { λ1 = ε, λ2 = (c2c3), λ3 = (c4c5), λ4 = (c2c3)(c4c5),
λ5 = (c2c4)(c3c5), λ6 = (c2c4c3c5), λ7 = (c2c5c3c4),
λ8 = (c2c5)(c3c4) }

Enumeration. The group of automorphisms of GB , that is, the group of permutation
matrices that commute with B, is Γ = S5. This group has the following transitive
subgroups of order m = 5:

Γ1 = 〈(c1c2c3c4c5)〉 , Γ2 = 〈(c1c2c3c5c4)〉 , Γ3 = 〈(c1c2c4c3c5)〉 ,

Γ4 = 〈(c1c2c4c5c3)〉 , Γ5 = 〈(c1c2c5c3c4)〉 , Γ6 = 〈(c1c2c5c4c3)〉 .

However, some of these subgroups are conjugate by elements of Pξ+̇PA:

Γ2 = λ3Γ1λ
−1
3 , Γ3 = λ4Γ1λ

−1
4 , Γ5 = λ2Γ1λ

−1
2 , Γ6 = λ3Γ4λ

−1
3 .

Therefore, up to symmetries in Pξ+̇PA, the only five-order transitive subgroups
of the group of automorphisms of GB are Γ1 and Γ4. Moreover, they are abelian
subgroups and intersect Pξ only in the trivial permutation, which ensures that GB

is a root network. From the main result of this paper (Theorem 5.2), it follows
that, up to symmetries, GB generates exactly two different periodic colourings of
the lattice network GL, having the colouring rule A and a fundamental domain
(the set of cells that repeat periodically) with five cells, the number of cells of
GB . Specifically, each one of the two subgroups Γ1 and Γ4 leads to one balanced
colouring of the lattice, as we now describe.

We refer to [Dias and Pinho 2009, Section 1] for a step by step example on the
decomposition into cycles of a finite bidirectional network, and on the association
of these cycles with directions of the lattice.

The elements of the subgroup Γ1 = 〈(c1c2c3c4c5)〉 are associated with the de-
composition of GB into two networks with valence 2, shown in figure 3 (a). If we
associate the permutation σ1 with the direction of l1 = (1, 0) and the permutation
σ2 with the direction of l2 = (0, 1), then we can cover the lattice network GL with
the cells c1 to c5, obtaining the periodic colouring presented in figure 4 (a), which
inherits the colouring rule A.

The elements of the subgroup Γ4 = 〈(c1c2c4c5c3)〉 are associated with the de-
composition of GB presented in figure 3 (b). Following the procedure described for
Γ1, above, we obtain the periodic colouring presented in figure 4 (b), which also
has the colouring rule A.
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Figure 3. Two different decompositions of GB into two networks with valence 2. To each
one of the resulting networks we associate one permutation: for (a), σ1 = (c1c2c3c4c5)
and σ2 = (c1c3c5c2c4), both permutations belong to Γ1 = 〈(c1c2c3c4c5)〉; for (b),
σ1 = (c1c2c4c5c3) and σ2 = (c1c4c3c2c5), both permutations belong to Γ4 = 〈(c1c2c4c5c3)〉.

Figure 4. Two periodic colourings, each one is obtained from one decomposition of GB

into networks in Figure 3. For (a), the decomposition is based on Γ1 = 〈(c1c2c3c4c5)〉,
with the permutation σ1 = (c1c2c3c4c5) associated with the horizontal direction and
σ2 = (c1c3c5c2c4) with the vertical one. For (b), the decomposition is based on
Γ4 = 〈(c1c2c4c5c3)〉, with the permutation σ1 = (c1c2c4c5c3) associated with the hori-
zontal direction and σ2 = (c1c4c3c2c5) with the vertical one.

Using [Dias and Pinho 2009, Lemma 4.2], it is easy to check that there is no
other five-cell network, with colouring rule A, whose group of automorphisms has
five-order transitive and abelian subgroups. Again, our main result (Theorem 5.2)
implies that the colourings in figure 4 are the only periodic colourings of the given
lattice network, which have the colouring rule A and five cells in the fundamental
domain.

2. coupled cell networks and balanced colourings

We will consider the special case of identical-edge homogeneous networks where
all the couplings are bidirectional, that is, regular graphs. Thus, although we refer
to the general definition of coupled cell networks with a countable number of cells
in [Antoneli et al. 2005], we will use some nomenclature from graph theory.

Definition 2.1. An identical-edge homogeneous bidirectional (IEHB) coupled cell
network G is a regular graph and consists of:
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1. a countable set C of cells, or vertices,

2. a countable set E of bidirectional arrows, or undirected edges,

3. the finite set I(c) of the edges incident with c ∈ C, whose fixed cardinality is
called valence or degree, v = #I(c), for all c ∈ C,

4. the finite family V (c) of the cells coupled, or adjacent, to c ∈ C, where repe-
tition of elements is allowed. By 3. we have #V (c) = v, for all c ∈ C.

These networks are denoted by G = (C, E). If C is finite and B is the adjacency
matrix of the graph, then we also use the notation GB = (C, E). ♦

Example 2.2. The network of Figure 1 in Section 1 is an example of an IEHB
network of five cells and valence 4. ♦

We define below a lattice network, which is a particular case of an IEHB coupled
cell network, where cells are disposed on a lattice and are coupled to a set of neigh-
bours such that the overall graph structure is invariant by the group of symmetries
of the lattice.

An n-dimensional lattice L is a set

L = {l1, . . . , ln}Z ⊂ Rn

where the n elements l1, . . . , ln ∈ Rn, the generators of the lattice, are linearly
independent.

Let |l| denote the Euclidean norm of l ∈ Rn. The countable set {|l| : l ∈ L} of
the possible Euclidean distances of l ∈ L to the origin have elements

r0, r1, r2, . . .

such that r0 = 0 and ri < ri+1 for all i ∈ N.

Definition 2.3. Given any l ∈ L, its nearest neighbours are indexed by

J = {l ∈ L : |l| = r1}

and form the set l +J = {l + g : g ∈ J }. Since −L = L and |− l| = |l|, the nearest
neighbours exist in symmetric pairs and #J = v is an even number. Therefore,
there are elements ±g1, . . . ,±gv/2 ∈ L such that J = {±g1, . . . ,±gv/2}. ♦

Definition 2.4. An n-dimensional lattice L = {l1, . . . , ln}Z is called Euclidean if
{l1, . . . , ln} ⊂ J .

If L = {l1, . . . , ln}Z is an Euclidean lattice then we can choose ln+1, . . . , lv/2 ∈
L such that J = {±l1, . . . ,±ln,±ln+1, . . . ,±lv/2}. It follows, in particular, the
connectedness of the lattice network. ♦

We define an n-dimensional lattice network with nearest neighbour coupling ar-
chitecture, a special case of the definition given by [Antoneli et al. 2005, Definition
2.5] for more general architectures.

Definition 2.5. An n-dimensional lattice network with nearest neighbour coupling
architecture (NN lattice network) GL consists of:
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1. an n-dimensional Euclidean lattice L,

2. an IEHB coupled cell network GL whose cells are indexed by L,

3. the cells adjacent to any l ∈ L form the set V (l) = l + J , whose even
cardinality — the valence, or degree — is a geometric property of L and
equals v = #J .

♦
Definition 2.6. A coloured coupled cell network, denoted by G = (C, E , ξ), is a
coupled cell network G = (C, E), whose cells are coloured with k different colours.
Let the colours be indexed by the set U = {1, . . . , k}. The k-colouring ξ of the
network G is the function

ξ : C −→ U
c (−→ ξ(c)

where ξ(c) is the colour of cell c.
Let {ei, i ∈ U} be the canonical basis of Rk. By the isomorphism i ←→ ei

between U and {ei, i ∈ U}, the above definition of colouring is equivalent to the
next one, in vector notation,

&ξ : C −→ {ei, i ∈ U}
c (−→ &ξ(c) = eξ(c).

♦
Unless otherwise stated, all the vectors are column vectors.

Definition 2.7. Let A = (aij) be a k × k irreducible matrix with non-negative
integer entries and such that, for each row, the entries sum v. Let G = (C, E , ξ) be a
coloured IEHB coupled cell network, with colours indexed by the set U = {1, . . . , k}.
We say that ξ is a balanced colouring with the k-colouring matrix A if, for i, j ∈ U ,
the following holds: each cell with colour i is coupled to aij cells with colour j.
Equivalently,

AT &ξ(c) =
∑

d∈V (c)

&ξ(d) for all c ∈ C.

For the particular case of an NN lattice network GL, with nearest neighbours in-
dexed by J , the above equation is

AT &ξ(l) =
∑

g∈J
&ξ(l + g) for all l ∈ L.

♦
When we refer to the adjacency matrix B of a network GB = (C, E), we are

assuming that we have fixed an ordering of the set C. Unless otherwise stated, given
a k-colouring ξ of GB , with the colours indexed by U = {1, . . . , k}, we enumerate
the cells of C by

C = {c1, . . . , cm}, such that ξ(ci) ≤ ξ(cj) for i < j.

Example 2.8. Figures 1 and 4 show balanced colourings with the 3-colouring
matrix

A =




0 2 2
1 1 2
1 2 1





for three IEHB networks. ♦
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Remark 2.9. We only consider connected IEHB coloured networks, since the lat-
tice networks are connected (see Definitions 2.4 and 2.5) and are related to the
finite networks that we deal with. It follows that given any two distinct cells of an
IEHB network, there is a directed path between them. In particular, the considered
colouring matrices are irreducible. ♦

(a) equivalence classes

Given a k-colouring matrix A, or colouring rule, the enumeration of different
finite coloured networks, and the enumeration of different balanced k-colourings of
a lattice network, must avoid redundant cases.

Definition 2.10. Given a coupled cell network G = (C, E , ξ), with m cells and
with a colouring ξ : C −→ U corresponding to a k-colouring matrix A, where the
set of colours is U = {1, . . . , k}, we define:

1. PA ⊆ Sk is the group of automorphisms of GA, where GA denotes a k-cell
network with adjacency matrix A. Thus,

µ ∈ PA ⇐⇒ MµAMT
µ = A,

where Mµ is the k × k permutation matrix corresponding to µ. If C has an
ordered set of k blocks C1, . . . , Ck, where each block Ci contains the pi cells
with colour i, then each element in PA is a permutation of blocks with the
same size.

2. Pξ ⊆ Sm is the group of permutations leaving invariant the sets of cells with
the same colour:

τ ∈ Pξ ⇐⇒ ξ(τ(c)) = ξ(c) ∀c ∈ C.

If each block Ci is an ordered set of pi cells with colour i, say, ci
1, . . . , c

i
pi

,
then Pξ = Sp1 × · · · × Spk and any permutation τ = (τ1, . . . , τk) ∈ Pξ, with
τi ∈ Spi , is such that τ(ci

j) = ci
τ−1

i (j)
, for all i, j ∈ U .

3. Pξ+̇PA ⊆ Sm where

(τ, µ) ∈ Pξ+̇PA ⇐⇒ ξ[(τ, µ) · (c)] = µ(ξ(c)) ∀c ∈ C.

The second component of (τ, µ) ∈ Pξ+̇PA permutes elements with the same
size in the ordered set of blocks C1, . . . , Ck, and the first component permutes
cells in each block. This semi-direct sum is supported by the isomorphism
Aut(A) ∼= Aut(Pξ). ♦

Observe that in the definition above: given µ ∈ PA, then the colouring µ ·ξ such
that (µ · ξ)(c) = µ(ξ(c)), for all c ∈ C, has the same colouring matrix A but swap
colours; given τ ∈ Pξ, the colouring after permutation τ of cells, looks like ξ.

In what follows, the set of cells C represents any element in the class [C] of sets of
cells such that #C = #C′ for all C′ ∈ [C]. Analogously, the function ξ : C −→ U , with
U = {1, . . . , k}, represents any element in the class [ξ] of colourings ξ′ : C −→ U ,
such that, for some λ ∈ Pξ+̇PA, we have ξ′(c) = ξ(λ · (c)) for all c ∈ C. The
coloured network GB = (C, E , ξ), with colouring matrix A, represents the networks
G′

B = (C, E ′, ξ) such that B′ = MλBMT
λ for some λ ∈ Pξ+̇PA.
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(b) lattice symmetries

Now we consider the classes of colourings of lattice networks that are the same,
up to symmetries.

Let GL be an NN coloured lattice network with k-colouring ξL that corresponds
to a colouring matrix A. Let L+̇H ⊂ Rn+̇O(n) be the symmetry group of the
lattice L, where H is the holohedry of L. We denote the elements in L+̇H by
γ = (t, δ), where t is a translation belonging to L and δ is an orthogonal matrix.
Note that γ = (t, δ) transforms x ∈ Rn into γx = t + δx and the set J ⊆ L is
H-invariant.

The usual action of L+̇H on the colourings ξL is the scalar action:

(γ · ξL)(l) = ξL(γ−1 · l) = (ξLγ−1)(l) for all γ ∈ L+̇H and l ∈ L.

If ξ′L = γ · ξL then ξ′L is the colouring ξL after an Euclidean transformation.
The function ξL : L −→ U , with U = {1, . . . , k}, represents any element in the class
[ξL] of colourings ξ′L : L −→ U , such that ξ′ = µ · (γ · ξL) for some µ ∈ PA and
γ ∈ L+̇H.

Definition 2.11. An element t ∈ L is a period of ξL if, for all l ∈ L,

ξL(l + t) = ξL(l).

The colouring ξL is periodic if it has periods along n non-colinear directions. If we
denote the set of its periods by L̃,

L̃ = {l̃1, . . . , l̃n}Z ⊆ L

for n non-colinear elements l̃1, . . . , l̃n∈ Rn, then we also say that ξL is L̃-periodic.♦
Definition 2.12. Let ξL be an L̃-periodic colouring with the set of periods L̃ =
{l̃1, . . . , l̃n}Z and consider the n-dimensional parallelepiped {l̃1, . . . , l̃n}[0,1). The
intersection of this parallelepiped with L is a set C, isomorphic to the quotient
L/L̃. A fundamental domain of the colouring ξL is its restriction to C. In fact the
colouring is a regular repetition of a fundamental domain, along the n non-colinear
directions l̃1, . . . , l̃n.

3. results on IEHB networks

Lemma 3.1, below, presents a summary of results in [Dias and Pinho 2009] con-
cerning IEHB coupled cell networks.

Lemma 3.1. Let GB = (C, E) be a finite IEHB coupled cell network with a k-
colouring ξ, with colours in U = {1, . . . , k}, and corresponding to a k-colouring
matrix A = (aij), i, j ∈ U , with valence v. Let #C = m and let pi be the proportion
of cells with colour i, for i ∈ U . Then, the following conditions hold:

1. [Dias and Pinho 2009, Lemma 4.2] The adjacency matrix B of the network
has the following block structure:

B =





B11 B12 · · · B1k

B21 B22 · · · B2k

...
...

. . .
...

Bk1 Bk2 · · · Bkk
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where, for all i, j ∈ U ,

• Bij is a mpi ×mpj matrix,
• the sum of any line of Bij is aij,
• Bji = BT

ij,
• the elements in the diagonals of Bii are even numbers.

2. [Dias and Pinho 2009, Lemma 4.3] The vector

pT = (p1, . . . , pk) ∈ [0, 1]k

is a left eigenvector of A generating the one-dimensional eigenspace that cor-
responds to the eigenvalue v, and the entries of A satisfy the condition

piaij = pjaji ∀i, j ∈ U .

It follows, in particular, that there is a minimum number of cells #C for the
IEHB networks having the k-colouring matrix A. Moreover, this restricts the
structure of the matrices that can be k-colouring matrices for IEHB networks.

3. [Dias and Pinho 2009, Lemma 4.5] If, moreover, the valence v is even then,
for V = {1, . . . , v/2}, there is a set of permutations,

Σ = {σi, σ
−1
i : i ∈ V} ⊂ Sm

such that B can be written as the sum

B =
v/2∑

i=1

(
Mσi + MT

σi

)

where Mσ denotes the m×m permutation matrix associated to σ ∈ Σ.

Lemma 3.2 (Converse of item 1. of Lemma 3.1). If condition 1. of Lemma 3.1
holds, then GB is an IEHB coupled cell network with a k-colouring ξ corresponding
to a k-colouring matrix A = (aij).

Proof. The result is immediate, by [Aguiar et al. 2009, Theorem 3.5].

Remark 3.3. The results stated in item 2. of the previous lemma, concerning the
proportions of colours p, are also valid for lattice networks with nearest neighbour
coupling architecture, see [Dias and Pinho 2009, Lemma 4.8]. The proportion pi of
colour i ∈ U is the same in the balanced k-colouring of a lattice network or in any
other finite IEHB network that shares the same k-colouring matrix A. In particular,
if ξL is a periodic balanced k-colouring of a lattice network, then the numbers of
cells for each colour in its fundamental domain, are the components of the vector
mp for some m ∈ N. ♦
Remark 3.4. The result stated in item 3. of Lemma 3.1 is a consequence of the
result that any finite IEHB network with even valence v, can be decomposed into
v/2 bidirectional networks with valence 2. As an example, we show in Figure 3 two
such decompositions of the network of Figure 1. ♦
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Lemma 3.1 suggests the following useful definitions.

Definition 3.5. Let A be a k × k matrix with even valence v. We denote by MA

the set formed by the adjacency matrices of all the finite IEHB networks having the
k-colouring matrix A. Thus, all the elements B ∈MA satisfy conditions 1. to 3. of
Lemma 3.1.

Given one matrix B ∈ MA, each set of permutations Σ, defined in item 3.,
is called a decomposition of B and we denote by DB the set of all the different
decompositions of B.

We also define
DA

def=
⋃

B∈MA

DB

the set of all the decompositions of all the finite IEHB networks having the k-
colouring matrix A.

Finally, we define D∗
B , the set of all the decompositions of B with commuting

permutations, which is a subset of DB . ♦

Remark 3.6. Although one matrix B ∈ MA may correspond to several decompo-
sitions, that is, #DB ≥ 1, in the converse direction, each Σ ∈ DA defines only one
coupled cell network GB where B ∈ MA. See [Dias and Pinho 2009, Section 4.3]
for more considerations on the set DA. ♦

(a) commuting decompositions and group of automorphisms

In the rest of the article we will be dealing with finite IEHB networks having
decompositions with commuting permutations. In this section we present some
results concerning this particular class of networks and we define the subset of the
root networks, the smallest networks that generate periodic patterns of synchrony,
as described in Section 4.
Remark 3.7. Let GB = (C, E) be a finite IEHB network with a decomposition with
commuting permutations, Σ ∈ D∗

B . We consider that the action of < Σ > on C
is transitive, that is, if c, d ∈ C then there exists σ ∈< Σ > such that σ(c) = d,
because the network is connected and bidirectional (see Remark 2.9). Moreover,
since the group is abelian it follows that: σ is unique, the action is regular and
|< Σ >| = #C. ♦

Let Γ ⊆ Sm be the group of automorphisms of a finite IEHB network GB with
m cells and adjacency matrix B:

γ ∈ Γ ⇐⇒ MγBMT
γ = B

where Mγ is the m×m permutation matrix corresponding to γ ∈ Γ.

Lemma 3.8. Let GB = (C, E) be a finite IEHB network with adjacency matrix
B having even valence v. For V = {1, . . . , v/2}, consider a decomposition with
commuting permutations Σ = {σi, σ

−1
i : i ∈ V} ∈ D∗

B and let Γ ⊆ Sm be the group
of automorphisms of GB.

It follows that σi ∈ Γ for all σi ∈ Σ and, in particular, < Σ >⊂ Γ. Moreover,
for Mi = Mσi + MT

σi
, i ∈ V, all the permutations σj ∈ Σ belong to the group of

automorphisms of Mi.
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Proof. The last statement holds since, for any i, j ∈ V,

Mσj MiMT
σj

= Mσj

(
Mσi + MT

σi

)
MT

σj

= Mσj MσiM
T
σj

+ Mσj M
T
σi

MT
σj

= Mσi + MT
σi

= Mi

if the permutations σi and σj commute.
For the adjacency matrix B and for any i ∈ V, we have, by item 3. of Lemma 3.1,

MσiBMT
σi

= Mσi

(
M1 + · · ·+ Mv/2

)
MT

σi

= MσiM1MT
σi

+ · · ·+ MσiMv/2M
T
σi

= M1 + · · ·+ Mv/2 = B.

In the next proposition we use the following notation: If GB = (C, E) is a finite
IEHB coupled cell network, say #C = m, and Γ ⊆ Sm is the group Aut(GB), then
we denote by GB the set of all the abelian subgroups of Γ acting transitively on C
(and so with order m).

Proposition 3.9. Let GB = (C, E) be a finite IEHB coupled cell network with
m = #C and Γ = Aut(GB) ⊆ Sm. Assume that B has even valence. Then there is
a one to one correspondence between D∗

B, the set of commuting decompositions of
GB, and GB:

Ψ : GB −→ D∗
B

Γi (−→ Ψ(Γi) = ΣΓi

where 〈ΣΓi〉 = Γi.
Moreover, for any λ ∈ Sm and for any Γi ∈ GB, we have

ΣλΓiλ−1 = λΣΓiλ
−1. (3.1)

Proof. If #C = m and Γi ∈ GB then the m commuting permutations γ1, . . . , γm ∈
Γi, defined by the transitive (regular) action of Γi on C (as a subset of Rm), are such
that the set of m×m matrices associated to these permutations, {Mγ1 , . . . ,Mγm}, is
a basis for the linear maps from Rm to Rm commuting with the natural permutation
action of Γi on Rm.

Thus, since Γi ⊆ Γ there are unique non-negative integers a1, . . . , am such that
B =

∑m
i=1 aiMγi , which defines one decomposition ΣΓi ∈ D∗

B , by Lemma 3.1. Since
ΣΓi includes all the couplings in Σ and GB has a directed path between any two
cells, the group ΣΓi must be transitive and, thus, < ΣΓi >= Γi.

Using the argument above for the group of automorphisms < Σ >= {γ1, . . . , γm}
we conclude that if < Σ′ >=< Σ > then the sum decomposition of B is the same
as above and Σ′ = Σ, and so Ψ is well defined. Trivially the function is one to one
and surjectivity follows from the fact that any Σ ∈ D∗

B defines an element in GB ,
since < Σ >⊂ Γ, by Lemma 3.8, and |< Σ >| = #C, see Remark 3.7.

Equation (3.1) is equivalent to

Σ′′ = λΣ′λ−1 if and only if Γ′′ = λΓ′λ−1

where Γ′ = 〈Σ′〉 and Γ′′ = 〈Σ′′〉 are elements of GB . It is immediate to see that〈
λΣ′λ−1

〉
= λ 〈Σ′〉λ−1. In the converse direction, suppose that 〈Σ′′〉 = λ 〈Σ′〉λ−1
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for some λ ∈ Sm and let σ be any element in Σ′. For any c ∈ C, the cells c and
d = σ(c) are coupled and, thus, γ(c) and γ(d) are also coupled for any γ ∈ Γ′′, since
Γ′′ ⊆ Γ. In particular, γ = λσλ−1 preserves the couplings of the cycle, or the set of
cycles, defined by σ. Therefore λΣ′λ−1 is a commuting decomposition of GB and,
by the first statement of this proposition, the only decomposition that generates
the group Γ′′.

Definition 3.10. Let GB = (C, E , ξ) be a finite coloured IEHB coupled cell network
with m = #C and let Γ ⊆ Sm be the corresponding group of automorphisms.
Assume that B has even valence and that ξ is a balanced colouring. Let GB be the
set of all the abelian subgroups of Γ acting transitively on C (and so with order m)
and let Pξ be the group of permutations acting on C that preserve the colours of
the cells, following Definition 2.10. If GB 1= ∅ and

Γi ∩Pξ = {ε} for some Γi ∈ GB

then we say that GB is a root network. By the proposition above we conclude that,
for root networks,

< Σ > ∩ Pξ = {ε} for some < Σ > ∈ D∗
B .

♦

4. balanced colourings in lattices

Let A be a k-colouring matrix with fixed valence v, where v is even. For V =
{1, . . . , v/2}, let Σ = {σi, σ

−1
i : i ∈ V} ∈ DA (recall Definition 3.5). Let GL de an

n-dimensional NN lattice network where L = {l1, . . . , ln}Z is an Euclidean lattice
with the nearest neighbours indexed by J = {li,−li : i ∈ V}, where v/2 ≥ n.
Suppose that

1. the permutations commute: σi ◦ σj = σj ◦ σi for all i, j ∈ V, where ◦ denotes
the composition,

and let φτ be a function
φτ : J −→ Σ

associated to a permutation τ of the elements in V, such that the following condi-
tions are verified:

2. related inverse elements: φτ (li) = στ(i) and φτ (−li) = σ−1
τ(i) for all i ∈ V,

3. consistency: for v/2 > n, if li =
∑v/2

j=1 mj lj , with m1, . . . ,mv/2 ∈ Z, then
στ(i) = σm1

τ(1) ◦ · · · ◦ σ
mv/2

τ(v/2).

Since the lattice is Euclidean, the set J generates the abelian group (L,+) that
we denote by < J >. Analogously, the set Σ = {σi, σ

−1
i : i ∈ V}, with commuting

permutations (condition 1. above), generates an abelian group that we denote by
< Σ >.

Definition 4.1. [Dias and Pinho 2009] Let J and Σ be such that there exists φ ≡
φτ satisfying the conditions 1.-3. above. The function φ induces the homomorphism

Φ :< J > −→ < Σ >
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such that Φ(l) = φ(l) for all l ∈ J . From the definition of Φ, it follows that Φ is an
epimorphism, that is, Φ(L) =< Σ >.

Then we say that J and Σ are identifiable or identifiable by Φ and we use the
notation

Φ(l) = σl for l ∈ J ,

knowing that, for all l, g ∈< J >∼= L,

• σl ◦ σg = σg ◦ σl;

• σ−l = σ−1
l ;

• σl+g = σl ◦ σg, if l + g ∈ J .

♦
The following definitions structure the sets of decompositions according to the

property of being identifiable with a given J .

Definition 4.2. Let GL be an n-dimensional NN lattice network where L is an
Euclidean lattice with #J = v and let A be a k-colouring matrix. For B ∈ MA,
we define the set DB(L) of all the decompositions of B that are identifiable with
J . Thus,

DB(L) ⊆ D∗
B ⊆ DB .

If Σ and J are identifiable by Φ then we say that Σ ∈ DB(L) by Φ.
Notice that, if n = v/2 then DB(L) = D∗

B for all B.
We also define the subset of DA:

DA(L) def=

(
⋃

B∈MA

DB(L)

)
⊆ DA.

♦
Remark 4.3. The set DB(L) has all the decompositions of the coloured network
GB that generate periodic colourings of L, as stated in Theorem 4.4, below. Since
DA(L) is the union of all the sets DB(L) such that the colouring matrix of GB is A,
it follows that DA(L) is the set of all the decompositions of finite IEHB networks
that generate periodic colourings of L with the colouring matrix A. ♦

The results of Section 5 of this paper describe DB(L), given GL and the matrices
A and B ∈ MA. In what follows we use statements from [Dias and Pinho 2009,
Theorems 5.3 and 5.4], as well as some results appearing in the proofs of these
theorems. In Theorem 4.4, below, we present these results in a useful way and we
establish new properties of the objects involved.

Theorem 4.4. Let GL be an NN Euclidean lattice network and let A be a k × k
colouring matrix with valence v = #J .

There is a periodic balanced colouring ξL with the k-colouring matrix A if and
only if there is a finite coloured IEHB coupled cell network GB = (C, E , ξ), where ξ
is a balanced colouring, having adjacency matrix B ∈MA and with a decomposition
Σ ∈ DB(L) by Φ, such that

ξL(l) = ξ(Π(l)) ∀l ∈ L (4.1)
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where Π : L (−→ C is a function satisfying Π(l + g) = σg(Π(l)) where σg = Φ(g),
for all g, l ∈ L.

Moreover, the set of periods of ξL is {t ∈ L : Φ(t) ∈ Pξ}, and Π has set of
periods ker(Φ), that verifies |L/ker(Φ)| = #C.

Proof. First suppose that there is a periodic balanced colouring ξL, with the colour-
ing matrix A, and denote by L̃ the set of periods of ξL. Then, by the proof of
Theorem 5.4 in [Dias and Pinho 2009], there is a finite IEHB network as described
and, in particular, there is one IEHB network with #C = |L/L̃|, the number of cells
in a fundamental domain of ξL.

Conversely, let GB = (C, E) be a finite IEHB coupled cell network with a bal-
anced colouring ξ, having adjacency matrix B ∈ MA and with a decomposition
Σ ∈ DB(L) by Φ. By [Dias and Pinho 2009, Theorem 5.3], this ensures the ex-
istence of a function Π : L −→ C with the property Π(l + g) = σg(Π(l)) where
σg = Φ(g), for all g, l ∈ L. By the proof of Theorem 5.4 in [Dias and Pinho 2009],
it follows that there is a periodic balanced colouring ξL with the colouring matrix
A and such that condition (4.1) is verified.

To prove the last statements of the Theorem, let PΦ = {t ∈ L : Φ(t) ∈ Pξ}. If
t ∈ PΦ, with τt = Φ(t) ∈ Pξ, then for any l ∈ L we have

ξL(l + t) = ξ(Π(l + t)) = ξ[τt(Π(l))] = ξ(Π(l)) = ξL(l)

by (4.1). Therefore t ∈ L̃. Conversely, let t ∈ L̃ and let τt = Φ(t). Thus ξL(l + t) =
ξL(l), for all l ∈ L, which is equivalent to ξ[τt(Π(l))] = ξ(Π(l)), for all Π(l) ∈ C. It
follows that ξ(τt(c)) = ξ(c) for all c ∈ C and, by definition of Pξ, t ∈ PΦ.

For the function Π, let t ∈ ker(Φ). Thus σt = ε and Π(l+ t) = ε(Π(l)) = Π(l) for
all l ∈ L, that is, t is a period of the function Π. Conversely, let t be a period of Π
with Φ(t) = τt. For all l ∈ L we have Π(l+t) = Π(l) or, equivalently, τt(Π(l)) = Π(l).
Therefore, τt(c) = c for all c ∈ C and τt = ε, which implies t ∈ ker(Φ). Note that
(L/ker(Φ)) ∼=< Σ >, by the definition of Φ, and | < Σ > | = #C, since the action
of < Σ > on C is regular (recall Remark 3.7).

(a) the generating root networks and root decompositions

In Theorem 4.4 above, we construct a periodic balanced colouring of a lattice
network from a balanced colouring of a finite IEHB network. If GB has m cells
and is not a root network, then Pξ ∩ < Σ > has non-trivial elements and GB can
give origin, by the decomposition Σ, to a periodic balanced colouring of the lattice
network with m/r cells in a fundamental domain, for some r ∈ N. However, by the
next corollary, the same pattern can be obtained from a root network with m/r
cells.

Definition 4.5. Let GL be an NN Euclidean lattice network and let A be a k× k
colouring matrix with valence v = #J . Let ξL be a periodic balanced colouring
with the k-colouring matrix A and consider the notation defined in Theorem 4.4.
If Pξ ∩ < Σ >= {ε} then we say that Σ is a root decomposition of ξL and that the
root network GB generates ξL. ♦
Corollary 4.6. Let GL be an Euclidean NN lattice network and let A be a k ×
k colouring matrix with valence v = #J . Every periodic balanced colouring ξL,
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with set of periods L̃, can be generated by a root network GB = (C, E) with a
root decomposition Σ ∈ DB(L). In this case, the number of cells in a fundamental
domain of ξL is #C =

∣∣∣L/L̃
∣∣∣.

Proof. Let ξL be a periodic balanced colouring, with the colouring matrix A, and
the set of periods L̃. Then, by the proof of Theorem 5.4 in [Dias and Pinho 2009],
there is a finite IEHB network GB = (C, E) with a colouring ξ and satisfying
the conditions of Theorem 4.4, such that #C =

∣∣∣L/L̃
∣∣∣, the number of cells in a

fundamental domain of ξL. We now show that Pξ ∩ < Σ >= {ε}. By definition,
ker(Φ) ⊆ L̃ and, by Theorem 4.4, |L/ker(Φ)| = #C which is equal to

∣∣∣L/L̃
∣∣∣. Thus,

ker(Φ) = L̃ and the result follows.

Corollary 4.7. Let GL be an NN Euclidean lattice network. Let GB = (C, E) be
a root network that generates a balanced colouring ξL with set of periods L̃ and
consider the notation of Theorem 4.4. Then Π has set of periods L̃ and, for any
set D ⊂ L of representatives of the cosets of L/L̃ we have that D ∼= L/L̃, by the
isomorphism d (→ d + L̃, and we can define a one to one function

Π̃ : D −→ C
d (−→ Π̃(d)

where Π̃(d) = Π(l) for any l ∈ L such that l − d ∈ L̃. As a consequence,

∀l ∈ L ∃l̃ ∈ L̃ : l = Π̃−1(Π(l)) + l̃. (4.2)

Proof. By the proof of Corollary 4.6, the function Π has the set of periods L̃. Given
some l ∈ L let Π(l) = c = Π̃(d). Thus, there is an l̃ ∈ L̃ such that l − d = l̃. We
have Π̃−1(c) = d which is equivalent to Π̃−1(Π(l)) = l− l̃, leading to the result.

Recalling Lemma 3.8, we also have:

Corollary 4.8. Let GL be an NN Euclidean lattice network. If GB = (C, E) is
a root network and generates a periodic balanced colouring ξL, then the group of
automorphisms of B has an abelian and transitive subgroup < Σ >, of order #C,
where Σ ∈ DB(L) is a root decomposition of ξL.

5. Statement of the main results

Theorem 5.1. Let GL be an NN lattice network and let A be a k × k matrix with
non-negative entries and valence v = #J . Let ξL and ξ′L be two periodic balanced
colourings of the lattice with root decompositions, respectively, Σ and Σ′.

The colourings ξL and ξ′L are the same up to symmetries,

ξ′L ∈ [ξL] = {µ · (γ · ξL) : µ ∈ PA and γ ∈ L+̇H},

if and only if their root decompositions are also the same, up to symmetries:

Σ′ ∈ {λΣλ−1 : λ = (τ, µ) ∈ Pξ+̇PA}.
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In what follows we denote by Zn the n-dimensional lattice generated by the n
vectors in the canonical basis of Rn. Note that Zn is an Euclidean lattice. For this
lattice network, with nearest neighbour coupling architecture, we have v/2 = n and
one element Σ = {σi, σ

−1
i : i ∈ V} ∈ DA with V = {1, . . . , v/2}, is identifiable with

J if and only if the permutations commute.
We recall the notation used in Proposition 3.9: if GB = (C, E) is a finite IEHB

network and Γ is the group of automorphisms of GB , we denote by GB the set of
all abelian subgroups of Γ acting transitively on C.

Theorem 5.2. Let GL be an NN lattice network and let A be a k × k matrix with
non-negative entries and valence v = #J . Let GB = (C, E) be a finite IEHB network
with a balanced colouring ξ corresponding to A. Up to symmetries in Pξ+̇PA, let
r be the number of different groups Γ1, . . . ,Γr ∈ GB, whose intersection with Pξ is
{ε}. Then GB generates, at most, r different periodic balanced colourings of GL,
that is, colourings that are not the same up to symmetries. These correspond to the
root decompositions ΣΓ1 , . . . ,ΣΓr ∈ D∗

B that are also in DB(L). If L = Zv/2 then
GB generates exactly r different periodic balanced colourings.

Example 5.3. Returning to the example in Section 1.a, we have the planar square
lattice L = Z2, the colouring rule A, given by (1.1), and the coloured network GB ,
with valence 4, of Figure 1. By Theorem 5.2, GB generates exactly two periodic
colourings in L (Figure 4), since the number of different elements in GB is two. ♦

6. Proof of the main results

Proof of Theorem 5.1. Let ξL and ξ′L be two periodic balanced colourings of GL,
where ξ′L ∈ [ξL]. By Corollary 4.6, there are root decompositions Σ and Σ′, corre-
sponding to ξL and ξ′L, respectively, that are identifiable with J . Let Φ and Φ′ be
the underlying homomorphisms, and let Π and Π′ be the corresponding functions
referred in Theorem 4.4.

Suppose that ξ′L = µ · (γ · ξL) for some µ ∈ PA and some γ = (t, δ) ∈ L+̇H.
Thus,

ξ′L(γ · l) = µ · ξL(l) for all l ∈ L. (6.1)

First we show that, if L̃ is the set of periods of colouring ξL (and of function Π,
by Corollary 4.7), then the periods of ξ′L (and of function Π′, idem) form the set
δL̃ = {δl̃ : l̃ ∈ L̃}. For all l ∈ L and for all l̃ ∈ L̃, we have µ · ξL(l + l̃) = µ · ξL(l),
whose right-hand side equals ξ′L(γ · l), by equation (6.1), and whose left-hand side
equals

ξ′L(γ · (l + l̃)) = ξ′L(t + δ(l + l̃)) = ξ′L(t + δl + δl̃) = ξ′L(γ · l + δl̃).

This proves the statement on the periods. One consequence is that fundamental
domains for both colourings have the same number of cells and, by Corollary 4.6,
the same holds for corresponding generating root networks. Thus, we can consider
generating root networks associated with ξL and ξ′L having the same set of cells C
and the same colouring function ξ, which defines the group Pξ.

Expression (6.1) implies

µ · ξ(Π(l)) = ξ(Π′(γ · l)) ∀l ∈ L.
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Using the function Π̃ defined in Corollary 4.7, we have, for all c ∈ C

µ · ξ(c) = ξ[Π′(γ · (Π̃−1(c) + l̃))], by Corollary 4.7,
= ξ[Π′(t + δ(Π̃−1(c) + l̃))]
= ξ[Π′(t + δΠ̃−1(c) + δl̃)], by orthogonality,
= ξ[Π′(γ · Π̃−1(c) + δl̃)]
= ξ[Π′(γ · Π̃−1(c))], since δl̃ is a period of Π′.

Therefore, by item 3. of Definition 2.10, there is some τ ∈ Pξ such that

Π′(γ · Π̃−1) = λ = (τ, µ) ∈ Pξ+̇PA.

For all l ∈ L, we have Π′(γ · Π̃−1)(Π(l)) = λ(Π(l)) and, using Π̃−1(Π(l)) = l− l̃,
with l̃ ∈ L̃, (see Corollary 4.7) and the properties of the periods, it follows that

Π′(γ · l) = λ(Π(l)).

Let g be any element of J with σg = Φ(g). Thus, for all l ∈ L, we have
Π′(γ · (l + g)) = λ(Π(l + g)) which implies Π′(γ · l + δg) = (λ ◦ σg)(Π(l)). Since δ
is in the holohedry of L, we have δ(J ) = J and, since Σ′ and J are identifiable,
there is one element σ′δg = Φ′(δg) ∈ Σ′. With this notation, the left-hand side
of the last expression equals σ′δg(Π

′(γ · l)) = (σ′δg ◦ λ)(Π(l)) and, for all c ∈ C,
(σ′δg ◦ λ)(c) = (λ ◦ σg)(c), implying

σ′δg = λ ◦ σg ◦ λ−1 for all g ∈ J .

In the converse direction, suppose that Σ′ = λΣλ−1 for some λ = (τ, µ) ∈
Pξ+̇PA. Thus, there is some bijection T : J −→ J such that, for all g ∈ J ,

σ′T (g) = λ ◦ σg ◦ λ−1.

Since Σ and Σ′ are identifiable with J , the conditions in Definition 4.1 must be sat-
isfied, ensuring that T has a linear extension δ : L −→ L. Moreover, δ is orthogonal,
as we now show, implying that δ ∈ H, the holohedry of L. Let {g1, . . . , gn} ⊂ J
be a set of generators of L. Therefore the set {δg1, . . . , δgn} ⊂ J also generates L
and the determinants of the two matrices whose columns are the generating vectors
must verify the equation that proves the orthogonality of δ:

|g1 · · · gn| = ± |δg1 · · · δgn| ,

since both determinants correspond to the oriented n-dimensional content, or gen-
eralised volume, of the parallelepiped spanned by a set of generating vectors, which
is an invariant of the lattice.

Therefore, for all l ∈ L,
σ′δl ◦ λ = λ ◦ σl. (6.2)

Let t ∈ L be such that Π′(t) = λ(Π(0)). Therefore (t, δ) ∈ L+̇H and

ξ′L(t + δl) = ξ(Π′(t + δl))
= ξ[σ′δl(Π

′(t))]
= ξ[(σ′δl ◦ λ)(Π(0))], by the definition of t,
= ξ[(λ ◦ σl)(Π(0))], by expression (6.2),
= ξ[λ(Π(l))]
= µ · ξ(Π(l)), see Definition 2.10,
= µ · ξL(l).
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Proof of Theorem 5.2. By Proposition 3.9, the enumeration of balanced colourings
of the lattice L, having GB as a generating root network, corresponds to the enumer-
ation of the elements Γi ∈ GB having the property Γi ∩Pξ = {ε} and such that the
corresponding decompositions ΣΓi belong to DB(L). By Theorem 5.1, two balanced
colourings that are not related by symmetries have different root decompositions,
up to symmetries. The result follows, by the statement (3.1) of Proposition 3.9, en-
suring that two root decompositions are related by a symmetry if they generate two
subgroups of the automorphism group that are related by the same symmetry.
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