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We consider interior symmetric coupled cell networks where a group of per-
mutations of a subset of cells partially preserves the network structure. In this
setup, the full analogue of the Equivariant Hopf Theorem for networks with
symmetries was obtained by Antoneli, Dias and Paiva (Hopf Bifurcation in
Coupled Cell Networks with Interior Symmetries, SIAM J. Appl. Dynam. Sys.

(2007) to appear). In this note we present an alternative proof of this result
using center manifold reduction.
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1. Introduction

Coupled cell systems are networks of dynamical systems (the cells) that are

coupled together. Relevant aspects in the study of the dynamics of these

systems can be encoded by a directed graph (coupled cell network): the

nodes represent the cells and the edges indicate which cells are coupled and

if the couplings are of the same type. We consider a special class of non-

symmetric networks – the interior symmetric coupled cell networks. These

networks admit a subset S of the cells such that the cells in S together with

all the edges directed to them form a subnetwork which possesses a non-

trivial symmetry group ΣS . Here, we follow the theory of Stewart et al.2,4,6
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The local synchrony-breaking bifurcations in a coupled cell system oc-

cur when a synchronous state loses stability and bifurcates to a state with

less synchrony. Such bifurcations can be considered to be a generalisa-

tion of symmetry-breaking bifurcations in symmetric coupled cell systems.

See Golubitsky et al.3 An analogue of the Equivariant Hopf Theorem for

coupled cell systems with interior symmetries was obtained by Golubit-

sky et al.2 proving the existence of states whose linearizations on certain

subsets of cells, near bifurcation, are superpositions of synchronous states

with states having spatial symmetries. Antoneli et al.1 extended this result

obtaining states whose linearizations on certain subsets of cells, near bifur-

cation, are superpositions of synchronous states with states having spatio-

temporal symmetries, that is, corresponding to interiorly C-axial subgroups

of ΣS × S1. The proof of this result uses a modification of the Lyapunov-

Schmidt reduction to arrive at a situation where the proof of the Standard

Hopf Bifurcation Theorem can be applied. In this note, we present an alter-

native proof using center manifold reduction. This approach can be useful in

the development of normal form theory aiming at the study of the stability

of such periodic solutions.

In Section 2 we recall the definition of interior symmetry and the struc-

ture of coupled cell systems associated with interior symmetric networks.

In Section 3 we state the Interior Symmetry-Breaking Hopf Bifurcation

Theorem and prove it using Center Manifold Reduction.

2. Coupled Cell Networks with Interior Symmetry

Given a coupled cell network G, the associated coupled cell systems are

dynamical systems compatible with the architecture of G. More specifically,

each cell c is equipped with a phase space Pc, and the total phase space

of the network is the cartesian product P =
∏

c Pc. Call the set of edges

directed to a cell c by the input set of c. A vector field f is called admissible

if its component fc for cell c depends only on variables associated with the

input set of c (domain condition), and if its components for cells c, d that

have isomorphic input sets are identical up to a suitable permutation of the

relevant variables (pull-back condition). See Ref. 4 for the formal definitions

of coupled cell network and admissible vector fields.

Consider a subset S of the set of cells of G and let GS be the sub-network

of G formed by the cells in G and the edges that are directed to cells in S.

By Ref. 1 (Proposition 3.3), the group of interior symmetries of G (on the

subset S) can be canonically identified with the group of symmetries of GS .

See Ref. 2 for the original definition of interior symmetry and Ref. 1 for the

details about its identification with the group of symmetries of GS .
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Suppose that G admits a non-trivial group of interior symmetries ΣS

on a subset of cells S. We can decompose the phase space P as a cartesian

product P = PS × PC\S where PS =
∏

s∈S Ps and PC\S =
∏

c∈C\S Pc. For

any x ∈ P we write x = (xS , xC\S) where xS ∈ PS and xC\S ∈ PC\S and

we can take the action of ΣS on P given by:

σ
(

xS , xC\S

)

=
(

σxS , xC\S

)

(σ ∈ ΣS) . (1)

Here ΣS acts on xS by permuting the coordinates corresponding to the cells

in S. For a subgroup K ⊆ ΣS define

FixP (K) = {(xS , xC\S) : σxS = xS ∀ σ ∈ K}.

By Ref. 2 (Proposition 1) the subspace FixP (ΣS) is flow-invariant under

any admissible vector field on P . Since FixP (ΣS) is ΣS -invariant and ΣS

acts trivially on the cells in C \ S we have that PC\S ⊂ FixP (ΣS). The

action of the group ΣS decomposes the set S as

S = S1 ∪ . . . ∪ Sk,

where the sets Si (i = 1, . . . , k) are the orbits of the ΣS-action. Let

W =

{

x ∈ P : xc = 0 ∀ c ∈ C \ S and
∑

s∈Si

xs = 0 for 1 6 i 6 k

}

. (2)

Since W is a ΣS-invariant subspace of PS and W ∩FixP (ΣS) = {0} we can

decompose the phase space P as a direct sum of ΣS-invariant subspaces:

P = W ⊕ FixP (ΣS). (3)

Consider a 1-parameter family of coupled cell systems

dx

dt
= f(x, λ) (4)

with interior symmetry group ΣS on S. Let U = FixP (ΣS). We can choose

coordinates (w, u) with w ∈ W and u ∈ U adapted to the decomposition (3)

and write any admissible vector field f as

f(w, u, λ) =

[

fW (w, u, λ)

fU (w, u, λ)

]

+

[

0

h(w, u, λ)

]

, (5)

where fU , h : P × R → U , fW : P × R → W and f̃(w, u, λ) =

(fW (w, u, λ), fU (w, u, λ)) is the ΣS-equivariant part of f . That is,
[

σfW (w, u, λ)

fU (w, u, λ)

]

=

[

fW (σw, u, λ)

fU (σw, u, λ)

]

(∀ σ ∈ ΣS) , (6)

since ΣS acts trivially on U .
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In the linear case, we may choose a basis of P adapted to the decom-

position (3) and then a G-admissible linear vector field L can be written

as

L =

[

A 0

C B

]

(7)

where B = L|U : U → U , C : W → U and A : W → W satisfies, by (6),

Aσ = σA (∀ σ ∈ ΣS) .

The spectral properties of L in (7) are given in Ref. 2 (Lemma 1, p. 399).

Consider a 1-parameter family of coupled cell systems (4), with inte-

rior symmetry group ΣS on S, undergoing a codimension-one synchrony-

breaking bifurcation at a synchronous equilibrium x0 ∈ FixP (ΣS) when

λ = λ0. Let L = (df)(x0,λ0) be written as in (7). By Ref. 1, f undergoes a

codimension-one interior symmetry-breaking Hopf bifurcation if the follow-

ing conditions hold:

(a) All the critical eigenvalues µ of L come from the ΣS-equivariant sub-

block A of L.

(b) The critical eigenvalues µ extend uniquely and smoothly to eigenvalues

µ(λ) of (df)(x0,λ) for λ near λ0.

(c) The eigenvalue crossing condition: if σ(λ) = Re(µ(λ)) then σ′(λ0) 6= 0.

(d) The matrix A is non-singular and (after rescaling time if necessary)

all the critical eigenvalues have the form ±i and the associated center

subspace is given by Ei(A) = {x ∈ W : (A2 + 1)x = 0}.

Assume that L as in (7) has ±i as eigenvalues that come only from

the sub-block A of L and that they are the only critical eigenvalues of L.

Consider Ac = A|Ei(A). As A has ±i as eigenvalues there is a natural action

of ΣS × S1 on P , where S1 acts on Ei(A) by exp(s(Ac)t) and trivially on

P \ Ei(A). The action of ΣS on P is given by (1).

Now suppose the family (4) undergoes a codimension-one interior

symmetry-breaking Hopf bifurcation at the equilibrium x0 when λ = λ0.

Then the center subspace Ec(A) ≡ Ei(A) of the ΣS -equivariant sub-block

A of the linearization L = (df)(x0,λ0) of f at (x0, λ0) is a ΣS-invariant

subspace of W . Therefore, the action of the circle group S1 defined by

exp(s(Ac)t) commutes with the action of ΣS . Thus Ec(A) is a ΣS × S1-

invariant subspace and so there is a well-defined action of ΣS × S1 on

Ec(A) (and W ). Following Ref. 1 (Definition 4.6), an isotropy subgroup

∆ ⊆ ΣS × S1 is called interiorly C-axial (on Ec(A)) if

dimR FixEc(A)(∆) = 2.
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Definition 2.1. We say that f is in interior normal form (to all orders)

near λ0, if f̃(·, λ) is in normal form (to all orders) near λ0, that is, f̃

commutes with the action of ΣS ×S1 on P defined above, for λ near λ0. ♦

3. Interior Symmetry-breaking Hopf Bifurcation Theorem

In this section we prove using center manifold reduction approach the fol-

lowing result:

Theorem 3.1 (Antoneli et al.
1). Let G be a coupled cell network admit-

ting a non-trivial group of interior symmetries ΣS relative to a subset S

of cells and fix a phase space P . Consider a smooth 1-parameter family of

G-admissible vector fields f : P × R → P is on P . Suppose that (4) un-

dergoes a codimension-one interior symmetry-breaking Hopf bifurcation at

an equilibrium point x0 ∈ FixP (ΣS) when λ = 0 and that f is in interior

normal form (to all orders) near λ = 0. Let L = (df)(x0,0) be written as in

(7) and ∆ ⊂ ΣS × S1 be an interiorly C-axial subgroup (on Ec(A)). Then

generically there exists a family of small amplitude periodic solutions of

(4) bifurcating from (x0, 0) and having period near 2π. Moreover, to lowest

order in the bifurcation parameter λ, the solution x(t) is of the form

x(t) ≈ w(t) + u(t), (8)

where w(t) = exp(tL)w0 (w0 ∈ FixW (∆)) has exact spatio-temporal sym-

metry ∆ on the cells in S and u(t) = exp(tL)u0 (u0 ∈ FixP (ΣS)) is syn-

chronous on the ΣS-orbits of cells in S.

The proof of the above theorem uses the following lemma:

Lemma 3.1. Consider L = (df)(x0,0) in the conditions of Theorem 3.1 and

written as in (7). Let ∆ ⊂ ΣS×S1 be an isotropy subgroup for the action of

ΣS ×S1 as defined in the previous section. Then dim(Ei(A)) = dim(Ei(L))

and dim(FixEi(A)(∆)) = dim(FixP (∆) ∩ Ei(L)).

Proof. Consider x = (w, u) ∈ P where w ∈ W, u ∈ FixP (ΣS). Assume

dimW = k and dimFixP (ΣS) = l. As

(L2 + Ik+l)x = 0 ⇐⇒

[

A2 + Ik 0

CA + BC B2 + Il

] [

w

u

]

=

[

0

0

]

and B do not have ±i as eigenvalues, we get

Ei(L) = {(w,−(B2 + Il)
−1(CA + BC)w), w ∈ Ei(A)}.
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In particular, it follows that dim(Ei(A)) = dim(Ei(L)). As FixP (∆) =

FixW (∆) ⊕ FixP (ΣS), we have

FixP (∆) ∩ Ei(L) = {(v,−(B2 + Il)
−1(CA + BC)v), v ∈ FixEi(A)(∆)}

and so dim(FixP (∆) ∩ Ei(L)) = dim(FixEi(A)(∆)).

Proof of Theorem 3.1. Consider f written in the coordinates (w, u)

adapted to the decomposition (3) as in (5). Thus f̃(w, u, λ) =

(fW (w, u, λ), fU (w, u, λ) is ΣS-equivariant. By hypothesis, a codimension-

one interior symmetry-breaking Hopf bifurcation occurs at an equilibrium

point x0 ∈ FixP (ΣS) when λ = 0. Since f is in interior normal form near

λ = 0, f̃ is ΣS × S1-equivariant and so f̃(FixP (∆) × R) ⊆ FixP (∆) for

every ∆ ⊆ ΣS × S1. As h : P × R → PC\S and PC\S ⊆ FixP (∆) we have

f(FixP (∆) × R) ⊆ FixP (∆). (9)

In our case, Ec(L) = Ei(L) since the only critical eigenvalues of L are ±i
and these come only from the sub-block A of L. Then, under the condition
(9), Ref. 5 (Lemma 4.12) grants that a center manifold reduction f c :
Ei(L) → Ei(L) can be chosen so that f c(Ei(L) ∩ FixP (∆)) ⊆ Ei(L) ∩
FixP (∆). By hypothesis dim(FixEi(A)(∆)) = 2. Then, by Lemma 3.1, it
follows that dim(Ei(L)∩FixP (∆)) = 2. Finally, the standard Hopf theorem
gives the result. �
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