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Abstract. An orthogonal polygon of P is called “thin” if the dual graph
of the partition obtained by extending all edges of P towards its interior
until they hit the boundary is a tree. We show that the problem of
computing a minimum guard set for either a thin orthogonal polygon or
only its vertices is NP-hard, indeed APX-hard, either for guards lying on
the boundary or on vertices of the polygon. For guards lying anywhere
in the polygon, we show that computing an optimal guard set for the
vertices of such a polygon is NP-hard.

1 Introduction

Advances in communication technologies have brought renewed attention to
guarding and sensor coverage problems, so called art gallery problems [4, 5, 7,
9]. The classical art gallery problem for a polygon P asks for a minimum set of
points G in P such that every point in P is seen by at least one point in G (the
guard set). Many variations of art gallery problems have been studied over the
years to deal with various types of constraints on guards and different notions
of visibility. In the general visibility model, two points p and q in a polygon P
see each other if the line segment pq contains no points of the exterior of P .
The set V (p) of all points of P visible to p ∈ P is the visibility region of p.
A guard set G for a set S is a set of points of P such that S ⊆ ∪g∈GV (g). If
V (p)∩S ⊂ V (q)∩S then q strictly dominates p, and q can replace p in an optimal
guard set for S. If V (p)∩S = V (q)∩S, the two points are equivalent for guard-
ing S. Guards that may lie anywhere in P are called point guards whereas vertex
or boundary guards are restricted to lie on vertices or on the boundary. Combi-
natorial upper and lower bounds on the number of necessary guards are known
for specific settings (for surveys, we refer to e.g. [18, 21]). The fact that some art
gallery problems are NP-hard [13, 14, 20] motivates the design of heuristic and
metaheuristic methods for finding approximate solutions and the study of more
specific classes of polygons where some guarding problems may be tractable [1,
4, 5, 7, 15]. In this paper, we address the set of thin orthogonal polygons (TOPs,
for short). These are the orthogonal polygons for which the dual graph of the
grid partition ΠHV (P ) is a tree. ΠHV (P ) is obtained by adding all horizontal
and vertical cuts incident to the reflex vertices of P (see Fig. 1).
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Fig. 1. Orthogonal polygons, grid partitions and dual graphs: ΠHV (P ) and its dual
graph in general, a thin orthogonal polygon and a path orthogonal polygon.

We show that finding an optimal guard set for the vertices of a TOP is
NP-hard, which was known for generic orthogonal polygons [12]. Although our
proof is inspired in [12], the need to obtain a TOP led to novel aspects in the
construction. In addition, we adapt it to show that guarding a TOP is NP-hard
for vertex or boundary guards. We remark that the proofs developed previously
for polyominoes [4] and generic orthogonal polygons [20] do not apply to this
class as the dual graph of the corresponding partition is not a tree. We note
also that the class of TOPs strictly contains the class of thin polyomino trees
introduced in [4], for which the authors conjecture that the guarding problem
under the general visibility model has a polynomial-time exact algorithm. To
the best of our knowledge, the complexity of this problem remains open.

In [23], we give a linear-time algorithm for computing an optimal vertex
guard set for any given path orthogonal polygon (i.e., a TOP such that the dual
graph of ΠHV (P ) is a path graph), and prove tight lower and upper bounds of
dn/6e and bn/4c for the optimal solution for the subclass where all horizontal
and vertical cuts intersect the boundary at Steiner points. We show also that a
minimum guard set for the vertices of a path orthogonal polygon can be found in
linear-time. This work extends [15], as the thin grid orthogonal polygons are path
orthogonal polygons. Our motivation for studying these classes comes also from
previous work on generation and guarding [22] and the empirical observation that
for random grid orthogonal polygons, the minimum number of vertex guards is
often less than the theoretical bound of bn4 c, and often around n

6 , e.g., for the
sample instances of [7]. Since the grid orthogonal polygons have been used in
recent works for the evaluation of heuristics and exact methods, e.g. [5, 7], we
found it worthwhile trying to understand the structure of these related classes.

In rest of the paper, in sections 2 to 4, we show that computing a minimum
guard set for the vertices of a thin orthogonal polygon (GVTP) is NP-hard,
either for boundary, vertex or point guards. In section 5, we show that computing
a minimum guard set for the polygon (GTP) is NP-hard either for boundary or
vertex guards. For vertex and boundary guards, our reductions are based on the
vertex cover problem in graphs, which is known to be APX-complete, even for
graphs with bounded degree [2]. The constructions are still valid if the graph has
bounded degree. Hence, in Section 6, we show that the corresponding guarding
problems are APX-hard, as well as for generic orthogonal polygons.
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2 GVTP for Boundary Guards

Theorem 1. GVTP is NP-hard for boundary guards.

For the proof, we define a reduction directly from the Vertex-Cover prob-
lem in graphs to GVTP with boundary-guards, instead of from the minimum
2-interval piercing problem used in [12]. In this way, we can control the aperture
of visibility cones and the structure of the thin orthogonal polygon we obtain. A
vertex-cover of G = (V,E) is a subset S ⊆ V such that for each edge (u, v) ∈ E,
either u ∈ S, or v ∈ S, or both. To decide whether G has a vertex-cover S of
size |S| ≤ k, for k integer, is a NP-complete problem. Without loss of generality,
we assume that E 6= ∅ and G contains no isolated vertices. Now, the TOP we
construct for a given graph G is essentially a large square with |E| tiny gadgets
attached to its bottom. In Fig. 2 we sketch this construction. We fix the side-

Fig. 2. The reduction from Vertex-Cover to GVTP with boundary guards for G =
({u, v, w}, {(u, v), (u,w)}). The edges of G are mapped to points uv and uw that will
be replaced by tiny d-gadgets. The vertices are mapped to the segments u, v and w.

length of this square to be L∆, with L = 1 + 2|V | + 3|E| and ∆ = 10L. We
consider V = {v1, v2, . . . , vn} sorted and denote by E+

i the subset of all edges
(vi, vj) ∈ E such that i < j, sorted by increasing value of j. In the construction
we follow these orderings: for each i, we represent vi by a segment of length ∆ on
the top edge of the square and the edges in E+

i as middle points of |E+
i | consec-

utive segments of length 2∆ on the bottom edge, placed between the projections
of vi and vi+1, and with separation gaps of length ∆ between each other. The
square is implicitly divided into L slabs of length ∆, and we leave the first slab
empty and an empty slab between consecutive items. Fig. 3 presents the double
gadget (d-gadget) we defined for the proof. The vertices on the left side are N1
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Fig. 3. A sketch of the d-gadget Ξij defined for the edge (vi, vj).

to N18 in CW order and on the right side are M1 to M18 in CCW order. The
idea for the d-gadget associated to an edge (vi, vj) ∈ E+

i , denoted by Ξij , is as
follows. Let Oij be the point that stands for the edge (vi, vj) and AiBi and AjBj
the segments associated to vi and vj . Together with Oij , these segments define
two visibility cones with apex Oij . By a slight perturbation, we decouple the
two cones and move the new apexes to the distinguished vertices (B and A) of a
tiny d-gadget Ξij . The structure of Ξij fixes segment AiBi (resp. AjBj) as the
portion of the boundary of the polygon that A (resp. B) sees above line y = 0
(i.e, above the gadget). Some of the vertices of a d-gadget can only be guarded by
a local guard (i.e., a guard below line y = 0), e.g., M16, M12, M8, M7 and M5 on
its right part and N16, N12, N8, N7 and N5 on the left part. For every d-gadget,
at least three local boundary-guards are needed to guard these vertices and no
three such guards can see both A and B if they see all these vertices. Moreover,
one can always locate three local boundary-guards that see all the gadget ver-
tices other than A (namely, at N8, N1 and M8) or other than B (namely, at
N8, M1 and M8). Another guard is required to guard the unguarded vertex but
it does not need to be local. As we will see, this guard can be located on the
portion of the top edge of the polygon seen from the unguarded vertex.

We define the coordinates of the vertices of Ξij w.r.t. a cartesian coordinate
system ROij

with origin at Oij . First we remark that, by construction, the
x-coordinates of the points Ai, Bi and Oij w.r.t. a cartesian system fixed at the
bottom left corner of the large square are given by x′Ai

= (2i−1+3
∑
k<i |E

+
k |)∆,

x′Bi
= x′Ai

+∆, and x′Oij
= x′Bi

+ 2∆+ 3∆ |E+
i ∩{(vi, vj′) : j′ < j}|. As a result,

if we define xi and xj as xi = (x′Oij
− x′Bi

)/∆ and xj = (x′Aj
− x′Oij

)/∆, then,
w.r.t. the cartesian system ROij

, we have

Ai = (−(xi + 1)∆, L∆) Aj = (xj∆, L∆)
Bi = (−xi∆, L∆) Bj = ((xj + 1)∆, L∆)
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for integers xi ≥ 2 and xj ≥ 2. Then, we define A and B as the intersection points

of
−−−→
OijAi and

−−−→
OijBj with the straight line y = −4L, that is, as A = (4xi+4,−4L)

and B = (−4xj − 4,−4L). So, the rays
−−→
AAi and

−−→
BBj share the supporting

lines of the initial rays
−−−→
OijAi and

−−−→
OijBj . The aperture of the visibility cone

CA = cone(A,AiBi) is fixed by M1 and M13, being M1 the intersection of
−−→
AAi

with the line y = −2L and M13 the intersection of
−−→
ABi with the line y = −3L.

Therefore, M1 = (2xi + 2,−2L) and M13 = (τi,−3L), with τi = 3xi + 3 + ∆
∆+4 ,

because the straight lines AAi and ABi are given by the following equations.

AAi : y =
−L
xi + 1

x; ABi : y =
−L(∆+ 4)

xi(∆+ 4) + 4
x+

4L∆

xi(∆+ 4) + 4
.

Similarly, N1 and N13 determine the aperture of CB = cone(B,AjBj), being

N1 the intersection of
−−→
BBj with y = −2L and N13 the intersection of

−−→
BAj with

y = −3L. The supporting lines of these rays are given by similar equations, and
N1 = (−2xj − 2,−2L) and N13 = (τ̃j ,−3L), with τ̃j = −3xj − 3 − ∆

∆+4 . The
coordinates of the vertices of Ξij are

M1 = (2xi + 2,−2L) M2 = (2xi + 2,−4L) M3 = (2xi + 1,−4L)
M4 = (2xi + 1,−3L) M5 = (2xi,−3L) M6 = (2xi,−6L)
M7 = (2xi + 1,−6L) M8 = (2xi + 1,−5L) M9 = (τi,−5L)
M10 = (τi,−4L) A = (4xi + 4,−4L) M12 = (4xi + 4,−3L)
M13 = (τi,−3L) M14 = (τi,−2L) M15 = (7L,−2L)
M16 = (7L,−L) M17 = (2xi + 2,−L) M18 = (2xi + 2, 0)

with Nk = (−αxj − β, γ) iff Mk = (αxi + β, γ) for 1 ≤ k ≤ 18. Thus, the
coordinates are defined by rational numbers given as pairs of integers bounded
by a quadratic polynomial function on the size of the graph.

Correctness. We note the dual graph of the grid partition of the resulting polygon
is a tree, as required. Moreover, it is not difficult to conclude that M16, M12, M8,
M7, M5, and N16, N12, N8, N7 and N5 require local guards. Still, we have to
prove that the boundary of Ξij imposes no restriction on the propagation of the
corresponding visibility cones CA and CB . We present the proof for CA, since it
can be straightforwardly adapted to CB . First we observe that, by construction,
CA is to the right of

−−→
AAi, and therefore, the cone stands to the right of Oij until

it leaves the gadget. This means that the left part of Ξij cannot obstruct CA.
We show now that CA is not obstructed by the right part either. Actually, the
point where

−−→
ABi intersects the line y = −L is always to the left of M17 =

(2xi + 2,−L), as depicted in Fig. 3. Indeed, the x-coordinate of such point is
given by x = xi+1+ 3∆

∆+4 and, being xi ≥ 2, we have 0 < x < 2xi+2. Moreover,
we can check that M1 is the unique point on the boundary of Ξij that sees both
A and N16 (on the left), as well as the other local vertices on the top part of
the d-gadget. In a similar way, we can check that the visibility cone CB is not
obstructed and conclude that N1 is the unique point on the boundary of Ξij that
sees both B and M16 (as well as the other local vertices on the top part). Finally,



6 A. P. Tomás

to conclude that one can always locate three local boundary-guards that see all
the gadget vertices other than A (namely, at N8, N1 and M8) or other than B
(namely, at N8, M1 and M8), we have to check that M8 sees M12 and, similarly,
that N8 sees N12. Being M8 = (2xi + 1,−5L) and M12 = (4xi + 4,−3L), the
straight line M8M12 is defined by the equation

M8M12 : y =
2L

2xi + 3
x− (14xi + 17)L

2xi + 3

and, so, it intersects the line y = −4L at point (3xi + 5/2,−4L). This point
stands between M2 = (2xi + 2,−4L) and M10 = (τi,−4L) because

2xi + 2 < 3xi +
5

2
< 3xi + 3 +

∆

∆+ 4
= τi

and, therefore, M8 sees M12. In a similar way, we conclude that N8 sees N12. We
can check that M8 sees M13 (and that N8 sees N13), but it is not too relevant. If
A is seen from M1 in an optimal solution, then M1 guards M13 also, and if the
guard is at the segment AiBi instead, then M13 is in its visibility region, as the
visibility region of M13 above the d-gadget contains the visibility region of A.
Lemma 1 states the final result we need to conclude the proof.

Lemma 1. The resulting TOP can be guarded by 3|E|+ k boundary guards iff
there is a vertex-cover of size k for G = (V,E).

Proof. Given a vertex-cover S of G of size k, we place a guard anywhere in the
segment associated to each v ∈ S. These k guards see all the vertices of P that
are not below the line y = 0. Moreover, for each d-gadget Ξij , at least one of
two distinguished vertices (A or B) is seen by one of these k guards. The other
distinguished vertex and all the remaining local vertices of Ξij can be guarded
by three local guards: N8 and M8, and either N1 (which sees also B) or M1

(which sees also A). Therefore, if there is a vertex-cover S of G of size k, there
is a guard set for the vertices of P of size 3|E| + k. Reciprocally, let us assume
that there is a guard set of size 3|E| + k. Then, the idea is to replace the local
guard set of each Ξij that has more than three guards by three local guards at
N8, M8 and N1 and to locate a guard at AiBi to guard vertex A (if this segment
has no guard yet). We end up with at most k guards located on the top edge
of P , which define a vertex-cover for G, since each d-gadget Ξij will have just
three local guards and, consequently, there must be a guard either on AiBi or
AjBj to guard the unguarded vertex of Ξij . ut

3 GVTP for Vertex Guards

Theorem 2. GVTP is NP-hard for vertex guards.

For the proof, we adapt the previous construction as sketched in Fig. 4,
following [12]. We consider the polygon obtained previously and attach a tiny
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Fig. 4. The reduction from Vertex-Cover to GVTP with vertex guards for the same
graph: ear gadgets are attached to the right endpoints of the segments. Each ear gadget
requires a local guard on a vertex of the shaded region (to guard Z2).

ear gadget to the right endpoint of each line segment AiBi, for each vi ∈ V . The
ear gadgets will be defined in such a way that the vertices denoted by A in each
d-gadget Ξij cannot see any vertex of an ear-gadget except for Bi. Otherwise,
the vertex A would see points on the boundary of P arbitrarily close to Bi but
to the right of Bi, which is impossible by the definition of the visibility cone CA.
We shall see now how to adjust the height of each ear gadget to prevent also
B from seeing any local vertex of the ear-gadget attached to AjBj . For each
j ≥ 2, it is sufficient to guarantee that, for all Ξij , the intersection point of

the ray
−−→
BBj with the vertical edge incident to the vertex labelled Z3 is below

Z3. Actually, this result holds for all i, if we ensure that it holds for B in the
rightmost d-gadget Ξi′j , since the rays

−−→
BBj are sorted by slope around Bj .

For each j ≥ 1, we define the coordinates of the local vertices of the ear
gadget attached to Bj w.r.t. the cartesian system fixed at the bottom left corner
of the large square, as follows.

Z1 = ((x′j + 1)∆, L(∆+ 1) + 1)
Z3 = ((x′j + 1)∆+ 1, L(∆+ 1))
Z2 = ((x′j + 1)∆+ L, L(∆+ 1)) .

Clearly, the other vertex is ((x′j + 1)∆ + L, L(∆ + 1) + 1). To check that the
construction is correct, we consider the coordinates of Bj and Z3 w.r.t. the
cartesian coordinate system ROi′j fixed at Oi′j , namely Bj = ((xj + 1)∆,L∆)
and Z3 = ((xj + 1)∆+ 1, L(∆+ 1)). The y-coordinate of the intersection point

of the line x = (xj + 1)∆+ 1 with the y = L/(xj + 1)x, which supports
−−→
BBj , is

given by L∆ + L/(xj + 1), and since xj ≥ 2, we conclude that the intersection
point is below Z3, as we stated. Each ear gadget is a TOP. Moreover, the dual
graph of ΠHV (P ) for the new polygon P is still a tree, as required.

Each ear-gadget needs a local guard that must be located in one of the
vertices of the shaded region and none of these vertices sees a local vertex of a
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d-gadget. This means that these guards cannot replace any guard located in a
segment. On the other hand, since any guard located on a segment can move to
the segment right endpoint to become a vertex-guard, without loss of visibility,
we can show Lemma 2.

Lemma 2. The resulting TOP can be guarded by |V |+3|E|+k boundary guards
iff there is a vertex-cover of size k for G = (V,E).

4 GVTP for Point Guards

Theorem 3. GVTP is NP-hard for point guards.

Now, we show that GVTP remains NP-hard when guards may lie anywhere
in the polygon. As in [12], we will construct a reduction from the minimum
line cover problem (MLCP). Given a set L = {l1, . . . , ln} of lines in the plane,
MLCP is the problem of finding a set of points of minimum cardinality such
that each line l ∈ L contains at least one point in that set. This problem is
known to be NP-hard [16] and APX-hard [6].

Without loss of generality, we assume that L contains neither vertical nor
horizontal lines. The polygon is obtained by attaching single-gadgets (called s-
gadgets) to a bounding box B(L) that contains all intersection points of pairs
of lines in L in its interior. The idea is sketched in Fig. 5. To guarantee that a

Fig. 5. The reduction from MLCP to GVTP with guards anywhere. Each tiny box on
the bottom represents an s-gadget (note that not all lines intersected the bottom edge
of the dashed bounding box). On the right, an s-gadget in detail.

TOP is obtained, we define an s-gadget, where M1 and M13 reduce the visibility
cone CA to the line LA. Moreover, we had to restrict the locations of s-gadgets
to the bottom edge of B(L), in contrast to [12]. This can be done because,
for a sufficiently large bounding box, all lines will intersect the bottom edge of
B(L), as there are no horizontal lines in L. At least a local guard is needed for
each s-gadget. As for the d-gadgets, taking into account the relative positions



Guarding Thin Orthogonal Polygons is Hard 9

of intersections of the lines with the bottom line (i.e., of vertices M1), and their
slopes, we can define the vertices of the tiny s-gadget in such a way that M8

sees M12 and M7, and all local vertices except for A. The vertices of P can be
guarded by n+ k guards if and only if there is a cover for L of size k.

5 Guarding Thin Orthogonal Polygons

We adapt the d-gadget defined above to show that finding an optimal guard
set for a thin orthogonal polygon (GTP) is NP-hard for boundary and vertex
guards. For that, we change the two legs of the d-gadget, as shown in Fig. 6.

Fig. 6. The d-gadget for the reduction of Vertex-Cover to GTP, with boundary or
vertex guards. Each spike represents a tiny staircase polygon.

We focus on the left leg (the right leg is similar). It can be checked that it is
safe to define the edge eB on the line y = (−4 + 1

4 )L and the spikes as follows.

The intersection point B′ of the ray
−−−→
BN13 with this line is the only vertex that

B now sees on eB . The segment B′B′′ of eB defines a critical region. B′′ is the
intersection of

−−→
BN1 with eB , and C = (xc, yc) is restricted by B′′ and R, being

xC = xB′′ and R the point where
−−→
BN1 intersects the vertical chord incident

at N13. We define the slope of line CR to be −L/(xj + 1), which allows us to

compute yC . The vertex Z2 is the intersection of
−→
CR with the vertical edge that

contains N1, and the ray incident to Z1 is parallel to
−→
CR. The staircases in Fig. 7,

on the right, are regular, and their entry windows have width δy = L/(xj +1)δx,
for δx = ∆/(∆ + 4). Based on the dominance relation, we can check that the
four vertices labelled g must have a guard in any optimal solution, C and Z1, in
the two legs, and also A and B, and either N1 (or M1). It can be checked that
the expansion of the aperture of the cone (the points that see B′B′′ on the top
edge of the large square) is on the safe slabs.
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Fig. 7. The spikes in the left leg in more detail (not to scale nor accurate). Two guards
in C and Z1 see the critical regions in the three spikes (the tiny filled in regions).

Lemma 3. The constructed TOP can be guarded by 15|E|+k boundary guards
iff there is a vertex-cover of size k for G = (V,E).

As in section 3, by introducing suitable ear gadgets, we get a similar reduction
for vertex-guards, and the following result.

Lemma 4. The constructed TOP (with suitable ear gadgets) can be guarded by
15|E|+ |V |+ k vertex guards iff there is a vertex-cover of size k for G = (V,E).

6 Inapproximability Results

An NP-optimization problem is APX-hard if there is a constant ε > 0 such that
an approximation ratio of 1 + ε cannot be guaranteed by any polynomial time
algorithm, unless P = NP. We will use the L-reduction technique [19] to show the
APX-hardness of GVTP and GTP, for vertex and boundary guards. Given two
NP optimization problems U and W and a polynomial-time transformation f
from instances of U to instances ofW, we say that f is an L-reduction if there are
constants α, β > 0 such that for every instance I of U : optW(f(I)) ≤ α ·optU (I);
and for any solution of f(I) with cost c2, we can find in polynomial time a
solution of I with cost c1 such that |optU (I) − c1| ≤ β · |optW(f(I)) − c2|.
If U L-reduces to W, and there is a polynomial-time approximation algorithm
for W with worst case error ε, then, there is a polynomial-time approximation
algorithm for U with worst-case error αβε [19].

Our reductions from the vertex cover problem are still valid if the graph has
degree bounded by d and it is known that, for d ≥ 3, the minimum vertex cover
is APX-complete [2, 3]. This allows us to show the following result.
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Theorem 4. Computing an optimal guard set for a TOP or for the vertices of
a TOP is APX-hard, either for vertex or boundary guards.

Proof. We consider the reduction from the minimum vertex cover for graphs
G = (V,E) with degree bounded by 3 (and without isolated vertices). For the
TOPs constructed, the minimum number of guards is of the form c|E| + k?,
for boundary guards, or c|E| + |V | + k? for vertex guards, for the constants c
given above (c = 3 for GVTP and c = 15 for GTP). Since each vertex of the
graph can cover at most three edges, we have |E|/3 ≤ k?, i.e., |E| ≤ 3k?, being
k? the cardinality of a minimum vertex cover for G. Therefore, c|E| + k? ≤
3ck? + k? = (3c + 1)k?, and, since G has no isolated vertices, |V |/2 ≤ E, and
c|E|+ |V |+ k? ≤ (3(c+ 2) + 1)k? = (3c+ 7)k?. The constants α and β for the
L-reductions are β = 1 and α = 3c + 1 for boundary guards, and β = 1 and
α = (3c + 7) for vertex-guards. To conclude that we can take β = 1, we note
that, as in the proof of Lemma 1, we can replace the local guard set of each Ξij
that has more than c guards by c local guards and locate a guard at AiBi (at
Bi) to guard A (or the critical region), if this segment has no guard yet. This
transformation gives us the required solution for the vertex cover problem. ut

From [3], we known that, for every ε > 0, it is NP-hard to approximate the
minimum vertex cover problem for graphs of bounded degree 3 within factor
100/99− ε. Thus, we deduce inapproximability factors of (99α+ 1)/99α− ε, for
the guarding problems.

Corollary 1. For every ε > 0, it is hard to approximate GVTP within factor
991/900−ε, for boundary guards, and 1585/1584−ε for vertex guards. For GTP,
the corresponding factors are 4555/4554− ε and 5149/5148− ε.

Corollary 2. The minimum guard covering problem for orthogonal polygons is
APX-hard either for vertex or boundary guards (even if just the vertices were to
be covered).

By combining the construction given in [6] and Fig. 5, we can conclude that
GVTP is APX-hard for point guards. We conjecture that the reduction of Fig. 5
can be adapted to show that GTP is APX-hard for point guards also.

7 Conclusion

We show that computing a minimum guard set for the vertices of a TOP is NP-
hard, indeed APX-hard, either for boundary, vertex or point guards. We show
that computing a minimum guard set for a TOP is NP-hard and APX-hard
either for boundary or vertex guards. For thin polyomino trees [4], to the best
of our knowledge, the complexity remains open. Our work implies that other
properties need to explored, in addition to the tree structure.
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