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Abstract. Radicals for Fitting pseudovarieties of groups are in-
vestigated from a profinite viewpoint in order to describe Malcev
products on the left by the corresponding local pseudovariety of
semigroups.

1. Introduction

The study of radicals in group theory emerged in the early 1960’s
following earlier work on radicals in rings. In recent years there has
been a surge of interest in obtaining simple characterizations of finite
solvable groups and the solvable radical of finite groups modeled on
classical results concerning the nilpotent case [10,12,8, 24,23,18,38].

Extending earlier work of Rhodes and Tilson [33, 37], radical con-
gruences have also been studied in the context of finite semigroup the-
ory [29, 5, 25]. In the authors’ recent paper [3], some relationships
between radicals associated with specific pseudovarieties of groups and
semigroup radical congruences have been explored via representation
theory, generalizing and clarifying earlier work of Rhodes [32].

One of the aims of that paper is to describe Mal’cev products of
the form LH©m V, where LH is the pseudovariety consisting of all finite
semigroups whose local submonoids belong to a given pseudovariety
H of groups and V is a pseudovariety of semigroups. For the purpose
of applying representation theory, only the cases of the trivial pseu-
dovariety and pseudovarieties of p-groups are considered there. Yet,
as shown in the present paper, the same original argument of Rhodes
and Tilson applies to pseudovarieties of groups possessing a radical,
which are named Fitting pseudovarieties since they are pseudovarieties
of groups which are simultaneously Fitting classes [14]. We further
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investigate how to obtain bases of pseudoidentities for LH©m V from
a given Fitting pseudovariety H and a basis of pseudoidentities for V

(cf. Section 6). For this purpose, we need to obtain the type of charac-
terization of H-radicals that is available since the 1950’s for nilpotent
groups and p-groups and for which group theorists have been searching
in the solvable case. This leads us to set up a general profinite frame-
work for studying radicals for Fitting pseudovarieties, in particular for
extension-closed pseudovarieties.

2. Preliminaries

Given finite semigroups S and T , we write S ≺ T if S is a homomor-
phic image of a subsemigroup of T , in which case we also say that S
divides T . A non-empty class of finite semigroups closed under taking
divisors and finite direct products is called a pseudovariety. We de-
note respectively by S and G the pseudovarieties consisting of all finite
semigroups and all finite groups.

The following definition is a special case of a more general definition
of radical class which is classical in group theory [35]. A radical class

of finite groups is a subclass X ⊆ G with the following properties:

(1) X is closed under taking homomorphic images;
(2) if G is a finite group and N1 and N2 are normal subgroups of G

which belong to X , then so does their product N1N2; we then
denote by GX the product of all normal subgroups of G which
belong to X and we call it the X -radical of G;

(3) for every finite group G, the subgroup (G/GX )X is trivial.

It is well known and easy to see that, in the presence of the other
two conditions, condition (3) is equivalent to X being extension-closed.
On the other hand, since an extension-closed pseudovariety H of groups
satisfies condition (2) by the second isomorphism theorem, H is a radical
class of finite groups. Hence a pseudovariety of groups is radical if and
only if it is extension closed. The radical pseudovarieties of groups
are therefore in bijection with the division-closed sets of finite simple
groups.

For a class of specific examples, given a set π of prime integers,
consider the class Gπ of all finite groups G such that all primes dividing
|G| belong to π. Note that Gπ is an extension-closed pseudovariety
of groups and, therefore, radical. Here are some particular cases of
interest:

• if π is the set of all primes, then Gπ = G;
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• if π = ∅, then Gπ is the trivial pseudovariety I;
• if π = {p} is a singleton, then Gπ is the pseudovariety Gp of all

finite p-groups;
• if π = 2′ consists of all primes different from 2, then Gπ is the

pseudovariety of all finite groups of odd order.

The class Gsol, of all finite solvable groups, is also a radical pseudova-
riety.

In case a pseudovariety H of groups satisfies (2) but not necessarily
(3), we will also say that H is a Fitting pseudovariety of groups. The
identification of Fitting pseudovarieties is apparently harder.

For example, the class Gnil, of all finite nilpotent groups, is a Fit-
ting but not a radical pseudovariety. The Gnil-radical of a finite group
G is also known as its Fitting subgroup, and is denoted Fit(G). Note
that the intersection of any non-empty family of Fitting (respectively
radical) pseudovarieties has again the same property. In particular,
for every set π of primes, Gπ,nil = Gπ ∩ Gnil is a Fitting pseudovariety
while Gπ,sol = Gπ ∩ Gsol is a radical pseudovariety. These pseudova-
rieties are, respectively, the smallest pseudovariety and the smallest
extension-closed pseudovariety containing all Gp with p ∈ π. By the
Feit-Thompson Theorem [15], we have G2′ = G2′,sol.

A useful remark about the radical GX of a group G for a Fitting
class X is that it is a characteristic subgroup of G. More generally, in
view of property (1), if ϕ : G → H is an onto homomorphism of finite
groups then ϕ(GX ) ⊆ HX . The following result presents some further
elementary observations about radicals.

Lemma 2.1. Let (Hi)i∈I be a family of Fitting pseudovarieties and let

G be a finite group. Then H =
⋂

i∈I Hi is also a Fitting pseudovariety

and GH =
⋂

i∈I GHi
. �

As a consequence, we conclude that the Fitting pseudovarieties form
a complete lattice under inclusion.

Given two pseudovarieties of groups H1,H2, we denote by H1H2 the
product pseudovariety consisting of all extensions of a group in H1 by
a group in H2. We remind the reader that this multiplication is asso-
ciative and distributes on the left over pseudovariety joins and meets.
We write Hn to denote the n-fold product of copies of H. The following
elementary result connects our study of Fitting pseudovarieties with
the classical theory of Fitting classes.
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Lemma 2.2. Let H1 and H2 be Fitting pseudovarieties of groups and

let G be a finite group.

(1) We have G ∈ H1H2 if and only if G/GH1
∈ H2.

(2) The product H1H2 is also a Fitting pseudovariety.

(3) The formula GH1H2
/GH1

= (G/GH1
)H2

holds.

Proof. (1) By definition of H1H2, each G ∈ H1H2 must have a normal
subgroup K such that K ∈ H1 and G/K ∈ H2. By definition of the
radical, it follows that K ⊆ GH1

and so also G/GH1
∈ H2. The converse

is obvious.
(2) Suppose that N1 and N2 are two normal subgroups of G which

belong to H1H2. Let Ri = (Ni)H1
(i = 1, 2). By (1), both quotients

Ni/Ri belong to H2. Since Ri is a characteristic subgroup of Ni, Ri

is also a normal subgroup of G. Since H1 is a Fitting pseudovariety,
we deduce that R1R2 ∈ H1. Thus, to conclude that N1N2 ∈ H1H2, it
suffices to show that N1N2/R1R2 ∈ H2. Note that

N1N2/R1R2 = (N1R2/R1R2) · (N2R1/R1R2).

Moreover N1R2/R1R2 is a normal subgroup of N1N2/R1R2 and a ho-
momorphic image of N1/R1, which therefore belongs to H2, and simi-
larly for the other factor. Hence the quotient N1N2/R1R2 belongs to
H2 since this pseudovariety is a Fitting class.

(3) Let now R = GH1H2
and K = GH1

. Note that the H1-radical of R
coincides with K: as R is a normal subgroup of G, its characteristic
subgroup RH1

is also a normal subgroup of G and, since it belongs to H1,
RH1

⊆ K; conversely, K is a normal subgroup of R, since it is contained
in R, and therefore K ⊆ RH1

. Since R ∈ H1H2, we obtain R/K ∈ H2

by (1). Hence R/K ⊆ (G/K)H2
since R/K is a normal subgroup

of G/K. For the reverse inclusion, let N be the union of all cosets of K
which belong to (G/K)H2

. Then N is a normal subgroup of G such
that N/K = (G/K)H2

∈ H2, with K ∈ H1, and so N ∈ H1H2. This
shows that N ⊆ R and establishes the equality R/K = (G/K)H2

. �

Part (1) of Lemma 2.2 states that the product of Fitting pseudova-
rieties coincides with their product as Fitting classes (cf. [13]). Thus,
parts (2) and (3) are well known facts in the theory of Fitting classes.
Proofs are being provided for the sake of completeness.

3. Pseudoidentities for exclusion pseudovarieties

We say that a finite group P is prime for direct products or ×-prime

if, whenever P ≺ H1 × H2, for finite groups H1 and H2, P ≺ H1
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or P ≺ H2. This is precisely the condition that guarantees that the
following class of finite groups is a pseudovariety:

ExclG(P ) = {H ∈ G : P 6≺ H}.

Note that cyclic groups of prime power and finite simple groups are
×-prime. But there are many other ×-prime groups (see [28, Theo-
rem 53.31]).

For the sequel, we recall some background on the profinite approach
to the theory of pseudovarieties. See [1, 2] for further details.

A profinite semigroup is a compact zero-dimensional semigroup or,
equivalently, a compact semigroup which is residually finite as a topo-
logical semigroup [2]. We denote by ΩnS the free profinite semigroup on
a free generating {x1, . . . , xn} set with n elements (often called vari-

ables). It may be described as the completion of the free semigroup
{x1, . . . , xn}

+ with respect to metric d such that d(u, v) ≤ 2−r if and
only if the identity u = v is verified in all semigroups with at most
r elements. We view ΩnS as naturally embedded in Ωn+1S by sending
each free generator xi of ΩnS to the corresponding free generator xi

of Ωn+1S.
Elements of ΩnS may be viewed as n-ary implicit operations on S:

families (uS)S∈S of n-ary operations such that, for every homomor-
phism ϕ : S → T between finite semigroups and for all s1, . . . , sn ∈ S,
ϕ(uS(s1, . . . , sn)) = uT (ϕ(s1), . . . , ϕ(sn)). Given u ∈ ΩnS, the cor-
responding operation uS : Sn → S maps the n-tuple (s1, . . . , sn) to
f(u), where f : ΩnS → S is the unique continuous homomorphism that
maps the ith variable xi to si (i = 1, . . . , n). For simplicity, we may
write u(s1, . . . , sn) instead of uS(s1, . . . , sn). Also, we may refer to the
implicit operation u(x1, . . . , xn).

A formal equality u = v of elements of some ΩnS is called a pseu-

doidentity. We say that a finite semigroup S satisfies the pseudoidentity
u = v and we write S |= u = v if ϕ(u) = ϕ(v) for every continuous
homomorphism ϕ : ΩnS → S. We use u = 1 to abbreviate the pseu-
doidentities ux = xu = x, where x is a variable that is not a factor
of u. For a set Σ of pseudoidentities, [[Σ]] stands for the class of all
finite semigroups that satisfy all pseudoidentities from Σ. It is easy to
see that [[Σ]] is a pseudovariety and by Reiterman’s Theorem [31] every
pseudovariety V can be so described by a set Σ of pseudoidentities,
which is called a basis of pseudoidentities for V.
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Proposition 3.1. Suppose that P is an n-generated ×-prime finite

group. Then there is some uP ∈ ΩnS such that ExclG(P ) = [[uP = 1]].

Proof. We make the collection n-ExclG(P ) of all n-generated groups
in ExclG(P ) (up to isomorphism respecting the choice of generators)
be an ordered set by letting a group K be greater than or equal to a
group H if there is a homomorphism K → H which respects the choice
of generators. (Observe that such a homomorphism is automatically
onto.) It is easy to see that this ordered set is upwards directed—
indeed, if G with the generators g1, . . . , gn and H with the generators
h1, . . . , hn are two groups in n-ExclG(P ), then the subgroup of G × H
generated by the pairs (g1, h1), . . . , (gn, hn) belongs to n-ExclG(P ) (since
P is ×-prime) and is greater than or equal to both G and H. Since
n-ExclG(P ) is countable, it implies that this ordered set has a cofinal
sequence. Let (Hk)k be such a sequence. Since each Hk ∈ ExclG(P )
and P is ×-prime, P does not belong to the pseudovariety generated
by Hk. By Reiterman’s Theorem, there is a pseudoidentity of the form
uk = 1 which is valid in Hk but not in P . Since P is n-generated, we
may assume that uk ∈ ΩnS. Let u be the limit of a subsequence of
(uk)k in the compact metric space ΩnS.

We first note that P fails the pseudoidentity u = 1. Indeed, there is
k such that P |= u = uk and, by construction, P 6|= uk = 1. On the
other hand, every Hk satisfies u = 1. Indeed, given k, there is ℓ ≥ k
such that Hk |= u = uℓ and, by construction, Hℓ |= uℓ = 1; hence
Hk |= u = uℓ = 1 since Hk is a homomorphic image of Hℓ.

Next we claim that ExclG(P ) = [[u = 1]]. Let H be a finite group.
If H is divisible by P , then it cannot satisfy the pseudoidentity u = 1
since P does not satisfy it, as was shown above. Conversely, if H is not
divisible by P , to show that H |= u = 1, it suffices to assume that H
is n-generated. Then H is a homomorphic image of some Hk, so that
Hk |= u = 1 by the above. Hence H |= u = 1. This proves the claim
and establishes the proposition. �

It is well known that the classification of finite simple groups im-
plies that all finite simple groups are 2-generated. Combining with
Proposition 3.1, we obtain the following result.

Theorem 3.2. Let V be an extension-closed pseudovariety of groups.

Then there is w ∈ Ω2S such that V = [[w = 1]].
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Proof. Let S be the set of all division-minimal simple groups, up to
isomorphism, which do not belong to V. Note that

V =
⋂

P∈S

ExclG(P ).

Let S = {P1, P2, . . .} be an enumeration of the elements of S. For
each index i, let ui ∈ Ω2S be such that ExclG(P ) = [[ui = 1]], as given
by Proposition 3.1. Let w be the limit in Ω2S of a subsequence of
the (possibly finite) sequence of products (u1 · · · uk)k. We claim that
V = [[w = 1]].

Let G be a finite group. Then, for arbitrarily large k, we have G |=
w = u1 · · · uk. Suppose first that G ∈ V. Then G ∈ ExclG(Pi) for
all i ≥ 1, which implies that G satisfies each of the pseudoidentities
ui = 1. Hence G |= w = 1. Conversely, assume that G |= w = 1.
Suppose furthermore that G does not belong to a certain ExclG(Pi), that
is Pi ≺ G. Since the elements of S are incomparable under division,
Pi belongs to ExclG(Pj) for all j 6= i, and so Pi |= uj = 1 whenever
j 6= i. In particular, if we choose k above so that k ≥ i then G, and
therefore also Pi, satisfies the pseudoidentities u1 · · · uk = w = 1. Since
Pi also satisfies uj = 1 for j 6= i, we conclude that Pi |= ui = 1, which
contradicts the choice of ui. Hence G belongs to all ExclG(Pi), and so
it belongs to V. �

Note that the proofs of Proposition 3.1 and Theorem 3.2 are based
on existence compactness arguments. It is another problem to ex-
hibit pseudoidentities defining the pseudovarieties in question. One
may wish, for instance, that the implicit operations appearing in them
be (efficiently) computable. Of course, since there are uncountably
many extension-closed pseudovarieties of groups, not all of them are
decidable, and so it is certainly not always possible to obtain such
pseudoidentities.

An important example is the pseudovariety of solvable groups. Bases
consisting of a single 2-variable pseudoidentity for Gsol can be drawn
from recent work in group theory [9, 12]. The mere existence of such
bases had previously been established in [11, 27] while the existence
of bases consisting of some set of 2-variable pseudoidentities follows
from [36]. The original proofs of all these results depend on part of the
classification of finite simple groups. A direct elementary but intricate
proof of the existence of 2-variable bases has also been obtained [16].
Theorem 3.2 is a much more general result with a rather straightforward
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proof but which is again highly dependent on the classification of finite
simple groups.

Some extension-closed pseudovarieties of groups may be even defined
by a single-variable pseudoidentity.

Proposition 3.3. Let π be a set of primes. Then Gπ is defined by a

pseudoidentity in one variable.

Proof. Let π = {p1, p2, . . .} be a non-empty set of primes. Define

xν = lim
n→∞

x(p1···pn)n!

. (3.1)

We will prove this limit exists and is independent of the ordering of
π. Denote by π′ the complementary set of primes to π. Let S = 〈s〉
be a finite monogenic semigroup with minimal ideal the cyclic group
K = 〈sω+1〉. We show that sν is the π′-component of sω+1. Assume
sω+1 = s1s2 where s1 is the π-component and s2 is the π′-component
of sω+1. Set in = (p1 · · · pn)n!. We need to show that, for n sufficiently
large, sin = s2. Suppose that S has order ℓ. For n ≥ ℓ, clearly in ≥ ℓ
and so sin is in K. Next we compute

(sω+1)in = (sin)ω+1 = (sin)ωsin = sωsin = sin

where the last equality follows because sin is in the minimal ideal of
S, which is a group with identity element sω. Thus, without loss of
generality, we may assume that s = sω+1 generates a cyclic group of
order ℓ.

Suppose s1 has order j and s2 has order k; so j is divisible only by
primes in π and k by primes in π′ and also ℓ = jk. Let r be largest
index so that pr | j. Choose N = max{j, r, ϕ(k)} where ϕ is the Euler
totient function. We claim that, for n ≥ N , the equality sin = s2 holds.
Because n ≥ max{j, r, ϕ(k)} the following hold:

j | (p1 · · · pn)n! = in and ϕ(k) | n!

Indeed, if p is a prime dividing j, then certainly p is among the list
p1, . . . , pn as n ≥ r; if pu is the largest power of p dividing j, then
evidently u ≤ j! and so j | (p1 · · · pn)n! as claimed. Because p1 · · · pn is
prime to k, Euler’s Theorem (or the fact that the group of units of Zk

has order ϕ(k)) yields

in = (p1 · · · pn)n! ≡ 1 mod k.
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Therefore, sin = sin
1 sin

2 = s2. This completes the proof that sν is the
π′-component of s. It follows that Gπ is defined by the pseudoidentity
xν = 1. �

A simpler basis of pseudoidentities may be given for the pseudovari-
ety G2′ of all finite groups of odd order, namely

G2′ = [[x2ω−1 = 1]],

where x2ω−1 = limn→∞ x2n!−1. If a finite group G satisfies the pseu-
doidentity x2ω−1 = 1, then G has odd order. Conversely, if m is odd,
then 2 is invertible in the ring Z/mZ and so 2ω = 1 in this ring. It
follows that every finite group of odd order satisfies the pseudoidentity
x2ω

= x.

4. Characterizations of the radical

Recall the standard notation in group theory for iterated commu-
tators: [x, 1y] = [x, y] = x−1y−1xy and [x, n+1y] = [[x, ny], y]. For a
group G, L(G) denotes the set of all left Engel elements of G consisting
of those x ∈ G such that, for every y ∈ G, there exists r ≥ 1 such that
[y, rx] = 1.

For a subset X of a group G, denote by 〈X〉 the subgroup generated
by X. The following result has been recently established [23].

Theorem 4.1. An element a of a finite group G belongs to its solvable

radical if and only if, for every b ∈ G, the subgroup 〈a, b〉 is solvable.

On the other hand, Bandman, Borovoi, Grunewald, Kunyavskĭı, and
Plotkin [8] have formulated and investigated a general conjecture which
would lead to a description of the solvable radical similar to Baer’s
description of the nilpotent radical in terms of left Engel elements.
They established the analog of the conjecture for finite-dimensional Lie
algebras and reduced the conjecture to a slight strengthening of the case
of finite direct products of isomorphic non-Abelian finite simple groups.
Although they also proposed constructions of specific candidates, their
conjecture amounts to the existence of w ∈ Ω2S such that, for every
finite group G and every a ∈ G, a belongs to the solvable radical if and
only if, for every b ∈ G, w(a, b) = 1.

More generally, let V be a Fitting pseudovariety of groups. We say
that the V-radical is characterized by a subset W ⊆ Ωr+1S if, for every
finite group G,

GV = {a ∈ G : ∀b1, . . . , br ∈ G ∀w ∈ W, w(a, b1, . . . , br) = 1}. (4.1)
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We then say that r + 1 is the arity of the characterization. In case the
equation holds for all G in a given class C of finite groups, then we say
that the V-radical is characterized by W over C. Note that every such
characterization then it contains a countable one.

In this language, the above conjecture is equivalent to the statement
that the solvable radical admits a singleton binary characterization
{w}.

For example, as a consequence of a theorem of Baer [7], the nilpotent
radical is characterized by the ω-iterated commutator

u(x1, x2) = [x2, ωx1]

which is defined as the limit of [x2, n!x1] as n → ∞, where [x2, x1] =
xω−1

2 xω−1
1 x2x1 and, recursively, [x2, n+1x1] = [[x2, nx1], x1].

1 Moreover,
also by Baer’s Theorem, the p-group radical of a finite group G consists
of the elements of L(G) which have order a power of p. Thus the Gp-

radical is characterized by the set {[x2, ωx1], x
pω

1 }, where xpω

denotes

the limit limn→∞ xpn!

. A singleton characterization is given by

[x2, ωx1]x
pω

1 . (4.2)

Indeed, for a finite group G, if [h, ωg] gpω

= 1 for all h ∈ G then,
in particular, taking h = 1, we obtain gpω

= 1. Hence the equality
[h, ωg] gpω

= 1 holds for all h ∈ G if and only if the equalities [h, ωg] =
gpω

= 1 hold for all h ∈ G.
The following is a tool to build up characterizations of radicals, al-

though it creates the technical difficulty of the simultaneous build up
of the number of variables.

Proposition 4.2. Suppose that v1 ∈ Ωn+1S and v2 ∈ Ωm+1S charac-

terize the radicals of the Fitting pseudovarieties H1 and H2, respectively.

Then the (H1H2)-radical is characterized by the (m+n+1)-ary implicit

operation

v = v1

(

v2(x1, x2, . . . , xm+1), xm+2, . . . , xm+n+1

)

. (4.3)

Proof. Let G be a finite group and let g ∈ G. If g ∈ GH1H2
then, by

Lemma 2.2, gGH1
∈ (G/GH1

)H2
and so, for all a1, . . . , am ∈ G, we have

v2(g, a1, . . . , am) ∈ GH1
, which implies that

v1

(

v2(g, a1, . . . , am), b1, . . . , bn

)

= 1 (4.4)

1By x
ω−1 we denote the limit of x

n!−1 as n → ∞.
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for all b1, . . . , bn ∈ G. Conversely, suppose that g ∈ G is such that
the equality (4.4) holds for all ai, bj ∈ G. Since v1 characterizes the
H1-radical, v2(g, a1, . . . , am) is an element of GH1

for all ai ∈ G. Since
v2 characterizes the H2-radical, we deduce that gGH1

∈ (G/GH1
)H2

.
By Lemma 2.2, it follows that gGH1

∈ GH1H2
/GH1

, which implies that
g ∈ GH1H2

. Hence v characterizes the (H1H2)-radical. �

Denote by Ab the pseudovariety of all finite Abelian groups. The fol-
lowing easy observation already intervenes in the proof of Theorem 4.1.

Lemma 4.3. Let V be an extension-closed pseudovariety of groups con-

taining Ab. If G is a finite group, a ∈ GV, and b ∈ G, then 〈a, b〉 ∈ V.

Proof. Let H = 〈a, b〉. Then H is a cyclic extension of its normal
subgroup N = H ∩GV. Since N ∈ V and V contains Ab, it follows that
H ∈ V. �

The following notation will be convenient for a pseudovariety V:

(Ω2S)V = {u ∈ Ω2S : V |= u = 1}.

Note that, if V is a Fitting pseudovariety of groups and W is a binary
characterization of the V-radical GV, then W ⊆ (Ω2S)V.

Theorem 4.1 may be formulated in the language of characterizations
of radicals as stating that the solvable radical admits a binary charac-
terization. More generally, we have the following result.

Proposition 4.4. Let V be an extension-closed pseudovariety of groups

containing Ab. Then the V-radical admits a binary characterization if

and only if, for every finite group G,

GV = {a ∈ G : ∀b ∈ G, 〈a, b〉 ∈ V}. (4.5)

Proof. Suppose first that W is a binary characterization of the V-radical
and let G ∈ G and a, b ∈ G. Consider the subgroup Hb = 〈a, b〉. If
a ∈ GV then Hb ∈ V by Lemma 4.3. On the other hand, if Hb ∈ V

for every b ∈ G, then w(a, b) = 1 for every w ∈ W since W ⊆ (Ω2S)V.
Since W is a characterization of the V-radical, it follows that a ∈ GV.
Hence the equality (4.5) holds.

Conversely, suppose that the V-radical of every finite group G is given
by (4.5). By Theorem 3.2, there exists u ∈ Ω2S such that V = [[u = 1]].
Let

W = {u(x, y) : x, y ∈ {x1, x2}
+},

where x1, x2 are the free generators of Ω2S. We claim that W charac-
terizes the V-radical. Let G be a finite group and let a ∈ G. By (4.5),
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a ∈ GV if and only if, for every b ∈ G, the subgroup 〈a, b〉 belongs to V,
that is if it satisfies the pseudoidentity u = 1. Since the elements of
〈a, b〉 are described by arbitrary positive words in a and b, the latter
condition is equivalent to w(a, b) = 1 for all w ∈ W , which shows that
W is a binary characterization of the V-radical. �

Further evidence towards the Conjecture of Bandman et al is given
by the following recent result [38], which also depends on Theorem 4.1
and whose finite version translates in our language by saying that there
is a singleton binary characterization of the solvable radical for the class
of all finite linear groups.

Theorem 4.5. There is a sequence (wn)n of group words in the free

group on x1, x2 which converges in Ω2G such that, for every linear group

G and element g ∈ G, g lies in the solvable radical of G if and only if,

for all h ∈ G, we have wn(g, h) = 1 for all sufficiently large n.

For the remainder of this section, V denotes a Fitting pseudovariety
of groups.

We observe that there is a formulation of the existence of charac-
terizations by sets of implicit operations similar to the property in
Theorem 4.5. For simplicity, we illustrate with the case binary charac-
terizations.

Proposition 4.6. The V-radical admits a binary characterization if

and only if there is a sequence (wn)n of {x1, x2}+ such that, for every

finite group G,

GV = {g ∈ G : ∀h ∈ G ∃n0 ∀n ≥ n0, wn(g, h) = 1}. (4.6)

Proof. Suppose first that W is a binary characterization of the V-
radical. As has been observed, we may assume that it is countable. Let
v1, v2, . . . be a an enumeration of its elements. For each pair of positive
integers n, k, let vn,k ∈ {x1, x2}

+ be such that d(vn,k, vn) ≤ 2−k. Let
w1, w2, . . . be an enumeration of the list of words vn,k with k ≥ n. Then
we claim that equation (4.6) holds for every finite group G. Indeed,
given g ∈ GV and h ∈ G, vn(g, h) = 1 for all n and so vn,k = 1 for all
k ≥ |G|, which implies that wn(g, h) = 1 for every sufficiently large n.
On the other hand, if g ∈ G is such that, for all h ∈ G, wn(g, h) = 1
for every sufficiently large n, then certainly, for every n and sufficiently
large k, vn,k(g, h) = 1, which implies that vn(g, h) = 1 for every n,
whence g ∈ GV.
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Conversely, suppose that the sequence of words (wn)n satisfies (4.6)
for every finite group G. Let W denote the set of all accumulation
points of the sequence (wn)n in Ω2S. Then, given a finite group G
and g, h ∈ G, we have w(g, h) = 1 for every w ∈ W if and only
if wn(g, h) = 1 for every sufficiently large n. Hence W is a binary
characterization of the V-radical. �

For each finite group G, we let UV(G) denote the set of all u ∈ Ω2S

such that the following two conditions hold:

(1) V |= u = 1;
(2) for every a ∈ G \ GV there exists b ∈ G such that u(a, b) 6= 1.

If, additionally, a, b are specific elements of G, then we let

U b
V,a(G) = {u ∈ Ω2S : u(a, b) 6= 1, V |= u = 1}

and

UV,a(G) =
⋃

g∈G

Ug
V,a(G),

so that

UV(G) =
⋂

a∈G\GV

UV,a(G), (4.7)

where the intersection is viewed as specifying a subset of (Ω2S)V and
so it is taken to be (Ω2S)V in case the intersected family is empty,
that is G ∈ V. Note that U b

V,a(G) is a closed subset of Ω2S as it is

the intersection of (Ω2S)V with the clopen set ϕ−1(G \ {1}), where
ϕ : Ω2S → G is the continuous homomorphism which maps x1 to a and
x2 to b. Hence each of the sets UV,a(G) and UV(G) is closed in Ω2S.

Lemma 4.7. The following formula holds for every pseudovariety V

containing Ab and all finite groups G1, . . . , Gn:

UV(G1 × · · · × Gn) =

n
⋂

i=1

UV(Gi). (4.8)

Proof. We start by observing that the hypothesis that V contains Ab

implies that G satisfies the pseudoidentity u(1, x2) = 1 whenever u ∈
(Ω2S)V. Indeed, the assumption on u implies that it holds in V and
therefore also in every finite cyclic group. Since the pseudoidentity
u(1, x2) = 1 involves only one variable, it holds in G.

Let G = G1 × · · · × Gn. It can be easily verified that

GV = (G1)V × · · · × (Gn)V. (4.9)
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To prove the inclusion from left to right in (4.8), take u ∈ UV(G)
and let ai ∈ G\(Gi)V. By (4.9), the n-tuple (1, . . . , 1, ai, 1, . . . , 1), with
ai in the ith position, belongs to G\GV. Hence there exists an n-tuple
(b1, . . . , bn) ∈ G such that

u
(

(1, . . . , 1, ai, 1, . . . , 1), (b1, . . . , bn)
)

6= 1. (4.10)

Now, the left side of (4.10) has ith component u(ai, bi), in Gi, and
remaining components of the form u(1, bj), in Gj . Since u ∈ UV(G1 ×
· · · × Gn) ⊆ (Ω2S)V and G |= u(1, x2) = 1, it follows from (4.10) that
u(ai, bi) 6= 1. Hence u ∈ UV(Gi).

For the reverse inclusion, let u ∈
⋂n

i=1 UV(Gi) and suppose that
a = (a1, . . . , an) is an element of G \ GV. By (4.11), there is some
index i such that ai /∈ (Gi)V. Since u ∈ UV(Gi), there exists bi ∈ Gi

such that u(ai, bi) 6= 1. Hence, for b = (1, . . . , 1, bi, 1, . . . , 1), with ith
component bi, we have u(a, b) 6= 1, which shows that u ∈ UV(G). �

The relevance of the sets UV(G) comes from the following result.

Proposition 4.8. Let V be an extension-closed pseudovariety of groups

containing Ab. Then the set
⋂

G∈V
UV(G) consists precisely of the

binary implicit operations u that characterize the V-radical of finite

groups.

Proof. Suppose that u ∈ UV(G) for every finite group G. We show that
u characterizes the V-radical of finite groups, that is, for every finite
group G, its V-radical is given by the formula

GV = {a ∈ G : ∀ b ∈ G, u(a, b) = 1}. (4.11)

Indeed, if a ∈ G \ GV then u ∈ UV(G) ⊆ UV,a(G) and, therefore, there
exists b ∈ G such that u(a, b) 6= 1. Suppose next that a ∈ GV. Given
b ∈ G, the equality u(a, b) = 1 holds by Lemma 4.3 since u ∈ (Ω2S)V,
which completes the proof of equation (4.11).

Conversely, suppose that u is a binary implicit operation which char-
acterizes the V-radical of finite groups. If G is a group in V then GV = G
and so, in view of (4.11), we obtain u(a, b) = 1 for all a, b ∈ G. Hence
the pseudoidentity u = 1 holds in V, which shows that u ∈ (Ω2S)V.
On the other hand, for an arbitrary finite group G, from (4.11) it also
follows that, if a ∈ G\GV, then there exists b ∈ G such that u(a, b) 6= 1,
whence u ∈ UV(G). �

The following result is a simple compactness theorem which reformu-
lates the existence of binary singleton characterizations of the V-radical
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which work for all finite groups in terms of binary singleton character-
izations of the V-radical for each specific finite group.

Theorem 4.9. Let V be an extension-closed pseudovariety of groups

containing Ab. Then the set UV(G) is non-empty for every finite group

G if and only if the V-radical admits a binary singleton characteriza-

tion.

Proof. By Proposition 4.8, it suffices to show that, if each of the sets
UV(G) (G ∈ G) is non-empty, then so is their intersection. Now,
from (4.8) we conclude that the family of closed subsets (UV(G))G∈G of
(Ω2S)V has the non-empty finite intersection property. By compactness
the intersection of the family is non-empty. �

We proceed to formulate the existence of binary characterizations of
the V-radical in terms of properties of the set UV,a(G).

Proposition 4.10. For an extension-closed pseudovariety of groups V

containing Ab, the V-radical admits a binary characterization if and

only if, for every finite group G and every a ∈ G \GV, the set UV,a(G)
is non-empty.

Proof. Suppose that W is a binary characterization of the V-radical
and let G ∈ G and a ∈ G \ GV. Then there exist b ∈ G and w ∈ W
such that w(a, b) 6= 1. Since w ∈ W ⊆ (Ω2S)V, it follows that w ∈
U b

V,a(G) ⊆ UV,a(G), which shows that UV,a(G) 6= ∅.

For the converse, let W be the union of all UV,a(G) with G ∈ G and
a ∈ G \ GV. We claim that W characterizes the V-radical. Indeed,
given a ∈ GV and b ∈ G, w(a, b) = 1 for all w ∈ W by Lemma 4.3 since
W ⊆ (Ω2S)V. On the other hand, if a ∈ G \ GV, then by hypothesis
there exists w ∈ W such that w(a, b) 6= 1 for some b ∈ G. Hence W
characterizes the V-radical. �

Combining Theorem 4.1 with Propositions 4.4 and 4.10, we deduce
that, for every finite group G and every a ∈ G, the set UGsol,a(G) is
non-empty. On the other hand, in view of Theorem 4.9, the Conjecture
of Bandman et al about the solvable radical amounts to the set

UGsol
(G) =

⋂

a∈G\GGsol

UGsol,a(G)

being non-empty for every finite group G.
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Lemma 4.11. Let V be an extension-closed pseudovariety containing

Ab. If the sets UV,a1
(G) and UV,a2

(G) are non-empty for a given fi-

nite group G and elements a1, a2 ∈ G then the intersection UV,a1
(G) ∩

UV,a2
(G) is also non-empty.

Proof. If at least one of the ai belongs to GV, then UV,ai
(G) = (Ω2S)V

by Lemma 4.3. Hence the intersection UV,a1
(G)∩UV,a2

(G) is the other
UV,aj

(G), which is non-empty by hypothesis. Hence we may assume
that neither a1 nor a2 belong to GV. Let ui ∈ UV,ai

(G) (i = 1, 2).
Then there exist bi ∈ G such that ui(ai, bi) 6= 1 (i = 1, 2).

If, for some i ∈ {1, 2}, there is g ∈ G such that ui(aj , g) 6= 1, where
{i, j} = {1, 2}, then ui ∈ UV,a1

(G)∩UV,a2
(G), and we are done. Hence,

we may assume that ui(aj , g) = 1 whenever i 6= j and g ∈ G. Let u =

u1u2. Then u is an element of (Ω2S)V such that u(ai, bi) = ui(ai, bi) 6= 1
(i = 1, 2), and so u ∈ UV,a1

(G) ∩ UV,a2
(G). �

We did not manage to show that UV(G) is always non-empty for
every finite group under the hypothesis that UV,a(G) 6= ∅ for every finite
group G and a ∈ G. To illustrate the difficulty, we consider the case of
three elements a1, a2, a3 of a finite group for which we assume that each
UV,ai

(G) is non-empty. The aim is to show that
⋂

i=1,2,3 UV,ai
(G) 6= ∅.

Assuming that V is extension closed and contains Ab, as in the proof
of Lemma 4.11 it suffices to consider the case in which none of the
ai belongs to GV. By Lemma 4.11, for each i ∈ {1, 2, 3}, there exists
vi ∈

⋂

j 6=i UV,aj
(G). We may further assume that vi(ai, g) = 1 for

every g ∈ G for, otherwise, vi ∈
⋂

i=1,2,3 UV,ai
(G) and we are done.

Moreover, if v1(a3, c)
2 6= 1 for some c ∈ G, then either w = v1v2 or

w = vω−1
1 v2 belongs to

⋂

i=1,2,3 UV,ai
(G): indeed, for {i, j} = {1, 2}

w(ai, g) = vj(ai, g)±1 is not the identity element for some g ∈ G; on
the other hand, if v1(a3, c)

−1v2(a3, c) = 1 then v1(a3, c)v2(a3, c) 6= 1
by hypothesis. It remains to consider the case where vi(aj, g)2 = 1
whenever g ∈ G and i 6= j, which we do not know how to handle.

Problem 4.12. Let V be an extension-closed pseudovariety. Is it true

that, for every finite group G, the set UV(G) is non-empty?

In view of Theorem 4.9, for an extension-closed pseudovariety V con-
taining Ab, an affirmative answer is equivalent to the existence of a bi-
nary implicit characterization of the V-radical. Equivalently, it means
that there exists a sequence wn(x1, x2) of words in the letters x1, x2
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which converges in Ω2S such that, for every finite group G and ev-
ery a ∈ G, a ∈ GV if and only if, for every b ∈ G, wn(a, b) = 1 for
all sufficiently large n. In particular, Problem 4.12 generalizes to ar-
bitrary extension-closed pseudovarieties of groups the Bandman et al

conjecture for the case of solvable groups.
An alternative characterization of radicals has been receiving a lot

of attention from group theorists. It is based on the observation that,
for a finite group G, an element g lies in the V-radical if and only if its
conjugacy class gG generates a subgroup from V. Thus, one may ask, if
one needs to consider the subgroup generated by the whole conjugacy
class gG or whether a much smaller subset, of size bounded by some
number independent of G suffices. The Baer-Suzuki Theorem shows
that two elements suffice for V = Gnil. For V = Gsol, it has been
recently shown that four elements suffice, while two suffice if they have
prime order p > 3 [20, 19, 21, 17, 22]. There seems to be no obvious
relationship between this type of characterization of radicals and the
implicit characterizations considered in this section.

5. Semigroup radicals

Let V be a pseudovariety of semigroups. We denote by LV the class
of all finite semigroups S such that, for every idempotent e ∈ S, the
monoid eSe belongs to V. We say that a congruence on a finite semi-
group is a V-congruence if its idempotent classes belong to V.

The purpose of this section is to give a description of the largest LH-
congruence on a finite semigroup S when H is a Fitting pseudovariety.
There is already such a description available [25]. It is formulated in
terms of the Rees matrix structure of regular J -classes. Ours, which
appears to be more suitable for the applications in Section 6, is essen-
tially an extension of the description given in [26] for the case of H = G

(see also [3] for the case of H = Gp and the connections of both with
representation theory).

Let J be a regular J -class of a finite semigroup S and let GJ be a
maximal subgroup contained in J . Let N be a normal subgroup of GJ .
We denote by Ri (i ∈ I) the R-classes of J and by Lλ (λ ∈ Λ) the
L-classes of J . Suppose that GJ = R1 ∩ L1. For each i ∈ I and λ ∈ Λ,
choose coordinates ri ∈ J such that s 7→ ris is a bijection Ri → R1 and
lλ ∈ J such that s 7→ slλ is a bijection Lλ → L1. With this notation, if
Hiλ = Ri ∩ Lλ, then s 7→ rislλ is a bijection Hiλ → GJ .
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We define a congruence by s ≡(J,GJ ,N) t if and only if, for all x, y ∈ J ,

xsy ∈ J ⇐⇒ xty ∈ J (5.1)

and in this case if x ∈ Ri and y ∈ Lλ, then

rixsylλN = rixtylλN. (5.2)

The quotient S/≡(J,GJ ,N) is denoted GGM(J,GJ , N) [26]. In case S is a
group, S = J = GJ and ≡(J,GJ ,N) is the congruence determined by the
normal subgroup N . Note also that, if K is another normal subgroup
of GJ then

N ⊆ K =⇒ ≡(J,GJ ,N) ⊆ ≡(J,GJ ,K). (5.3)

From hereon, H always denotes a Fitting pseudovariety of groups.
For a finite semigroup S, we define RadH(S) to be the congruence on S
which is obtained by taking the intersection of all congruences of the
form ≡(J,GJ ,(GJ )

H
). It is a standard exercise in semigroup theory to

show that the congruence ≡(J,GJ ,(GJ )
H
) depends only on J and not on

the choice of the maximal subgroup Gj and of the coordinates.

Theorem 5.1. The congruence RadH(S) on a finite semigroup S is

the largest LH-congruence on S.

Proof. Suppose that θ is an LH-congruence on S and let (s, t) ∈ θ. We
show that (s, t) ∈ RadH(S). Let J be a regular J -class of S and suppose
that x, y, xsy ∈ J . Let z ∈ S be such that xsyz is an idempotent
in J . Then xsyz and xtyz lie in the same idempotent θ-class T . Since
θ is and LH-congruence by hypothesis, the subsemigroup T belongs
to LH. As the elements xsyz and xtyz both lie in T and xsyz is
regular, it follows that we have the following chain of relations in S:
x ≥J xty ≥J xtyz ≥J xsyz ≥J x. Hence xty ∈ J which, together
with the dual argument, establishes condition (5.1). Suppose next that
x, y, xsy, xty ∈ J , say x ∈ Ri and y ∈ Lλ. Let N = GJ ∩ T . Then
N is a normal subgroup of GJ which is contained in the semigroup T
from LH, and so N ∈ H. In particular N ⊆ (GJ )

H
and the congruence

≡(J,GJ ,N) is contained in ≡(J,GJ ,(GJ )
H
) by (5.3). Since the elements

rixsylλ and rixtylλ lie in GJ and they are θ-equivalent, they define the
same N -coset. Hence s and t are ≡(J,GJ ,N)-equivalent and therefore
they are also ≡(J,GJ ,(GJ)

H
)-equivalent. Since the regular J -class J of S

is arbitrary, we conclude that (s, t) ∈ RadH(S). This establishes that
θ ⊆ RadH(S).

It remains to show that RadH(S) is itself an LH-congruence. Let T
be an idempotent class of RadH(S). We must verify that, for every
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idempotent e of T , eTe is a group from H. Let J be the J -class of S
which contains e and let GJ be the maximal subgroup containing e.
Since T is a RadH(S)-class, in particular every element x of eTe is such
that x ≡(J,GJ ,(GJ)

H
) e, hence x lies in J . Since x ∈ eTe, it follows that

x ∈ GJ and so x ∈ (GJ )
H

by (5.2). Hence eTe is a subgroup of (GJ )
H
,

which shows that eTe ∈ H and completes the proof of the theorem. �

For two pseudovarieties V and W, denote by V©m W the pseudova-
riety generated by the class of all finite semigroups S which admit a
V-congruence ρ such that S/ρ ∈ W. The following result can be easily
deduced from Theorem 5.1 (cf. [25]).

Theorem 5.2. Let S be a finite semigroup. Then S ∈ LH©m V if and

only if the quotient S/RadH(S) belongs to V. �

An immediate application is the following decidability result, where
a pseudovariety is said to be decidable if there is an algorithm for testing
membership of finite semigroups in it. It is a particular case of a more
general result from [25, Corollary 2.12].

Corollary 5.3. If H is a decidable Fitting pseudovariety of groups and

V is a decidable pseudovariety of semigroups then the Mal’cev product

LH©m V is decidable. �

Note that in general the Mal’cev product of decidable pseudovarieties
may not be decidable [34,6].

6. Bases of pseudoidentities

We say that an n-tuple (α1, . . . , αn) of members of ΩnS is group-

generic if the following conditions hold:

• given a finite semigroup S and n elements s1, . . . , sn ∈ S, the el-
ements αi(s1, . . . , sn) (i = 1, . . . , n) lie all in the same subgroup
of S;

• if G is a finite group and g1, . . . , gn ∈ G then αi(g1, . . . , gn) = gi

(i = 1, . . . , n).

The existence and characterization of such tuples has been extensively
investigated in [4]. A simple example is obtained by considering the
continuous endomorphism ϕ of the free profinite semigroup ΩnS which
maps xi to x1 · · · x

εi

i · · · xn (i = 1, . . . , n), where εi = 2 for i < n and
εn = 1. Since the monoid of continuous endomorphisms of a finitely
generated profinite semigroup is itself profinite [2], there is a unique
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idempotent limit ϕω of sequences of finite powers of ϕ, namely ϕω =
limn→∞ ϕn!. We can take αi = ϕω(xi) (i = 1, . . . , n) [4].

Throughout this section, we suppose again that H is a Fitting pseu-
dovariety. We now show how characterizations of the radical may be
used to obtain bases of pseudoidentities for pseudovarieties of the form
LH©m V.

Theorem 6.1. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities

and let V = [[Σ]]. Suppose that W is an (m + 1)-ary characterization

of the H-radical. Then the Mal’cev product LH©m V is defined by the

following pseudoidentities:
(

(xuiy)ωxviy(xuiy)ω
)ω

= (xuiy)ω (6.1)

w
(

α1(xviy, z1, . . . , zm)ω−1α1(xuiy, z1, . . . , zm)α1(xviy, z1, . . . , zm)ω,

α2(xviy, z1, . . . , zm), . . . , αm+1(xviy, z1, . . . , zm)
)

= α1(xviy, z1, . . . , zm)ω, (6.2)

with i ∈ I and w ∈ W , where x, y, z1, . . . , zm are new variables and

the αj are such that (α1, . . . , αm+1) is a group-generic (m + 1)-tuple of

implicit operations. In particular, if V is finitely based and W is finite,

then LH©m V is also finitely based.

Proof. We first show that LH©m V satisfies the pseudoidentities (6.1)
and (6.2). Let S be a semigroup in LH©m V. By Theorem 5.2, the
quotient S/RadH(S) belongs to V. Consider the values s and t resulting
from an evaluation of the implicit operations xuiy and xviy in S. Let
σ(z0, z1, . . . , zn) ∈ Ωm+1S be an implicit operation which is an element
of a subgroup, whose idempotent we denote by e. Since RadH(S) is a
congruence, given any r1, . . . , rn ∈ S, the elements σ(s, r1, . . . , rn) and
σ(t, r1, . . . , rn) are in the same RadH(S)-class. Consider the idempotent
ē = e(s, r1, . . . , rn). We claim that, as a consequence of Theorem 5.1,
the element ēσ(t, r1, . . . , rn)ē belongs to the maximal subgroup of S
containing ē:

ē H σ(s, r1, . . . , rn) H ēσ(t, r1, . . . , rn)ē. (6.3)

Indeed, since S is a finite semigroup, there is some finite word w such
that S |= σ = w. Note that ē =

(

w(s, r1, . . . , rn)
)ω

. We consider w as
a word in the variables z0, z

′
0, z1, . . . , zn and we show that changing the

first occurrence of z0 to z′0 in w leads to a word w′ such that

ēw′(s, t, r1, . . . , rn)ē H ē. (6.4)
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Let w = w1z0w2, where z0 does not occur in w1. Then the products
ēw1(s, t, r1, . . . , rn) and w2(s, t, r1, . . . , rn)ē are both elements of the
J -class J of ē. Let G be the maximal subgroup of S containing ē.
Since s ≡(J,G,GH) t by the definition of RadH(S), we conclude that
ēw′(s, t, r1, . . . , rn)ē belongs to J and, therefore, it belongs to G, which
proves (6.4). The claim (6.3) now follows by induction on the number
of occurrences of z0 in w.

We first apply (6.3) to the implicit operation

σ(z0, z1) = (zω
1 z0z

ω
1 )ω,

with r1 = t. The claim yields the first of the following equalities

(tωstω)ω = (tωttω)ω = tω,

which shows that S satisfies (6.1). On the other hand, if α ∈ Ωm+1S

lies in a subgroup and we let

σ(z0, z1, ~z ) =
(

α(z1, ~z )ωα(z0, ~z )α(z1, ~z )ω
)ω+1

,

where ~z abbreviates z2, . . . , zm+1, then by (6.3), for any m-tuple ~r of
elements of S the elements s̄ = σ(s, t, ~r) and t̄ = σ(t, t, ~r) = α(t, ~r) lie
in a maximal subgroup G of S. Since s̄ and t̄ are RadH(S)-equivalent,
the element

t̄−1s̄ = α(t, ~r)ω−1
(

α(t, ~r)ωα(s,~r)α(t, ~r)ω
)ω+1

= α(t, ~r)ω−1α(s,~r)α(t, ~r)ω

belongs to the unipotent radical GH. In particular, if we let α = α1,
since the elements (αk)(t, ~r) (k = 1, . . . ,m + 1) all lie in G and W
characterizes the H-radical, the following equality holds for every w ∈
W :

w
(

t̄−1s̄, α2(t, ~r), . . . , αm+1(t, ~r)
)

= α1(t, ~r)
ω,

which shows that S satisfies (6.2).
Conversely, let S be a finite semigroup that satisfies the pseudoidenti-

ties (6.1) and (6.2). By Theorem 5.2, it suffices to show that S/RadH(S)
satisfies each of the pseudoidentities ui = vi. Consider again the values
s and t resulting from an evaluation of the implicit operations ui and vi

in S, respectively. We claim that (s, t) ∈ RadH(S). By the definition of
RadH(S), we should show that s ≡(J,G,GH) t for every regular J -class J
of S, any maximal subgroup G of S contained in J , and “coordinates”
ra, lb. Recall that the subgroup and coordinates may be suitably chosen
since the congruence ≡(J,G,GH) does not depend on them.
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Let x̄, ȳ ∈ J , for a regular J -class J , and suppose that x̄sȳ ∈ J .
Let z̄ ∈ S be such that x̄sȳz̄ is an idempotent in J . Then, from the
pseudoidentity (6.1) we deduce that x̄sȳz̄ =

(

(x̄sȳz̄)ωx̄tȳz̄(x̄sȳz̄)ω
)ω

which shows that

x̄ ≤J x̄sȳz̄ ≤J x̄tȳz̄ ≤J x̄tȳ ≤J x̄ (6.5)

and so x̄tȳ ∈ J . Conversely, assuming that x̄tȳ ∈ J , let z̄ ∈ S be
such that x̄tȳz̄ is an idempotent in J . Complete the evaluation of the
variables in the pseudoidentity ui = vi to an evaluation of those in
any pseudoidentity from (6.2), by making the following assignment to
the new variables: x 7→ x̄, y 7→ ȳz̄, zi 7→ x̄tȳz̄ (i = 1, . . . ,m). Then
(6.2) yields that x̄sȳz̄ is a factor of x̄tȳz̄ from which it follows, as in (6.5)
with s and t interchanged, that x̄sȳ ∈ J .2

Suppose next that the six elements a, b, r, l, rasbl, ratbl lie in J and
that the H-class of rasbl is a group G. Then s̄ = rasbl and t̄ = ratbl
are both elements of G. Let c1, . . . , cm be arbitrary elements of G and,
for brevity, denote (c1, . . . , cm) by ~c. Since the (m+1)-tuple of implicit
operations (α1, . . . , αm+1) is group-generic, s̄ = α1(s̄,~c ), t̄ = α1(t̄,~c ),
and ci = αi+1(s̄,~c ) (i = 1, . . . ,m). We apply the pseudoidentities (6.2)
with the evaluation of the new variables defined by x 7→ ra, y 7→ bl,
and zi 7→ ci, to obtain w(t̄−1s̄, c1, . . . , cm) = t̄ω whenever w ∈ W . Since
W is assumed to be a characterization of the H-radical, it follows that
t̄−1s̄ ∈ RadH(G) which shows that s ≡(J,G,GH) t and completes the
proof. �

As particular cases of Theorem 6.1, we exhibit bases of pseudoiden-
tities for pseudovarieties of the form LH©m V for Fitting pseudovarieties
H of special interest.

Corollary 6.2. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities

and let V = [[Σ]]. Then the Mal’cev product LGnil ©m V is defined by the

pseudoidentities (6.1) together with:
[

β(xviy, z), ωα(xviy, z)ω−1α(xviy, z)α(xuiy, z)ω
]

= β(xviy, z)ω , (6.6)

with i ∈ I, where x, y, z are new variables and (α, β) is a fixed group-

generic pair of implicit operations. If V is finitely based then so is

LGnil ©m V. �

2This argument is adapted from [30] where, among other results, a basis of pseu-
doidentities for LG©m V is given in terms of a basis of pseudoidentities for V. The
basis in question consists precisely of the pseudoidentities

`

(xuiy)ω
xviy(xuiy)ω

´ω
=

(xuiy)ω and its dual, which is obtained by interchanging ui and vi.
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Corollary 6.3. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities

and let V = [[Σ]]. Then the Mal’cev product LGp ©m V is defined by the

pseudoidentities (6.6) together with:

(

(xviy)ω−1
(

xuiy(xviy)ω
)ω+1

)pω

= (xviy)ω (6.7)

with i ∈ I, where x, y, z are new variables and (α, β) is a fixed group-

generic pair of implicit operations. If V is finitely based then so is

LGp ©m V.

Proof. The proof is obtained by minor adaptations of the proof of The-
orem 6.1 taking into account that, in a finite group G, an element a lies
in GGp

if and only if it lies in GGnil
and it has order a power of p. �

Note that if the implicit operations ui, vi of the basis of pseudoiden-
tities of V are computable then so are the implicit operations of the
bases of the Mal’cev products given by Corollaries 6.2 and 6.3.

The following result depends on the Bandman et al conjecture.

Corollary 6.4. Let Σ = {ui = vi : i ∈ I} be a set of pseudoidentities

and let V = [[Σ]]. If the Bandman et al conjecture holds and {u} is a

binary characterization of the solvable radical, then the Mal’cev product

LGsol ©m V is defined by the pseudoidentities (6.1) together with:

u
(

α(xviy, z)ω−1α(xviy, z)α(xuiy, z)ω, β(xviy, z)
)

= β(xviy, z)ω,

with i ∈ I, where x, y, z are new variables and (α, β) is a fixed group-

generic pair of implicit operations. Hence, still under the hypothesis

that the Bandman et al conjecture holds, if V is finitely based then so

is LGsol ©m V. �

Another type of application is the following. Say that a pseudovari-
ety V has rank n if it admits a basis of pseudoidentities in n variables.
Equivalently, V has rank n if a finite semigroup S lies in V if and only
if all its n-generated subsemigroups lie in V.

Corollary 6.5. Suppose that the Fitting pseudovariety H admits an

(m + 1)-ary characterization and that the pseudovariety V has rank n.

Then LH©m V has rank at most n + m + 2. �

In particular, in view of Theorem 4.1 and Proposition 4.4, if V has
rank n then LGsol ©m V has rank at most n + 4.
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