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Abstract

The Hodrick-Prescott (HP) method was originally developed to smooth time series, i.e. to get a smooth

(long-term) component. We show that the HP smoother can be viewed as a Bayesian linear model with a

strong prior for the smoothness component. Extending this Bayesian approach in a linear model set-up is

possible by a conjugate and a non-conjugate model using MCMC. The Bayesian HP smoothing model is also

extended to a spatial smoothing model. We have to define spatial neighbors for each observation and we can

use in a similar way a smoothness prior as for the HP filter in time series. The new smoothing approaches

are applied to the (textbook) airline passenger data for time series and to the problem of smoothing spatial

regional data. This new approach can be used for a new class of model-based smoothers for time series and

spatial models.
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1. Introduction

Regional data smoothing from a spatial point of view is an important issue for many applied regional

scientists. In this paper, I consider the HP model from a Bayesian point of view and I show that the

HP smoother is the posterior mean of a (conjugate) Bayesian linear regression model that uses a strong

prior weight for the smoothness prior. The classicl approach to HP smoothing is reviewed in section 2 and

the Bayesian version is introduced in section 3. I extend this model by introducing covariates in a larger

regression model to define the extended HP (eHP) smoother in section 4, a model-based approach for data

smoothers. Furthermore, I show that this approach allows define also a spatial smoothness concept that

allows us to apply the Bayesian version of the HP filter to cross-sectional or regional data in section 5 and

the spatial extended model is discussed in section 6. Both approaches are based on a distance concept to

define spatial nearest neighbors (NN). An example for time series and for spatial regional GNP data in

Europe will demonstrate this new smoothing approach in section 7. A final section concludes.

1.1. The HP filter for smoothing time series

The classical HP filter is a parametric estimation method to obtain a smooth trend component via the

solution to the minimization of a loss function for a fixed (known) λ penalty parameter. There are 2 terms

in the loss function. The first term in the loss function is a well-known measure of the goodness-of-fit, the

error sum of squares (ESS). The second term punishes variations in the long-term trend component. The

parameter λ is the key to the smoothing problem since it determines the trade-off between goodness-of-fit

and the smoothness of the trend component. In the limit as λ→∞ the trend becomes as smooth as possible

and eventually creates a sequence of parameter estimates that can be interpreted as cyclical component.

When λ → 0 then the trend component becomes equal to the data series yt and the cyclical component

approaches zero.

Many researchers have used the Hodrick and Prescott (1980, 1997) smoothing method (often called the

HP filter). Hodrick and Prescott originally applied this procedure to post-war US quarterly data and their

findings have since been extended in a number of papers including Kydland and Prescott (1990) and Cooley

and Prescott (1995). Also the HP-filter is popular to analyse the business cycles and many researchers

compare their results with those obtained for the US data. Blackburn and Ravn (1992) investigate UK

business cycles, Danthine and Girardin (1989) the Swiss cycles, Dolado, Sebastian and Valles (1993), Puch

and Licandro (1997) and Borondo, Gonzalez and Rodriguez (1999) study Spanish economic data, and Kim,

Buckle and Hall (1994) look at data from New Zealand.
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Hodrick and Prescott take λ as a fixed parameter, which they set equal to 1600 for US quarterly data.

Their choice of this value was based upon a prior about the variability of the cyclical part relative to the

variability of the change in the trend component. Hodrick and Prescott (1997, p.4) state that:

”If the cyclical components and the second differences of the growth components were identically and

independently distributed, normal variables with means zero and variances σ2
1 and σ2

2 (which they are not),

the conditional expectation of the τ , given the observations, would be the solution to [the minimisation

problem (3)] when
√
λ = σ1/σ2. ... Our prior view is that a 5 percent cyclical component is moderately

large, as is a one-eight of 1 percent change in the growth rate in a quarter. This led us to select
√
λ = 5/(1/8)

or λ = 1600.”

Kydland and Prescott (1990, p. 9) argue further in favor of the choice of λ = 1600 for quarterly post war

US data because:

”With this value, the implied trend path for the logarithm of real GNP is close to the one that students

of the business cycle and growth would draw through a time plot of the series.”

2. The HP filter as minimizer of a loss function

This section describes the HP smoothing problem from a classical point of view of parameter estimation.

Starting point is the following (overparameterized) regression problem for the observations y = [y1, ..., yT ]′

y = τ + ε with ε ∼ N [0, σ2IT ], (1)

where the HP smoother is defined as parameter vector τ = [τ1, ..., τT ]>. The classical approach for this

problem is based on an optimisation of a special loss function:
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Definition 1 (The smoothed squared loss (SSL) function). To obtain a HP-type smoother
for the observations y in model (1) we define the smoothed squared loss (SSL) function that yields
the smoother ŷ:

ŷ = min
τ

SSL(τ ) with SSL(τ ) = ESS(τ ) + λ ∗ smooth(τ ) (2)

where the ESS is defined as error sum of squares of the ideo-parameterized (i.e. equal sized) and
homoskedastic regression model:

ESS(τ ) =
∑
t

(yt − τ t)2.

The smooth(τ ) is a (quadratic) penalty function on the roughness of the fit: smooth(τ ) =
[∆k(τ )]2, where ∆k(τ ) can be a differencing function of fixed order (usually k = 2) between
neighboring observations of y. (Note that the notion of neighbors assumes a metric for all the
observations in y.) λ is the known penalty parameter for the smooth.

The original HP filter problem can be defined as a minimizer of the smoothed square loss (SSL) function,

which has two components, the goodness of fit and the smooth: SSL = ESS + λ ∗ smooth or

τ̂ = min
τ

SSL(τ ) with SSL(τ ) =

T∑
t=1

(yt − τt)2 + λ

T∑
t=1

(∆2τt)
2. (3)

The solution to this problem is given by the next theorem.
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Theorem 1. [The HP smoother as posterior mean]

We consider the regression problem in (1) and we like to obtain the minimum SSL estimate
of τ under the SSL function as in Definition 1. The minimum of the SSL function is under the
assumption of a normal distribution given by

min
τ

[(y− τ )>(y− τ ) + λτ>K>Kτ ] = τ ∗∗, (4)

which is the posterior mean1 of the equivalent Bayesian model

τ ∗∗ = [IT + λK>K]−1y = A∗∗y. (5)

with the posterior precision matrix

A−1∗∗ = IT + λK>K. (6)

The second order2 differencing matrix K : (T − 2)× T is given by

K =


1 −2 1 0 0 ... 0 0 0
0 1 −2 1 0 ... 0 0 0

... ... ... ... ... ...
0 0 0 0 0 ... 1 −2 1

 (7)

Proof 1. The proof relies on rewriting the SSL function SSL = ESS +λ ∗ smooth as a sum of 2 quadratic
forms in τ :

ESS(τ ) = (y− τ )>(y− τ ) and smooth(τ ) = τ>K>Kτ (8)

and to apply Theorem 9 of the appendix:

(y− τ )>(y− τ ) + λτ>K>Kτ = (τ − τ ∗∗)′(τ − τ ∗∗) + y>λK>K(λK>K + IT )−1ITy (9)

where IT is a T × T identity matrix, and K = {kij} is a (T − 2)× T matrix with elements given by

kij =

 1 if i = j or j = i+ 2,
−2 if j = i+ 1,
0 otherwise.

(10)

The second quadratic form is centered around zero, therefore the posterior mean τ ∗∗ has a simple form
in (5). From the combination of quadratic forms we see that only the first term involves τ , while the second
is independent of τ . Therefore the whole expression is minimized if the first term is set to zero and τ is
set equal to the posterior mean τ ∗∗. For the HP smoother the equivalent Bayesian model is therefore the
following informative normal (homoskedastic) regression model:

y ∼ N [τ , σ2IT ] with Kτ ∼ N [0, (σ2/λ)IT−2]. (11)

2.1. Properties of the HP smoothness filter

The inversion of the posterior precision matrix A−1∗∗ = IT + K′λK follows the inversion lemma3

3(A+BCB′)−1 = A−1 −A−1B(C−1 +B′A−1B)−1B′A−1
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A∗∗ = (IT + K′λK)−1 = IT −K>(IT−2λ
−1 + KK>)−1K. (12)

For the HP smooth in (5) we find now

y∗∗ = (IT + λK>K)−1y = [IT −K>(IT−2λ
−1 + KK>)−1K]y

= y−K>(IT−2λ
−1 + KK>)−1Ky = y− ê. (13)

The second term ê = Pλy with the projector

Pλ = K>(IT−2λ
−1 + KK>)−1K (14)

estimates the rough or noise component of this smoothness problem:

data = fit + rough or y = y∗∗ + ê.

A simple measure for the size of the smoothing is the variance of the rough: V ar(ê) =
∑
t ê

2
t/T . Note that

the mean of ê is zero since K1T = 1′TK′ = 0 and therefore we have the property ȳ = ȳ∗∗, which is also

found for least squares (LS) decompositions.

3. The HP filter as Bayesian smoothness model

In the Bayesian framework, we also start from the regression model (15)

y = τ + ε, ε ∼ N [0, σ2IT ], (15)

with the identity matrix as ”regressors” and where τ : T × 1 is the equal-sized parameter (or ideo-

parameter) vector to be estimated and the error term ε is assumed to be homoskedastic. The prior is

obtained in the following way: we specify for τ a prior density for a transformed parameter model, where

the transformation is the second order differencing matrix K : (T − 2)× T :

Kτ ∼ N [0, (σ2/λ)IT−2]. (16)
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In this special case with prior mean 0 it is easy to see that the prior is equivalent to4 the distributional

assumption

τ ∼ N [0, (σ2/λ)(K>K)−1 = N [0, σ2A∗] with A∗ = (λK>K)−1. (17)

The problem with the distribution in (17) is that the covariance matrix A∗ = (λK>K)−1 is not of full rank

and defines a singular, rank deficient normal distribution5. But this problem of rank deficiency of the prior

is not a problem in a Bayesian analysis, as long as the likelihood function is normally distributed with full

rank covariance matrix: the posterior precision is the sum of 2 precision matrices where at least one of them

must have full rank.

Since λ is in the denominator it has the form of an hypothetical sample size n′ = λ. In a typical regression

application we give the prior information only a small weight, like the equivalent of 1 or 2 sample points.

Thus, if we specify a large λ, then this means that we give the prior density a much larger weight than the

sample mean (or likelihood). In this case the posterior mean (or HP) smooth is shifted to the prior location,

which is zero, but in the transformed (= differenced) form of the model. This means that the fit is smoothed

towards a function that minimizes the second order difference of the τ .

It is interesting to note that classical and Bayesian smoothing requires strong prior information. In

Bayesian terms this is made explicit while in classical terms this information is implicitly hidden in the term

”smoothing parameter”. But strong priors follows the opposite principle of objectivity or non-involvement

that is so often promoted in the case of inference for regression coefficients: For inference we try to minimize

the influence of the prior (small n′), while for the smoothing problem we maximize the influence of the prior

(large n′ = λ).

Following the textbook Bayesian regression approach, the posterior mean of the parameters µ is given

by the usual combination of prior and likelihood and relies on the algebraic solution of Theorem 9.

This is a matrix weighted average between the prior location 0 and the ML location y. Note that in

the Bayesian framework it does not matter that the τ parameter has T components, as many as there are

observations, as long as there is a proper prior distribution.

3.1. Conjugate multi-normal-gamma (mNG) inference for HP smoothing

First, we describe the conjugate smoothing approach that is in analogy to the Normal-Wishart sampling

(NWS) model that can be found in Polasek (2010) and is listed the appendix.

4p(τ ) ∝ exp[−0.5(Kτ )>(Kτ )λ/σ2] = exp[−0.5τ>K>Kτλ/σ2] ∝ N [0, (σ2/λ)(K>K)−1]
5Note that the inverse does formally not exist and therefore it is more elegant to define the multivariate normal distribution

for such cases by the precision matrix.
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We consider the conjugate normal-gamma model for the inference of an unknown mean µ in a univariate

sampling problem (with sample size n):

y = µ+ ε, ε ∼ N [0, σ2IT ], or y ∼ N [µ, σ2Σ0]. (18)

To emphasize the similarity of the HP smoothing model with the Bayesian model where the prior is assigned

a hypothetical sample size, we set λ = n′ in the following theorem.

Theorem 2. [The multivariate normal-gamma sampling (mNGS) model]
We consider the smoothing model in (18) with prior density as in (17), then the conjugate Bayesian inference
can be done in the following way.

The prior distribution is given as a normal-gamma density

(µ, σ−2) ∼ NnΓ[µ∗,A∗, s
2
∗, n∗]

and the likelihood of the observed data in the set

Y = {yi ∼ N [µ, σ2Σ0], i = 1, . . . , n}

yields the posterior distribution

(µ, σ−2) | x ∼ NnΓ[µ∗∗,A∗∗, s
2
∗∗, n∗∗].

with the parameters

µ∗∗ = A∗∗(n
′K>Kµ∗ + Σ−10 ȳ),

A−1∗∗ = n′K>K + Σ−10 ,

n∗∗ = n∗ + n,

α = y>n′K>K(n′K>K + Σ−10 )Σ0y

n∗∗s
2
∗∗ = n∗s

2
∗ + ns2 + α

The current error sum of squares is ns2 = (y − µ)>(y − µ) and α is the discrepancy term that serves as a
penalty term for the variance in all conjugate models.

Proof 2.
The likelihood of the above smoothing model (18) is simply derived from y ∼ N [µ, σ2Σ0].
Next we define a special ’multi-normal-gamma’ or family of mNG conjugate distribution that follows

from the normal-gamma (NΓ ) distribution.

(µ, σ−2) ∼ NnΓ[µ∗,A∗, σ
2
∗Σ0, n∗], (19)

where Σ0 = In is a known covariance matrix. (A normal-Wishart (NW) distribution can also be assumed
but the posterior information for the covariance matrix is very weak because there is only one observation.)
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Similar as for the mNΓ distribution we define the mNΓ distribution as

p(µ, σ−2) = p(µ | σ−2)p(σ−2) = N [µ | µ∗, σ2/n′(K>K)−1] Γ[σ−2 | s2∗, n∗]

∝ exp

{
− 1

2σ2
((µ− µ∗)′n′K

>K(µ− µ∗))
}
exp

{
− 1

2σ2
n∗s

2
∗

}
. (20)

Therefore the pdf of the mNΓ = NnΓ distribution has the following form

p(µ, σ−2) ∝ (σ−2)
n+n∗

2 −1exp

{
− 1

2σ2

(
(µ− µ∗)′n′K

>K(µ− µ∗) + n∗s
2
∗
)}

.

This has the structure of a NΓ distribution6 but only the µ vector is n-dimensional. Now we find the
posterior mNΓ distribution by multiplying the prior with the likelihood:

p(µ, σ−2 | X) ∝ (σ−2)
n+n∗

2 −1exp

{
− 1

2σ2

(
(µ− µ∗)′n′K

>K(µ− µ∗) + n∗s
2
∗
)}

· exp

{
− 1

2σ2
(y− µ)′Σ−10 (y− µ)

}
∝ NnΓ[µ∗∗,A∗∗, σ

2
∗∗Σ0, n∗∗]. (22)

We have to apply the theorem of combining the 2 quadratic forms in µ (see Appendix) to get

(µ− µ∗∗)>H∗∗(µ− µ∗∗) + (y− µ∗)>n′K
>K(n′K>K + Σ)−1Σ(y− µ∗) (23)

The second term is called discrepancy term between the observation y and the prior location which is zero.
Thus the discrepancy is for µ∗ = 0 given by

α = y>n′K>K(n′K>K + Σ)−10 Σ0y,

and the parameters µ∗∗ and A∗∗ are given as in (19).

The posterior multi-normal-gamma NnΓ density can be factored as

p(µ | σ−2) = N [µ | µ∗∗, σ2
∗∗ = σ2/n′′] Γ[σ−2 | s2∗∗, n∗∗]

with the marginal distribution for µ being a t-distribution with n∗∗ d.f. given by

µ | y ∼ t
[
µ∗∗, s

2
µ =

s2∗∗
n′′

, n∗∗

]
(24)

The smoothness predictor of the y observations is in the Bayesian case is given by the posterior distribu-

tion of µ. The point estimate of the smoother is the point estimate of the posterior distribution. A common

6Recall that the NΓ [µ∗, In, s
2
, n∗] prior distribution is defined as

p(µ, σ−2) ∝ (σ−2)
n+n∗

2
−1exp

{
−

1

2σ2

(
(µ− µ∗)

>(µ− µ∗) + n∗s
2
∗
)}

(21)
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choice is the posterior mean which is given by (19)

µ∗∗ = A∗∗(n
′K>Kµ∗ + Σ−10 ȳ), (25)

For one observation y and Σ0 = In this is the same formula as in the classical case in (13): ŷ = µ∗∗

µ∗∗ = (IT + λK>K)−1y = [IT + K>(IT−2λ
−1 + KK>)−1K]y. (26)

The reason is that we have only one observation for inference and that the smoothness assumption is brought

into the classical model in the same way as Bayesian enter their prior information.

The smoothed series is obtained by prediction, where the point prediction is obtained again via the

posterior mean as in (25).

3.2. MCMC: A non-conjugate Bayesian HP smoother

Now we show how MCMC can be used to produce a non-conjugate Bayesian HP smoother.

Theorem 3. [MCMC for HP-smoothing for non-conjugate priors]

The posterior simulator of the parameters θ = (τ , σ−2) for the simple HP smoothing model
(15) with prior (17) is given by the following iteration:

1. Get a starting value for σ2 = V ar(y);

2. Draw τ from N [τ | τ ∗∗,A∗∗];
3. Draw σ−2 from Γ[σ−2 | s2∗∗n∗∗/2, n∗∗/2];

4. Repeat until convergence.

The hyper-parameters of the fcd’s can be found in the proof: (27) and (28).

Proof 3. 1. The fcd for the residual precision σ−2

p(σ−2 | τ ,y) ∝ Γ
[
σ−2 | s2∗∗, n∗∗

]
we find a gamma distribution with the parameters

n∗∗ = n∗ + n,

n∗∗s
2
∗∗ = n∗s

2
∗ +

n∑
i=1

(yi − τi)2 (27)

2. The fcd for the τ coefficients is

p(τ | y, θc) = N [τ | 0,A∗] · N [y | τ , σ2IT ]

= N [τ | τ ∗∗,A∗∗]
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with the parameters τ ∗∗ = [IT + λK>K]−1y = A∗∗y and

A−1∗∗ = A−1∗ + σ−2In. (28)

4. The extended regression and smoothing model (R’n’S: regression and smoothing)

In this section we extend the smoothing model in (1) to a more general regression framework, where the

additional regressors control for other (ideosyncratic) influences:

y = IT τ + Xβ + ε, ε ∼ N [0, σ2IT ]. (29)

The conditional mean (or fit) of this model is now defined by

µ = IT τ + Xβ = [IT : X]γ = Zγ

with Z = [IT : X] and γ>= (τ>,β>). (30)

Note that now we have T + p parameters to estimate in γ since β : p × 1. The classical approach is based

on an optimisation problem with second order smoothness restriction similar to the Definition 1

min
τ

SSL(τ ) with SSL(τ ) =

T∑
t=1

(yt − µt)2 + λ

T∑
t=1

(∆2µt)
2. (31)

The penalty term uses the first and second differences of the µ parameter:

∆µt = µt − µt−1 = τt − τt−1 + (xt − xt−1)β, for t = 1, ..., T, (32)

and ∆2µt = ∆µt −∆µt−1.
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4.1. The Bayesian extended HP smoothness model

In this section we discuss the extended HP smoothing problem (eHP) from a classical and a Bayesian

point of view.

Definition 2 (The smoothed squared loss (SSL) function for extended regression). We
consider the extended (homoskedastic) regression model y = τ + Xβ + ε as in (29). Conditional
on β, the SSL function stays the same, only the ESS function changes and includes the regression
term of the extended model:

ESS(τ | β) =
∑
i

(yi − τ i − xiβ)2,

where xi is the i-th row of the regressor matrix X. This yields the smoother ŷβ:

ŷβ = min
τ

SSL(τ | β) with SSL(τ | β) = ESS(τ | β) + λ ∗ smooth(τ ) (33)

where the smooth is the quadratic penalty function as in Definition 1.

From this definition we see that a joint minimum SLL estimate can be found by minimizing over the joint

parameters (τ ,β). This is not the same as the HP smoother of the residuals when we purge (by regression)

from the y the Xβ component. Let the OLS residuals be û = y −Xβ̂ with Xβ the OLS estimate, then

ûHP can be obtained from Definition 1. But ûHP 6= ŷeHP as can be seen from in the application in Figure

1. Therefore the eHP method allows to generalize the HP approach to models with trends, outliers or other

types of breaks or regime shifts.

For the Bayesian solution we have to construct a prior distribution for γ that uses 2 hypothetical sample

sizes, λ is the one for the τ , and n2 for the regression parameters β.

The Bayesian approach for the extended HP filtering problem with additional regressors is straight

forward. Using the stacked γ parameter we apply conjugate normal-gamma model for the inference of an

unknown mean µ in a univariate sampling problem:
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Definition 3 (eHP: The Bayesian HP smoother for the extended regression model).
We consider the normal linear regression model

y = Zγ + ε, ε ∼ N [0, σ2IT ], or y ∼ N [Zγ, σ2Σ0], (34)

with γ =

(
τ
β

)
and where Σ0 = In is a known covariance matrix.

Now we use a special ’multi-NG’ conjugate distribution that uses blocks from the NΓ distribution.
The prior is

(γ, σ−2) ∼ Nn+pΓ[γ∗,A∗, σ
2
∗, n∗], with A∗ = diag(λK>K, n2Ip)

−1 =

(
(λK>K)−1 0

0 Ip/n2

)
(35)

being a block-diagonal matrix. λ is the large hypothetical sample size for the τ parameter, with
the covariance matrix K>K that derives from the second order smoothness assumption, and the
small n2 for the rather non-informative prior information for the β : p×1 regression coefficients.

The Bayesian inference with conjugate normal-gamma distributions is shown in the next theorem.

Theorem 4. [The conjugate extended HP smoothing model
We consider the extended HP smoothing model in (34) with parameters θ = (γ, σ−2) as in Definition 3. The
conjugate Bayesian inference follows the following steps:

The prior distribution is given as a multi-normal-gamma (mNG) density

(γ, σ−2) ∼ Nn+pΓ[γ∗,A∗, s
2
∗, n∗]

and the likelihood of the data
y ∼ N [Zγ, σ2Σ0]

yields the posterior distribution

(γ, σ−2) | y ∼ NnΓ[γ∗∗,A∗∗, s
2
∗∗, n∗∗].

with the parameters

γ∗∗ = A∗∗(A∗γ∗ + Σ−10 y),

A−1∗∗ = A−1∗ + Σ−10 ,

n∗∗ = n∗ + n,

n∗∗s
2
∗∗ = n∗s

2
∗ + ns2 + α

α = y>A∗(A∗ + Σ0)−1Σ0y

The current error sum of squares is ns2 = (y−Zγ)>(y−Zγ) and α is the discrepancy term that serves
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as a penalty term for the variance in all conjugate models.

Proof 4.
The likelihood of the above smoothing model (18) is simply derived from y ∼ N [Zγ, σ2Σ0].
The joint prior for the eHP model is under block independence

p(γ, σ−2) ∝ (σ−2)
n+n∗

2 −1exp

{
− 1

2σ2

(
(γ − γ∗)′λK>K(γ − γ∗) + n∗s

2
∗
)}

exp

{
− 1

2σ2
(γ − γ∗)′n2Ip(γ − γ∗)

}
.

We find the posterior mNΓ distribution by multiplying the prior with the likelihood:

p(γ, σ−2 | X ) ∝ (σ−2)
n+n∗

2 −1exp

{
− 1

2σ2

(
(γ − γ∗)′λK>K(γ − γ∗) + n∗s

2
∗
)}

· exp

{
− 1

2σ2
(y− γ)′Σ−10 (y− γ)

}
∝ NnΓ[γ∗∗,A∗∗, σ

2
∗∗, n∗∗]. (36)

We have to apply Theorem 9 for combining quadratic forms (see Appendix)

(y− γ)>Σ−10 (y− γ) + (γ − γ∗)>λK>K(γ − γ∗) =

= (γ − γ∗∗)>H∗∗(γ − γ∗∗) + (y− γ∗)>n′K
>K(n′K>K + Σ0)−1Σ0(y− γ∗). (37)

The second term is called discrepancy term between the γ and the prior location which is zero. This discrep-
ancy term is for γ∗ = 0 given by

α = y>n′K>K(n′K>K + Σ0)−1Σ0y,

and the parameters µ∗∗ and Ã∗∗ are given as in (19). Note that the posterior precision can be written
in a partitioned form

Ã
−1
∗∗ = A−1∗ + Z′Σ0Z =

=

(
λK>K 0

0 n2Ip

)
+

(
In X
X> X>X

)
=

(
In + λK>K X

X> n2Ip + X>X

)
. (38)

The posterior mean in the eHP model is given by

γ∗∗ =

(
τ∗∗
β∗∗

)
= Ã∗∗

(
y

X>y

)
(39)

For simplification we briefly discuss the semi-informative smoothing model for n2 = 0.

Theorem 5 (The semi-conjugate HP smoother for the extended regression model). We consider
the model (34) with demeaned (centered) y and X variables, so that KX 6= 0. Furthermore we assume a
prior as in (35) with n2 = 0, which we will call ’partial informative’ or ’semi-conjugate’ HP model.
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The extended HP smoother in (64) is given by

τ ∗∗ = yHP −XHP β̂λ, with (40)

β̂λ = (X>PλX)−1X>Pλy,

(41)

with A∗∗ = In − λK>K and Pλ in (14). The simple HP smoother of y and X are given by

yHP = (In + λK>K)−1y(= τ̂ ) (42)

XHP = (In + λK>K)−1X(= X̂). (43)

The second term XHP b̂λ acts as a correction term to the original HP smoothing problem (i.e.
yHP ) without the regression part Xβ. The correction term is a special prediction vector of a
difference-purged regression model

y = X〈K〉βλ + u with u ∼ N [0, σ2
uP
−1
λ ] and X〈K〉 = P

1/2
λ X, (44)

where Pλ is the residual projection matrix and X〈K〉 is the regressor matrix with the influence of
the differencing matrix K removed.
Note that the LS estimator of βλ is close to the LS estimator for λ→∞. In this case Pλ = P∞
and has the idempotency property of projectors P2

∞ = P∞ and X〈K〉 is given by P∞X. The
limiting LS estimate is

β̂∞ = (X>〈K〉X〈K〉)
−1X>〈K〉y,

which is the usual OLS estimator but with purged regressors X〈K〉.

Proof 5. In case of n2 = 0, i.e. in the partial non-informative case, the smoothing result is

τ ∗∗0 = τ̂ −A−1∗∗X(X>PλX)−1X>y

= τ̂ −A−1∗∗Xβ̂λ

= yHP − y〈Xb〉, (45)

with y〈Xb〉 = A−1∗∗Xβ̂λ denotes the component that contains the X regressors and G is

G = (Ix −X>A−1∗∗X)−1 = (n2Ip + X>(Ip −A−1∗∗ )X)−1 = (n2Ip −X>PλX)−1 (46)

The fully non-informative case can be obtained because Pλ reduces for λ→∞ to

Pλ = In −A−1∗∗ → P∞ = (K>(KK>)−1K) (47)

and that β̂λ can be expressed as

β̂λ = (Ẋ
>
(I/λ+ KK>)−1Ẋ)−1Ẋ

>
(I/λ+ KK>)−1ẏ (48)

with Ẋ = KX and ẏ = Ky. This estimator can be viewed as a generalized ridge estimator (see Hoerl and
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Kennard (1970)) since we add ε = 1/λ of the unity matrix to the singular KK> matrix.

4.2. MCMC for the extended HP (eHP) smoother model

In a Bayesian HP smoothing model we have to proceed in the usual way and specify a prior distribution

for the parameters in (29):

Kτ ∼ N [0, (σ2/λ)IT−2], β ∼ N [β∗,H∗], σ−2 ∼ Γ[σ2
∗n∗/2, n∗/2]. (49)

The estimation of the parameters in the extended HP model (29) can be done by a simple MCMC

procedure.

Theorem 6. [MCMC for the extended HP (eHP) model]

The posterior simulator of the parameters θ = (β, τ , σ−2) of the extended HP model (29) with
prior (49) is given by the following iteration:

1. Start with σ2 = σ2
OLS in the auxiliary model y = Xβ + u;

2. Draw β from N [β | β∗∗,H∗∗];
3. Draw τ from N [τ | τ ∗∗,A∗∗];
4. Draw σ−2 from Γ[σ−2 | s2∗∗n∗∗/2, n∗∗/2];

5. Repeat until convergence.

The hyper-parameters of the fcd’s are given in the proof: (51), (53) and (55).

Proof 6. The full conditional distributions (fcd) are:

1. The fcd for the beta regression coefficients is

p(β | y, θc) = N [β | b∗,H∗] · N [y | Xβ, σ2IT ]

= N [β | b∗∗,H∗∗] (50)

with the parameters

H−1∗∗ = H−1∗ + σ−2X>X,

b∗∗ = H∗∗[H
−1
∗ b∗ + σ−2X>(y− τ )] (51)

2. The fcd for the residual precision σ−2

p(σ−2 | τ ,y) ∝ Γ
[
σ−2 | n∗∗s2∗∗, n∗∗/2

]
(52)

we find a gamma distribution with the parameters

n∗∗ = n∗ + n,

n∗∗s
2
∗∗ = n∗s

2
∗ +

n∑
i=1

(yi − τi − xiβ)2 (53)
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3. The fcd for the τ coefficients is

p(τ | y, θc) = N [τ | 0,A∗] · N [y | τ + Xβ, σ2IT ]

= N [τ | τ ∗∗,A∗∗] (54)

with the parameters τ ∗∗ = A∗∗y and

A−1∗∗ = A−1∗ + σ−2X>X. (55)

5. Application: Smoothing the airline passenger series

For the time series smoothing example we use the airline passenger series from the web site: ”Time Series

Data Library” of Hyndman (2010). The aim is to show that there is a difference between the smoothed

series using the extended HP filter and a simple HP smooth of the residuals. We can remove either a linear

or a quadratic trend from the airline passenger series.

First, we look at the regression estimates after fitting the series with a linear or a quadratic trend:

lm(formula = y ~ a); Residuals:
Min 1Q Median 3Q Max

-0.134016 -0.045113 -0.007798 0.042291 0.128280
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4047545 0.0050323 477.87 <2e-16 ***
a 0.0043640 0.0001211 36.05 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.06038 on 142 degrees of freedom
Multiple R-squared: 0.9015, Adjusted R-squared: 0.9008
F-statistic: 1300 on 1 and 142 DF, p-value: < 2.2e-16

lm(formula = y ~ a + a2); Residuals:
Min 1Q Median 3Q Max

-0.127143 -0.038184 -0.009388 0.042123 0.122287
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.421e+00 7.343e-03 329.717 < 2e-16 ***
a 4.373e-03 1.178e-04 37.122 < 2e-16 ***
a2 -9.515e-06 3.168e-06 -3.004 0.00316 **
---
Signif. codes: 0 *** 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.05875 on 141 degrees of freedom
Multiple R-squared: 0.9074, Adjusted R-squared: 0.9061
F-statistic: 691 on 2 and 141 DF, p-value: < 2.2e-16

The eHP filter of model (34) is shown in Figure 2 where we compare the smoothed series with the simple
HP smooth after having removed the quadratic trend from the airline passenger series. We see that the
peaks of the smooth are at the same positions but the extended HP smooth produces a smoother ”HP
smooth”.

6. A Spatial HP smoothness procedure

In analogy to the HP filter for time series models we consider a spatial HP filter model based on a spatial
autoregression (SAR) model of first order, which is defined as (see Anselin 1988)

y = ρWy + τ + ε, with ε ∼ N [0, σ2In], (56)
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Figure 1: eHP smooth of airline passengers with quadratic trend

where W is a row-normalized weight matrix, Wy is the first order spatial lag of y, and ρ is the spatial
correlation coefficient (see Lesage and Pace 2009). Model (56) can be viewed as a SAR(1) model is equivalent
to the transformed model

Ry = τ + ε, or y ∼ N [R−1τ , σ2(R>R)−1]

with the spatial spread matrix R = In − ρW.
Using the SSL principle (1) we can define a spatial HP-type smoothness filter. We assume a HP smoothing

model based on a SAR(1) model

y ∼ N [ρWy + τ , σ2In] or y ∼ N [R−1τ , σ2(R>R)−1] (57)

with the spread matrix R = (In − ρWy).
For the HP-type smoothing problem in space we have to define a metric: what is a first and second order

spatial difference? For the nearest neighbors (NN) metric this is easy: the first order is the difference to the
first NN and the second order is the difference to the second order NN. In analogy to the HP filter (3) for
time series we can write the spatial HP-type smoothing problem as the minimizer of the SSL function as in
Definition 1

τ ∗∗ = min
τ

SSL(τ ) with

SSL(τ ) = (Ry− τ )>(Ry− τ ) + λ

n∑
i=1

(w
(0)
i y− 2w

(1)
i y− w

(2)
i y)2. (58)

The idea is that the penalty term minimizes the second order smoothness, i.e. the local distance between
the first 3 neighbors and the current observation, which in the spatial context is reflected by the original
observation W (0) = In, the first order W (1) and second order W (2) NN weighting matrix:

smooth =

n∑
i=1

(yi − w
(1)
i y− w

(1)
i y + w

(2)
i y)2

=

n∑
i=1

∆(2)w iy = y>K>Ky (59)

with w
(1)
i , and w

(2)
i being the i-th row of the first, and second order NN weighting matrices W (1) and
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Figure 2: HP smooth of log airline passengers HP smooth of linear airline passenger trend

W (2), respectively, and the second order differencing matrix is ∆(2)w iy = ∆w iy
(1) − ∆w iy

(2) with the

neighborhood matrix W being partitioned row-wise: W =

 w 1

. . .
w n

.

This means that the spatial HP filter τ minimizes the SSL function in (1) using a spatial smooth penalty
function. The error sum of squares is ESS(τ ) =

∑n
i=1(yi − τi)

2 between the HP smoother τi and the
observations yi’s while the spatial penalty term is defined in (59).

The spatial differencing matrix K is of order n× n, since we do not lose observations in the differencing
process, which has the following form:

K =


w

(0)
1 −2w

(1)
1 w

(2)
1 0 0 ... 0 0 0

0 w
(0)
2 −2w

(1)
2 w

(2)
2 0 ... 0 0 0

... ... ... ... ... ...

0 0 0 0 0 ... w
(0)
n −2w

(1)
n w

(2)
n

 (1n⊗In) =


w

(0)
1 − 2w

(1)
1 + w

(2)
1

w
(0)
2 − 2w

(1)
2 + w

(2)
2

...

w
(0)
n − 2w

(1)
n + w

(2)
n

 : n×n

(60)
The n2 × n block matrix (1n ⊗ In) is a block row summation operator for the spatial differencing matrix,

adding up the w
(d)
i terms. Now we can formulate a HP smoother for spatial cross-section in similar way as

in Theorem 1.

Theorem 7. [The spatial HP Filter] We consider the SAR model (57) and the spatial smoothness prior
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(59) based on distances.

The minimum of the spatial HP-type smoothing problem using the SSL (smoothed squared
loss) principle in (1) is obtained by minimizing the quadratic form in τ , where we rewrite (3)
with y = [y1, ..., yn]′, τ = [τ1, ..., τn]> and the second order differencing matrix K : n× n, defined
in (60), as

min
τ

(Ry− τ )>(Ry− τ ) + λτ>K>Kτ (61)

is attained at the posterior mean (the ”least squares estimate under restrictions”) and is the
solution to the optimisation problem:

τ ∗∗ = [R>R + λK>K]−1Ry. (62)

with R = In − ρW. Since τ ∗∗ (sometimes denoted also by τ̂ to emphasize the posterior mean as
an estimate) depends on the unknown ρ, we have to minimize the variance matrix of τ ∗∗ with
respect to ρ. The variance of the posterior mean is V ar(τ ∗∗) = [R>R + λK>K]−1.

Proof 7. The proof relies on rewriting the optimisation problem as a sum of 2 quadratic forms in τ and to
apply Theorem 9 of the appendix:

(Ry− τ )>(Ry− τ ) + λτ>K>Kτ = (τ − τ ∗∗)>(τ − τ ∗∗) + y>λK>K(λK>K + R>R)−1R>Ry (63)

with the posterior mean τ ∗∗ = A−1∗∗R>y and the posterior precision matrix

A∗∗ = [R>R + λK>K].

Finally, the point predictor for the spatial HP smooth is given by the posterior mean τ ∗∗.

Theorem 8. [The HP filter as posterior mean] The minimizer of the SSL minimisation prob-
lem in definition 1 under the assumption of a normal distribution for the idem-parameterized
regression model7 and the stochastic smoothness model is the posterior mean ŷ = τ ∗∗, given by

τ ∗∗ = (In + λK>K)−1y. (64)

Proof 8. We combine both, the quadratic form in τ of the idem-parameterized regression model and the
stochastic smoothness model using theorem (9). The result is a function of a single quadratic form τ that
is minimized by the mean of the quadratic form that corresponds to the posterior mean of the equivalent
Bayesian regression model.

7. Applications of spatial HP filtering

In this section we show how the spatial HP model can be applied to smooth the regional GDP across the
239 (contiguous) NUTS-2 regions in Europe for the year 2005. The data with the coordinates of the center
points of the NUTS-2 regions are taken from EUROSTAT.

To define a smooth surface for a spatial cross-sectional data set we have to define a differencing matrix.
As it was shown in the above section, this can be easily done if we have a distance matrix between the
centers of the NUTS-2 regions. Thus we identify for each region a nearest neighbor (by distance) and a
second nearest neighbor (also by distance). This produces the following K matrix, where - for demonstration
- we display the first 6 rows.
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 1 0 -2 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 1 1 -2 0 0 0 0 0 0 0 0 0 0 0 0
[3,] -2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 1 -2 0 1 0 0 0 0 0 0 0 0
[5,] 1 0 0 -2 1 0 0 0 0 0 0 0 0 0 0
[6,] 0 -2 0 0 0 1 1 0 0 0 0 0 0 0 0

The effect of the spatial smoothing is seen in alphabetical order of the 27 countries8 in Figure 3. The
volatility of the smooth can be attributed to the heterogeneity of the countries and the volatility within
countries.

Figure 3: Spatial HP smooth of GDP 05, NUTS-2, 2005 Spatial HP smooth of Employment, NUTS-2, 2005

The median effects of the X matrix in the extended spatial HP procedure estimated with MCMC are
shown in Figure 4. In our case these are the median effects of the 25 country dummy variables (or fixed
effects): The smallest one is Portugal and the largest one is Malta.

Figure 4: Median country effects in the extended spHP smooth of GDPpc, NUTS-2, 2005

8AT BE BG CY CZ DE EE E FI F GR HU IE I LT LU LV MT NL PL PT RO SK UK
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The geographical maps for the smoothed GDP and GDPpc of NUTS-2 regions are given in the Figure 5
and in Figure 6, respectively, together with the observed raw values.

Figure 5: Spatial HP smooth of GDP NUTS-2, 2005 Map of 239 GDP NUTS-2 regions, 2005 (raw data)

Figure 6: Spatial HP smooth of GDPpc, NUTS-2, 2005 239 GDPpc NUTS-2 regions, 2005 (raw data)

7.1. Spatial smoothing: the results for 239 European regions

We consider the GDP and employment data for 239 NUTS-2 regions in Europe for the year 2005.
Some islands and oversee regions were left out, because the distance measure for the spatial lags used are
car driving times between the centers of the regions. (These were obtained by own calculations based on
pairwise queries by internet search machines.)

lm(formula = log(y) ~ 0 + ZZ)
Residuals:

Min 1Q Median 3Q Max
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-3.00630 -0.40641 -0.02213 0.46751 2.22527
Coefficients:

Estimate Std. Error t value Pr(>|t|)
Dagg 1.4260 0.6161 2.32 0.0216 *
at 9.9837 0.2815 35.47 < 0.000 ***
be 9.8617 0.2607 37.83 < 0.000 ***
bg 8.0539 0.3448 23.36 < 0.000 ***
cy 9.5222 0.8445 11.28 < 0.000 ***
cz 9.3844 0.2986 31.43 < 0.000 ***
de 10.7655 0.1407 76.49 < 0.000 ***
ee 9.3245 0.8445 11.04 < 0.000 ***
es 10.1280 0.1937 52.28 < 0.000 ***
fi 9.6111 0.3777 25.45 < 0.000 ***
fr 10.8617 0.1800 60.33 < 0.000 ***
gr 9.3272 0.2815 33.14 < 0.000 ***
hu 9.2109 0.3192 28.86 < 0.000 ***
ie 11.0647 0.5971 18.53 < 0.000 ***
it 10.5937 0.1843 57.49 < 0.000 ***
lt 9.9366 0.8445 11.77 < 0.000 ***
lu 8.8840 1.0453 8.50 0.000 ***
lv 9.4736 0.8445 11.22 < 0.000 ***
mt 8.4671 0.8445 10.03 < 0.000 ***
nl 10.3268 0.2438 42.36 < 0.000 ***
pl 9.4063 0.2111 44.55 < 0.000 ***
pt 9.9515 0.3777 26.35 < 0.000 ***
ro 9.1704 0.2986 30.72 < 0.000 ***
sk 9.1493 0.4222 21.67 < 0.000 ***
uk 10.5717 0.1482 71.34 < 0.000 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ’.’ 0.1 ’’ 1

Residual standard error: 0.8445 on 214 degrees of freedom
Multiple R-squared: 0.9939, Adjusted R-squared: 0.9931
F-statistic: 1386 on 25 and 214 df, p-value: < 2.2e-16

Ordered effects:
Dagg bg mt lu sk ro hu ee
1.426 8.054 8.467 8.884 9.149 9.170 9.211 9.325
gr cz pl lv cy fi be lt

9.327 9.384 9.406 9.474 9.522 9.611 9.862 9.937
pt at es nl uk it de fr ie

9.952 9.984 10.128 10.327 10.571 10.594 10.766 10.862 11.065

7.2. The spatial extended HP (eHP) smoother

In this section we apply the spatial HP smoother to the following extended smoothing problem: we
correct the spatial cross section of GDP and log GDP first with the fixed effect dummies for the 25 countries
involved and then apply the spatial HP smoother to the ”purged” cross-sectional observations. The results
of the extended spatial smoother (with λ = 1600) can be seen in the next figures.

7.3. Employment

In this section we report the spatial smoothing results for the regional employment data in 2005.
Figure 8 shows the raw data together with the smooth of the emplozment data in 2005: the first things

to note are the high employment effects in central Poland and Romania. The smooth in Figure 8 shows
the smooth (posterior mean) of the spatial HP model while Figure 9 shows the smooth (posterior mean)
of the spatial extended HP model. The X matrix of the extended model (eHP) just contains the fixed
effect dummy variables for the countries plus an extra dummy for the new central and eastern European
states (CEE). The border of the regions in the East and West of the smooth can be seen in both figures,
which stretch until France. The somewhat unexpected map is due to the fact that German regions have
less employment than the regions in Poland and Romania. Therefore we see higher smoothed values at the
periphery and lower values in the center (Germany, the Czech Republic and Austria.) Also, by taking into
account the large variation of levels across EU countries we see that these ”low smooth” values are still
present in those 3 central European states.
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Figure 7: Spatial extended HP smooth of GDP Nuts-2, 2005 Spatial extended HP smooth of log GDP Nuts-2, 2005

8. Summary

This paper has shown how the HP filter can be viewed from a Bayesian point of view and how this
procedure can be extended to an extended HP filter model with additional regressor variables in a time
series context and a newly proposed spatial HP filter for cross-sectional data. In the time series context the
new approach leads to the extended HP smoother that allows to incorporate other factors and regressors
into the smoothing problem, which leads to a purge of the target data to be smoothed from these other
factors, like trend, outliers and fixed effects. This extension of the HP filter model was demonstrated for
the time series case using the well-known airline passenger data and shows how the trend can be removed
succesfully from the data before the smoothing procedure produces the final result.

The Bayesian view of the HP smoothing problem allows an easy interpretation of the smoothing constant:
it is the hypothetical sample size of the prior information that is used in the HP smoothing model. To
produce a smooth output one has to increase the prior precision to stick quite close to the chosen ”smooth”
prior, which is defined by the second difference of the smooth component, i.e. the parameter vector to be
estimated. In the extended HP model we have to split up this hypothetical sample size of the prior into the
two parts of the model: The smooth part needs a high precision parameter to stick close to the prior and to
produce the HP-type of smooth, while the regression part defines the extended part of the smoothing model
and needs the (usual low) precision parameter if we want a flexible fit to the other regressor variables.

In the spatial context, the extended HP filter allows a spatial smoothing of data and this was demon-
strated for the 239 NUTS-2 regions of the European Union for GDP and employment data. The smoothness
in a spatial context is defined by the distance of neighboring regions. The spatial extended HP smoother
can be computed easily using MCMC procedures of the linear regression model or the spatial autoregres-
sion (SAR) model. It is argued that this new family of extended HP procedures opens a new approach
for smoothing output variables in more complex models that requires more adjustments and simplifica-
tions before the smoothing can be done, and the Bayesian interpretation shows to give more flexibility for
the prior information that combines the smooth and the non-smooth part in such more complex HP-type
smoothing models. Thus, our approach has demonstrated that econometric smoothing problems can be
either embedded in simple univariate set-ups or in complex model-based applications.
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Figure 8: Employment: NUTS-2, 2005 (raw data) MCMC Spatial HP smooth of Employment NUTS-2, 2005

Figure 9: MCMC of the spatial extended HP model, smooth of Employment NUTS-2, 2005
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APPENDIX A

10. Results on Combination of Quadratic Forms

We list some standard results of normal Bayes models for combining normal densities:

Theorem 9 (Combination of Quadratic Forms).

Let H and H∗ be two symmetric quadratic matrices. Then the sum of the two quadratic forms
can be combined as

(β − b)>H(β − b) + (β − b∗)
>H∗(β − b∗)

= (β − b∗∗)
>H∗∗(β − b∗∗) + (b− b∗)

>H∗(H∗ + H)−1H(b− b∗)

with the parameters

H∗∗ = H∗ + H,

b∗∗ = H−1∗∗ (H∗b∗ + Hb). (65)
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Lemma 1 (MESS-Decomposition for regression models). Let β be any regression vector in the model
y = Xβ+ε and b the OLS estimator b = (X>X)−1X>y. Then the residual sum of squares can be decomposed
as

(y−Xβ)>(y−Xβ) = nσ̂2 + (β − b)>X>X(β − b) (66)

where the error sum of square (ESS) is

nσ̂2 = (y−Xb)>(y−Xb),

which is the minimum error sum of squares (and is briefly named MESS) or minimum MSE (MMSE).
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