
LOCAL GEOMETRY OF SURFACES IN R4

J. BASTO-GONÇALVES

Abstract. The indicatrix or curvature ellipse and the character-
istic curve of a surface in R4 are presented, as well as the projective
duality connecting them. The characterisation of points in the sur-
faces as elliptic, parabolic and hyperbolic points, and the inflection
points, are also discussed,.

1. Introduction

For a surface S in R3, the Dupin indicatrix is a conic in the tangent
space TpS at a point p that gives local information on the geometry
of the surface, at least at generic points where the conic is non de-
generate; the points are hyperbolic or elliptic as the Dupin indicatrix
is a hyperbola or a ellipse, or equivalently, as the Gauss curvature is
negative or positive, and parabolic when the Gauss curvature vanishes.

For surfaces in R4 there is no exact analogue of the Dupin indicatrix,
but the indicatrix or curvature ellipse and the characteristic curve give
a similar type of local information. The indicatrix at a point p ∈ S is an
ellipse in the normal plane NpS at p, and the characteristic curve is a
conic, but not necessarily an ellipse, also in the normal plane. A generic
point is hyperbolic or elliptic as the characteristic curve is a hyperbola
or an ellipse, or as the origin is outside or inside the indicatrix, but the
relation with the Gauss curvature is somewhat lost: the curvature is
negative at a generic hyperbolic points but it is not always positive, or
at least non negative, at elliptic points.

The results discussed here have been known for a long time [5, 8], and
some of them have been presented in a more contemporary fashion in
[6], and subsequently in [7, 4]. The objective of this work is to present
a more detailed and complete description of the construction of the two
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2 J. BASTO-GONÇALVES

conics, the indicatrix and the characteristic curve, and of the relation
between them.

Associated to the indicatrix and the characteristic curve there are
special normal directions, the binormals, and tangent directions, the
asymptotic directions. Their analogy with the similarly named objects
in R3 is best understood in the context of the singularities in the con-
tact of hyperplanes with the surface [7], or of lines with the surface, as
presented in the last section.



LOCAL GEOMETRY OF SURFACES IN R4 3

2. Moving frames

We consider a surface S ⊂ R4 locally given by a parametrization:

Ξ : U ⊂ R2 −→ R4

and a set {e1, e2, e3, e4} of orthonormal vectors, depending on (x, y) ∈
U , satisfying:

• e1(x, y) and e2(x, y) span the tangent space TΞ(x,y)S of S at
Ξ(x, y).
• e3(x, y) and e4(x, y) span the normal space NΞ(x,y)S of S at

Ξ(x, y).

Then Ξ, {e1, e2, e3, e4} is an adapted moving frame for S. Associated
to this frame, there is a dual basis for 1-forms, {ω1, ω2, ω3, ω4}.

If we take U small enough, Ξ can be assumed to be an embedding;
then the vectors ei and the 1-forms ωi can be extended to an open
subset of R4. We define new 1-forms by:

ωij = Dei · ej, also written as ωij = dei · ej, i, j = 1, . . . , 4

where the exterior differential is taken componentwise.
The pullbacks by Ξ are defined by:

ωi(v) = DΞ(v) · ei, also written as ωi = dΞ · ei
and

ωij(v) = Dei(v) · ej, i, j = 1, . . . , 4, v ∈ R2

With a slight abuse of notation, we denote the forms on R4 and their
pullbacks to U by the same symbol.

The Maurer-Cartan structure equations can be obtained [3] using
dd = 0:

(1) dωi =
4∑
j=1

ωij ∧ ωj, dωij =
4∑

k=1

ωik ∧ ωkj

The 1-form ω12 is the connection form for the tangent bundle of S,
and ω34 is the connection form for the normal bundle of S; dω12 and
dω34 are the respective curvature forms. The Gaussian curvature K
and the normal curvature κ are defined [6], respectively, by:

(2) dω12 = −Kω1 ∧ ω2, dω34 = −κω1 ∧ ω2

The forms ω1 and ω2 are independent, and σS = ω1 ∧ ω2 is the area
element on S; in fact:

Proposition 1. The 2-form σS = ω1 ∧ω2 is independent of the choice
of frames, and it is globally defined.
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From ω3 = ω4 = 0 it follows:

dω3 =0 = ω31 ∧ ω1 + ω32 ∧ ω2

dω4 =0 = ω41 ∧ ω1 + ω42 ∧ ω2

and by Cartan’s lemma [3], there exist a, b, c, e, f , and g such that:

ω13 =aω1 + bω2, ω14 =eω1 + fω2(3)

ω23 =bω1 + cω2, ω24 =fω1 + gω2

While the image of DΞ is the tangent space of S, the image of the
second derivative D2Ξ has both tangent and normal components; the
vector valued quadratic form associated to the normal component:

(4) (D2Ξ · e3)e3 + (D2Ξ · e4)e4

is the second fundamental form II of S. It can be written [6] as II1e3 +
II2e4, where:

II1 =aω2
1 + 2bω1ω2 + cω2

2(5a)

II2 =eω2
1 + 2fω1ω2 + gω2

2(5b)

Let M1 and M2 be the matrices associated to the above quadratic
forms:

M1 =

[
a b
b c

]
, M2 =

[
e f
f g

]
The mean curvature H is defined by:

(6) H =
1

2
(H1 +H2) , Hi = TrMi, i = 1, 2

and it is easy to verify that similarly the Gaussian curvature is given
by:

(7) K = K1 +K2, Ki = detMi, i = 1, 2

We can express the Gaussian, normal and mean curvature in terms
of the coefficients of the second fundamental form [6]:

K =(ac− b2) + (eg − f 2)(8)

κ =(a− c)f − (e− g)b

H =
1

2
(a+ c)e3 +

1

2
(e+ g)e4
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3. Monge form

We consider a surface S locally given by a parametrisation:

Ξ : (x, y) 7→ (x, y, ϕ(x, y), ψ(x, y))

where Φ = (ϕ, ψ) has vanishing first jet at the origin, j1Φ(0) = 0.
The vectors T1 and T2 span the tangent space of S:

T1 = Ξx = (1, 0, ϕx, ψx), T2 = Ξy = (0, 1, ϕy, ψy)

the index z standing for derivative with respect to z.
The induced metric in S is given by the first fundamental form:

I = Edx2 + 2Fdxdy +Gdy2

where:
E = T1 · T1, F = T1 · T2, G = T2 · T2,

We define:
W = EG− F 2

Instead of an orthonormal frame, it is more convenient to take a
basis:

T1 =(1, 0, ϕx, ψx), T2 = (0, 1, ϕy, ψy)(9)

N1 =(−ϕx,−ϕy, 1, 0), N2 = (−ψx,−ψy, 0, 1)

The vectors T1 and T2 span the tangent space, and the vectors N1 and
N2 span the normal space. We define:

Ê = N1 ·N1, F̂ = N1 ·N2, Ĝ = N2 ·N2,

and it is easy to verify that:

ÊĜ− F̂ 2 = W

Now consider the orthonormal frame defined by:

e1 =
1√
E
T1, e2 =

√
1

EW
(ET2 − FT1)(10)

e3 =
1√
Ê
N1, e4 =

√
1

ÊW

(
ÊN2 − F̂N1

)
It is easy to see that:

ω1(ẋT1 + ẏT2) =
1√
E

(Eẋ+ F ẏ), ω2(ẋT1 + ẏT2) =

√
W

E
ẏ

or equivalently:

(11) ω1 =
1√
E

(Edx+ Fdy), ω2 =

√
W

E
dy
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Also:

a =
1

E
√
Ê
ϕxx(12)

b =
1

E
√
WÊ

(Eϕxy − Fϕxx)

c =
1

EW
√
Ê

(E2ϕyy − 2EFϕxy + F 2ϕxx)

e =
1

E
√
ÊW

(
Êψxx − F̂ϕxx

)
(13)

f =
1

EW
√
Ê

(
E(Êψxy − F̂ϕxy)− F (Êψxx − F̂ϕxx)

)
g =

1

EW
√
WÊ

(
E2(Êψyy − F̂ϕyy)−

−2EF (Êψxy − F̂ϕxy) + F 2(Êψxx − F̂ϕxx)
)

Then, using these formulæ or those from [1, 2], we obtain the follow-
ing expressions for the Gaussian and normal curvature:

Proposition 2. The Gaussian curvature is given by:

(14) K =
1

W 2
(ÊHψ − F̂Q+ ĜHϕ)

where:

Hf = Hess(f) =

∣∣∣∣ fxx fxy
fxy fyy

∣∣∣∣ , Q =

∣∣∣∣ ϕxx ϕxy
ψxy ψyy

∣∣∣∣− ∣∣∣∣ ϕxy ϕyy
ψxx ψxy

∣∣∣∣
Proposition 3. The normal curvature is given by:

(15) κ =
1

W 2
(EL− FM +GN)

where:

L =

∣∣∣∣ ϕxy ϕyy
ψxy ψyy

∣∣∣∣ , M =

∣∣∣∣ ϕxx ϕyy
ψxx ψyy

∣∣∣∣ , N =

∣∣∣∣ ϕxx ϕxy
ψxx ψxy

∣∣∣∣
A surface immersed in R4 has an induced metric defined on it through

the first fundamental form, and therefore an intrinsic Gauss curvature.
Our previous definition of Gauss curvature agrees with it, and it is
possible to prove more:

Theorem 1 (Killing). The intrinsic Gauss curvature KG of S at a
point p ∈ S is the sum of the curvatures K1 and K2 of the projections
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S1 and S2 of the surface along any two orthogonal normal directions
n2 ∈ NpS and n1 ∈ NpS respectively.

Proof. By a linear change of coordinates and a translation of the origin,
we can assume that n1 ∈ NpS spans the third axis and n2 ∈ NpS the
fourth, and also that p is the origin.

The surface S is locally given by a parametrisation:

Ξ : (x, y) 7→ (x, y, ϕ(x, y), ψ(x, y))

where Φ = (ϕ, ψ) has vanishing first jet at the origin, j1Φ(0) = 0.
The intrinsic Gauss curvature KG of S is given by Brioschi formula

[9]:
(16)

KG =

∣∣∣∣∣∣∣∣∣∣∣

−1

2
Eyy + Fxy −

1

2
Gxx

1

2
Ex Fx −

1

2
Ey

Fy −
1

2
Gx E F

1

2
Gy F G

∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣

0
1

2
Ey

1

2
Gx

1

2
Ey E F

1

2
Gx F G

∣∣∣∣∣∣∣∣∣∣∣
(EG− F 2)2

At the origin:

E = G = 1, F = 0

and all first order derivatives of E, F and G vanish. Thus the Brioschi
formula gives:

KG = −1

2
Eyy + Fxy −

1

2
Gxx at the origin

The surfaces S1 and S2 are the graphs of ϕ and ψ respectively, and their
intrinsic Gauss curvatures agree with the definition of K1 = ac−b2 and
K2 = eg − f 2 above.

If Ei, Fi and Gi are the coefficients of the first fundamental forms of
Si, i = 1, 2, we have:

E = E1 + E2 − 1, F = F1 + F2, G = G1 +G2 − 1

and therefore it follows from linearity of the derivatives that:

KG = K1 +K2

�

As we have remarked before, the Gauss curvature can be given by
K = K1+K2, and therefore it agrees with the intrinsic Gauss curvature
KG.
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4. Curvature ellipse

The curvature ellipse or indicatrix E of the surface S is the image
under the second fundamental form of the unit circle in the tangent
space:

Ep = {v ∈ NpS | v = II(u), u ∈ TpS, |u| = 1}
Let u ∈ TpS with |u| = 1; then II(u) is the normal curvature vector

at p of any curve γ on S such that:

γ(0) = p, γ̇(0) = u

and in fact it is the curvature if we choose γ appropriately:

Lemma 1. Let γ be the curve passing though p, parametrized by arc
length from p, obtained as the intersection of the surface S with the
hyperplane containing the normal space at p and u. Then, if χγ is the
curvature of γ at p:

χγ = II(u)

Proof. As γ is a plane curve parametrized by arc length we have:

d2

ds2
γ(0) = χγ,

d2

ds2
γ(0) ⊥ u =

d

ds
γ(0)

and therefore the second derivative has only normal component and it
is given by the second fundamental form II(u). �

As u describes the unit circle in the tangent space, its image II(u)
describes the curvature ellipse:

Theorem 2 (Moore, Wilson [8]). The indicatrix E of the surface S is
an ellipse.

Proof. Consider the map η from the unitary tangent bundle UTS of S
into the normal bundle NS given by:

(17) η(θ) = II(cos θ e1 + sin θ e2)

From its definition:

η(θ) =(a cos2 θ + 2b cos θ sin θ + c sin2 θ)e3+(18)

+ (e cos2 θ + 2f cos θ sin θ + g sin2 θ)e4

=H +
1

2
((a− c) cos 2θ + b sin 2θ)e3+

+
1

2
((e− g) cos 2θ + f sin 2θ)e4
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Let:

A =


1

2
((a− c) b

1

2
(e− g) f


Then:

η(θ) = H +Aw, w = (cos 2θ, sin 2θ)

Thus the indicatrix, the image of η, is an ellipse, possibly singular,
centred ar H. �

Proposition 4 ([6]). The normal curvature κ is related to the oriented
area A of the curvature ellipse by:

(19)
π

2
κ = A

Proof. As:

η(θ) = H +Aw, w = (cos 2θ, sin 2θ)

η(θ) describes twice an ellipse, the curvature ellipse or indicatrix, cen-
tred at H; the oriented area of the ellipse will then be the area of the
unit circle multiplied by the determinant of the matrix A and therefore:

A = π
1

2
((a− c)f − (e− g)b) =

π

2
κ

�

The curvature ellipse at a point p ∈ S can be used to characterize
that point; in particular:

• p is a circle point if the curvature ellipse at p is a circumference.
• p is a minimal point if the curvature ellipse at p is centred at

the origin, H(p) = 0.
• p is an umbilic point if the curvature ellipse at p is a circumfer-

ence centred at the origin; the point is both a minimal and a
circle point.

At a non umbilic point it is always possible to find canonical moving
frames [11] for which the computations are easier:

Proposition 5. Given any point p ∈ S ⊂ R4 such that p is not an
umbilic point, there exists a canonical moving frame around p for which:

• b ≡ 0.
• e ≡ g

• 1

2
(a− c) ≥ |f | ≥ 0
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Proof. We choose e3 ∈ NpS parallel to the major axis of the ellipse
of curvature, and e4 ∈ NpS normal to it; then e1 ∈ TpS is chosen
along the direction whose image under the second fundamental form
is spanned by e3, and e2 ∈ TpS normal to e1, so that {e1, e2} has the
correct orientation. If the ellipse of curvature is a circle (not centred at
the origin) the direction of e3 is the line defined by the origin and the
centre of that circle; if the ellipse degenerates into a radial segment, e3

is chosen along the line spanned by the segment.
The ambiguity in the choices of e1 and e3 allows {e1, e2, e3, e4} to

have the standard orientation in R4, and also to have a− c ≥ 0. �

Now, (a − c)/2 and |f | are the major and minor semi-axes of the
curvature ellipse respectively, and formulæ (8) become:

K =ac+ e2 − f 2(20)

κ =(a− c)f

H =
1

2
(a+ c)e3 + e e4

A necessary and sufficient condition [6] for p to be a circle point is
that:

(21) H2 −K = |κ|
In fact, we have:

Wintgen inequality ([10]). If S is an immersed surface in R4, then
at every point p ∈ S we have the inequality:

(22) H2 ≥ K + |κ|
The point p is a circle point if and only if H2 = K + |κ|.

Proof. Using a canonical moving frame around p, assumed to be not
an umbilic point, we have:

0 ≤ (a− c− 2|f |)2 = (a− c)2 + 4f 2 − 4(a− c)|f | =(23)

= (a− c)2 + 4f 2 − 4|κ| = a2 + c2 − 2ac+ 4f 2 − 4|κ| =
= a2 + c2 + 2f 2 + 2e2 − 2K − 4|κ|

4H2 = (a+ c)2 + 4e2 = a2 + c2 + 2ac+ 4e2(24)

= a2 + c2 + 2f 2 + 2e2 + 2K

The inequality follows immediately from (24)-(23): 4H2 ≥ 4K + 4|κ|
The curvature ellipse is a circle if and only if the two semi-axes are

equal:
1

2
(a− c) = |f |
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and this is exactly when we have equality above.
There remains to consider the case where p is an umbilic point, where

we should have K + |κ| ≡ 0; but at an umbilic point we must have
a+ c = 0 and e+ g = 0 and:

A =


1

2
((a− c) b

1

2
(e− g) f

 =

a b

e f


a multiple of an orthogonal matrix, so:

a2 + b2 = e2 + f 2 = R2, (a, b) ⊥ (e, f)

It follows that |a| = |f |, |b| = |e| and K = −|κ| as desired. �

Thus at an umbilic point we always have a nonpositive Gaussian
curvature.

By identifying p with the origin of NpS, the points of S may be clas-
sified according to their position with respect to the curvature ellipse,
that we assume to be non degenerate (κ(p) 6= 0), as follows:

• p lies outside the curvature ellipse.
The point is said to be a hyperbolic point of S. The asymptotic
directions are the tangent directions whose images span the
two normal lines tangent to the indicatrix passing through the
origin; the binormals are the normal directions perpendicular
to those normal lines.

η

e4

e3

E
H

e2

e1

Tangent space

u|u|=1

asymptotic direction

asymptotic
direction

Normal space binormal

binormal

Figure 1. Indicatrix at a hyperbolic point: 2 binormals
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• p lies inside the curvature ellipse.
The point p is an elliptic point. There are no binormals and no
asymptotic directions.

η

e4

e3

E

H

Normal space

Figure 2. Indicatrix at an elliptic point: no binormals

• p lies on the curvature ellipse.
The point p is a parabolic point. There is one binormal and one
asymptotic direction.

η

e 4 

e 3 

 

E
H

e 2 

e 1 

 

Tangent space 

u |u|=1 

asymptotic 
direction 

Normal space 

binormal

Figure 3. Indicatrix at a parabolic point: 1 binormal

The points p where the curvature ellipse passes through the origin
are characterised by ∆(p) = 0, where:

(25) ∆ =
1

4

∣∣∣∣∣∣∣∣
a 2b c 0
e 2f g 0
0 a 2b c
0 e 2f g

∣∣∣∣∣∣∣∣
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In fact, ∆ is the resultant of the two polynomials ax2 + 2bxy+ cy2 and
ex2 + 2fxy + gy2. If η(θ) = 0 those polynomials have a common root
(cos θ, sin θ), and their resultant has to be zero.

The points of S may be classified [6] using ∆, as follows:

Proposition 6. If a pont p ∈ S is hyperbolic, parabolic or elliptic then
∆(p) < 0, ∆(p) = 0 or ∆(p) > 0, respectively.

Proof. Let τ ∈ TpS be a tangent vector and N be defined by:

dτ · e3 ∧ dτ · e4 = N ω1 ∧ ω2

As before, the exterior derivative is taken componentwise.
It τ = xe1 + ye2, or ω1(τ) = x and ω2(τ) = y, then N is a quadratic

form on (x, y) given by:

N(x, y) = (af − be)x2 + (ag − ce)xy + (bg − cf)y2

A straightforward computation gives:

∆ =(ac− b2)(eg − f 2)− 1

4
(ag + ce− 2bf)2 =(26)

=(af − be)(bg − cf)− 1

4
(ag − ce)2 = detN

and therefore the equation N(x, y) = 0 on the direction defined by
(x, y) has two solutions, one or no solutions as ∆(p) < 0, ∆(p) = 0 or
∆(p) > 0, respectively.

On the other hand, N(x, y) = 0 is equivalent to:

dτ · e3 ∧ dτ · e4 (u, v) = 0, ∀u, v ∈ TpS

If we define:

dNτ = (dτ · e3)e3 + (dτ · e4)e4

we see that:

dτ · e3 ∧ dτ · e4 (u, v) =

∣∣∣∣dτ(u) · e3 dτ(u) · e4

dτ(v) · e3 dτ(v) · e4

∣∣∣∣ = dNτ(u) ∧ dNτ(v)

and thus N(x, y) = 0 is equivalent to the image of dNτ being one di-
mensional. When that happens, the image of dNτ spans a line tangent
to the curvature ellipse and perpendicular to a binormal:

Let:

τ = ρu, u =
1

|τ |
τ = cos θe1 + sin θe2, ρ = |τ |

and γ be the curve passing though p, parametrized by arc length from
p, obtained as the intersection of the surface S with the hyperplane
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containing the normal space at p and u. Then, taking the normal
component of dτ(u):

dNτ(u) = ρ II(u) = ρ η(θ)

Taking v = − sin θe1 + cos θe2, and since dNτ(v) ‖ dNτ(u):

η′(θ) =
1

ρ
dNτ(v) ‖ η(θ)

This means that the tangent to the indicatrix at η(θ) passes through
the origin, as η′(θ) ‖ η(θ), and therefore the image of dNτ spans a line
tangent to the curvature ellipse and perpendicular to a binormal. �

We can extend the definition of hyperbolic point, respectively elliptic
point and parabolic point, to the case where κ(p) = 0 by means of ∆,
as ∆(p) < 0, respectively ∆(p) > 0 and ∆(p) = 0.

Definition 1. The second-order osculating space of the surface S at
p ∈ S is the space generated by all vectors γ′(0) and γ′′(0) where γ is a
curve through p parametrized by arc length from p. An inflection point
is a point where the dimension of the osculating space is not maximal.

Theorem 3. The following conditions are equivalent:

• p ∈ S is an inflection point.
• p ∈ S is a point of intersection of ∆ = 0 and κ = 0.
• rankM(p) ≤ 1

The inflection points are singular points of ∆ = 0.

Proof. Assume p ∈ S is a point of intersection, ∆(p) = 0 and κ(p) = 0.
Since:

∆ = (af − be)(bg − cf)− 1

4
(ag − ce)2

it follows from ∆ = 0 that (af − be)(bg − cf) ≥ 0; now as

κ = (a− c)f − (e− g)b = (af − be) + (bg − cf)

we see that, at p:

af − be = 0, bg − cf = 0, and from ∆(p) = 0, ag − ce = 0

This implies rankM(p) ≤ 1 and therefore the indicatrix is a radial seg-
ment and the point is an inflection point: the osculating space is three
dimensional, while it is four dimensional when the curvature ellipse is
non degenerate. The vanishing of those three expression also implies
that the derivatives of ∆ are both zero at p, which is then a singular
point.

We can reverse the argument to show that at an inflection point p
we must have ∆(p) = 0 and κ(p) = 0.
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�

Proposition 7. Let p ∈ S be a generic inflection point. Then p is a
Morse singular point of ∆ = 0, and the Hessian H∆ of ∆ at p has the
same sign as the curvature K(p).

Proof. Since p is generic we can assume that K(p) 6= 0. By a linear
change of coordinates and a translation of the origin in R4, if necessary,
we can assume that p is the origin, the tangent plane TpS is the (x, y)
plane, and the line passing through the origin containing the curvature
ellipse is the third axis.

We consider S around p as the graph of a map (ϕ, ψ) around the
origin.in R2 Then:

ϕ(0) = ψ(0) = 0, ϕx(0) = ψx(0) = 0, ϕy(0) = ψy(0) = 0

The condition of p being an inflection point, and the choice of the
third axis mean that, in view of (13):

ψxx(0) = e(0) = 0, ψxy(0) = f(0) = 0, ψyy(0) = g(0) = 0

and ψ is a homogeneous cubic polynomial plus higher order terms.
Note that at the origin E = G = Ê = Ĝ = 1 and F = F̂ = 0.

A convenient standard change of coordinates (x, y) and the genericity
condition allow us to assume that:

ψ(x, y) =
1

3
x3 + µxy2 +O(4), µ 6= 0

Thus:

e = 2x+O(2), f = 2µy +O(2), g = 2µx+O(2)

and a = A+O(1), b = B +O(1), c = C +O(1). Then:

∆ =(ac− b2)(eg − f 2)− 1

4
(ag + ce− 2bf)2 =

=(AC −B)2)(4µx2 − 4µ2y2)−

− 1

4
(2Aµx+ 2Cx− 4Bµy)2 +O(3)

=− [4µB2 + (C − µA)2]x2 + 4µ(C + µA)Bxy − 4µ2ACy2 +O(3)

and:

H∆ =

∣∣∣∣∣∣
−8µB2 − 2(C − µA)2 4µ(C + µA)B

4µ(C + µA)B −8µ2AC

∣∣∣∣∣∣ =

=16µ2(C − µA)2AC + (4µAC)(16µ2B2)− 16µ2(C + µA)2B2 =

=16µ2(C − µA)2[AC −B2]
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As K(0) = a(0)c(0)− b(0)2 + e(0)g(0)− f(0)2 = AC −B2 we finally
obtain:

H∆ = 16µ2(C − µA)2K(0)

with C − µA 6= 0 by genericity again. �

When ∆(p) = 0 we can distinguish among the following possibilities:

• ∆(p) = 0, K(p) < 0 and rankM(p) = 2
The curvature ellipse is non-degenerate, κ(p) 6= 0; the binormal
is the normal at p.
• ∆(p) = 0, K(p) < 0 and rankM(p) = 1
p is an inflection point of real type: the curvature ellipse is a
radial segment and p does not belong to it, κ(p) = 0. The point
p is a self-intersection point of ∆ = 0, as H∆(p) < 0.
• ∆(p) = 0, K(p) = 0
p is an inflection point of flat type: the curvature ellipse is a
radial segment and p belongs to its boundary, κ(p) = 0.
• ∆(p) = 0, K(p) > 0
p is an inflection point of imaginary type: the curvature ellipse
is a radial segment and p belongs to its interior, κ(p) = 0. The
point p is an isolated point of ∆ = 0, as H∆(p) > 0.

e 4 

e 3 

 E 

H  

e 4 

e 3 

 

E 

H 

Normal space 

e 4 

e 3 

 E 

H 

imaginary typeflatreal type

Figure 4. Inflection points

At an inflection point the normal to the line through the origin con-
taining the radial segment defines the binormal.

Remark 1. If ∆(p) = 0 and K(p) ≥ 0 then rankM(p) ≤ 1: if K(p) ≥ 0
then K1(p) and K2(p) cannot be both positive, therefore II1 or II2 has
a double real root or no real roots; ∆(p) = 0 forces all roots to be the
same, or all non real, and II1 and II2 to be multiples (all roots are
common), thus rankM(p) ≤ 1.
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Remark 2. It can be shown that for an open and dense set of embed-
dings of S in R4, ∆−1(0) ∪K−1(0) = ∅; therefore on a generic surface
there are no inflection points of flat type.

K=0 

K   =0 

+ 

+ 

+ +

+ 

_ 

_ _ 
2 

K   =0 1 

Δ>0

Δ<0

Δ=0

κ=0

imaginary inflection point

imaginary inflection point

real inflection point 

real inflection point 

parabolic points

indicatrix is a segment 

elliptic region

hyperbolic region

Figure 5. Generic inflection points
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5. The characteristic curve

Let γ be a curve passing though p, and u be the tangent vector
defined along γ by:

u(s) =
d

ds
γ(s)

Consider a vector field w along the curve γ; taking its derivative with re-
spect to s, the resulting vector is not necessarily tangent to the surface.
The tangent component of that derivative is the covariant derivative
of w along u, denoted ∇uw.

Assume γ to be a curve passing though p, parametrized by arc length
from p, then u, constructed as above, will be a unit tangent vector. We
define another unit tangent vector field v along γ so that u and v form
an orthonormal basis of the tangent space with the positive orientation.

Proposition 8. Let u and v be orthogonal unit tangent vectors along
a curve γ parametrized by arc length from p, so that {u, v} form a basis
of the tangent space with the positive orientation. Then:

d

ds
u = η + αv,

d

ds
v = ζ − αu

where the normal components are η = II(u) and ζ, and the tangent
components are:

∇uu = αv, ∇uv = −αu
Moreover ξ = η−H and ζ are conjugate radii of the curvature ellipse.

ξ

ζ

η

e4

e3

E

H

γ
u

v
u

v

S

p

Figure 6. ξ and ζ are conjugate radii

Remark 3. The relations concerning the tangent components of the
above derivatives also follow by taking the covariant derivative ∇u of
u · u = 1, v · v = 1 and u · v = 0.
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Remark 4. If γ is a geodesic then ∇uu ≡ 0 and therefore α ≡ 0; also if
γ is in the normal section at p, the intersection of the surface with the
hyperplane containing the normal space at p and u(0), then α(0) = 0.

Proof. Take:

u = cos θ(s)e1 + sin θ(s)e2, v = − sin θ(s)e1 + cos θ(s)e2

Then:

d

ds
u = cos θ(ω12e2 + ω13e3 + ω14e4) + sin θ(ω21e1 + ω23e3 + ω24e4)+

+ θ̇(− sin θe1 + cos θe2) =

= η + (ω12 + θ̇)v, where η = II(u)

Similarly:

d

ds
v = − sin θ(ω12e2 + ω13e3 + ω14e4) + cos θ(ω21e1 + ω23e3 + ω24e4)+

+ θ̇(−cosθe1 − sin θe2) =

= − sin θ(ω13e3 + ω14e4) + cos θ(ω23e3 + ω24e4)− (ω12 + θ̇)u =

= [(c− a) sin θ cos θ + b cos 2θ]e3+

+ [(g − e) sin θ cos θ + f cos 2θ]e4 − αu

where α = ω12 + θ̇.
Now:

ζ = [(c− a) sin θ cos θ + b cos 2θ]e3 + [(g − e) sin θ cos θ + f cos 2θ]e4 =

= A(− sin 2θ, cos 2θ)

Since:

ξ = η −H = A(cos 2θ, sin 2θ)

we see that ξ and ζ are conjugate radii of the ellipse A(S1), being the
images of two perpendicular radii. Considered as applied at the end
point of H, they are conjugate radii of the curvature ellipse. �

We will use the bivector given by the wedge product v1∧v2 to denote
the two plane P defined by the oriented pair of linearly independent
vectors v1 and v2. The bivector v1∧v2 represents an oriented area, that
of the oriented parallelogram defined by the vectors v1 and v2; if we
choose different independent vectors v′1 and v′2 in the same plane, and
with the same orientaten, their wedge product is v′1 ∧ v′2 = λ(v1 ∧ v2)
with λ > 0. Thus the (oriented) line spanned by v1 ∧ v2 charcterizes
the (oriented) plane defined by the vectors v1 and v2.
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The inner product of a vector u and a bivector P = v1∧v2 is defined
as:

u • P = (u · v1)v2 − (u · v2)v1

Therefore u • P is a vector in P orthogonal to the projection πP (u)
of u on the plane P , and {πP (u), u • P} has the same orientation as
{v1, v2}; also u • P = 0 is equivalent to u ⊥ P .

Lemma 2. Let Ns be the family of normal spaces along γ; the evolvent
of that family at s = 0 is given by n ∈ NpS such that:

n · ξ = 1, n · ζ = 0

where ξ = II(u) and ζ is the conjugate radius of η = ξ −H

Proof. The equation for Ns is:

(w − γ(s)) • u(γ(s)) ∧ v(γ(s)) ≡ 0

and therefore the evolvent at s = 0 is defined by:

n • u ∧ v = 0,
d

ds
[(w − γ(s)) • u(γ(s)) ∧ v(γ(s))]s=0 = 0

where n = w − p. Now:

d

ds
[(w − γ(s)) • u(γ(s)) ∧ v(γ(s))] =

=
d

ds
(w − γ(s)) • (u(γ(s)) ∧ v(γ(s)))+

+ (w − γ(s)) • d

ds
u(γ(s)) ∧ v(γ(s))+

+ (w − γ(s)) • u(γ(s)) ∧ d

ds
v(γ(s))

Since:
d

ds
γ(0) = u

we have:[
d

ds
(w − γ(s)) • u(γ(s)) ∧ v(γ(s))

]
s=0

= −u • u ∧ v = −v

Also:
d

ds
u(γ(0)) = II(u),

d

ds
v(γ(0)) = ζ

and thus:
d

ds
[(w − γ(s)) • u(γ(s)) ∧ v(γ(s))]s=0 = −v + n • II(u) ∧ v + n • u ∧ ζ

The condition:

−v + n • II(u) ∧ v + n • u ∧ ζ = −v + (n · II(u)) v − (n · ζ)u = 0
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is equivalent to:
n · II(u) = 1, n · ζ = 0

�

The normal vector n is the intersection of consecutive normal planes
along the direction u: let n̄ be the normal vector such that n̄ ⊥ TpS
and n̄ ⊥ Tγ(s̄)S, or equivalently n̄ ∈ Np ∩Nγ(s̄)S; then n = lims̄→0 n̄.

Definition 2. The characteristic curve C is the curve on the normal
space NpS described by the normal vector n, the intersection of con-
secutive normal planes, when u describes the unit circle in TpS.

The characteristic curve can be obtained from the indicatrix through
a standard transformation in projective geometry:

Definition 3. The pole of a line l with respect to a conic C is the
intersection of the tangents to C at the points of intersection of l with
C; the polar of a point P with respect to a conic C is the line defined
by the tangency points of the two tangents to C passing through P .
The polar conjugate of a conic C ′ with respect to a conic C is the locus
of the poles of the tangents to C ′.

In particular, the pole of a tangent to C with respect to C is the
tangency point, and the polar of that tangency point is the tangent.

Remark 5. In the real case, if the point P is inside an ellipse C there
are no (real) tangents to C passing through P , as there can be no
intersection of a line l with the ellipse; using the general fact that the
poles of lines all intersecting at P are points in the polar line of P , as
the polars of the points in a line l are lines all intersecting at the pole
of l, it is possible to give a geometric construction even for these cases
(Fig. 7).

Proposition 9. The characteristic curve is the evolvent of the polars
of the points in the indicatrix.

Proof. The polar of a point η with respect to the unit circle centred at
the origin is the line η ·n = 1. We have to prove that the characteristic
curve is the evolvent of the family of lines n · II(u) = n · η = 1 in the
normal space NpS.

Let n(u) be the point of contact of the line n · II(u) = n · η = 1 with
the characteristic curve C, where n · ζ = 0; we have to prove that it is
a tangency point, and this is equivalent to prove that:

d

du
n(u) ⊥ η
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P‘

P“

l“
l‘

P

l

C

Figure 7. P is the pole of l; l′ and l′′ are the polars of
P ′ and P ′′

ξ

ζη

e4

e3

E

n  ζ=0.

n  η=1.

|n|=1

characteristic
curve

C

n

Figure 8. Characteristic curve as the evolvent of the
family n · II(u) = n · η = 1

Deriving = n · η = 1 with respect to u:

d

du
n(u) · η + n · d

du
η ≡ 0

and as:
d

du
η ‖ ζ, n · ζ = 0
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it follows that:
d

du
n(u) · η ≡ 0

�

Theorem 4 (Kommerell[5]). The characteristic curve is the polar con-
jugate of the indicatrix or curvature ellipse with respect to the origin. It
is an ellipse, a parabola or a hyperbola as the point is elliptic, parabolic
or hyperbolic.

Proof. When the conic C is a circumference, the pole of a line with
repeat to C is the inverse with respect to the circumference of the foot
of the perpendicular from the centre of the circumference to the line.
Thus the polar conjugate of the indicatrix with respect to the unit
circle is the inverse with respect to that circle of the pedal curve of the
curvature ellipse.

Let η = η(θ) = II(u) be the point on the indicatrix E , or curvature
ellipse, corresponding to u = (cos θ, sin θ), and let ζ and ξ be conjugate
radii of E as before, with η = H+ ξ. Then ζ is parallel to the tangent
to E at η.

The pedal curve of E (with respect to the origin) can be written as
ρ = ρ(θ) with:

ρ = η +
η · ζ
|ζ|2

ζ

From the definition of pedal curve, the locus of the intersection of a
tangent to the curve with its normal line passing through the origin,
we have ρ · ζ = 0.

It is easy to see that:

|ρ|2 = |η|2 −
∣∣∣∣η · ζ|ζ|2 ζ

∣∣∣∣2 = |η|2 − |η|2 cos2 τ, cos τ =
η · ζ
|η||ζ|

and therefore |ρ| = |η|| sin τ |; we also have ρ · η = |ρ|||η|| sin τ |.
Thus the inverse of the pedal curve with respect to the unit circle is

given by:

n =
1

|ρ|2
ρ

and we have n · ζ = 0. It is only necessary to show that n · η = 1:

n · η =
1

|ρ|2
ρ · η =

1

(|η|| sin τ |)2
|ρ||η|| sin τ | = 1

It is well known that the polar conjugate of a conic is another conic.
Concerning the asymptotes, there is a point at infinity in the char-
acteristic curve when the pedal curve passes through the origin, or
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equivalently when a tangent to the indicatrix passes through the ori-
gin; there are 0, 1, or 2 such points when the origin is inside, on or
outside the indicatrix. �

ξ

ζη

e4

e3

E

ρ

binormal

binormal

asymptote

asymptote

n  ζ=0.

|n|=1

characteristic
curve

C

Figure 9. Characteristic curve at a hyperbolic point

Remark 6. The asymptotes are parallel to the respective binormal.

Remark 7. The relation between the proposition and Kommerell theo-
rem is an instance of projective duality: the characteristic curve is the
locus of the poles of the tangents to the indicatrix, or the tangents to
the characteristic curve are the polars of the points in the indicatrix.

6. Singularities of height functions

The height function on S corresponding to b ∈ R4 is the map fb(p) =
f(p, b), where:

f : S ×R4 −→ R, f(p, b) = p · b

Proposition 10 ([7]). The critical points of f are exactly the points
of the normal space NS. Moreover:

• If ∆(p) > 0, then fb(p) = f(p, b) has a non degenerate critical
point at p for all b ∈ NpS.
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• If ∆(p) < 0, then fb(p) = f(p, b) has a degenerate critical point
at p for exactly two independent normal directions.
• If ∆(p) = 0, then fb(p) = f(p, b) has a degenerate critical point

at p for exactly one normal direction.

Proof. The surface S is locally given around p by a parametrisation:

Ξ : (x, y) 7→ (x, y, ϕ(x, y), ψ(x, y))

where Φ = (ϕ, ψ) has vanishing first jet at the origin, j1Φ(0) = 0, and
Ξ(0) = p. Then:

fb(x, y) = b1x+ b2y + b3ϕ(x, y) + b4ψ(x, y)

having a critical point at the origin implies b1 = b2 = 0, therefore
b ∈ NpS; we write b = (0, 0, n1, n2).

The second derivative of fb is given by:

D2fb(x, y) =

[
n1ϕxx + n2ψxx n1ϕxy + n2ψxy
n1ϕxy + n2ψxy n1ϕyy + n2ψyy

]
and so the Hessian of fb is:

Hess(fb) = Hϕn
2
1 +Qn1n2 +Hψn

2
2

At the origin, the vanishing of:

Hess(fb)(0) = (ac− b2)n2
1 + (ag + ce− 2bf)n1n2 + (eg − f 2)n2

2

is the condition for the critical point to be degenerate. This is a qua-
dratic equation with discriminant (26):

(ag + ce− 2bf)2 − 4(ac− b2)(eg − f 2) = −4∆

and the other statements follow. �

The surface S has a higher order contact with the hyperplane normal
to b containing the tangent plane to S at p, and as remarked in [7] this
shows that the binormal for a surface in R4 is an analogue to the
binormal of a curve in R3.

If the height function fb has a critical point at p, then fλb, with λ > 0,
has the same type of singular point at p; we will consider therefore the
height map as being defined on S3:

f : S × S3 −→ R, f(p, b) = fb(p) = p · b
The critical points of f are the points of the unit normal space N1S =
{(p, b) | p ∈ S, b ∈ NpS, |b| = 1}. If fb has a degenerate critical point
at p, in general the kernel of its second derivative defines a direction in
the tangent space TpS (with the usual identifications), and that is an
asymptotic direction:
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Proposition 11. Let p ∈ S be a degenerate critical point of fb for
some b ∈ NpS, |b| = 1. If the kernel of D2fb is one dimensional, it
defines an asymptotic direction and b defines a binormal.

Proof. We choose coordinates so that b is the fourth axis, or n1 = 0,
n2 = 1 with the notation of the previous proposition. Furthermore a
linear change of coordinates, a rotation around the origin, allows us to
assume that the kernel of its second derivative is the first axis. This
means that:

fb(x, y) = ψ(x, y) = αy2 +O(3), α 6= 0

An unit tangent vector at the origin has the form v = (cos θ, sin θ, 0, 0)
and:

II(v) = (0, 0, II1(v), α sin2 θ)

therefore:

η(0) = II(e1) ‖ e3,
d

dθ
η(0) ‖ e3

This means that η(0) spans a tangent direction to the curvature
ellipse and b ⊥= η(0), so that the kernel of the second derivative defines
an asymptotic direction and b is a binormal. �

When we consider the contact of a line l with a surface S at a point
p ∈ S, it is clear that the line has to be tangent to the surface at p to
have higher order contact. We take the intersection γ of the hyperplane
through the point containing the line and the normal space NpS; the
osculating plane Pl of γ at p is defined by the line l, tangent to γ, and
the direction spanned by nl = II(ul), where ul is a unit vector in l.
Note that, if the p is not a parabolic point, we have nl 6= 0.

It is natural to say that higher order contact means the vanishing
of more derivatives of the component of γ orthogonal to the osculating
plane. This is equivalent to a higher order singularity of the height
function corresponding to a direction normal to the osculating plane,
and thus leads to an asymptotic direction.

We could also project S on R3 along a normal direction orthogonal
to a binormal to obtain a smooth surface Ŝ ⊂ R3; with coordinates
chosen as before, this is the graph of the ψ. It is easy to see that
the projection of the asymptotic direction corresponding to the chosen
binormal is an asymptotic direction (in the usual sense for surfaces in

R3) of Ŝ:

Since Ŝ is the graph of ψ(x, y) = y2 + O(3), it has an asymptotic
direction, the x axis. The asymptotic direction of S in R4 is also the
x axis, as seen in prop. 11.
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Proposition 12 ([7]). Let p ∈ S be a parabolic point. If p is not an
inflection point then it is a fold or cusp (or higher order) singularity of
the height function and:

• p is a fold singularity when the asymptotic direction is not tan-
gent to the line ∆−1(0) of parabolic points.
• p is a cusp (or hgher order) singularity when the asymptotic

direction is tangent to the line ∆−1(0) of parabolic points.

Proof. We use the coordinates of prop. 11; then p being a parabolic
point means ∆(0) = 0, and as the asymptotic direction is the x axis,
the asymptotic direction being tangent to the line of parabolic points
means that ∆x(0) = 0.

Since:

∆ = (ac− b2)(eg − f 2)− 1

4
(ag + ce− 2bf)2

at the origin we have:

∆(0) = HϕHψ −
1

4
(ϕxxψyy + ϕyyψxx − 2ϕxyψxx)

2

As Hψ(0) = 0, we must have ϕxxψyy + ϕyyψxx − 2ϕxyψxx = 0, there-
fore:

∆x(0) = HϕHψ,x

and as Hϕ(0) 6= 0, the condition for the asymptotic direction being
tangent to the line of parabolic points becomes:

Hψ,x(0) = 0

The point p is not an inflection point, so α 6= 0, and the condition
for being a fold singularity of fb = ψ is:

ψxx = 0, ψxxx 6= 0

and for being a cusp (or higher order) singularity is ψxxx = 0. On the
other hand:

Hψ,x(0) = ψyy(0)ψxxx(0) = 2αψxxx(0)

Thus the singularity of fb = ψ is a cusp if:

Hψ,x(0) 6= 0

and a cusp (or higher order singularity) if:

Hψ,x(0) = 0

�

Proposition 13 ([7]). The inflection points of a surface correspond to
umbilic singularities, or higher singularities, of the height function.
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Proof. With the coordinates of the previous proposition, the singularity
is an umbilic, or more degenerate, if:

ψxx(0) = 0, ψxy(0) = 0, ψyy(0) = 0

therefore::

M(p) =

[
a b c
0 0 0

]
and p is an inflection point.

Assume now that p is an inflection point; then rankM(p) = 1 and
there exist λ1, λ2 such that:

λ1(a, 2b, c) + λ2(e, 2f, g) = 0

and so:
Hλ1ϕ+λ2ψ(0) = 0

But this means that the height function fb, with b = (λ1, λ2), has an
umbilic (or higher order) singularity. �

The singularities of the family of height functions on a generic surface
can be used [7] to characterize the different points of that surface:

• An elliptic point p is a nondegenerate critical point for any of
the height functions associated to normal directions to S at p.
• If p is a hyperbolic point, there are exactly 2 normal directions

at p such that p is a degenerate critical point of their corre-
sponding height functions.
• If p is a parabolic point, there is a unique normal direction such

that fb is degenerate at p.
– A parabolic point p is a fold singularity of fb if and only if

the unique asymptotic direction is not tangent to the line
of parabolic points ∆−1(0).

– A parabolic point p is a cusp singularity of fb if and only if
p is a parabolic cusp of S, where the asymptotic direction
is tangent to the line of parabolic points.

– A parabolic point p is an umbilic point for fb if and only if
p is an inflection point of S.

Remark 8. For a generic surface, the points p which are a swallowtail
singularity of fb do not belong to the line of parabolic points; at a
swallowtail singularity one of the asymptotic directions is tangent to
line of points where fb has a cusp singularity.
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[5] K. Kommerell, Riemannsehe Flächen in ebenen Raum von vier Dimensioncn,
Math. Ann. 60 (1905), 546-596.

[6] J. Little, On singularities of submanifolds of higher dimensional Euclidean
spaces, Ann. Mat. Pura ed Appl. 83 (1969), 261-335.

[7] D. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, The geometry of surfaces
in 4-space from a contact viewpoint, Geometriæ Dedicata 54(1995), 323-332.

[8] C.L.E. Moore, E.B. Wilson, Differential geometry of two-dimensional surfaces
in hyper spaces, Proc. of the American Academy of Arts and Sciences, 52
(1916), 267- 368.

[9] M. Spivak, A Comprehensive Introduction to Differential Geometry vol. 2
(third ed.), Publish or Perish, 1999
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