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ABSTRACT. At the beginning of his mathematical career Kostia
Beidar was working on rings with polynomial identities and prime-
ness conditions for rings. By Posner’s theorem the two-sided quo-
tient ring of a prime Pl-ring is a finite matrix ring over some field.
This result was extended by Martindale to rings with generalised
polynomial identities by the construction of the central closure
of a prime ring. Kostia was working extensively in this setting
and made crucial contributions to the understanding of the the-
ory. While his contribution to general PI theory will be outlined
elsewhere we want to sketch here his work on prime rings and the
resulting study of (strongly) prime modules. An account on his
papers on Hopf algebras is given and attention is drawn to some
more recent constructions which grew out from Kostia’s basic con-
tributions to this field.
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1. RINGS AND RINGS OF QUOTIENTS

1.1. Finite automorphism groups. The two early papers [7] and [6] by
Kostia are dealing with automorphism groups of algebras. Let G be a finite
group acting on an associative ring A with unity, with A“ the fixed ring of
this action. An element v € A is called an element of trace one if

tra(y) =Y g(y) = 1.
geG
In [7] it is proved that if A has an element of trace one, then A inherits
each of the following two properties from A%:
(i) every quotient ring by a primitive ideal is Artinian;
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(ii) the ring is a PI-ring.

The second property was shown later by Kostia and B.Torrecillas in [46]
to hold also for finite dimensional Hopf algebras H with cocommutative
coradical acting on an unital algebra A such that ¢ -+ = 1 for some v € A
and a left integral t € H.

Denote by N(A) the upper nil-radical of the algebra A. Herstein’s con-
jecture asks whether A/N(A) is commutative, provided that A% lies in the
centre of A and G is a cyclic group of prime order. Kostia gave an affirma-
tive answer in [7] under the additional assumption that AY is semiprime or
that A has an element v € A such that trg(7) is central in A and not a zero
divisor of A.

Under the global assumption that G is a finite cyclic group and A lies in
the centre of A, he had shown already in [6, Theorem 4] that the existence
of an element v € A where trg() is central and not a zero divisor in A
implies the commutativity of A/rad A, where rad A is the classical radical
of A. Moreover [6, Theorem 2] shows that the action of G on A can be
extended to an action of G on Q(A), the maximal right ring of quotients of
A, provided A contains a central element of trace one and satisfies rad A = 0.
In this situation one also has Q(A)% = Q(A%).

For convenience recall that the mazimal (or complete) right ring of quo-
tients of a ring A is defined as the ring

Q(A) ={be E(A) | for any f € End E(A), f(A) = 0 implies f(b) = 0},

where E(A) denotes the injective hull of A as right A-module.

1.2. Non-degenerated alternative rings. Kostia has written several joint
papers on nonassociative rings. Recall that a ring A is said to be alternative
if 22y = z(zy) and yx? = (yx)x for all 2,y € A. An alternative ring A is
non-degenerate if xAx # 0 for any non-zero element x € A. In [22] it is
proved:

Theorem. For a non-degenerate alternative ring A, the following are equiv-
alent:

(a) A is prime, that is IJ # 0 for any two nonzero ideals I,J C A;
(b) (aA)b# 0 for any nonzero a,b € A;
(c) a(Ab) # 0 for any nonzero a,b € A.

A similar result is obtained for Jordan rings in [22, Theorem 2] where
non-degeneracy is defined by the Jordan triple product of elements.

The study of non-degenerate alternative rings was continued in [23]. There
the construction of nearly classical localization is given and the structure of
non-degenerate alternative algebras is described. Purely alternative (that
is, nonassociative) alternative rings are called generalised Cayley-Dickson
Tings.
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Theorem. ([23, Corollary 2.15]) Let A be a non-degenerate alternative al-
gebra. Then A is a subdirect product of semiprime associative algebras and
of generalised Cayley-Dickson rings.

That Cayley-Dickson rings play a dominant role for purely alternative
rings was shown in [23, Theorem 2.16]:

Theorem. Let A be a non-degenerate alternative algebra over a commuta-
tive associative noetherian ring R with unit. Then A is either an associative
algebra or A contains a subalgebra which is a Cayley Dickson ring.

In Kostia’s paper [32] it is proved that the centre of a non-degenerate
purely alternative algebra A contains a dense ideal I such that for any
nonzero t € I the classical localization A; of the algebra A with respect to
t is a Cayley-Dickson algebra over its centre. This is used to show that the
classical ring of quotients of an alternative Pl-algebra is a Pl-algebra and
some of the results are applied to the description of von Neumann regular
alternative algebras. Let us mention that purely alternative prime algebras
behave similar to prime Pl-algebras. For example, for both types of rings
the nonzero ideals have nonzero intersections with the centre.

1.3. Orthogonal completeness. Although it is generally useful to study
semiprime rings by reducing the questions to prime rings, this approach
frequently presents some difficulties. For example, it is well known that every
polynomial identity of a prime ring R is also an identity of its maximal right
ring of quotients Q(R). However, when trying to prove a similar statement
for semiprime rings, the direct reduction to prime rings is not so easy, since
in general there is no homomorphism Q(R) — Q(R/P), where P is a prime
ideal of the ring R.

Some of the problems arising in this context can be overcome by the
theory of orthogonal completeness which was investigated and developed
in a series of papers by Kostia mainly in cooperation with A.B. Mikhalev
[18, 20, 21, 19] and a nice overview of these results is given in [39].

Recall that a unital ring B is called Boolean if every element of B is an
idempotent. An algebra A over a Boolean ring B is said to be orthogonally
complete if for any a € A the ideal

r(B;a) ={b € B|ab=0}

is principal, and if for any dense orthogonal subset £ C B and for any family
of elements S = {s.|le € E} C A there exists an element a € A such that
ea = es, for all e € E.

One way of obtaining an orthogonal completion of an algebra A over an
associative semiprime commutative ring K is by almost classical localization.
For this, let F be the filter of dense ideals of K, and assume that A is F-
torsion free. It turns out that Az is an orthogonally complete K r-algebra
over the Boolean ring B of idempotents of K. The orthogonal completion
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of A is then the intersection of all orthogonally complete subalgebras of Ar
containing A.
The method of orthogonal completeness has three components:
(1) Constructions and descriptions of orthogonal completions,
(2) sufficient conditions for the primeness of Pierce stalks of orthogonally
complete rings, and

(3) metatheorems which allow one to lift structure theorems to the or-
thogonally complete rings from their Pierce stalks.

The theory was applied by the authors in various situations, for example
for the structure of nondegenerate alternative algebras and the structure of
semiprime rings with bounded indices of nilpotent elements. We mention
two typical results, [11, Theorem 2 and 3].

Theorem. Let Q = Q(A) be the maximal right ring of quotients of the
prime ring A. Then the following conditions are equivalent:

(a) A is a right Goldie ring;
(b) there exists some n € N such that a® € a"T1Q for all a € A;

(c) the indices of the nilpotent elements of A are bounded, and for each
a € A there exists n = n(a) € N such that a™ € a"1Q

Theorem. Let Q = Q(A) be the maximal right ring of quotients of the
semiprime ring A. Then the following are equivalent:

(a) @ is the direct sum of finitely many matriz rings over strongly regqular
right self-injective rings;
(b) there exists some n € N such that a® € a"™1Q for all a € A.

1.4. The central closure of a prime ring. Let R be prime ring and let
U = {U|U is a nonzero ideal in R}. For any non-zero U,V € U, consider
homomorphisms f : Ur — Rgr and g : Vg — Rpr and define f to be equiva-
lent to g if f|luny = gluny. This defines an equivalence relations on the set
of all such morphisms. With obvious addition and multiplication the set of
the equivalence classes form a ring ), the Martindale ring of quotients of A.
The centre C of @ is a field and is called the extended centroid of R. Then
S = RC C @Q is a prime ring which is called the central closure of R.

In [58, Theorem 3] it is shown that S satisfies a generalised polynomial
identity if and only if S contains a minimal right ideal S, e? = e € S, and
eSe is a finite dimensional division algebra over C.

Let R be a semiprime ring. As outlined in [59], the above construction
can be repeated by replacing the set U of all ideals by all essential ideals of
R. Tt was shown by Kharchenko that in this case the extended centroid C'is
a regular ring and Kostia proved (in [2, Theorem 1]) that C'is a self-injective
ring. Moreover the central closure S = RC' is a semiprime ring. As shown
in [54] associativity of the ring R is not needed for the construction of the
central closure. This will also follow from the module theoretic constructions
considered in 3.2.
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When is the central closure simple? One of the questions of central
localization is when the central closure S = RC' is a simple ring. If R be
a prime ring, then S is a prime ring with the centre C' (extended centroid)
being a field. If S satisfies a polynomial identity, then the intersection of
any ideal with the centre C is non-zero and hence contains an invertible
element. Thus S is a simple ring. Moreover, PI theory tells us that S has
finite dimension as C-vector space.

The question arises which property of the ring R (other than PI) implies
that S is a simple ring. This may also be expressed by properties of the
(R, R)-bimodule R and this will be done in 3.1. To prepare this some new
notions in module theory are needed.

2. STRONGLY PRIME AND SEMIPRIME MODULES

To provide the techniques to deal with the questions asked above recall
that for any R-module M, the full subcategory of R—Mod whose objects
are submodules of M-generated modules is denoted by o[M]. This is a
Grothendieck category and every object has an (M-)injective hull in o[M].

Let M denote the M-injective hull of M € o[M]. The class
{X € o[M]|Homp(X, M) = 0}

is a torsion class and induces a torsion theory in o[M].

We write U < M to indicate that U is an essentieﬂ\ submodule of M. The
module M is called polyform provided Hompg(M /U, M) = 0 for every U <M.
Notice that a ring R is left polyform if and only if its left singular submodule
is zero.

2.1. Bimodule properties of polyform modules. Of particular interest
is the bimodule structure of polyform modules. Motivated by the properties
observed for nonsingular and semiprime rings and Kostia’s experience with
idempotents, the following is shown in [36, 3.3].

Theorem. Let M be a polyform R-module, M its M-injective hull and T =

EndR(]/W\). Denote by C the center of T (i.e., the endomorphism ring of]/W\
as an (R, T)-bimodule). Then:

(1) Ewvery essential (R, T)-submodule of M is essential as an R-submodule.
(2) M is self-injective and polyform as an (R,T)-bimodule.
C' is a regular self-injective ring.

(3) For every submodule (subset) K C ]/\4\, there exists an idempotent
e(K) € C, such that Anc(K) = (1 —e(K))C.

(4) If K IL C M, then e(K) = £(L).
(5) Ewvery finitely generated C-submodule of]/W\ is C'-injective.
(6) If]\/i is a finitely generated (R, T)-module, Misa generator in C-Mod.

These observations lead to the definition and properties of the
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Theorem (Idempotent closure of polyform modules). Let M be an R-
module, T = EndR(]/\/[\) and B the Boolean ring of all central idempotents of
T. We call M = MB the idempotent closure of M.

Then for every a € M, there exist my,...,my € M and pairwise orthog-
onal ¢1,...,cp € B such that a = Z?:l m;c;.

If M is a polyform module, there exist pairwise orthogonal idempotents
e1,...,ex € B such that

(1) a= Z?:l m;€;;
(2) e, =e(m)e;  fori=1,... k;

(3) ela) =3 e

2.2. Strongly semiprime modules. Again this point of view can be ex-
tended to semiprimeness and here Kostia came in with substantial contri-

butions in [36], [37], and [38]. A module M is called strongly semiprime,
for short SSP, if its M-injective hull M is semisimple as an (R, T")-bimodule

—

where T' = Endr (M) (see [37, 4.5]).

Theorem. Let M be an R-module.
(1) Assume M has an essential socle and for every N < M, M € o[N].
Then M is semisimple.
(2) M is semisimple if and only if every module in oc[M] is SSP.
In general SSP modules need not be polyform. However we have the
following theorem:

Theorem (Projective strongly semiprime modules). Let M be projective in
o[M] and T = EndR(]/W\). Then the following are equivalent:

(a) M is an SSP-module;

(b) M s polyform and for any N <M, M € o[N].

Applied to the case M = R we get a characterization of left SSP rings
([37, 8.2]):

Theorem. For a ring R let Q = Q(R) denote the maximal left ring of
quotients. Then the following are equivalent:

(a) R is left SSP;

(b) for every essential left ideal N C R, R € o[N];

(¢) every N < pR contains a finite subset X with Ang(X) = 0;

(d) R is semiprime and every left ideal I C R contains a finite subset

X C I with Anp(X) = Ang(I);
(e) Q is a semisimple (R, Q)-module.

If R satisfies these conditions, then @) is left self-injective, von Neumann
regular, and a finite product of simple rings. Left ideals with property (c)
in 2.2 are also called insulated. So the rings described here are exactly the
left strongly semiprime rings as considered by Handelman [53].
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2.3. Strongly prime modules. The R-module M is called strongly prime
if every nonzero submodule K C M is a subgenerator in o[M], that is,
M € o[K].

—

Theorem. For an R-module M with T'= Endg(M), the following are equiv-
alent:

(a) M is strongly prime;

(b) M is SSP and M is a uniform (R, T)-bimodule.
(c) M is a simple (R, T)-bimodule;

(d) M has no fully invariant submodule.

In particular, for a uniform R-module M, the conditions strongly prime and
SSP are equivalent.

3. THE BIMODULE STRUCTURE OF AN ALGEBRA

As pointed out earlier the motivation for some of the notions introduced
for modules was to understand the bimodule structure of an algebra. This
will be outlined in this section.

3.1. Bimodule structure of an algebra. For any algebra (or ring) A and
a € A, the left and right multiplications

L,:A— A z—ax, A,:A— A x— xa,

are Z-linear maps and the multiplication algebra M(A) of A is defined as the
subring of Endz(A) generated by all L,, Ay, a € A and the identity map of
A. Notice that we do not require A to be associative nor to have a unit.

Then A is a left module over M (A) and Endj;(4)(A) is called the centroid
of A. If A has a unit, then this is isomorphic to the center Z(A) of A.

In general A is not a generator in M (A)—Mod and to relate properties of A
with properties of M (A)-modules one has to restrict to the full subcategory
o[A] of M(A)—Mod whose elements N are subgenerated by A, that is, N
is a submodule of an A-generated M(A)-module. If A has a unit then an
M(A)-module N is A-generated if and only if it is generated by its central
elements {m € N |am = ma for all a € A}.

Notice that in the category o[A], every object has an injective hull. In
particular, the selfinjective hull A of the M (A)-module A is injective in o[A]
and is an A-generated M (A)-module, that is, A= AHom s 4)(4, 121\)

3.2. Central closure of semiprime algebras. For the construction of the
maximal left ring of quotients of a semiprime associative ring it is of interest
if the ring is left non-singular. Although every semiprime commutative ring
is non-singular, a noncommutative semiprime ring need not be non-singular
as a left (or right) module over itself. However, any semiprime ring A is
non-singular in the category o[A] as an (A, A)-bimodule and this makes it
possible to construct a quotient ring for any semiprime ring.
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Theorem. ([37, 9.1]). Let A be a semiprime algebra with A-injective hull
A as M(A)-module and T := Endp4)(A) (the extended centroid). Then:

(1) A is a polyform M (A)-module.

(2) T is a commutative, reqular, and self-injective ring.

(3) A= AT is a semiprime ring with respect to the multiplication

(as) - (bt) := (ab)st, fora,be A, s,t €T,
and linear extension.

A is called the central closure of A.

In the given situation the idempotent closure of a polyform module yields
a ring extension.

Theorem (Idempotent closure of semiprime algebras). Let A be a semiprime

-~

R-algebra, T = Endj;4)(A), B the Boolean ring of idempotents of T'. The

idempotent closure of A as an M(A)-module, A = AB (see 2.1), is an R-
algebra and

(1) for any a € g, there exist ai,...,ar € A and pairwise orthogonal
el,...,e, € B, such that

() a= Y5, ae,
(i) e; =e(a;)e;, fori=1,...,k, and
(iii) e(a) = 35, €. B
(2) For every prime ideal K C A, P =K N A is a prime ideal in A and
A/K = (A+K)/K ~ A/P.

The set v = {e € B|Ae C K} is a mazimal ideal in B and K =
PB + Ax.

(3) For any prime ideal P C A, there exists a prime ideal K C A with
KNA=P.

Of course for any prime algebra the central closure can be constructed as
in 3.2 and we obtain special properties.

Theorem (Central closure or prime algebras). Let A be a prime algebra
with A-injective hull A as M(A)-module and T := EndM(A)(X). Then:
(1) T is a field.
(2) A= AT is a prime ring whose center is a field.
(3) Aisa simple ring if and only if A is strongly prime as an M(A)-
module.
Recall that a ring A is an Azumaya ring if A is a generator in the cate-

gory o[A] of M(A)-modules. We mention the result [36, 9.9] showing some
relations with this type of algebras.

Theorem. Let A be a semiprime ring with unit, T = Endz(4) (A\) where A
is the central closure of A (see 3.2). Then the following are equivalent:
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(a
(

A is an Azumaya ring;
A

)
b) A is a biregular ring and Aisa projective module in T 0y [A\]
(c) the M(A)-module A is a generator in T 0y [A];
(d) M(A) is a dense subring in Endy(A).

3.3. Central closure for Hopf module algebras. Given an algebra A
with an action of a Hopf algebra H, we can similarly construct a kind of
central closure for A to which we can extend the action of H. More generally,
the above construction works for any extension A C B of unital rings such
that there exists a ring homomorphism ¢ : B — End(A) with M(A) C
Im(p). By [57] we have the following theorem:

Theorem. Let A C B as above and denote by A the self-injective hull of
A as a B-module. Assume that A is B-semiprime, i.e., has mo non-zero
B-stable nilpotent ideal. Then

(1) A is a polyform B-module and AP = Endg(A) is a commutative re-
duced ring.

(2) AB = EndB(E) is a commutative von Neumann reqular self-injective
ring, which is a field if and only if A is B-prime, i.e. the product of
two non-zero B-stable ideals of A is non-zero.

(3) A= AAB is q semiprime ring with respect to

(as) - (bt) := (ab)st, fora,be A, s,t € AB,
and linear extension.

Since 4 is a B-module, the action of B on A extends to an action of B on
A. Asan application to Hopf algebra action one defines a new multiplication
on the tensor product B = A° ® H, where A° = A ® A° is the enveloping
algebra and H is a Hopf algebra acting on A, such that A C B is an extension
as described above. The construction of A yields a new H-module algebra
which coincides with the central closure constructed by Matczuk.

3.4. Strongly semiprime algebras. Under some non-degeneracy condi-
tion strongly semiprime algebras are semiprime and thus the central closure
is defined yielding [37, 9.4].
Theorem. Let A be a ring which is not annihilated by any non-zero ideal
and T = EndM(A)(A\). Then the following conditions are equivalent:
(a) A is an SSP M(A)-module;
(b) A is a semiprime algebra and for every essential ideal U C A, A €
OM(A) [U] ;
(¢) A is semiprime and the central closure A is a direct sum of simple
ideals.
If A is associative, then (a)-(c) are equivalent to:
(d) A is semiprime and for every ideal I C A, A/Ana(I) € opp(a)ll]-
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4. HOPF ALGEBRAS AND QUANTUM YANG-BAXTER EQUATION

In two papers Kostia, in cooperation with A. Stolin and Y. Fong, proved
a couple of interesting results on Frobenius algebras over commutative rings
that they could apply successfully to Hopf algebras over commutative rings.

4.1. Frobenius Algebras and quantum Yang-Baxter equation. An
algebra A over a commutative ring K is called Frobenius if it is a finitely
generated projective K-module and there exists ¢ € A* = Hom(A, K) such
that the map ¢ : A — A* with ¢ (z)(y) = ¢(yz) for all z,y € A is an
isomorphism of K-modules. Since A is finitely generated and projective as
K-module, it has a dual basis {e;, f'}1<i<n, i.e. ¢; € A and f' € A* such
that

xr = Z fi(x)e;.
i=1

Then given any x € A, there exists a unique 2’ € A such that

d(yr') = ¥(a")(y) = ¢(zy)
for all y € A. This defines an automorphism « : A — A with a(z) = 2/,
called the Nakayama automorphism of A.
Let Q = a; ®b; € A® A be an element of the tensor product. We will
use the following notations for elements in the 3-fold tensor of A:

QP =) aabeleA®,
Q¥ =) a;01ab € A%,
Q¥ =) 1®a0b € A%,

If R € Endg (A ® A) then we also use the notation R'2, R'3, R* to de-
note the endomorphisms of the 3-fold tensor A®3 acting on the compo-
nents indicated by the superscripts, i.e. R'?> = R®id, R*®> = id ® R and
RB(z@y®z) = (id®T)R(r®2)®y where T is the twist map T'(a®b) = b®a.

Theorem ([41, Theorem 3.4]). Let A be a Frobenius algebra over K with
Frobenius homomorphism ¢, Nakayama automorphism o, and dual bases
(ei, f1) and €' = p7H(f). Set Q@ = Y1 je;®e’ € A®k A and define
T € Endg(A®K A) by T(a®b) =b®a. Then Q satisfies the braid relation
Q12Q23Q12 —_ Q23Q12Q23
and R = QT € Endg (A ®k A) satisfies the quantum Yang-Bazter equation
(QYBE)
RI2ZRI3BR23 _ R23RI3R12.
Moreover O(A) ={P € A®x A| (1®a)P = P(a® 1)} is a free rank one
left (right) A-submodule of A @ A with basis {Q}.

Let Z(A) denote the center of the Frobenius K-algebra A and define
D:A— Z(A)as O(x) =>.1", e'xe; for all a € A. Set u = O(1).
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Theorem ([41, Theorem 4.2]). Consider the following conditions:

(1) w is invertible in A;

(2) A is a Frobenius Z(A)-algebra with Frobenius homomorphism ®;

(3) ®(z) =1 for some x € A;

(4) A is a separable K -algebra.
Then the implications (i) = (ii) < (iii) < (1v) hold.

In particular, if A satisfies one of conditions (i), (iii) or (iv) then A is a
separable K -algebra with separability idempotent > e; @ e'x, where x is the
element of condition (ii1).

4.2. Hopf algebras as Frobenius algebras. Let H be a Hopf algebra
over a commutative ring K with antipode S, comultiplication A, and counit
€. B. Pareigis showed that every Hopf algebra H that is finitely generated
projective over a commutative ring K with trivial Picard group, is a Frobe-
nius K-algebra with Frobenius homomorphism ¢ € H* such that ¢ satisfies

> hid(ha) = (k) -1
(h)

for all h € H, where }_ ) h1 ® hy = A(h) is the comultiplication of A in
Sweedler’s notation. The latter condition on ¢ says that ¢ is an H-colinear
map.

Recall that a left integral in H is an element ¢ € H such that ht = e(h)t
for all h € H, and that H* is also a Hopf algebra over K and denote its
counit by 7.

Theorem ([42, Theorem 3.2]). Let H be a Hopf algebra over K which is
Frobenius with a Frobenius homomorphism ¢ which is H-colinear. Then
(1) N =30 e(e;)et is aleft integral in H and a left norm, i.e. ¢p(xN) =
e(z) for allz € H.
(2) ¢ generates the submodule of left integrals in H* and

Tr(5?%) = ¢(N)n(¢).
(3) Given any left integral | € H,
R=(S"'®1)A()T € End(H ®x H)
is a solution of QYBE.

The trace formula for the square of the antipode, which in the case that
K is a field is due to R. G. Larson and D. E. Radford and was used in an
essential way in their proof of a conjecture of Kaplansky (see [55, 56]).

Applying the last Theorem and the characterisation of separable Frobe-

nius algebras yields the following corollaries which generalise known results
for Hopf algebras over fields:

Corollary ([42, Corollaries 3.4 and 3.5]). Let H be a Hopf algebra over
a commutative ring K such that H is finitely generated projective as K-
module. Denote the antipode of H by S.
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(1) H is a separable K-algebra if and only if H has a left integral | such
that €(l) is an invertible element of K.

(2) H and H* are separable K -algebras if and only if Tr(S?) is an invert-
ible element of K.

A Hopf algebra H is called involutory if its antipode S is an involution,
i.e., S? = id. As an extension of a theorem by Larson we have now:

Theorem. The following conditions are equivalent for a Frobenius algebra
H over an algebraically closed field K.

(a) u=>", e is invertible;
(b) H is a separable K -algebra and the characteristic of K does not divide
dimensions of simple H-modules.

In particular, condition (a) is fulfilled if H is an involutory semisimple K -
Hopf algebra.

If H is unimodular, i.e., the submodules of left integrals and of right
integrals coincide, and finitely generated and projective as a K-module,
then S acts as the identity on the submodule of integrals and S* = id holds
provided H* is also unimodular.

5. STRUCTURE OF MATRIX RINGS

Let n be a positive integer and R a ring, and let M, (R) denote the ring
of n X n matrices over R.

5.1. CS matrix rings over local rings. In the papers [47, 48, 49, 50] with
various coauthors Kostia made some contributions to the structure theory
of CS modules and rings. A module M is called CS or ezxtending provided
every submodule of M is essential in a direct summand. M is said to be a
tight module if every finitely generated submodule of the self-injective hull
of M embeds in M. A ring R is called a right CS-ring if R is CS as a right
R-module, and R is right tight provided it is tight as a right module.

An open problem is to find necessary and sufficient conditions for direct
sums of CS-modules to be CS. In [48] it is shown that if M is non-M-singular
and CS, then M is M-tight and End(Mpg) is right PP, and the converse also
holds if M is furthermore a self-generator.

This result is applied to give necessary and sufficient conditions for R" to
be CS as a right R-module (equivalently, the n x n matrix ring M, (R) is a
right CS-ring), where R is either a reduced ring or a ring with no infinite
set of nonzero orthogonal idempotents. In particular, the open problem of
characterizing a domain R such that R? is CS as a right R-module is solved;
it is proved that such a domain is precisely a two-sided Ore domain and is
two-sided 2-hereditary. Another result in this paper is:

Theorem. For a von Neumann regular ring R, the following are equivalent
forn > 1:
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(a) M,(R) is right weakly selfinjective;
(b) M, (R) is right M, (R)-tight;
(¢) My(R) is a right CS-ring;
(d) R is right selfinjective.

In [47] a complete characterization of CS matrix rings M,(R), where
n > 1, over local rings R is obtained:

Theorem. (1) M, (R) is right CS if and only if R is right uniform and
for every right ideal I of R and for every R-homomorphism f: I — R
there exists a € R such that either f = L, or Lof = idy, where L, is
the left multiplication by a and idy is the identity map on 1.

(2) If, in addition, the Jacobson radical of R coincides with the right sin-
gular ideal {r € R|rE = 0 for some essential right ideal of R}, then
M, (R) is a right CS-ring if and only if R is selfinjective.

(3) If R is a commutative Noetherian local ring, then M, (R) is a right
CS-ring if and only if the classical two-sided quotient ring, Q(R), is a
local QF-ring such that for all g € Q(R) either ¢ € R or q is invertible
in Q and ¢! € R.

Applying the obtained results to group algebras, it is proved: If K is a
field and G is a group (resp., nilpotent group) such that the group algebra
KG@G is local (resp., semiperfect), then M, (KG)(n > 1) is a right CS-ring if
and only if char(K) = p and G is a finite p-group (resp., finite group). This
result was subsequently generalised by the same authors in [49].

Theorem. Let K be a field and G be a group. Suppose that one of the
following conditions is satisfied:
(i) G is a locally finite group;
(ii) the group algebra KG is semilocal and G is either a solvable group or
a linear group.
Then the following conditions are equivalent:
(a) M,(KG) for n > 1 is a right CS-ring;
(b) My(KQG) is a right CS-ring;
(¢) KG is right self-injective;
(d) G is a finite group.

5.2. Structure of right continuous right 7-rings. A right module M
is called m-injective or quasi-continuos if f(M) C M for every idempotent
f € End(E(M)) where E(M) is the injective hull of M. Quasi-continuos
modules are in particular C'S modules. A quasi-continuos module is called
continuos if it is direct injective, i.e., if for every direct summand D of M
every monomorphism D — M splits.

A ring R is called a right m-ring if every right ideal of R is w-injective.
The structure of these rings was investigated in [50] leading to the following
results.
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For a positive integer n, let
(1) D1, Da,...,D, be division rings,
(2) A be a right continuous right m-ring, all of whose idempotents are

central, with essential ideal P such that A/P is a division ring and
the right A-module A/P is not embeddable into Ax,

(3) Vi be a Di-D;y1-bimodule such that dim Vip,,, = 1 forall1 <i<mn
(4) Vi, be a D,,-A-bimodule such that V,,P = 0 and dim Vaayp = 1.

In this case, Gy (D1, ..., Dp, A, V1, ..., V,) denotes the ring of (n+ 1)-by-
(n + 1) matrices of the form

Dy Vi
Dy Vo
D3 V3

. Dy Vi,
A

with V;V; = 0 for all 4, j.
The following result characterises right continuous right w-rings.

Theorem. A ring R is a right continuous right w-ring if and only if R is
the direct sum of finitely many rings of the form

Gn(D1,...,Dp, AV, 0 V),

finitely many indecomposable nonlocal right continuous right w-rings, and a
right continuous right w-ring with all idempotents central.

5.3. Uniform bounds of primeness in matrix rings. A subset S of an
associative ring R is a uniform insulator for R provided aSb # 0 for any
nonzero a,b € R. A ring R is called uniformly strongly prime of bound m(R)
if R has uniform insulators and the smallest of these has cardinality m(R).
The systematic studied of m(R) was initiated by J. E. van den Berg who
proved the following

Theorem. (1) If F is an algebraically closed field, then m(My(F)) =
2k — 1.
(2) Let F be a field and assume there exists a nonassociative division F-
algebra of dimension k, then m(My(F)) = k.

He asked if the converse of (2) holds. In [51, Theorem 1.2] a positive
answer to this question is given showing how it is related to the existence of
nonassociative division algebras over F'.

Theorem. Let F' be a field and k a positive integer k. Then:
(1) m(My(F)) =2k — 1 for all k if and only if F' is algebraically closed;

(2) m(Mg(F)) = k if and only if there exists a nonassociative division
F-algebra of dimension k.
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5.4. Structure of rings with zero total. The total was introduced by
F. Kasch and Kostia was considering some questions arising from this no-
tion. For two R-module M and N, Rad(M,N) is defined as the set of
all ¢ € Hom(M,N) such that 1 — fg is an automorphism of M for all
f € Hom(N, M). Let A(M,N) denote the set of all g € Hom(M, N) such
that the kernel of g is an essential submodule of M. Finally, let Tot(M, N) be
the set of all ¢ € Hom(M, N) such that for all f € Hom(N, M), fg # (fg)?
unless fg = 0.

In [45], a joint paper of Kostia with F. Kasch, conditions on R and the
modules are studied so that all three ideals are equal. In the special case
M = R, the total R is the subset

Tot(R) = {a € R: aR does not contain nonzero idempotents}.
In [40], Kostia considers rings with Tot(R) = 0 and obtained the following

Theorem ([40, Theorem 5]). Let In(a) = min{n € N|a™ = 0} for a nilpo-
tent element a € R and In(R) = sup{In(a) | a nilpotent in R). For a ring R
with In(R) = n < oo, the following are equivalent:
(a) Tot(R) =0;
(b) R contains an essential ideal I which is a direct sum of ideals I}, =
My, (Dy), k=1,2,...,t, where
(1) np<ng<---<ng=n.
(2) Each M, (Dy) is a matriz ring over a reduced ring Dy.
(

3) If L # 0 is a right ideal of Dy, then the set of all central idem-
potents of Dy belonging to L generates an essential ideal in L.

This result yields interesting corollaries, e.g.

Corollary (][40, Corollary 6]). The following statements are equivalent for
a ring R with In(R) =n < o0

(a) R is a prime ring and Tot(R) = 0

(b) R = M, (D), where D is a division ring;

Corollary ([40, Corollary 8]). Let R be a ring with Tot(R) = 0 and In(R) =
n < oo. Then the following statements hold:

(1) The mazimal right ring of quotients Q of R equals the maximal left
ring of quotients of R.

(2) @ is isomorphic to a finite direct sum of matriz rings over abelian
reqular left and right self-injective rings.
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