PROJECTED WALLPAPER PATTERNS

ISABEL S. LABOURIAU AND ELIANA M. PINHO
VIIIème Rencontre Internationale de São Carlos sur les Singularités Réelles et Complexes, CIRM, 2004

Abstract

Consider a periodic function f of two variables with symmetry Γ and let $\mathcal{L} \subset \Gamma$ be the subgroup of translations. The Fourier expansion of a periodic function is a sum over \mathcal{L}^{*}, the dual of the the set \mathcal{L} of all the periods of f. After projecting f, some of its original symmetry remains. We describe the symmetries of the projected function, starting from Γ and from the structure of \mathcal{L}^{*}.

1. Introduction and preliminaries

An usual method of studying bifurcation [5] on problems equivariant under the Euclidean group $\mathbf{E}(2)$ is to look for periodic solutions - see $[2,3,4]$. If $f: \mathbf{R}^{2} \longrightarrow \mathbf{R}$ has two noncolinear periods then its symmetry group is a plane crystalographic group, $\Gamma \leq \mathbf{E}(2)$, and its level sets form a periodic pattern.

We start with a pattern in \mathbf{R}^{2} and project it into \mathbf{R}. What are the symmetries of the projected pattern? This question is addressed in [6]. The new pattern, the level sets of a function in \mathbf{R}, may be periodic or invariant under reflections. We relate the existence of these symmetries to properties of Γ and of \mathcal{L}^{*}, the dual of the set \mathcal{L} of all the periods of f. The set \mathcal{L}^{*} arises naturally in the Fourier expansion of f and the symmetries in Γ impose restrictions on Fourier coefficients.

We write elements of $\mathbf{E}(2)=\mathbf{R}^{2} \dot{+} \mathbf{O}(2)$ in the form $\left(v_{\delta}, \delta\right)$, whith $v_{\delta} \in \mathbf{R}^{2}$ representing a translation and $\delta \in \mathbf{O}(2)$. They act in f : $\mathbf{R}^{2} \longrightarrow \mathbf{R}$ with the scalar action (see [7]):

$$
\left.\left(v_{\delta}, \delta\right) \cdot f(x)=f\left(\left(v_{\delta}, \delta\right)^{-1}\right) \cdot x\right)=f\left(\delta^{-1} x-\delta^{-1} v_{\delta}\right)
$$

We assume that Γ is a plane crystalographic group - see $[1,8]$ for general results and definitions. Denote by \mathcal{L} the subgroup of the translations in Γ, a module over the integers, also called a lattice. If f is Γ-invariant, then in particular elements of \mathcal{L} are periods of f. A pattern and the lattice \mathcal{L} may not have the same symmetries: see figure 1 .

Figure 1. a) The lattice (black dots) is not invariant under the glide reflection transforming the grey motive into the darker one. However this is a symmetry of the lighter pattern. b) The lighter pattern is not invariant under the reflection on the black line, although this is a symmetry of the lattice (black dots).

2. Symmetries and Projection

Let X_{Γ} be a vector space of Γ-invariant functions $f: \mathbf{R}^{2} \longrightarrow \mathbf{R}$, having unique formal Fourier expansions of the form:

$$
f(x, y)=\sum_{k \in \mathcal{L}^{*}} \omega_{k}(x, y) C(k),
$$

where \mathcal{L}^{*} is the dual lattice and $\omega_{k}(x, y)=\mathrm{e}^{2 \pi i<k,(x, y)>}$.
The elements of \mathcal{L}^{*} are $k \in \mathbf{R}^{2}$ such that $<k, l>\in \mathbf{Z}$ for all $l \in \mathcal{L}$, where $\langle k, l\rangle$ is the usual inner product in \mathbf{R}^{2}.

Given $y_{0}>0$, define the projection of a function $f \in X_{\Gamma}$ to be the function

$$
\Pi_{y_{0}}(f)(x)=\int_{0}^{y_{0}} f(x, y) d y \quad x, y \in \mathbf{R} .
$$

We assume that in X_{Γ} we have,

$$
\Pi_{y_{0}}(f)(x)=\sum_{k \in \mathcal{L}^{*}} \int_{0}^{y_{0}} \omega_{k}(x, y) C(k) d y
$$

and that X_{Γ} contains, for all $k \in \mathcal{L}^{*}$, the real and imaginary parts of $I_{k}(x, y)=\sum_{\delta \in \mathbf{J}} \omega_{\delta k}\left(-v_{\delta}\right) \omega_{\delta k}(x, y)$, where $\mathbf{J} \sim \Gamma / \mathcal{L}$ is the largest subgroup of $\mathbf{O}(2)$ that leaves \mathcal{L} invariant. Notice that these are the simplest Γ-invariant functions.

The first step in obtaining the symmetries of the projected functions is to relate the $\left(v_{\alpha}, \alpha\right)$-invariance to restrictions on Γ and on \mathcal{L}^{*}. This is the main result in this paper: Proposition 2.1, below.

For $\alpha \in\{1,-1\}$, let $\alpha_{+} \in\{I,-\sigma\}$ and $\alpha_{-}=\sigma \alpha_{+} \in\{\sigma,-I\}$, where

$$
\alpha_{+}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \sigma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Note that $\alpha_{ \pm}=\alpha_{ \pm}^{-1}$ and $\sigma=\sigma^{-1}$.

Proposition 2.1. All functions in $\Pi_{y_{0}}\left(X_{\Gamma}\right)$ are invariant under the action of $\left(v_{\alpha}, \alpha\right) \in \mathbf{R}+\mathbf{O}(1)$ if and only if one of the following conditions holds:
A. $\left(v_{+}, \alpha_{+}\right) \in \Gamma$ and for each $k \in \mathcal{L}^{*}$, either $<k,\left(0, y_{0}\right)>\in \mathbf{Z}-\{0\}$ or $<k, v_{+}-\left(v_{\alpha}, 0\right)>\in \mathbf{Z}$,
B. $\left(v_{-}, \alpha_{-}\right) \in \Gamma$ and for each $k \in \mathcal{L}^{*}$, either $<k,\left(0, y_{0}\right)>\in \mathbf{Z}-\{0\}$ or $<k, v_{-}-\left(v_{\alpha}, y_{0}\right)>\in \mathbf{Z}$,
C. $\left(v_{\sigma}, \sigma\right),\left(v_{+}, \alpha_{+}\right) \in \Gamma$ and, for each $k \in \mathcal{L}^{*}$, one of the conditions C1, C2 or C3 below holds:

$$
\begin{aligned}
& C 1 .<k,\left(0, y_{0}\right)>\in \mathbf{Z}-\{0\}, \\
& C 2 .<k, v_{+}-\left(v_{\alpha}, 0\right)>\in \mathbf{Z}, \\
& C 3 .<k, v_{\sigma}-\left(0, y_{0}\right)>+\frac{1}{2} \in \mathbf{Z} .
\end{aligned}
$$

A more concise formulation of this result is possible using the subsets of \mathcal{L}^{*} defined below. Let \mathcal{M}_{+}^{*} and \mathcal{M}_{-}^{*} be the modules

$$
\begin{aligned}
& \mathcal{M}_{+}^{*}=\left\{k \in \mathcal{L}^{*}:<k, v_{+}-\left(v_{\alpha}, 0\right)>\in \mathbf{Z}\right\} \text { and } \\
& \mathcal{M}_{-}^{*}=\left\{k \in \mathcal{L}^{*}:<k, v_{-}-\left(v_{\alpha}, y_{0}\right)>\in \mathbf{Z}\right\},
\end{aligned}
$$

and let

$$
\begin{aligned}
& \mathcal{N}_{y_{0}}^{*}=\left\{k \in \mathcal{L}^{*}:<k,\left(0, y_{0}\right)>\in \mathbf{Z}-\{0\}\right\}, \\
& \mathcal{N}_{\sigma}^{*}=\left\{k \in \mathcal{L}^{*}:<k, v_{\sigma}-\left(0, y_{0}\right)>+1 / 2 \in \mathbf{Z}\right\} .
\end{aligned}
$$

The last two sets are not modules. The smallest modules generated by each of them are, respectively, $\overline{\mathcal{N}_{y_{0}}^{*}}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{y_{0}}^{*}$ and $\overline{\mathcal{N}_{\sigma}^{*}}=\mathcal{N}_{\sigma}^{*} \cup \mathcal{M}_{\sigma}^{*}$, where all the unions are disjoint and $\mathcal{M}_{y_{0}}^{*}$ and \mathcal{M}_{σ}^{*} are the modules

$$
\begin{aligned}
\mathcal{M}_{y_{0}}^{*} & =\left\{k \in \mathcal{L}^{*}:<k,\left(0, y_{0}\right)>0\right\} \text { and } \\
\mathcal{M}_{\sigma}^{*} & =\left\{k \in \mathcal{L}^{*}:<k, v_{\sigma}-\left(0, y_{0}\right)>\mathbf{Z}\right\} .
\end{aligned}
$$

Properties of \mathcal{N}_{σ}^{*} : Let $m_{1}, m_{2} \in \mathbf{Z}$. If $g_{1}, g_{2} \in \mathcal{N}_{\sigma}^{*}$ then

$$
m_{1} g_{1}+m_{2} g_{2} \in\left\{\begin{array}{cll}
\mathcal{M}_{\sigma}^{*} & \text { if } & m_{1}+m_{2} \text { even } \tag{1}\\
\mathcal{N}_{\sigma}^{*} & \text { if } & m_{1}+m_{2} \text { odd }
\end{array} .\right.
$$

Proposition 2.1 can therefore be written the following way:
Proposition 2.2. All functions in $\Pi_{y_{0}}\left(X_{\Gamma}\right)$ are invariant under the action of $\left(v_{\alpha}, \alpha\right) \in \mathbf{R}+\mathbf{O}(1)$ if and only if one of the following conditions holds:
A. $\left(v_{+}, \alpha_{+}\right) \in \Gamma$ and $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*}$,
B. $\left(v_{-}, \alpha_{-}\right) \in \Gamma$ and $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{-}^{*}$,
C. $\left(v_{\sigma}, \sigma\right),\left(v_{+}, \alpha_{+}\right) \in \Gamma$ and $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*} \cup \mathcal{N}_{\sigma}^{*}$.

For $D\left(k_{1}\right)=\sum_{k_{2}:\left(k_{1}, k_{2}\right) \in \mathcal{L}^{*}} C\left(k_{1}, k_{2}\right) \int_{0}^{y_{0}} \omega_{k_{2}}(y) d y$, the projection of $f \in X_{\Gamma}$ may be written, with $\mathcal{L}_{1}^{*}=\left\{k_{1}:\left(k_{1}, k_{2}\right) \in \mathcal{L}^{*}\right\}$, as

$$
\Pi_{y_{0}}(f)(x)=\sum_{k_{1} \in \mathcal{L}_{1}^{*}} \omega_{k_{1}}(x) D\left(k_{1}\right) .
$$

Thus $\Pi_{y_{0}}(f)$ is $\left(v_{\alpha}, \alpha\right)$-invariant if and only if

$$
\begin{equation*}
\sum_{k_{1} \in \mathcal{L}_{1}^{*}} \omega_{k_{1}}(x) D\left(k_{1}\right)=\sum_{k_{1} \in \mathcal{L}_{1}^{*}} \omega_{k_{1}}(\alpha x) \omega_{k_{1}}\left(-\alpha v_{\alpha}\right) D\left(k_{1}\right), \tag{2}
\end{equation*}
$$

or, equivalently, $D\left(k_{1}\right)=\omega_{k_{1}}\left(-v_{\alpha}\right) D\left(\alpha k_{1}\right)$, for all $k_{1} \in \mathcal{L}_{1}^{*}$.
In the next section we show that each condition of Proposition 2.1 leads to the restrictions on the coefficients $D\left(k_{1}\right)$ above. Reciprocally, when those restrictions are imposed on the projection of $I_{k}(x, y)$, for all $k \in \mathcal{L}^{*}$, this implies the conditions of Proposition 2.1.

3. Proof of Proposition 2.2

Let $f \in X_{\Gamma}$ and $\left(v_{\alpha}, \alpha\right) \in \mathbf{R}+\mathbf{O}(1)$. If $\Pi_{y_{0}}(f)$ is $\left(v_{\alpha}, \alpha\right)$-invariant then $\Pi_{y_{0}}(f)(x)=\Pi_{y_{0}}(f)\left(\alpha x-\alpha v_{\alpha}\right)$, which is equivalent to (2). The right hand side of (2) equals $\sum_{k_{1} \in \mathcal{L}_{1}^{*}} \omega_{\alpha k_{1}}(x) \omega_{\alpha k_{1}}\left(v_{\alpha}\right) D\left(k_{1}\right)$. Since $\alpha\left(\mathcal{L}_{1}^{*}\right)=$ $\left(\mathcal{L}_{1}^{*}\right)$ and Fourier expansions are unique, then for each $k_{1} \in \mathcal{L}_{1}^{*}$, we have:

$$
\begin{equation*}
D\left(k_{1}\right)-\omega_{k_{1}}\left(-v_{\alpha}\right) D\left(\alpha k_{1}\right)=0 . \tag{3}
\end{equation*}
$$

Proof - sufficiency. The difference in (3) may be written as

$$
\begin{equation*}
\sum_{k_{2}:\left(k_{1}, k_{2}\right) \in \mathcal{L}^{*}} C\left(k_{1}, k_{2}\right) G\left(k_{1}, k_{2}\right) \int_{0}^{y_{0}} \omega_{k_{2}}(y) d y . \tag{4}
\end{equation*}
$$

In each case we compute $G\left(k_{1}, k_{2}\right)$ and use the conditions on \mathcal{L}^{*}.
Suppose $\alpha_{+} \in \mathbf{J}$. Then all the Fourier coefficients of any $f \in X_{\Gamma}$ satisfy $C(k)=\omega_{k}\left(-v_{+}\right) C(\alpha k)$ and $G\left(k_{1}, k_{2}\right)=1-\omega_{k}\left(v_{+}-\left(v_{\alpha}, 0\right)\right)$. Thus $G\left(k_{1}, k_{2}\right)=0$ if $<k, v_{+}-\left(v_{\alpha}, 0\right)>\in \mathbf{Z}$.

If $\left(v_{-}, \alpha_{-}\right) \in \Gamma$ then $G\left(k_{1}, k_{2}\right)=1-\omega_{k}\left(v_{-}-\left(v_{\alpha}, y_{0}\right)\right)$, since

$$
\begin{equation*}
\int_{0}^{y_{0}} \omega_{-k_{2}}(y) d y=\omega_{k_{2}}\left(-y_{0}\right) \int_{0}^{y_{0}} \omega_{k_{2}}(y) d y . \tag{5}
\end{equation*}
$$

Then $G\left(k_{1}, k_{2}\right)=0$ if $<k, v_{-}-\left(v_{\alpha}, y_{0}\right)>\in \mathbf{Z}$.
When both $\left(v_{+}, \alpha_{+}\right)$and $\left(v_{-}, \alpha_{-}\right)$lie in Γ then

$$
G\left(k_{1}, k_{2}\right)=1+\omega_{k}\left(v_{\sigma}\right) \omega_{k_{2}}\left(-y_{0}\right)-\omega_{k_{1}}\left(-v_{\alpha}\right)\left(\omega_{k}\left(v_{+}\right)+\omega_{k}\left(v_{-}\right) \omega_{k_{2}}\left(-y_{0}\right)\right) .
$$

Using $\omega_{k}\left(v_{-}\right)=\omega_{k}\left(v_{\sigma}\right) \omega_{k}\left(\sigma v_{+}\right)$and $\omega_{k}\left(\sigma v_{+}-v_{+}\right)=1$ we get

$$
G\left(k_{1}, k_{2}\right)=\left(1-\omega_{k}\left(v_{+}-\left(v_{\alpha}, 0\right)\right)\right)\left(1+\omega_{k}\left(v_{\sigma}-\left(0, y_{0}\right)\right)\right) .
$$

If either $1-\omega_{k}\left(v_{+}-\left(v_{\alpha}, 0\right)\right)=0$ or $1+\omega_{k}\left(v_{\sigma}-\left(0, y_{0}\right)\right)=0$ then $G\left(k_{1}, k_{2}\right)=0$.

It follows from the conditions on \mathcal{L}^{*} that for each $k \in \mathcal{L}^{*}$ either $\int_{0}^{y_{0}} \omega_{k_{2}}(y) d y=0$ or $G\left(k_{1}, k_{2}\right)=0$ and thus (3) holds for all $k \in \mathcal{L}^{*}$.
Proof - necessity. For $D^{\prime}(\delta, k)=\omega_{\delta k}\left(-v_{\delta}\right) \int_{0}^{y_{0}} \omega_{\left.\delta k\right|_{2}}(y) d y$, the projections of I_{k}, with $k \in \mathcal{L}^{*}$, are

$$
\Pi_{y_{0}}\left(I_{k}\right)(x)=\sum_{\left.\tilde{k}_{1} \in \mathbf{J} k\right|_{1}} \omega_{\tilde{k}_{1}}(x) \sum_{\tilde{k}_{2}:\left(\tilde{k}_{1}, \tilde{k}_{2}\right) \in \mathbf{J} k} D^{\prime}(\delta, \tilde{k}),
$$

where $\left.\delta k\right|_{j}$ denotes the j th coordinate of δk. If $\Pi_{y_{0}}\left(I_{k}\right)$ is $\left(v_{\alpha}, \alpha\right)$ invariant then, by (3),

$$
\sum_{\delta \in \mathrm{J}^{I}(k)} D^{\prime}(\delta, k)-\omega_{k_{1}}\left(-v_{\alpha}\right) \sum_{\delta \in \mathrm{J}^{\alpha}(k)} D^{\prime}(\delta, k)=0,
$$

where $\mathbf{J}^{I}(k)=\left\{\delta \in \mathbf{J}:\left.\delta k\right|_{1}=k_{1}\right\}$ and $\mathbf{J}^{\alpha}(k)=\left\{\delta \in \mathbf{J}:\left.\delta k\right|_{1}=\alpha k_{1}\right\}$. Let $\mathbf{J}^{I}=\{I, \sigma\} \cap \mathbf{J}$ and $\mathbf{J}^{\alpha}=\left\{\alpha_{+}, \alpha_{-}\right\} \cap \mathbf{J}$. We list some properties of $\mathrm{J}^{I}(k)$ and $\mathrm{J}^{\alpha}(k)$ in Lemma 3.1 below. Then we describe the set $\mathcal{O}^{*}=\left\{k \in \mathcal{L}^{*}: \mathrm{J}^{I}(k)=\mathbf{J}^{I} \wedge \mathrm{~J}^{\alpha}(k)=\mathbf{J}^{\alpha}\right\}$ in Lemma 3.2. A geometrical characterization of the complement of \mathcal{O}^{*} in \mathcal{L}^{*} is given in Lemma 3.3 and in Lemma 3.4 we reformulate the cases of Lemma 3.2 in terms of \mathcal{L}^{*} instead of \mathcal{O}^{*}, completing the proof.

Lemma 3.1. For $k \in \mathcal{L}^{*}$, the sets $\mathrm{J}^{I}(k)$ and $\mathrm{J}^{\alpha}(k)$ satisfy:

1. $\mathrm{J}^{I}(k)=\{\delta \in \mathbf{J}: \delta k=k \vee \delta k=\sigma k\}$.
2. $\mathbf{J}^{\alpha}(k)=\left\{\delta \in \mathbf{J}: \delta k=\alpha_{+} k \vee \delta k=\alpha_{-} k\right\}$.
3. $\mathbf{J}^{I} \subset \mathrm{~J}^{I}(k), \mathbf{J}^{\alpha} \subset \mathrm{J}^{\alpha}(k)$ and $\mathrm{J}^{I}(0,0)=\mathrm{J}^{\alpha}(0,0)=\mathbf{J}$.
4. Let $k=\left(k_{1}, k_{2}\right) \neq(0,0)$. If $\delta \in \mathrm{J}^{I}(k)-\mathbf{J}^{I}$ then $\delta k=\left(k_{1},-|\delta| k_{2}\right)$ and if $\delta \in \mathrm{J}^{\alpha}(k)-\mathbf{J}^{\alpha}$ then $\delta k=\alpha\left(k_{1},-|\delta| k_{2}\right)$, where $|$.$| is the determi-$ nant.

Proof. Properties 1. and 2. follow by orthogonality of \mathbf{J} and Property 3. is imediate from this and the definitions.

For property 4 , let $\delta \in \mathrm{J}^{I}(k)-\mathbf{J}^{I}$ and $k \neq(0,0)$. If $\delta k=k$ then $|\delta|=-1$, since an element of $\mathbf{O}(2)$ with determinant 1 , other than the identity, does not fix any point besides the origin. Similarly if $\delta k=\sigma k$ then $|\sigma \delta|=-1$ and $|\delta|=1$. Now suppose $\delta \in \mathrm{J}^{\alpha}(k)-\mathbf{J}^{\alpha}$ and $k \neq(0,0)$. Thus, either $\alpha_{+} \delta=k$ or $\alpha_{+} \delta=\sigma k$. As $\alpha_{+} \delta \in \mathrm{J}^{I}(k)-\mathbf{J}^{I}$, we may apply the previous result to $\alpha_{+} \delta$, and the property follows.

Lemma 3.2. Suppose that $\sum_{\delta \in \mathrm{J}^{I}(k)} D^{\prime}(\delta, k)=\omega_{k_{1}}\left(-v_{\alpha}\right) \sum_{\delta \in \mathrm{J}^{\alpha}(k)} D^{\prime}(\delta, k)$ for all $k=\left(k_{1}, k_{2}\right) \in \mathcal{L}^{*}$. Then one of the following cases holds:

1. $\mathbf{J}^{I}=\{I\}, \mathbf{J}^{\alpha}=\emptyset$ and $\mathcal{O}^{*} \subset \mathcal{N}_{y_{0}}^{*}$,
2. $\mathbf{J}^{I}=\{I, \sigma\}, \mathbf{J}^{\alpha}=\emptyset$ and $\mathcal{O}^{*} \subset\left(\mathcal{N}_{y_{0}}^{*} \cup \mathcal{N}_{\sigma}^{*}\right)$,
3. $\mathbf{J}^{I}=\{I\}, \mathbf{J}^{\alpha}=\left\{\alpha_{+}\right\}$and $\mathcal{O}^{*} \subset\left(\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*}\right)$,
4. $\mathbf{J}^{I}=\{I\}, \mathbf{J}^{\alpha}=\left\{\alpha_{-}\right\}$and $\mathcal{O}^{*} \subset\left(\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{-}^{*}\right)$,
5. $\mathbf{J}^{I}=\{I, \sigma\}, \mathbf{J}^{\alpha}=\left\{\alpha_{+}, \alpha_{-}\right\}$and $\mathcal{O}^{*} \subset\left(\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*} \cup \mathcal{N}_{\sigma}^{*}\right)$.

Proof. If $\mathbf{J}^{\alpha}=\emptyset$ and $k \in \mathcal{O}^{*}$ then by hypothesis $\sum_{\delta \in \mathbf{J}^{I}} D^{\prime}(\delta, k)=$ 0 . By (5), if $\sigma \in \mathbf{J}$ then $\left(1+\omega_{k}\left(v_{\sigma}-\left(0, y_{0}\right)\right)\right) \int_{0}^{y_{0}} \omega_{k_{2}}(y) d y=0$ and $\int_{0}^{y_{0}} \omega_{k_{2}}(y) d y=0$ if $\sigma \notin \mathbf{J}$. Cases 1 and 2 follow because $\int_{0}^{y_{0}} \omega_{k_{2}}(y) d y=$ 0 implies $k \in \mathcal{N}_{y_{0}}^{*}$ and $1+\omega_{k}\left(v_{\sigma}-\left(0, y_{0}\right)\right)=0$ implies $k \in \mathcal{N}_{\sigma}^{*}$.

In case 3 we have $\left(1-\omega_{k_{1}}\left(-v_{\alpha}\right) \omega_{k}\left(v_{+}\right)\right) \int_{0}^{y_{0}} \omega_{k_{2}}(y) d y=0$ and the result follows because $1-\omega_{k_{1}}\left(-v_{\alpha}\right) \omega_{k}\left(v_{+}\right)=0$ implies $k \in \mathcal{M}_{+}^{*}$.

In case $4,\left(1-\omega_{k_{1}}\left(-v_{\alpha}\right) \omega_{k}\left(v_{-}\right) \omega_{k_{2}}\left(-y_{0}\right)\right) \int_{0}^{y_{0}} \omega_{k_{2}}(y) d y=0$ and either $k \in \mathcal{N}_{y_{0}}^{*}$ or $1-\omega_{k_{1}}\left(-v_{\alpha}\right) \omega_{k}\left(v_{-}\right) \omega_{k_{2}}\left(-y_{0}\right)=0$, which implies $k \in \mathcal{M}_{-}^{*}$.

The hypothesis in case 5 yelds $G\left(k_{1}, k_{2}\right) \int_{0}^{y_{0}} \omega_{k_{2}}(y) d y=0$, where $G\left(k_{1}, k_{2}\right)=1+\omega_{k}\left(v_{\sigma}\right) \omega_{k_{2}}\left(-y_{0}\right)-\omega_{k_{1}}\left(-v_{\alpha}\right)\left(\omega_{k}\left(v_{+}\right)+\omega_{k}\left(v_{-}\right) \omega_{k_{2}}\left(-y_{0}\right)\right)$, as in the proof of sufficiency in Proposition 2.1. Therefore, either $k \in$ $\mathcal{N}_{y_{0}}^{*}$ or $G\left(k_{1}, k_{2}\right)=0$. In the second case either $\left(1-\omega_{k}\left(v_{+}-\left(v_{\alpha}, 0\right)\right)\right)=$ 0 or $\left(1+\omega_{k}\left(v_{\sigma}-\left(0, y_{0}\right)\right)\right)=0$ and the result follows.

Let $\mathcal{P}^{*}=\left\{k \in \mathcal{L}^{*}: \mathrm{J}^{I}(k) \neq \mathbf{J}^{I} \vee \mathrm{~J}^{\alpha}(k) \neq \mathbf{J}^{\alpha}\right\}$ be the complement of \mathcal{O}^{*} in \mathcal{L}^{*}.
Lemma 3.3. \mathcal{P}^{*} lies in a finite union of lines through the origin.
Proof. \mathcal{P}^{*} may be written as a finite union of submodules

$$
\mathcal{P}^{*}=\bigcup_{\delta \in \mathbf{J}-\mathbf{J}^{I}} \mathcal{M}_{\delta, I}^{*} \cup \bigcup_{\delta \in \mathbf{J}-\mathbf{J}^{\alpha}} \mathcal{M}_{\delta, \alpha}^{*}
$$

for $\mathcal{M}_{\delta, \xi}^{*}=\left\{k \in \mathcal{L}^{*}: \delta k=\xi\left(k_{1},-|\delta| k_{2}\right)\right\}$ and $\xi=I, \alpha$. If δ is a rotation then for $k \in \mathcal{M}_{\delta, \xi}^{*}$ we have $\delta k= \pm\left(k_{1},-k_{2}\right)$, i.e., k lies on the line fixed by $\pm \sigma \delta$. Therefore $\mathcal{M}_{\delta, \xi}^{*}$ is the intersection of those lines with \mathcal{L}^{*}. Similarly, if δ is a reflection then $\mathcal{M}_{\delta, \xi}^{*}$ is the intersection of \mathcal{L}^{*} with a line fixed either by δ or by $-\delta$.
Lemma 3.4. If $\sum_{\delta \in \mathrm{J}^{I}(k)} D^{\prime}(\delta, k)=\omega_{k_{1}}\left(-v_{\alpha}\right) \sum_{\delta \in \mathrm{J}^{\alpha}(k)} D^{\prime}(\delta, k)$ for all $k=\left(k_{1}, k_{2}\right) \in \mathcal{L}^{*}$, then one of the following cases holds:
A. $\mathbf{J}^{\alpha}=\left\{\alpha_{+}\right\}$and $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*}$,
B. $\mathbf{J}^{\alpha}=\left\{\alpha_{-}\right\}$and $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{-}^{*}$,
C. $\mathbf{J}^{\alpha}=\left\{\alpha_{+}, \alpha_{-}\right\}$and $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*} \cup \mathcal{N}_{\sigma}^{*}$.

Proof. Let $k \in \mathcal{L}^{*}-\{(0,0)\}$ and observe that

$$
\begin{equation*}
\left(\mathcal{M}_{y_{0}}^{*} \cap \mathcal{P}^{*}\right)-\{(0,0)\}=\emptyset \tag{6}
\end{equation*}
$$

Let $g=(1 / n) k \in \mathcal{L}^{*}, n \in \mathbf{Z}$, have minimal norm and choose $h \in \mathcal{L}^{*}$ such that $\mathcal{L}^{*}=\{g, h\}_{\mathbf{Z}}$. Let $\mathcal{Q}_{k}^{*}=\{k+m h: m \in \mathbf{Z}\}$. Since \mathcal{Q}_{k}^{*} is contained in a line in \mathbf{R}^{2} that does not go through the origin, by Lemma 3.3, the set $\mathcal{Q}_{k}^{*} \cap \mathcal{P}^{*}$ is finite.

For $k \in \mathcal{L}^{*}-\{(0,0)\}$ there are three possibilities for $\mathcal{Q}_{k}^{*} \cap \overline{\mathcal{N}_{y_{0}}^{*}}$: it is either the empty set, or a set with only a point, or an infinite set of equally spaced points. This happens because $\overline{\mathcal{N}_{y_{0}}^{*}}$ is a module and if $k+m_{1} h \neq k+m_{2} h \in \mathcal{Q}_{k}^{*} \cap \overline{\mathcal{N}_{y_{0}}^{*}}$, then $\left(m_{2}-m_{1}\right) h \in \overline{\mathcal{N}_{y_{0}}^{*}}$ and $\left\{k+m_{1} h+m\left(m_{2}-m_{1}\right) h: m \in \mathbf{Z}\right\}$ is a subset of $\left(\mathcal{Q}_{k}^{*} \cap \overline{\mathcal{N}_{y_{0}}^{*}}\right)$. A characteristic period, $\tau_{y_{0}}$, is given by the smallest difference between two elements of $\mathcal{Q}_{k}^{*} \cap \overline{\mathcal{N}_{y_{0}}^{*}}$.

The same three possibilities hold for $\mathcal{Q}_{k}^{*} \cap \mathcal{N}_{\sigma}^{*}$. Although \mathcal{N}_{σ}^{*} is not a module, the smallest difference between two elements of $\mathcal{Q}_{k}^{*} \cap \mathcal{N}_{\sigma}^{*}$ defines a period $\tau_{\sigma} \in \mathcal{M}_{\sigma}^{*}$, by (1). Thus, whenever $\mathcal{Q}_{k}^{*} \cap \mathcal{N}_{\sigma}^{*}$ has more than one element, if $k+m_{1} h \in \mathcal{N}_{\sigma}^{*}$ then $\left\{k+m_{1} h+m \tau_{\sigma}: m \in \mathbf{Z}\right\}=\mathcal{Q}_{k}^{*} \cap \mathcal{N}_{\sigma}^{*}$.

Repeating the construction for $\mathcal{Q}_{k}^{*} \cap \mathcal{M}_{+}^{*}$ and $\mathcal{Q}_{k}^{*} \cap \mathcal{M}_{-}^{*}$ we may define characteristic periods τ_{+}and τ_{-}, respectivelly, when these sets have more than one element.

We complete the proof following the cases of Lemma 3.2.
Case 1). From $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{P}^{*}$, we get $\mathcal{M}_{y_{0}}^{*} \subset \mathcal{P}^{*}$ and, by (6), $\mathcal{M}_{y_{0}}^{*}=\{(0,0)\}$. Moreover, $\mathcal{Q}_{k}^{*} \cap \mathcal{N}_{y_{0}}^{*}$ must be infinite because $\mathcal{Q}_{k}^{*} \cap \mathcal{P}^{*}$ is finite. Thus, the period $\tau_{y_{0}}$ exists and $\mathcal{Q}_{k}^{*}-\overline{\mathcal{N}_{y_{0}}^{*}}$ is either empty or infinite. From $\left(\mathcal{Q}_{k}^{*}-\overline{\mathcal{N}_{y_{0}}^{*}}\right) \subset\left(\mathcal{Q}_{k}^{*} \cap \mathcal{P}^{*}\right)$ it follows that $\mathcal{L}^{*}=\overline{\mathcal{N}_{y_{0}}^{*}}$. Since $\sigma \in \mathbf{J}$, then $\mathcal{M}_{y_{0}}^{*} \neq\{(0,0)\}$ and so case 1) cannot occur.

Case 2). Here $\mathcal{L}^{*}=\mathcal{N}_{y_{0}}^{*} \cup \mathcal{N}_{\sigma}^{*} \cup \mathcal{P}^{*}$ which, by (6), implies $\mathcal{M}_{y_{0}}^{*} \subset$ $\left(\mathcal{N}_{\sigma}^{*} \cup\{(0,0)\}\right)$. Moreover, $\mathcal{M}_{y_{0}}^{*} \neq\{(0,0)\}$ since $\sigma \in \mathbf{J}$. Suppose $\tilde{k} \in \mathcal{M}_{y_{0}}^{*}$ and $\tilde{k} \neq(0,0)$, then, $\tilde{k} \in \mathcal{N}_{\sigma}^{*}$ and $2 \tilde{k} \in \mathcal{M}_{y_{0}}^{*}$. However, $2 \tilde{k} \notin \mathcal{N}_{\sigma}^{*}$, by (1), and so case 2) is also impossible.

Case 3). We follow the arguments of case 1) using the least common multiple of the existing periods, $\tau_{y_{0}}$ or τ_{+}, instead of $\tau_{y_{0}}$. Therefore $k \in\left(\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*}\right)$ and condition A follows because $(0,0) \in \mathcal{M}_{+}^{*}$.

Case 4). This is like case 3) with \mathcal{M}_{-}^{*} and τ_{-}instead of \mathcal{M}_{+}^{*} and τ_{+}, yelding condition B.

Case 5). Here $\mathcal{Q}_{k}^{*}-\left(\mathcal{N}_{y_{0}}^{*} \cup \mathcal{M}_{+}^{*} \cup \mathcal{N}_{\sigma}^{*}\right)=\emptyset$ because at least one of the periods $\tau_{y_{0}}, \tau_{+}$or τ_{σ} exists and condition C follows.

Acknowledgements

Both authors had financial support from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through programs POCTI and POSI of Quadro Comunitário de Apoio III (2000-2006) with national and EU (FEDER) funding. E. M. Pinho was partly supported by the grant SFRH/BD/13334/2003 of FCT and by UBI-Universidade da Beira Interior, Portugal.

References

[1] Armstrong, M. A., Groups and Symmetry, Springer-Verlag, 1988
[2] Bosch Vivancos, I., Chossat, P. and Melbourne, I., New planforms in systems of partial differential equations with Euclidean symmetry, Arch. Rat. Mech. Anal. 131 (1995) 199-224
[3] Dionne, B. and Golubitsky, M., Planforms in two and three dimensions, Z. Angew. Math. Phys. 43 (1992) 36-62
[4] Dionne, B., Silber, M. and Skeldon, A. C. Stability results for steady, spatially periodic planforms, Nonlinearity 10 (1997) 321-353.
[5] Golubitsky, M. and Stewart, I., The Symmetry Perspective, Prog. Math. 200, Birkhäuser Verlag, 2002
[6] Gomes, M. G. M., Black-eye patterns: A representation of three-dimensional symmetries in thin domains, Phys. Rev. E 60 (1999) 3741-3747
[7] Melbourne, I., Steady-state bifurcation with Euclidean symmetry, Trans. Amer. Math. Soc. 351 (1999) 1575-1603
[8] Senechal, M., Quasicrystals and Geometry, Cambridge University Press, 1995
E. M. Pinho - Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

Isabel S. Labouriau - Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

