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ABSTRACT. This work in mainly devoted to the study of polynomial sequences, not necessarily orthogonal,
defined by integral powers of certain first order differential operators in deep connection to the classical polyno-
mials of Hermite, Laguerre, Bessel and Jacobi. This connection is streamed from the canonical element of their
dual sequences. Meanwhile new Rodrigues-type formulas for the Hermite and Bessel polynomials are achieved.

1. INTRODUCTION AND PRELIMINARY RESULTS

Throughout the text, N will denote the set of all positive integers, N0 = N∪{0}, whereas R and C the
field of the real and complex numbers, respectively. The notation R+ corresponds to the set of all positive
real numbers. The present investigation is primarily targeted at analysis of sequences of polynomials whose
degrees equal its order, which will be shortly called as PS. Whenever the leading coefficient of each of its
polynomials equals 1, the PS is said to be a MPS (monic polynomial sequence). A PS or a MPS forms a
basis of the vector space of polynomials with coefficients in C, here denoted as P . Further notations are
introduced as needed.

The dual sequence {un}n>0 of a given MPS {Pn(x)}n>0, whose elements are called forms (or linear
functionals) belong to the dual space P ′ of P and are defined according to

〈un,Pk〉 := δn,k, n,k > 0,

where δn,k represents the Kronecker delta function. Its first element, u0, earns the special name of canonical
form of the MPS. Here, by 〈u, f 〉 we mean the action of u ∈P ′ over f ∈P , but a special notation is
given to the action over the elements of the canonical sequence {xn}n>0 – the moments of u ∈P ′: (u)n :=
〈u,xn〉,n ∈ N0. Any element u of P ′ can be written in a series of any dual sequence {vn}n>0 of a MPS
{Pn}n>0 [10]:

(1.1) u = ∑
n>0
〈u,Pn〉 un .

Concerning the recursive relation of any MPS, we have [10]:

(1.2) Pn+2(x) = (x−βn+1)Pn+1(x)−
n

∑
ν=0

χn,ν Pν(x), n ∈ N0,

where

βn = 〈un,xPn〉, n ∈ N0,(1.3)

χn,ν = 〈uν ,xPn+1〉, 06 ν 6 n , n ∈ N0.(1.4)
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Differential equations or other kind of linear relations realized by the elements of the dual sequence can
be deduced by transposition of those relations fulfilled by the elements of the corresponding MPS, insofar
as a linear operator T : P →P has a transpose tT : P ′→P ′ defined by

(1.5) 〈tT (u), f 〉= 〈u,T ( f )〉 , u ∈P ′, f ∈P.

For example, for any form u and any polynomial g, let Du = u′ and gu be the forms defined as usual by
〈u′, f 〉 :=−〈u, f ′〉 , 〈gu, f 〉 := 〈u,g f 〉, where D is the differential operator [10]. Thus, D on forms is minus
the transpose of the differential operator D on polynomials.

The investigation about the orthogonality of a MPS can be performed in a purely algebraic point of view.
Precisely, a form v ∈P ′ is said to be regular if we can associate a PS {Qn}n>0 such that 〈v,QnQm〉= knδn,m
with kn 6= 0 for all n,m ∈ N0 [10, 11]. The PS {Qn}n>0 is then said to be orthogonal with respect to v and
we can assume the system (of orthogonal polynomials) to be monic. Therefore, we can set v = v0 and the
remaining elements of the corresponding dual sequence {vn}n>0 are represented by

vn+1 =
(
〈v0,Q2

n+1(·)〉
)−1

Qn+1(x)v0 , n ∈ N0.(1.6)

When v ∈P ′ is regular, let Φ be a polynomial such that Φv = 0, then Φ = 0 [12].
This unique MOPS {Qn(x)}n>0 with respect to the regular form v0 can be characterized by the popular

second order recurrence relation{
Q0(x) = 1 ; Q1(x) = x−β0

Qn+2(x) = (x−βn+1)Qn+1(x)− γn+1 Qn(x) , n ∈ N0.
(1.7)

The MPS {exA ne−x}n∈N0 where A = x2− x d
dx x d

dx , was recently investigated in [19]. It triggered the
study of a wider class of polynomial sequences {exx−αA nxα e−x}n∈N0 which, despite not being orthogonal
(in the usual sense), the canonical element of their corresponding dual form is regular as long as α > 0, and
the existence of a MOPS with respect to this canonical form is ensured. The characterization of such MOPS
is undoubtedly an issue, that we could not settle, mainly because of the inherent difficulties of dealing with
regular forms fulfilling second order differential equations.

On the other hand, this raised the problem of characterizing polynomial sequences generated by integral
composite powers of a first order differential operator, whose canonical form we are able to fully character-
ize, like the classical forms, that is, regular forms u0 fulfilling

(1.8) (φu0)′+ψu0 = 0

with degφ 6 2, degψ = 1 and
n
2

φ ′′(0)−ψ ′(0) 6= 0 , n∈N0. There are essentially four different equivalence
classes depending on the nature of the polynomial φ [11, 12], whose representatives are summarized in the
next table.

TABLE 1. Expressions for the polynomials φ andψ for each classical family.

: Hermite Laguerre Bessel Jacobi
Regularity
conditions

n ∈ N0
: α 6=−(n+1) α 6=− n

2
α,β 6=−(n+1)

α +β 6=−(n+2)

φ(x) : 1 x x2 x(x−1)

ψ(x) : 2x x−α−1 −2 (αx+1) −(α +β +2)x+(α +1)
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After setting all the required properties of these polynomial sequences generated by integral composite
powers of a first order differential operator on §2, we seek those possessing orthogonality, where, as it will
be shown in Proposition 2.1 the solution is reduced to the Hermite polynomials. Afterwards, the character-
ization of all the polynomial sequences whose canonical form is classical will be handled on §3, where we
will unravel the aforementioned MPSs, for each of the four arisen possibilities, either by determining the
coefficients or by seeking the connection with the well known classical polynomial sequences. Meanwhile,
the procedure will permit to infer new Rodrigues type formulas for the classical polynomials of Hermite and
Bessel. At last, some problems are left open in the case of Jacobi form.

2. POLYNOMIALS GENERATED BY INTEGRAL POWERS OF A FIRST ORDER DIFFERENTIAL OPERATOR.

Lemma 2.1. Let E be a complex-valued smooth function not identically equal to zero and let φ and ψ be
two polynomials. The sequence of functions

(2.1) pn(x) =
1

E(x)
A nE(x) , n ∈ N0,

with

(2.2) A =−φ(x)
d
dx

+ψ(x)+φ(x)
E ′(x)
E(x)

represent a polynomial sequence whose elements have degree n (in short, PS) if and only if

(2.3) degφ 6 2 , degψ = 1 and
n
2

φ
′′(0)−ψ

′(0) 6= 0 , n ∈ N0.

Moreover, such PS {pn}n>0 can be equivalently represented by

(2.4)
p0(x) = 1 ,
pn+1(x) = −φ(x)p′n(x)+ψ(x)pn(x) , n ∈ N0.

Proof. Under the assumptions evoked for the function E(x), consider the sequence of functions {pn}n>0
defined by (2.1). The first element of this sequence is the constant function p0(x) = 1. Insofar as the identity

(2.5)
1

E(x)
A
(
E(x)g(x)

)
=−φ(x)g′(x)+ψ(x)g(x)

holds for any analytic function g(x), it readily follows from (2.1) that the sequence of functions {pn}n>0 can
be represented by (2.4), because we successively have

pn+1(x) =
1

E(x)
A
(

E(x)
1

E(x)
A n(E(x))

)
=

1
E(x)

A
(

E(x)pn(x)
)

=−φ(x)p′n(x)+ψ(x)pn(x), ,n ∈ N0.

Conversely, if a sequence of functions {pn}n>0 is defined by (2.4), we then have p1(x) = 1
E(x)A

(
E(x)) and

performing analogous steps as the ones made above, by induction, we conclude that necessarily {pn}n>0 is
also given by (2.1).

Now, it remains to show that {pn}n>0 is actually a sequence of polynomials of exactly degree n if and
only if (2.3) hold. Indeed if these constraints for the pair of polynomials (φ ,ψ) are realized, then (2.4) (as
well as (2.1)) ensures that p1(x) = ψ(x) is a one degree polynomial. Through a finite induction procedure,
the relation (2.4) enables the result.

Conversely, if each pn(x) is a polynomial of exactly degree n, the condition (2.4) implies the claimed
constraints for (φ ,ψ), because they do not depend on n. �

Corollary 2.2. The polynomial sequence {pn}n>0 given by (2.1) under the constraints (2.3) does not depend
on the choice of the smooth function E.
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Proof. The result is a mere consequence of the equivalent shown between (2.1) and (2.4), as long as (φ ,ψ)
satisfy (2.3). �

This paper aims to describe the objects given by (2.1), which under certain choices for the pair (φ ,ψ)
represent polynomials of degree n. From this point forth the pair (φ ,ψ) will be considered to be a pair of
polynomials fulfilling (2.3).

For a question of normalization, we are primarily interested in dealing with monic polynomial sequences.
For this reason, we will deal instead with the MPS {Pn}n>0 obtained from {pn}n>0 after the division by its
leading coefficient, say λn. Without loss of generality, we will as well consider φ to be a monic polynomial.

To set things more in concrete, we consider {Pn}n>0 such that

(2.6) λnPn(x) =
1

E(x)
A nE(x) , n ∈ N0,

where λn is a nonzero constant compelling Pn to be monic. According to (2.4), it naturally follows that

(2.7) Pn+1(x) =
λn

λn+1

(
−φ(x)P′n(x)+ψ(x)Pn(x)

)
, n ∈ N0.

which, in turn, provides the equalities

(2.8) λn =
{

(ψ ′(0))n , degφ 6 1
(−2)n(−ψ ′(0)/2)n , degφ = 2 , n ∈ N0,

where (x)n denotes the Pochhammer symbol defined by (x)0 := 1 , (x)n = x(x+1) . . .(x+n−1) for n ∈ N.
Now, we redirect the problem of characterizing this MPS to the study of the corresponding dual sequence,

to which we will refer to as {un}n>0.

Lemma 2.3. The dual sequence of the MPS {Pn}n>0 above defined in (2.6) (or by (2.7)) fulfills(
φu0

)′
+ψu0 = 0(2.9) (

φun+1

)′
+ψun+1 =

λn+1

λn
un , n ∈ N0.(2.10)

Proof. The action of u0 over (2.7) is given by

〈u0,−φP′n +ψPn〉= 0 , n ∈ N0,

which, by transposition, on account of (1.5), is equivalent to

〈
(
φu0
)′+ψu0,Pn〉= 0 , n ∈ N0,

providing (2.9). Likewise, the action of uk+1 over (2.7) yields

〈uk+1,−φP′n +ψPn〉=
λn+1

λn
δk,n , n,k ∈ N0,

and again, due to (1.5), we may write this latter as

〈
(
φuk+1

)′+ψuk+1,Pn〉=
λn+1

λn
δk,n , n,k ∈ N0.

Considering (1.1), the relation (2.10) is then a consequence of this latter equality. �
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Additionally, the moments of the dual sequence fulfill

(2.11)

(
ψ
′(0)− k

2
φ
′′(0)

)
(un+1)k+1 +

(
ψ(0)− kφ

′(0)
)
(un+1)k− kφ(0)(un+1)k−1 =

λn+1

λn
(un)k , n ∈ N0,(

ψ
′(0)− k

2
φ
′′(0)

)
(u0)k+1 +

(
ψ(0)− kφ

′(0)
)
(u0)k− kφ(0)(u0)k−1 = 0 , k ∈ N0,

with the initial conditions that (un)k = δn,k whenever 06 k 6 n.
It is worth to notice indeed that

(2.12) xn =
n

∑
ν=0

(uν)n Pν(x) , n ∈ N0.

All the regular forms fulfilling equations like in (2.9) under the constraints (2.3) have been deeply ex-
plored and they are essentially classical forms - see Table 1

Proposition 2.1. If the MPS {Pn}n>0 defined in (2.6) is orthogonal, then {Pn}n>0 is the Hermite MOPS.

Proof. The orthogonality assumption over the MPS {Pn}n>0 ensures the elements of the corresponding dual
sequence {un}n>0 to be given by (1.6). The combination of this information with (2.10) leads to

Pn+1

(
(φu0)′+ψu0

)
+P′n+1φu0 =

〈u0,P2
n+1〉

〈u0,P2
n 〉

Pnu0 , n> 0,

which, on account of (2.9) together with the regularity of the canonical form u0, enables

φ(x)P′n+1(x) =
〈u0,P2

n+1〉
〈u0,P2

n 〉
Pn(x) , n> 0.

A mere comparison of the leading coefficients shows that degφ = 0 and, because φ was assumed to be monic,

φ(x) = 1 and, concomitantly,
〈u0,P2

n+1〉
〈u0,P2

n 〉
= (n+1). Thus, it follows P′n+1(x) = (n+1)Pn(x) , for n ∈ N0, and

consequently, {Pn}n>0 coincides with the Hermite polynomial sequence. �

Since the degφ 6 2 and degψ = 1 there are only four possible arising cases, better to say, the analysis
shall then be split into four different classes. On the other hand, looking at the equation (2.9) fulfilled by the
form u0 we readily come to the conclusion that u0 is necessarily a regular form. Needless to say that this does
not imply {Pn}n>0 to be orthogonal (ergo, classical). Actually, Proposition 2.1 ensures the nonorthogonal
(in the usual sense) character of the MPS {Pn}n>0 when degφ > 1.

3. ANALYSIS OF THE FOUR POSSIBLE SITUATIONS

The analysis taken throughout this section will be drawn according to the nature of the polynomial φ and
therefore split into four different cases. Representatives φ and ψ for each one of the four possible situations
will be chosen from Table 1. Other choices can be considered as long as they realize the required conditions
(2.3), guaranteeing the admissibility of regular solutions u0 of (2.9) [11].

Among the characterization properties are: an explicit expansion in terms of the monomials, a generating
function and a recursive relation (1.2). This latter is important not only for computational reasons but also
because it permits to know whether a MPS can be or not d-orthogonal [9, 18], which, roughly speaking,
means that the elements of the MPS would then fulfill a recursive relation of order d + 1 (a constant value,
independent of the order of the element). In this case more specific expressions for the β and χ coefficients
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presented in (1.2) and defined in (1.3)-(1.4) can be straightforwardly obtained from (2.7)-(2.10):

βn+1 = βn +
λn

λn+1
〈un+1,φPn〉, n ∈ N0,(3.1)

χn+1,ν+1 =
λν+1λn+1

λν λn+2
χn,ν +

λn+1

λn+2
〈uν+1,φPn+1〉 , 06 ν 6 n, n ∈ N0,(3.2)

with the initial conditions β0 = (u0)1, determined from the analysis of the moments of order 0 of (2.9), so
that

(3.3) β0 =− ψ(0)
ψ ′(0)

and

(3.4) χn,0 =
λn

λn+1

〈
u0,x

(
−φP′n +ψPn

)〉
=

λn

λn+1

〈
x
(
(φu0)′+ψu0

)
+φu0,Pn

〉
=

λn

λn+1
〈u0,φPn〉 , n ∈ N0.

From this point forth we need to split the analysis into the four possible cases.

3.1. Hermite Case. So far, we have seen that when the orthogonality of the MPS {Pn}n>0 is assumed, we
are necessarily handling with the Hermite polynomial sequence, ergo the Hermite form. Now, we are willing
to find all polynomial sequences {Pn}n>0 defined in (2.6) such that u0 is the regular form of Hermite. As
representatives for this case we consider φ(x) = 1 and ψ(x) = 2x (see Table 1).

As a matter of fact, (3.1) together with (3.3) implies βn = 0 for all n ∈ N0, while (3.2) provides

χn+1,ν+1 = χn,ν , 06 ν 6 n−1,(3.5)

χn+1,n+1 = χn,n +
1
2

, n ∈ N0.(3.6)

According to (3.4) it follows χn,0 = 1
2 δn,0, n ∈ N0. Thus, χn,n = n+1

2 and χn,ν = 0 for 0 6 ν 6 n− 1. We
achieve therefore the conclusion that the canonical form of an MPS {Pn}n>0 defined by (2.6) with degφ = 0
is regular if and only if {Pn}n>0 is the Hermite polynomial sequence.

The latter result permits to obtain many Rodrigues type formulas for the Hermite polynomials, since they
are represented by

(3.7) Pn(x) = 2−n 1
E(x)

(
− d

dx
+2x+

E ′(x)
E(x)

)n

E(x) , n ∈ N0,

rather than the well known one, which could be recovered from upon the choice E(x) = e−x2/2. Other
possible choices for E(x) could be, for instance, E(x) = eex

.

3.2. Laguerre case. Here we consider the case where degφ = 1, we make use of the Laguerre form, which
is the unique regular form, up to an affine transformation, that is solution of (2.9) under the assumed condi-
tions. As representative of this class, we set φ(x) = x and ψ(x) = x−α−1, and therefore (2.7) becomes

Pn+1(x;α) =−xP′n(x;α)+(x−α−1)Pn(x;α)

Expressing

(3.8) Pn(x;α) =
n

∑
ν=0

(−1)n+ν cn,ν(α)xν , n ∈ N0,
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from (2.7) we derive

n+1

∑
ν=0

(−1)n+ν+1cn+1,ν xν =−
n

∑
τ=0

ν(−1)n+ν cn,ν xν +
n

∑
ν=0

(−1)n+ν cn,ν

(
xν+1− (α +1)xν

)
, n ∈ N0,

(under the notation cn,ν := cn,ν(α)) and therefore

(3.9)
{

cn,n(α) = 1 , cn,0(α) = (α +1)n , cn,n+ν+1(α) = 0 , n,ν ∈ N0,
cn+1,ν(α) = cn,ν−1(α)+(ν +α +1)cn,ν(α) , 06 ν 6 n , n ∈ N0,

under the convention cn,−1(α) = 0.
These correspond to the non-central Stirling numbers of second kind (or simply, the generalized Stir-

ling numbers) treated in [6], where it was also pointed out the denomination of non-central Lah numbers
proposed in [5]. Without entering into further considerations, their explicit formula is

(3.10) cn,ν(α) =
1
ν!

ν

∑
i=0

(
ν

i

)
(−1)ν−i(i+α +1)n =

1
ν!
(
∆

ν
α+1xn)∣∣

x=0 , n ∈ N0,

where ∆α+1 f (x) = f (x+α +1)− f (x). Moreover, these coefficients are the bridge to connect the canonical
MPS with the (factorial) polynomial sequences {(−1)n(−x+α +1)n}n>0 because for x 6= 0

(3.11) xn =
n

∑
k=0

cn,k(α)(−1)k(−x+α +1)k or (x+α +1)n =
n

∑
k=0

cn,k(α)(−1)k(−x)k , n ∈ N0,

and
n

∑
k=0

cn,k(α)(−1)n+k(α +1)k = 1 , n ∈ N0.

Conversely, regarding the moments of the dual sequence, we can consider the inverse relation of (3.8). Thus,
from (2.11), we have

(3.12)

{
(un+1)k+1 = (un)k +(α +1+ k)(un+1)k , n ∈ N0,

(u0)k = (α +1)k , k ∈ N0,

with the initial conditions that (un)k = δn,k whenever 0 6 k 6 n. Thus, the set {(un)k} mimics the set of
Stirling numbers of first kind, and differ from it by the decentralizing factor (α + 1). They are actually
the non-central Stirling numbers of first kind, pointed in [6]. Finally, we have (2.12), where (un)k satisfies
(3.12).

Lemma 3.1. The MPS {Pn(·;α)}n>0 have the following generating function

G(x, t) = e−(α+1)t−x(e−t−1) = ∑
n>0

Pn(x;α)
tn

n!
.

Proof. Indeed, a generating function G(x, t) = ∑n>0 Pn(x) tn

n! must be a solution of the partial differential
equation

∂

∂ t
G(x, t) =−x

∂

∂x
G(x, t)+(x−α−1)G(x, t)

satisfying the boundary conditions limt→0 G(x, t) = 1 and limx→0 G(x, t) = e−(α+1)t . Thus, the function
Φ(x, t) = e−(α+1)t−x(e−t−1) is a solution of the problem. �
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The latter result brings the status of Sheffer-type for the underlying MPS {Pn(·;α)}n>0 [14].
Meanwhile, if we bring into discussion the generating function for the (monic) Laguerre polynomials,

{Qn(·;α)}n>0,

H(x, t) = (t +1)−(α+1)ex t
t+1 = ∑

n>0
Qn(x;α)

tn

n!
,

we readily observe that the generating function of the aforementioned MPS {Pn}n>0 can be expressed as

G(x, t) = H(x,et −1)

Hence, by recalling [2, p.51]
(et −1)k

k!
= ∑

n>k
S(n,k)

tn

n!
, n ∈ N0,

we deduce the identity

Pn(x;α) =
1
n!

n

∑
ν=0

S(n,ν)Qν(x;α) , n ∈ N0.

Conversely, the identity [2, p.51]

(log(t +1))k

k!
= ∑

n>k
s(n,k)

tn

n!
, n ∈ N0,

provides the reciprocal

Qn(x;α) =
1
n!

n

∑
ν=0

s(n,ν)Pν(x;α) , n ∈ N0.

An alternative way to obtain the latter identities, but rather less intuitive, would be via Faa di Bruno’s
formula.

Lemma 3.2. The structure relation of the MPS {Pn(·;α)}n>0 is

Pn+2(x;α) = (x−n−α−2)Pn+1(x;α)−
n

∑
ν=0

(
n+1

ν

)(
α +

n+2
n+1−ν

)
Pν(x;α) , n> 0.

Proof. In this case β0 = α +1 and therefore the remaining ones are

βn = n+α +1 , n ∈ N0,

(which match the β s of the second order recursive relation of the Laguerre polynomials). Besides, according
to (3.4)

χn,0 = 〈u0,xPn〉= χn−1,0 = χ0,0 = α +1

because χ0,0 = α +1, which, in particular, guarantees this sequence not to be d-orthogonal. The remaining
coefficients satisfy the recurrence relation

χn+1,n+1 = χn,n +βn+1 , n ∈ N0,
χn+1,ν+1 = χn,ν + χn,ν+1 , 06 ν 6 n−1 , n ∈ N,
χn,0 = (α +1) , n ∈ N0,
χ0,n = (α +1)δ0,n , n ∈ N0.

whence χn,ν =
(n+2

ν

)
+
(n+1

ν

)
α , 06 ν 6 n , n ∈ N0. �
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The fact that χn,0 6= 0 for all n ∈ N0 discards the possibility of {Pn(·;α)}n>0 to be orthogonal or d-
orthogonal.

The example obtained under the choices of E(x) = xα e−x, φ(x) = x and ψ(x) = x−α , has received a
special attention, as we may read in [4, pp.254-255] (or in the references therein) after the work taken in
[16, 17].

3.3. Bessel case. The choice of φ(x) = x2 and ψ(x) =−2(αx+1), launch the polynomial sequence

(3.13) Pn(x;α) =
1

(2α)n

1
E(x)

A nE(x)

equivalently defined by the differential relation

(3.14) Pn+1(x;α) =
1

2α +n

(
x2P′n(x;α)+2(αx+1)Pn(x;α)

)
, n ∈ N0.

Lemma 3.3. The MPS {Pn(·;α)}n>0 and the canonical sequence {xn}n>0 realize the following inverse
relations:

(3.15) Pn(x;α) =
n

∑
ν=0

(
n
ν

)
2n−ν

(2α +ν)n−ν

xν , n ∈ N0,

whereas

(3.16) xk =
(−1)k2k

(2α)k
P0(x)+

k−1

∑
ν=0

(
(−1)k−ν−12k−ν−1(2α)ν+1

(2α)k

k−1

∑
µ=ν

(−1)ν+µ−1
(

µ

ν

))
Pν+1(x) , k ∈ N0.

Proof. From (3.14), we deduce

Pn(x;α) =
n

∑
ν=0

2n−ν(2α)ν

(2α)n
ĉn,ν(α)xν , n ∈ N0,

where ĉn,ν(α) fulfills the triangular relation

ĉn+1,ν(α) = ĉn,ν−1(α)+ ĉn,ν(α) , 06 ν 6 n ; n,ν ∈ N0,

ĉn,0(α) = 1 , n ∈ N0,

which yields ĉn,ν =
(n

ν

)
, 06 ν 6 n , n,ν ∈ N0, whence (3.15).

Regarding the reciprocal relation of (3.15), i.e., to write the monomials in terms of the polynomials
Pn(·;α), within the framework of (2.12), we seek an expression for the moments of the dual sequence
{un(α)}n>0 given in (2.9)-(2.10) also realizing (2.11). In this case,

(un)k =
(−1)k−n2k−n(2α)n

(2α)k
dk,n

where dn,k fulfills the triangular relation

dk+1,n+1 = dk,n−dk,n+1 ; dn,0 = 1 ; d0,n = δ0,n , n ∈ N0.

which provides

dk+1,n+1 =
k

∑
µ=n

(−1)n+µ−1
(

µ

n

)
, 06 n6 k, n,k ∈ N0.



10 ANA F. LOUREIRO AND P. MARONI

For other considerations regarding the set of numbers {|dk,n|}k,n we refer to the entry A059260 of [15].
Consequently,

(3.17) (u0)k =
(−1)k2k

(2α)k
, (uν+1)k+1 =

(−1)k−ν 2k−ν(2α)ν+1

(2α)k+1

k

∑
µ=ν

(−1)ν+µ−1
(

µ

ν

)
and, (2.12) becomes (3.16). �

Recalling the expression for the (classical) monic Bessel polynomials

(3.18) Bn(x;α) =
n

∑
ν=0

(
n
ν

)
2n−ν

(2α +n−1+ν)n−ν

xν , n ∈ N0,

a simple relation between the nonorthogonal sequence {Pn(x;α)}n>0 and the orthogonal sequence of Bessel
polynomials {Bn(x;α)}n>0 comes out:

(3.19) Pn(x;α) = Bn
(
x;α− n−1

2

)
, n ∈ N0.

This fact, actually has the consequence of providing new Rodrigues type formulas for the Bessel polynomials
rather than the one already known [3]

Bn(x;α) =
(−1)n

(−2n−2α +2)n x2α−2e−2/x

dn

dxn

(
x2α−2+2ne−2/x

)
, n ∈ N0.

Lemma 3.4. The Bessel polynomials {Bn(·;α)}n>0 with α 6=− n
2 , n∈N0, can be generated by the Rodrigues

type formula

Bn(x;α) =
1

(2α)n

1
E(x)

(
−x2 d

dx
−2
(

α +
n+1

2

)
x−2+ x2 E ′(x)

E(x)

)n

E(x) , n> 0.

Proof. The result is a mere consequence of the definition of the polynomials {Pn(·;α)}n>0 and (3.19) written
in the reverse way: Bn (x;α) = Pn

(
x;α + n+1

2

)
, n ∈ N0. �

Besides, from (3.15) (or by simply considering the identity B′n+1(x;α) = (n+1)Bn(x;α +1)) we deduce

P′n+1(x;α) = (n+1)Pn(x;α + 1
2 ) , n ∈ N0.

Combining this latter with (3.14), another structure relation for these polynomials comes out:

n
2α +n

x2Pn
(
x;α + 1

2

)
= Pn+1(x;α)− 2

2α +n
(αx+1)Pn(x;α) , n ∈ N0.

Concerning the generating function, G(x, t), for the PS {(2α)nPn(·;α)}n>0, its expression can be de-
duced based on the differential relation (3.14), which implies G(x, t) to be solution of the partial differential
equation

∂

∂ t
G(x, t) =−x2 ∂

∂x
G(x, t)−2(αx+1)G(x, t)

satisfying the boundary condition G(x,0) = 1. As a consequence, we have

G(x, t) = e2t(tx−1)−2α = ∑
n>0

(2α)nPn(x;α)
tn

n!
.

Despite the non-orthogonality of the MPS {Pn(·) := Pn(·;α)}n>0, we may envisage whether the d-
orthogonality can fit in this MPS, for some positive integer d > 2. However, we have:

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A059260
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Lemma 3.5. The MPS {Pn(·;α)}n>0 cannot be d-orthogonal because the order of its recursive relation
depends on the order of their elements, precisely

Pn+2(x) = (x−βn+1)Pn+1(x)−
n

∑
ν=0

χn,ν Pν(x)

with

βn =− 2(2α−1)
(n+2α−1)(n+2α)

and χn,0 =
−2n+2(n+1)!

(2α)n+1(2α)n+2
6= 0 , n ∈ N0.

Proof. From (3.1) with λn+1 =−(2α +n)λn we have in this case

βn+1 = βn−
1

2α +n
〈un+1,x2Pn(x)〉 , n ∈ N0.

However, due to (1.2) with n→ n−1 we deduce

〈un+1,x2Pn(x)〉= βn+1 +βn , n ∈ N0,

whence,

βn = β0
(2α−1)n

(2α +1)n
= β0

2α(2α−1)
(2α−1+n)(2α +n)

, n ∈ N0,

and finally by appealing to (3.3), we obtain the desired expression for βn.
Instead of following a similar procedure as the one taken to determine the coefficients χn,ν in the Laguerre

case, we will use the relations (3.15) together with (3.17) to write

χn,ν = 〈uν ,xPn+1〉=
n+1

∑
σ=0

(
n+1

σ

)
2n+1−σ (2α)σ

(2α)n+1
(uν)σ+1

The particular choice of ν = 0 becomes

χn,0 =
n+1

∑
σ=0

(
n+1

σ

)
2n+2(−1)σ+1

(2α)n+1(2α +σ)
=− 2n+2(n+1)!

(2α)n+1(2α)n+2
6= 0 , n ∈ N0,

whereas

χn,ν+1 =
2n+1−ν(2α)ν+1

(2α)n+1

n+1

∑
σ=ν

(
n+1

σ

)
(−1)σ

(2α +σ)

σ

∑
µ=ν

(−1)µ−1
(

µ

ν

)
, 06 ν 6 n−1 , n ∈ N.

The condition χn,0 6= 0 refute the d-orthogonality of {Pn}n>0. �

3.4. Jacobi case. Proceeding in a similar way as in the precedent cases, we considerφ(x) = x(x− 1) and
ψ(x) =−(α +β +2)x+(α +1), so that the MPS {Pn}n>0 fulfill
(3.20)

Pn+1(x,α,β ) =
1

n+α +β +2

(
x(x−1)Pn

′(x,α,β )+
(
(α +β +2)x− (α +1)

)
Pn(x,α,β )

)
, n ∈ N0,

and the corresponding canonical form, which coincides with the Jacobi form, satisfies

(3.21)
(

x(x−1)u0

)′
−
(
(α +β +2)x− (α +1)

)
u0 = 0 .

Lemma 3.6. The elements of the MPS {Pn(·;α,β )}n>0 are explicitly given by

(3.22) Pn(x,α,β ) =
n

∑
ν=0

(α +β +2)ν

(α +β +2)n
(−1)n+ν cn,ν(α)xν , n ∈ N0,

where the set of numbers {cn,ν}06ν6n is defined in (3.9)-(3.10).
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Proof. Based on this differential-recursive relation (3.20) fulfilled by the MPS {Pn}n>0, we derive the ex-
plicit expression of their elements. Indeed, by setting

(3.23) Pn(x,α,β ) =
n

∑
ν=0

c̃n,ν(α,β )
(α +β +2)n

xν

then, regarding (3.20), the set of coefficients c̃n,ν fulfill the triangular relation

c̃n+1,ν(α,β ) = (ν +α +1)c̃n,ν(α,β )− (ν +α +β +1)c̃n,ν−1(α,β )
c̃n,0(α,β ) = (−1)n(α +1)n

which can be shrunk to the same coefficients cn,ν , given in (3.9)-(3.10) on the aforementioned Laguerre case,
if we consider

c̃n,ν(α,β ) = (−1)n+ν(α +β +2)ν cn,ν(α)

The new set of coefficients {cn,ν(α)} no longer depends on β . Consequently, we obtain (3.22). �

Notwithstanding the generating function for the MPS {Pn(x;α,β )}n>0 seems to be complicate to obtain,
we succeeded in determining the following:

Lemma 3.7. The PS {pn(x;α,β )}n>0 where pn(x;α,β ) = (α +β +2)nPn(x;α,β ) have the following gen-
erating function

(3.24) G(x, t) =
e(α−β )t

(cosh(t)+ xsinh(t))α+β+2 = ∑
n>0

pn(x;α,β )
tn

n!

Proof. The differential-recursive relation

pn+1(x;α,β ) =−x2 p′n(x;α,β )+
(
− (α +β +2)x+α−β

)
pn(x;α,β ) , n ∈ N0,

fulfilled by the PS {pn(x;α,β )}n>0, implies the generating function to be solution of the differential equation

∂

∂ t
G(x, t) =−x2 ∂

∂x
G(x, t)+

(
− (α +β +2)x+α−β

)
G(x, t)

satisfying the boundary condition G(x,0) = 1. The desired solution is (3.24). �

Regarding the structure relation fulfilled by {Pn(·;α,β )}n>0 we have the following result:

Lemma 3.8. The MPS {Pn(·) := Pn(·;α,β )}n>0 fulfills the recursive relation

Pn+2(x) = (x−βn+1)Pn+1(x)−
n

∑
ν=0

χn,ν Pν(x)

with

βn =
2(α +β +1)(α +1)+n(n+3+2α +2β )

2(n+α +β +2)(n+α +β +1)
, n ∈ N0,

and

χn,0 =
1

(α +β +2)n+1

n+1

∑
ν=0

(−1)n+ν+1cn+1,ν(α)(α +1)ν+1

(α +β +2+ν)
, n ∈ N0.

Proof. The procedure is very similar to the one taken in the Bessel case. Precisely, from (3.1), where
λn+1 = (α +β +n+2)λn, and by taking into consideration (1.2) and (3.3) it follows

(n+α +β +3)βn+1 = (n+α +β +1)βn +1 , n ∈ N0,
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and β0 = α+1
α+β+2 , which amounts to the same as

(n+α +β +2)(n+α +β +1)βn = (α +β +1)(α +1)+
n
2
(n+3+2α +2β ) , n ∈ N0,

and finally by appealing to (3.3), we obtain the desired expression for βn.
Taking into account (3.22) and the moments of u0, precisely

(u0)n =
(α +1)n

(α +β +2)n
, n ∈ N0,

we conclude

χn,0 = 〈u0,xPn+1〉=
n+1

∑
ν=0

(α +β +2)ν

(α +β +2)n+1
(−1)n+1+ν cn+1,ν(α)(u0)ν+1

=
1

(α +β +2)n+1

n+1

∑
ν=0

(−1)n+ν+1cn+1,ν(α)(α +1)ν+1

(α +β +2+ν)
, n ∈ N0.

�

Actually, as far as α +β >−1, χn,0 6= 0 for n ∈ N0. Indeed, bearing in mind (3.11) with n→ n+1, i.e.,

n+1

∑
ν=0

(−1)n+ν+1cn+1,ν(α)(α +1)ν+1 = (α +1)(−1)n+1
n+1

∑
ν=0

(−1)ν cn+1,ν(α)(α +2)ν = α +1

it readily follows

|χn,0|>
∣∣∣∣ 1
(α +β +2)n+1

∣∣∣∣
∣∣∣∣∣n+1

∑
ν=0

(−1)n+ν+1cn+1,ν(α)(α +1)ν+1

α +β +2+ν

∣∣∣∣∣=
∣∣∣∣ (α +1)
(α +β +2)n+2

∣∣∣∣> 0 , n ∈ N0.

Therefore, if α +β >−1, the MPS {Pn(·;α,β )}n>0 cannot be d-orthogonal.
Otherwise, if α + β < −1 fulfilling the regularity conditions pointed out in Table 1, we conjecture that

χn,0 6= 0.
The determination of the remaining coefficients χn,ν seems to require more laborious computations, that

are deferred for a further work. Besides, regarding the nature of this MPS {Pn(·;α,β )}n>0, the connection
with the well known Jacobi classical polynomial sequences is not as simple to establish as in the precedent
cases of Hermite, Laguerre or Bessel. For this reason, we leave this issue as an open problem.
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Brezinski et al. (Eds.), Orthogonal Polynomials and their Applications, in: IMACS Ann. Comput. Appl. Math. 9 (1991), 95-130.



14 ANA F. LOUREIRO AND P. MARONI

11. P. Maroni, Variations around classical orthogonal polynomials. Connected problems. Journal of Comput. Appl. Math., 48 (1993),
133-155.
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