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1. I

Let N be the set of nonnegative integers. A numerical semigroup S is a sub-
monoid of N (that is, it is closed under addition and 0 ∈ S ) such that N \ S is
finite. Given two integers a and b with b , 0, we denote by a mod b the remainder
of the division of a by b. Following the notation of [5], a proportionally modular
Diophantine inequality is an expression of the form ax mod b ≤ cx, where a, b and
c are positive integers. The set S(a, b, c) of all integer solutions to this inequality
is a numerical semigroup. A numerical semigroup S is proportionally modular if
S = S(a, b, c) for some positive integers a, b and c, that is, it is the set of integer
solutions of the inequality ax mod b ≤ cx. In this setting, we say that S(a, b, c) is a
proportionally modular representation of S .

Let a1, . . . , ar, b1, . . . , br, c1, . . . , cr be positive integers. Then the set of solutions
of the system of inequalities 

a1x mod b1 ≤ c1x,
. . .

ar x mod br ≤ cr x,

is S(a1, b1, c1) ∩ · · · ∩ S(ar, br, cr), and thus it is a numerical semigroup. A numer-
ical semigroup is system proportionally modular if it is the set of solutions of a
system of proportionally modular Diophantine inequalities. If S = S(a1, b1, c1) ∩
· · · ∩ S(ar, br, cr), then we say that S(a1, b1, c1) ∩ · · · ∩ S(ar, br, cr) is a system
proportionally modular representation of S .

The aim of this paper is the study of system proportionally modular numerical
semigroups. We will mainly focus on the following aspects.

• We will see that every subset A of N with gcd(A) = 1 (gcd stands for great-
est common divisor) uniquely determines a system proportionally modular
numerical semigroup.
• We give an algorithmic procedure to recurrently construct the set of all

system proportionally modular numerical semigroups.
• We give a procedure to determine whether or not a numerical semigroup is

system proportionally modular.
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• For a system proportionally modular numerical semigroup, we show how
to obtain a system proportionally modular representation. We will also give
a method to compute a minimal representation, that is, if S is a system pro-
portionally modular numerical semigroup, then we find the least possible
number of proportionally modular Diophantine inequalities determining S .
• Finally, we explain the relationship of system proportionally modular nu-

merical semigroups with numerical semigroups having a Toms’ decom-
position. These semigroups appear as positive cones of the K0-group of
certain C∗-algebras (see [9]).

2. SPM-  

Let A be a set of nonnegative integers. We denote by 〈A〉 the submonoid of
(N,+) generated by A, that is, the set of elements of the form λ1a1 + · · · + λnan
with n ∈ N, λ1, . . . , λn ∈ N and a1, . . . , an ∈ A. If M = 〈A〉, then we say that A
is a system of generators of M. This system of generators is minimal if no proper
subset of A generates M. It is easy to show that every submonoid of N admits a
unique minimal system of generators (see for instance [3]), which turns out to have
finitely many elements. The cardinality of the minimal system of generators of a
submonoid M of N is known as the embedding dimension of M, and it is denoted
by e(M). It is also well known (see for instance [3]) that if A ⊆ N, then 〈A〉 is
a numerical semigroup if and only if gcd(A) = 1. The following result can be
deduced from [5].

Lemma 1. Every numerical semigroup of embedding dimension two is proportion-
ally modular.

The intersection of proportionally modular numerical semigroups is a submonoid
of N, but in general it is not a numerical semigroup since it does not need to be co-
finite: clearly,

⋂
n∈N\{0}〈d, dn + 1〉 = 〈d〉 for every positive integer d. If the family

of proportionally modular numerical semigroups that we intersect is finite, then
the resulting semigroup is a numerical semigroup, since the intersection of finitely
many numerical semigroups is again a numerical semigroup.

A submonoid M of N is a SPM-semigroup if it can be expressed as the in-
tersection of proportionally modular numerical semigroups. Thus the intersection
of SPM-semigroups is again a SPM-semigroup. Note that a co-finite SPM-
semigroup is a system proportionally numerical semigroup. If A ⊆ N, it makes
sense to talk about the SPM-semigroup generated by A, which is the intersec-
tion of all SPM-semigroups containing A, that is, the least (with respect to set
inclusion) SPM-semigroup containing A. We will denote this submonoid of N as
SPM(A) and call it the SPM-closure of A. If M = SPM(A), then we say that
A is a SPM-system of generators of M, and, as usual, we say that A is minimal if
not proper subset of A is a SPM-system of generators of M. The following result
is easy to prove.

Lemma 2. Let A and M be a subset and a submonoid of N, respectively. The
following conditions are equivalent.
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1) M = SPM(A).
2) M is the intersection of all proportionally modular numerical semigroups con-

taining A.
3) M is the intersection of all proportionally modular numerical semigroups con-

taining 〈A〉.

Proposition 3. Let A be a subset of N. Then SPM(A) is a numerical semigroup if
and only if gcd(A) = 1.

Proof. Necessity. Assume that gcd(A) = d , 1. Then A ⊆ 〈d〉, and we already
know that 〈d〉 is a SPM-semigroup. Thus SPM(A) ⊆ 〈d〉. As N \ SPM(A) has
infinitely many elements, SPM(A) is not a numerical semigroup.

Sufficiency. If gcd(A) = 1, then 〈A〉 is a numerical semigroup. Hence N \ 〈A〉
has finitely many elements, whence there are only finitely many numerical semi-
groups containing 〈A〉. Thus, only finitely many proportionally modular numerical
semigroups contain 〈A〉. In view of Lemma 2, SPM(A) is the intersection of all
proportionally modular numerical semigroups containing 〈A〉. As there are only
finitely many of them, this intersection is a numerical semigroup. �

With this, we can state the following result.

Theorem 4. Let A be a subset of N with gcd(A) = 1. Then SPM(A) is a system
proportionally modular numerical semigroup. Moreover, every system proportion-
ally modular numerical semigroup is of this form.

3. U   SPM-  

Our goal in this section is to prove that every SPM-semigroup admits a unique
minimal SPM-system of generators. In order to achieve this, we need to recall
some known results.

Lemma 5. [5, Corollary 9] Let c < a < b be positive integers. Then S(a, b, c) =
T ∩ N, where T is the submonoid of R+0 generated by the closed interval [ b

a ,
b

a−c ].
Conversely, given positive integers a1, a2, b1, b2 with a1

b1
< a2

b2
, if T is the submonoid

of R+0 generated by [ a1
b1
, a2

b2
], then T ∩ N = S(a2b1, a1a2, a2b1 − a1b2).

Note that the inequality ax mod b ≤ cx has the same solutions as the inequality
(a mod b)x mod b ≤ cx, and if c ≥ a, then S(a, b, c) = N. Thus, the condition
c < a < b imposed in Lemma 5 is not restrictive.

If T is the submonoid of R+0 generated by [ a1
b1
, a2

b2
], we will refer to T ∩ N as the

proportionally modular numerical semigroup associated to [ a1
b1
, a2

b2
], and we will

denote it by S([ a1
b1
, a2

b2
]).

More generally, let I be any interval of R+0 with more than one element. If
T is the submonoid of R+0 generated by I, then S(I) = T ∩ N turns out to be a
proportionally modular numerical semigroup as explained in [7] (see also [11]).
The following result, which can be deduced from [7, Lemma 2] (or [11, Lemma
6.2]), solves the membership problem for S(I).
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Lemma 6. Let I be an interval of nonnegative real numbers with more than one
element. Then a positive integer x belongs to S(I) if and only if there exists a
positive integer y such that x

y ∈ I.

Let S be a numerical semigroup. The largest integer not belonging to S is known
as the Frobenius number of S , and it is denoted by F(S ). The following result ren-
ders proportionally modular numerical semigroups with given a Frobenius num-
ber. Its proof is easy and is part of [7, Lemma 6] (it can also be deduced from [11,
Lemma 6.6]; open intervals with ends α and β will be denoted by ]α, β[).

Lemma 7. Let a and b be positive integers with a < b. Then S(] b
a ,

b
a−1 [) is a

proportionally modular numerical semigroup with Frobenius number b.

Remark 8. We are going to use the convenient notation x
0 = ∞, with x a positive

integer. Moreover, we convey that r < ∞ for every rational number r. For a = 1 in
the preceding result, the interval is ] b

a ,∞[, and the result still holds.

Remark 9. Note that
1) if M is a SPM-semigroup, then SPM(M) = M,
2) if A ⊆ B ⊆ N, then SPM(A) ⊆ SPM(B).

Lemma 10. Let A ⊆ N and let M = SPM(A). Then A is a minimal SPM-system
of generators of M if and only if a < SPM(A \ {a}) for all a ∈ A.

Proof. Assume that a ∈ SPM(A \ {a}). Then A ⊆ SPM(A \ {a}) and M =

SPM(A) ⊆ SPM(SPM(A \ {a})) = SPM(A \ {a}), contradicting that A is a
minimal SPM-system of generators.

If A is not a minimal SPM-system of generators, then M = SPM(B) for some
B ( A. Let a ∈ A \ B. Then a ∈ M = SPM(B) ⊆ SPM(A \ {a}). �

The following result is the key to prove the uniqueness of minimal SPM-
systems of generators.

Lemma 11. Let A = {a1 < a2 < · · · } be a set of positive integers. If x is in
SPM(A) and x < ak, then x ∈ SPM({a1, . . . , ak−1}).

Proof. Assume to the contrary that x < SPM({a1, . . . , ak−1}). Then there exists a
proportionally modular numerical semigroup T such that {a1, . . . , ak−1} ⊂ T and
x < T . In view of Lemma 5, there exist positive rational numbers 1 < α < β such
that T = S([α, β]). As x < T , from Lemma 6, there exists a positive integer d such
that

x
d + 1

< α < β <
x
d
.

Hence {a1, . . . , ak−1} ⊂ T ⊆ S(] x
d+1 ,

x
d [). Moreover, from Lemma 7, we deduce that

for every a ∈ A such that a > x, we have that a ∈ S(] x
d+1 ,

x
d [). Thus x < S(] x

d+1 ,
x
d [)

and A ⊆ S(] x
d+1 ,

x
d [), contradicting that x ∈ SPM(A) (Lemma 2). �

In the above lemma, if k = 1, then x < a1. This implies that x = 0 because
{0, a1,→} is proportionally modular (this fact is easy to prove, but can be seen as a
particular case of [5, Theorem 16]; the arrow means that every integer greater than
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a1 is in the set). And 0 is in SPM(∅) = {0}, the intersection of all proportionally
modular numerical semigroups.

Theorem 12. If A and B are minimal SPM-systems of generators of the sub-
monoid M of N, then A = B.

Proof. Assume that A , B, and that A = {a1 < a2 < · · · } and B = {b1 < b2 < · · · }.
Let i = min{k | ak , bk} and suppose without loss of generality that ai < bi (this
minimum exists, because A , B). Since ai ∈ M = SPM(A) = SPM(B), by
Lemma 11, ai ∈ SPM({b1, . . . , bi−1}). However, {b1, . . . , bi−1} = {a1, . . . , ai−1},
which implies that ai ∈ SPM({a1, . . . , ai−1}), contradicting that A was a minimal
SPM-system of generators of S (Lemma 10). �

If M is a SPM-semigroup, then from this theorem we know that M admits a
unique minimal SPM-system of generators. We will refer to the cardinality of this
set as the SPM-dimension of M. Note that if {n1, . . . , np} is the minimal system of
generators of M, then SPM({n1, . . . , np}) = M. Thus the embedding dimension is
greater than or equal to the SPM-dimension. This implies that describing SPM-
semigroups by their minimal SPM-system of generators is cheaper than by their
minimal system of generators.

4. T        

In this section we are bound to construct the tree of all system proportionally
modular numerical semigroups. The underlying idea is the following. If S is a
numerical semigroup other than N, then S ∪{F(S )} is again a numerical semigroup.
If this numerical semigroup is not N, then we can repeat the same process. After a
finite number of steps we reachN. More precisely, there exists a chain of numerical
semigroups

S = S 1 ⊆ S 2 ⊆ · · · ⊆ S t−1 ⊆ S t = N,

where S i+1 = S i∪{F(S i)} for all i ∈ {1, . . . , t−1}. We first prove that if S is system
proportionally modular, then this chain consists of system proportionally modular
numerical semigroups. This would allow us to move downwards the tree from
every node to the root N. If we want to move upwards, that is, constructing sons
instead of parents, then we must check whether S \ {n} is a system proportionally
modular numerical semigroup, with n ∈ S and S a system proportionally modular
numerical semigroup, and so that this operation is the dual of adding the Frobenius
number. We show that S \ {n} is system proportionally modular provided that n is
in the minimal SPM-system of generators of S . Thus for constructing the sons of
a node S in the tree, we only have to remove from the node those elements greater
than F(S ) belonging to the minimal SPM-system of generators of S (we impose
the condition of being greater than the Frobenius number, so that the resulting
semigroups are indeed sons of the starting node).

Lemma 13. Let S be a proportionally modular numerical semigroup with Frobe-
nius number g , −1, that is, S , N. Then S ∪{g} is system proportionally modular.
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Proof. Assume that S is generated by {n1, . . . , np}. Since S is proportionally mod-
ular, S = S([α, β]) for some real numbers α, β with 1 < α < β (Lemma 5). By
Lemma 6, for every i ∈ {1, . . . , p}, there exists di ∈ {1, . . . , ni − 1} such that
ni
di
∈ [α, β]. Assume that after rearranging the generators (if needed), we have

that
n1

d1
< · · · <

np

dp
.

Then S([ n1
d1
,

np
dp

]) ⊆ S([α, β]) = S , and as n1, . . . , np ∈ S([ n1
d1
,

np
dp

]) (Lemma 6 again),

we deduce that S = S([ n1
d1
,

np
dp

]). Since g < S , by using Lemma 6 once more, there
exists d ∈ N such that

g
d + 1

<
n1

d1
< · · · <

np

dp
<

g
d
.

If d = 0, then g < ni
di

and thus g < ni for all i ∈ {1, . . . , p}. Hence g < s for all
s ∈ S \ {0}, which means that S = {0, g + 1,→}. In this setting S ∪ {g} = {0, g,→},
which is proportionally modular and thus system proportionally modular.

Now assume that d , 0. We prove that S ∪ {g} = S([ g
d+1 ,

np
dp

]) ∩ S([ n1
d1
,

g
d ]). The

inclusion S ∪ {g} ⊆ S([ g
d+1 ,

np
dp

])∩ S([ n1
d1
,

g
d ]) is clear. Now, assume that there exists

x ∈ S([ g
d+1 ,

np
dp

]) ∩ S([ n1
d1
,

g
d ]), with x < S ∪ {g}. Thus x < g and there exist n and

m positive integers such that g
d+1 ≤

x
n ≤

np
dp

and n1
d1
≤ x

m ≤
g
d (Lemma 6). As

x
n ,

x
m < [ n1

d1
,

np
dp

] (this would imply that x ∈ S ), we have that

g
d + 1

≤
x
n
<

n1

d1
<

np

dp
<

x
m
≤

g
d
,

which in particular implies that m < n. Thus

gn ≤ xd + x ≤ gm + x < gm + g = g(m + 1),

and this leads to n < m + 1. We conclude that m < n < m + 1, which is impossible.
�

Theorem 14. Let S be a system proportionally modular numerical semigroup.
If S , N, then S ∪ {F(S )} is also a system proportionally modular numerical
semigroup.

Proof. As S is system proportionally modular, there exist S 1, . . . , S t proportionally
modular numerical semigroups such that S = S 1 ∩ · · · ∩ S t. Let g = F(S ). Then
S ∪{g} = (S 1∪{g})∩· · ·∩ (S t∪{g}). For i ∈ {1, . . . , t}, if g ∈ S i, then S i∪{g} = S i,
which is trivially system proportionally modular. If g < S i, as S ⊆ S i, this implies
that g = F(S i). In view of Lemma 13, S i ∪ {g} is system proportionally modular.
Thus S ∪ {g} is the intersection of (finitely many) system proportionally modular
numerical semigroups, which means that S ∪{g} is a system proportionally modular
numerical semigroup. �

The dual operation of adding the Frobenius number to a numerical semigroup
is that of removing a minimal generator greater than the Frobenius number of the
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semigroup. If S is a numerical semigroup and 0 , n ∈ S , then S \ {n} is a nu-
merical semigroup if and only if n is a minimal generator of S . If in addition S is
system proportionally modular, then, in general, S \ {n} does not have to be system
proportionally modular, as explained in the following example. However, there is
a natural restriction we can impose on n in order to ensure that S \ {n} is system
proportionally modular.

Example 15. Let S = 〈4, 6, 7, 9〉. This numerical semigroup is system proportion-
ally modular; it is the intersection of 〈3, 4〉 and 〈4, 5, 6, 7〉, which are proportionally
modular (the first is generated by two elements, the latter is {0, 4,→}, which is a
particular example of [5, Theorem 16]). The semigroup S \ {6} = 〈4, 7, 9, 10〉 =
S([ 9

7 ,
10
7 ]) is proportionally modular and thus system proportionally modular. How-

ever, S \ {9} = 〈4, 6, 7〉 is not system proportionally modular (see [5, Example
28]). �

Theorem 16. Let M be a SPM-semigroup, and let n be one of its minimal gener-
ators. The following conditions are equivalent.

i) M \ {n} is a SPM-semigroup.
ii) n belongs to the minimal SPM-system of generators of M.

Proof. Assume that M \ {n} is a SPM-semigroup and let A ⊆ M be the minimal
SPM-system of generators of M. If n < A, then A ⊆ M \ {n}, which is a SPM-
semigroup. Thus SPM(A) ⊆ M \ {n}, contradicting that SPM(A) = M.

Now assume that n is in the minimal SPM-system of generators of M. We
always have the following chain of numerical semigroups

M \ {n} ⊆ SPM(M \ {n}) ⊆ M.

From the uniqueness of the minimal SPM-system of generators (Theorem 12),
M , SPM(M \ {n}). Hence SPM(M \ {n}) = M \ {n}. Thus M \ {n} is a SPM-
semigroup. �

Corollary 17. Let S be a numerical semigroup. The following conditions are
equivalent.

i) S = S ′∪{F(S ′)} for some system proportionally modular numerical semigroup
S ′.

ii) S is system proportionally modular and has an element greater that F(S ) in
its minimal SPM-system of generators.

Proof. If S = S ′ ∪ {F(S ′)} with S ′ a system proportionally modular numerical
semigroup, then by Theorem 14, S is system proportionally modular. Moreover,
S \ {F(S ′)} = S ′, which implies that F(S ′) is a minimal generator of S and, in view
of Theorem 16, F(S ′) belongs to the minimal SPM-system of generators of S .
Observe that F(S ′) > F(S ).

For the converse, let n > F(S ) be in the minimal SPM-system of generators of
S . Then by Theorem 16, S ′ = S \ {n} is system proportionally modular. Finally,
note that as n > F(S ), we have that F(S ′) = n. Clearly, S = S ′ ∪ {F(S ′)}. �
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Corollary 17 together with Theorem 14 allow us to construct recursively the set
of all system proportionally modular numerical semigroups, starting from N. This
construction arranges this set in a tree rooted in N, and the sons of a node S are
S \ {n1}, . . . , S \ {nr}, with {n1, . . . , nr} the set of elements in the minimal SPM-
system of generators of S greater than F(S ). This node is a leaf if {n1, . . . , nr} is
empty.

This construction requires the computation of minimal SPM-system of gener-
ators, which will be the subject of next section. An explicit construction will be
given in Example 25.

5. C  SPM-  

In this section we give an easy procedure to compute the minimal SPM-system
of generators for a SPM-semigroup and present some of its properties. If n1 <
· · · < np are positive integers, then in view of Lemma 11, {n1 < n2 < · · · < np} is a
minimal SPM-system of generators of S if and only if nk < SPM({n1, . . . , nk−1})
for all k ∈ {2, . . . , p}. Thus the following algorithm computes the minimal SPM-
system of generators for SPM({n1, . . . , np}).

Algorithm 18.
I: Positive integers n1 < · · · < np.
O: The minimal SPM-system of generators of SPM({n1, · · · , np}).

A = {n1}.
For k from 1 to p do

if nk < SPM(A), then A := A ∪ {nk}.
Return A.

Thus the problem reduces to determine a procedure for deciding whether or not a
positive integer is in the SPM(A) for a given finite set A. The key to this procedure
is given in the following result.

Proposition 19. Let x, n1, . . . , np be positive integers. The following conditions
are equivalent:

1) x < SPM({n1, . . . , np}),
2) there exists k ∈ {0, . . . , x − 1} and d1, . . . , dr positive integers such that di ∈

{1, . . . , ni − 1} and
x

k + 1
<

n1

d1
, . . . ,

np

dp
<

x
k
.

Proof. Let M = SPM({n1, . . . , np}).
1) implies 2). As x < M, in view of Lemma 2, there exists a proportionally

modular numerical semigroup T such that x < T and {n1, . . . , np} ⊂ T . Let α, β
be rational numbers such that T = S([α, β]) and 1 < α < β (Lemma 5). We use a
similar argument to the one appearing in the proof of Lemma 13.

• Since x < T , there exists k ∈ N with x
k+1 < α < β <

x
k . This in particular

implies that 0 ≤ k < x.
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• From {n1, . . . , np} ⊂ S([α, β]) and Lemma 6, we deduce that there exist
d1, . . . , dp ∈ N \ {0} with α ≤ ni

di
≤ β for all i ∈ {1, . . . , p}. From these

equalities we deduce that di ∈ {1, . . . , ni − 1} for all i ∈ {1, . . . , p}.

Thus
x

k + 1
< α ≤

n1

d1
, . . . ,

np

dp
≤ β <

x
k
.

2) implies 1). Let T = S(] x
k+1 ,

x
k [). By Lemma 7, T is a proportionally mod-

ular numerical semigroup such that x < T . From Lemma 6, we deduce that
{n1, . . . , np} ⊂ T . Thus x < M. �

From this result and taking into account that for n, x, d positive integers and k a
nonnegative integer

x
k + 1

<
n
d
<

x
k

if and only if k
n
x
< d < (k + 1)

n
x
,

the correctness of the next algorithm follows easily.

Algorithm 20.
I: Positive integers x and n1 < · · · < np.
O: Returns true if x ∈ SPM({n1, . . . , np}); false otherwise.

If x < n1, return false.
Q := {ni

x | i ∈ {1, . . . , p}}.
For k from 1 to x − 1 do

if for all q ∈ Q there exists an integer in ]kq, (k + 1)q[, then return
false.

Return true.

Let S be a numerical semigroup. The set of gaps of S is H(S ) = N \ S . The
SPM-closure of S ,SPM(S ), is a numerical semigroup containing S . Assume that
{n1, . . . , np} is a system of generators of S . Then SPM(S ) = SPM({n1, . . . , np}).
Thus we can use Algorithm 20 in order to check which elements of H(S ) are in
SPM(S ). In this way we know the set H(SPM(S )), and thus SPM(S ).

Example 21. Let S = 〈4, 6, 7〉. Then H(S ) = {1, 2, 3, 5, 9}. Among these gaps, only
9 ∈ SPM(S ). Hence H(SPM(S )) = {1, 2, 3, 5} and thus SPM(S ) = S ∪ {9} =
〈4, 6, 7, 9〉.

Next we will show that for proportionally modular numerical semigroups, the
concepts of minimal SPM-systems of generators and minimal systems of genera-
tors coincide. First we need a lemma, which can be deduced from [6, Corollary 26].

Lemma 22. Let S be a proportionally modular numerical semigroup minimally
generated by {n1 < · · · < np}. Then 〈n1, . . . , nk〉 is a proportionally modular nu-
merical semigroup for all k ∈ {2, . . . , p}.

Proposition 23. For proportionally modular numerical semigroups, the concepts
of minimal SPM-system and minimal system of generators are the same.
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Proof. Let S be a proportionally modular numerical semigroup minimally gener-
ated by {n1 < · · · < np}. By applying Algorithm 18 to {n1, . . . , np}, we obtain
that a minimal SPM-system of generators of SPM({n1, . . . , np}) is {n1, . . . , np},
since SPM({n1, . . . , nk}) = 〈n1, . . . , nk〉 by Lemma 22 for all k ∈ {2, . . . , p}, and
for k = 1 we already know that the equality also holds. �

As a consequence of Theorem 16 and Proposition 23, since S \ {ni1 , . . . , nir } =

S \ {ni1} ∩ · · · ∩ S \ {nir }, we obtain the following.

Corollary 24. Let S be a proportionally modular numerical semigroup with min-
imal system of generators {n1, . . . , np}. Then S \ {ni1 , . . . , nir } is a system propor-
tionally modular numerical semigroup for all {i1, . . . , ir} ⊆ {1, . . . , p}.

Example 25. Now that we know how to compute minimal SPM-systems of gener-
ators, we illustrate how to construct the tree T of all system proportionally modular
numerical semigroups.

Starting from N = 〈1〉 and removing 1 from it, we obtain 〈2, 3〉. And this yields
〈2, 3〉\{2} = 〈3, 4, 5〉 and 〈2, 3〉\{3} = 〈2, 5〉. Now, if we focus on 〈3, 4, 5〉, we obtain
three new system proportionally numerical semigroups (every minimal generator
is greater than 2, the Frobenius number): 〈4, 5, 6, 7〉, 〈3, 5, 7〉 and 〈3, 4〉. Note
that 〈3, 4〉 is a “leaf” of T , since it has no generator greater than 5 (its Frobenius
number).

We can keep repeating this process, and so for instance,

• 〈2, 5〉 yields 〈2, 7〉, which produces 〈2, 9〉 and so on;
• 〈4, 5, 6, 7〉 has “sons” 〈5, 6, 7, 8, 9〉, 〈4, 6, 7, 9〉, 〈4, 5, 7〉 and the leaf 〈4, 5, 6〉;
• from 〈3, 5, 7〉, we obtain 〈3, 7, 8〉 and 〈3, 5〉 (which is also a leaf of T ).

N // 〈2, 3〉 //

&&LLLLL 〈2, 5〉 // 〈2, 7〉 // 〈2, 9〉 // · · ·

〈3, 4, 5〉 //

��/
//

//
//

//
//

//
//

//
//

//
/

��*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

* 〈4, 5, 6, 7〉 //

((RRRRRRR

""DD
DD

DD
DD

DD
DD

D

��9
99

99
99

99
99

99
99

99
9 〈5, 6, 7, 8, 9〉 // · · ·

〈4, 6, 7, 9〉 // · · ·

〈4, 5, 7〉 // · · ·

〈4, 5, 6〉

〈3, 5, 7〉 //

((RRRRRRRR 〈3, 7, 8〉 // · · ·

〈3, 5〉

〈3, 4〉

If S is a system proportionally modular numerical semigroup with e(S ) = 3, then
its minimal SPM-system of generators agrees with its minimal system of gener-
ators (see Remark 28 below). Numerical semigroups generated by two elements
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and, more generally, by arithmetic progressions are proportionally modular (see [5,
Theorem 16]). This is why for example 〈4, 5, 6, 7〉 has four sons.

Note that S = 〈4, 6, 7, 9〉 has only three sons, namely S \{4} = 〈6, 7, 8, 9, 10, 11〉,
S \ {6} = 〈4, 7, 9, 10〉 and S \ {7} = 〈4, 6, 9, 11〉, since the minimal SPM-system
of generators of S is {4, 6, 7}. As expected, 〈4, 6, 7〉 = 〈4, 6, 7, 9〉 \ {9} is not system
proportionally modular numerical semigroup. �

6. SPM-    

Let A be a subset of N, we prove next that SPM(A) = gcd(A)SPM(A/ gcd(A))
(where by rX we mean {rx | x ∈ X}, for r any rational number and X any subset of
N). That is, for computing SPM-closures, it suffices to compute the SPM-closure
of a numerical semigroup.

Proposition 26. Let A be a subset of N with gcd(A) = 1 and let d be an integer
greater than one. Then SPM(dA) = dSPM(A).

Proof. Let T be a proportionally modular numerical semigroup containing dA.
From Lemma 5, we know that there exist rational numbers 1 < α < β such
that T = S([α, β]). Then for all da ∈ dA, there exists a positive integer k such
that α ≤ da

k ≤ β, or equivalently, αd ≤
a
k ≤

β
d . Thus A ⊆ S([αd ,

β
d ]). Hence

SPM(A) ⊆ S([αd ,
β
d ]). Arguing as above, and unwinding the process, we deduce

that dSPM(A) ⊆ S([α, β]) = T . This proves that dSPM(A) ⊆ SPM(dA). For the
other inclusion, observe that in view of the proof of Proposition 3, SPM(dA) ⊆
〈d〉. Thus every element in SPM(dA) is of the form dx for some positive integer
x. Take dx ∈ SPM(dA). We show that x ∈ SPM(A). Let T = S([α, β]), with
1 < α < β be a proportionally modular numerical semigroup containing A. Then
dA ⊆ S([dα, dβ]), whence SPM(dA) ⊆ S([dα, dβ]), and thus dx ∈ S([dα, dβ]).
From this it is easy to deduce that x ∈ S([α, β]) = T , and this occurs for every
T proportionally modular numerical semigroup containing A. We conclude that
x ∈ SPM(A). �

Remark 27. From this result, as we know that every numerical semigroup of em-
bedding dimension two is proportionally modular, we deduce that every submonoid
of N with embedding dimension two is a SPM-semigroup. Let n1 and n2 be two
positive integers with gcd{n1, n2} = d. Then

SPM({n1, n2}) = SPM(d{
n1

d
,

n2

d
}) = dSPM(〈

n1

d
,

n2

d
〉) = d〈

n1

d
,

n2

d
〉 = 〈n1, n2〉.

Remark 28. Let M be a SPM-semigroup minimally generated by {n1 < · · · < np},
with p ≥ 3. Since SPM({n1}) = 〈n1〉, SPM({n1, n2}) = 〈n1, n2〉, and neither
n2 ∈ 〈n1〉 nor n3 ∈ 〈n1, n2〉, in view of Algorithm 18, we deduce that n1, n2 and n3
are always in the minimal SPM-system of generators of M.

Next we are concerned with the problem of computing S 1, . . . , S r proportionally
modular numerical semigroups such that SPM(S ) = S 1 ∩ · · · ∩ S r.

We first need to recall some definitions. Let

EH(S ) = {x ∈ H(S ) | S ∪ {x} is a numerical semigroup}.
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It is easy to prove that

EH(S ) = {x ∈ H(S ) | 2x ∈ S , x + s ∈ S for all s ∈ S \ {0}}.

Assume that S is minimally generated by {n1, . . . , np}. Let BS be as in [5, Algo-
rithm 27], that is,

BS = {(x, y) | x ∈ (EH(S ) \ {1}) ∪ {n1, . . . , np}, 1 ≤ y < x}.

Consider BS as a list ordered in the following way: (x, y) < (x′, y′) if x
y <

x′
y′ or

x
y =

x′
y′ and x < x′. Thus, BS can be expressed in the form

BS = ((x1, y1), . . . , (xm, ym)).

We say that a segment ` = ((xq, yq), . . . , (xr, yr)) of B is closed if
• q = 1 or xq−1

yq−1
,

xq
yq

, and
• r = m or xr

yr
, xr+1

yr+1
.

For the segment ` = ((xq, yq), . . . , (xr, yr)), write π1(`) = {xq, . . . , xr}.
If ` = ((xq, yq), . . . , (xr, yr)) is a closed segment of BS , set S ` = S([ xq

yq
, xr

yr
]),

which is a proportionally modular numerical semigroup. Clearly, in view of Lemma
6, π1(`) ⊂ S `.

Lemma 29. Under the standing hypothesis, if T is a proportionally modular nu-
merical semigroup containing S , then there exists a closed segment ` of BS such
that {n1, . . . , np} ⊆ π1(`) and S ` ⊆ T.

Proof. We use an argument similar to the one used in the proof of Proposition 19.
From Lemma 5, there exist rational numbers α and β with 1 < α < β such that
T = S([α, β]). As S ⊆ T , by Lemma 6, for every i ∈ {1, . . . , p} there exists a
positive integer di such that α ≤ ni

di
≤ β. Note that this forces 1 ≤ di < ni, whence

the pair (ni, di) ∈ BS . Let ` = ((xq, yq), . . . , (xr, yr)) be the least closed segment
containing {(n1, d1), . . . , (np, dp)}. Then α ≤ xq

yq
=

ni
di

and xr
yr
=

n j
d j
≤ β for some

i, j ∈ {1, . . . , p}. Hence S ` ⊆ T , and {n1, . . . , np} ⊂ π1(`) follows from the way we
have chosen `. �

Thus we obtain the following consequence.

Corollary 30. If T is a minimal (with respect to set inclusion) proportionally mod-
ular numerical semigroup containing the numerical semigroup S , then there exists
a closed segment of BS such that T = S `.

With this, it is straightforward to prove the next result, which gives an easy
method to compute an expression of SPM(S ) as intersection of finitely many pro-
portionally modular numerical semigroups.

Proposition 31. Let S be a numerical semigroup minimally generated by {n1, . . . , np}.
Let `1, . . . , `r be those closed segments of BS such that {n1, . . . , np} ⊆ π1(`i). Then

SPM(S ) = S `1 ∩ · · · ∩ S `r .

Remark 32. Among those closed segments referred in the proposition above, we
only need to consider those that are minimal with respect to set inclusion.
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Example 33. Let S = 〈4, 6, 7〉. Then EH(S ) = {9} and the list BS is

((9, 8), (7, 6), (6, 5), (9, 7), (4, 3), (7, 5), (6, 4), (9, 6), (7, 4), (9, 5), (4, 2),
(6, 3), (9, 4), (7, 3), (6, 2), (9, 3), (7, 2), (4, 1), (9, 2), (6, 1), (7, 1), (9, 1)).

Using the above remark, we obtain
(1) `1 = ((7, 6), . . . , (4, 3)), and S `1 = S([ 7

6 ,
4
3 ]);

(2) `2 = ((6, 5), . . . , (7, 5)), and S `2 = S([ 6
5 ,

7
5 ]);

(3) `3 = ((4, 3), . . . , (9, 6)), and S `3 = S([ 4
3 ,

9
6 ]);

(4) `4 = ((7, 4), . . . , (6, 3)), and S `4 = S([ 7
4 ,

6
3 ]);

(5) `5 = ((4, 2), . . . , (7, 3)), and S `5 = S([ 4
2 ,

7
3 ]);

(6) `6 = ((6, 2), . . . , (4, 1)), and S `6 = S([ 6
2 ,

4
1 ]);

(7) `7 = ((7, 2), . . . , (6, 1)), and S `7 = S([ 7
2 ,

6
1 ]);

(8) `8 = ((4, 1), . . . , (7, 1)), and S `8 = S([ 4
1 ,

7
1 ]).

Then
S `1 = S `2 = S `7 = S `8 = 〈4, 5, 6, 7〉,

S `3 = S `6 = 〈3, 4〉,
and

S `4 = S `5 = 〈2, 7〉.
For these semigroups it is not too difficult to obtain a minimal system of gen-

erators (one can just use Lemma 6). For more complicated ones, one can use the
algorithm described in [6]. Even for this case, we have used the implementation of
this algorithm done in the GAP [10] package NumericalSgps [1].

Thus

SPM(S ) = S([4, 7]) ∩ S([3, 4]) ∩ S([2,
7
3

]) = 〈4, 6, 7, 9〉.

This decomposition is not minimal since

SPM(S ) = S([4, 7]) ∩ S([3, 4]) = S([4, 7]) ∩ S([2,
7
3

])

=< 4, 5, 6, 7 > ∩ < 3, 4 >=< 4, 5, 6, 7 > ∩ < 2, 7 > .

This example also stresses out that minimal decompositions do not have to be
unique. �

Encoded in BS there is still more information that can be used for instance
to compute the minimal SPM-system of generators of SPM(S ), and thus for
SPM({n1, . . . , np}). Next we show how to achieve this, giving in this way an alter-
native procedure to the one explained in Section 5.

Lemma 34. Let S be a numerical semigroup and let T be a submonoid of S . Then
min(S \ T ) is a minimal generator of S .

Proof. Let n = min(S \ T ). Assume that n = s1 + s2 with s1, s2 ∈ S \ {0}. Then s1
and s2 are smaller than n, and the minimality of n implies that both s1 and s2 are in
T . But this is impossible, since T is a monoid and thus s1 + s2 = s ∈ T . �
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Proposition 35. Let S be a system proportionally modular numerical semigroup
minimally generated by {n1, . . . , np}. Let A ⊆ {n1, . . . , np}. The following condi-
tions are equivalent.
1) SPM(A) = S .
2) For every closed segment ` of BS such that A ⊆ π1(`), we have that {n1, . . . , np} ⊆

π1(`).

Proof. 1) implies 2). Let ` = ((xq, yq), . . . , (xr, yr)) be a closed segment of BS such
that A ⊆ {xq, . . . , xr}. Then by Lemma 6, SPM(A) ⊆ S `. As SPM(A) = S , this
implies that S ⊆ S `. But then there are di ∈ {1, . . . , ni − 1} with ni

di
∈ [ xq

yq
, xr

yr
]. From

the way BS is constructed, this leads to (ni, di) ∈ ` for all i ∈ {1, . . . , p}.
2) implies 1). Clearly, SPM(A) ⊆ S . Assume that SPM(A) , S , and let n =

min(S \ SPM(A)). Then by the preceding lemma n ∈ {n1, . . . , np}. Hence, there
exists a proportionally modular numerical semigroup T with A ⊂ T and n < T . In
view of Lemma 5, there exist two rational numbers α and β with 1 < α < β and
T = S([α, β]). From Lemma 6, we deduce that if A = {ni1 , . . . , nik }, then for all
j ∈ {1, . . . , k}, there exists di j ∈ {1, . . . , ni j − 1} such that α ≤

ni j
di j
≤ β. Take ` =

((xq, yq), . . . , (xr, yr)) to be a closed segment of BS containing {(ni1 , di1), . . . , (nik , dik )}
and with xq

yq
, xr

yr
∈ {

ni1
di1
, . . . ,

nik
dik
}. Then A ⊆ π1(`) and from the hypothesis we

deduce that n ∈ π1(`). If γ = min{
ni1
di1
, . . . ,

nik
dik
} and δ = max{

ni1
di1
, . . . ,

nik
dik
}, then

n ∈ π1(`) ⊂ S([γ, δ]) ⊆ T , a contradiction. �

Example 36. Let S = 〈4, 6, 7, 9〉. The list BS is

((9, 8), (7, 6), (6, 5), (5, 4), (9, 7), (4, 3), (7, 5), (3, 2), (6, 4), (9, 6), (5, 3), (7, 4),
(9, 5), (2, 1), (4, 2), (6, 3), (9, 4), (7, 3), (5, 2), (3, 1), (6, 2), (9, 3), (7, 2), (4, 1),

(9, 2), (5, 1), (6, 1), (7, 1), (9, 1)).

Observe that A = {4, 6, 7} is such that for every closed segment ` of BS , if A ⊆
π1(`), then 9 ∈ π1(`). Thus SPM({4, 6, 7}) = 〈4, 6, 7, 9〉. Observe also that for
each proper subset A′ of {4, 6, 7} there exists a closed segment ` of BS such that
A′ ⊆ π1(`) but {4, 6, 7, 9} is not contained in π1(`). Thus {4, 6, 7} is aSPM-minimal
system of generators of S . �

7. A    

As we have seen, the method described above does not produce in general a
minimal decomposition of SPM(S ) in terms of proportionally modular numerical
semigroups. The concept of minimality can be thought in two different ways: the
first as a decomposition with the least possible number of factors, and the second,
as a decomposition in which no factor is redundant.

Let S be a numerical semigroup. Denote by P(S ) the set of all proportionally
modular numerical semigroups containing S . Every decomposition of a system
proportionally modular numerical semigroup S can be transformed into another in
which any factor belongs to Minimals⊆(P(S )).
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Proposition 37. Let S be a numerical semigroup. If SPM(S ) = S 1 ∩ · · · ∩ S n
with S 1, . . . , S n ∈ P(S ), then there exist S ′1, . . . , S

′
n ∈ Minimals⊆(P(S )) such that

SPM(S ) = S ′1 ∩ · · · ∩ S ′n.

Proof. For every i ∈ {1, . . . , n}, if S i is not minimal, then choose S ′i minimal with
S ′i ⊆ S i; otherwise set S i = S ′i . Clearly S ′1 ∩ · · · ∩ S ′n ⊆ S 1 ∩ · · · ∩ S n, and in view
of Lemma 2, SPM(S ) ⊆ S ′1 ∩ · · · ∩ S ′n, which concludes the proof. �

Recall that from Corollary 30,

Minimals⊆(P(S )) ⊆ {S ` | ` is a closed segment of BS }.

The trick to find a minimal decomposition relies in the following result.

Lemma 38. [4, Proposition 25] Let S be a numerical semigroup and let S 1, . . . , S n
be oversemigroups of S . The following conditions are equivalent.
1) S = S 1 ∩ · · · ∩ S n.
2) For all h ∈ EH(S ), there exists i ∈ {1, . . . , n} such that h < S i.

Let S be a numerical semigroup. We already know thatSPM(S ) = S `1∩· · ·∩S `r
for some closed segments `i of BS . For every i ∈ {1, . . . , r} set

Ci = {h ∈ EH(SPM(S )) | h < S `i}.

Then for {i1, . . . , in} ⊆ {1, . . . , r},

SPM(S ) = S `i1 ∩ · · · ∩ S `in
if and only if

Ci1 ∪ · · · ∪Cin = EH(SPM(S )).

Thus a minimal decomposition can be found by choosing {i1, . . . , in} minimal ful-
filling this condition, and if we are looking for a decomposition with the least
number of factors, then we must choose n minimal.

Example 39. Let S = 〈4, 6, 7〉. Then BS is

((9, 8), (7, 6), (6, 5), (9, 7), (4, 3), (7, 5), (6, 4), (9, 6), (7, 4), (9, 5), (4, 2),
(6, 3), (9, 4), (7, 3), (6, 2), (9, 3), (7, 2), (4, 1), (9, 2), (6, 1), (7, 1), (9, 1))

and BSPM(S ) is

((9, 8), (7, 6), (6, 5), (5, 4), (9, 7), (4, 3), (7, 5), (3, 2), (6, 4), (9, 6), (5, 3), (7, 4),
(9, 5), (2, 1), (4, 2), (6, 3), (9, 4), (7, 3), (5, 2), (3, 1), (6, 2), (9, 3), (7, 2), (4, 1),

(9, 2), (5, 1), (6, 1), (7, 1), (9, 1)).

EH(SPM(S )) = EH(〈4, 6, 7, 9〉) = {2, 3, 5}, whence C1 = {2, 3}, C2 = {2, 3} and
C3 = {2, 5}, which suffices to ensure that

SPM(S ) = S `1 ∩ S `3

is a minimal decomposition. �
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From the results we have obtained so far, we can also find the least possible
number of inequalities describing a system proportionally modular numerical semi-
group. We can also decide whether an inequality is or not redundant.

Observe that in the way a decomposition is obtained, in view of Lemma 5, it
is easy to find a system proportionally modular representation for the closure of a
numerical semigroup. Let S be a numerical semigroup, and let S `1 , . . . , S `r be the
proportionally modular numerical semigroups such that

SPM(S ) = S `1 ∩ · · · ∩ S `r
is a minimal decomposition, computed as shown above. For every i ∈ {1, . . . , r},
we know that S `i = S([

xqi
yqi
,

xri
yri

]). Set
• ai = xriyqi ,
• bi = xqi xri ,
• ci = xriyqi − xqiyri .

Then by Lemma 5, S `i is the set of integer solutions x of the inequality aix mod bi ≤

cix. Hence

SPM(S ) ≡


a1x mod b1 ≤ c1x,

. . .
ar x mod br ≤ cr x.

Example 40. Let us go back to S = 〈4, 6, 7〉. We already know that SPM(S ) =
〈4, 6, 7, 9〉 and that, for instance, SPM(S ) = S([4, 7]) ∩ S([3, 4]) is a minimal
decomposition. Hence SPM(S ) is the set of integer solutions of{

7x mod 28 ≤ 3x,
4x mod 12 ≤ x.

�

8. T’ 

Let M be a submonoid of N and let d be a positive integer. Then
M
d
= {n ∈ N | dn ∈ M}

is a submonoid of N, called the quotient of M by d. Proportionally modular nu-
merical semigroups can be characterized as those that are quotients of numerical
semigroups generated by arithmetic progressions [5, Theorem 16]. This character-
ization is sharpened in [8, Theorem 5], where it is shown that S is a proportionally
modular numerical semigroup if and only if S is the quotient of a numerical semi-
group with embedding dimension two, that is, there exist n1, n2 and d positive
integers such that S = 〈n1,n2〉

d and gcd({n1, n2}) = 1. Thus in view of Lemma 2 we
obtain the following result.

Proposition 41. Let S be a numerical semigroup. The following conditions are
equivalent.
1) S is a system proportionally modular numerical semigroup.
2) S is the intersection of finitely many quotients of numerical semigroups of em-

bedding dimension two.
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Let S be a numerical semigroup. According to [2], we say that S has a Toms’
decomposition if there exist q1, . . . , qn, m1, . . . ,mn and L such that
1) gcd({qi,mi}) = gcd({L, qi}) = gcd({L,mi}) = 1 for all i ∈ {1, . . . , n},
2) S = 1

L
⋂n

i=1〈qi,mi〉.
The importance of numerical semigroups with a Toms’ decomposition relies on

the following realization property.

Proposition 42. [9, Theorem 1.1] If S has a Toms’ decomposition, then there ex-
ists a simple, separable, amenable and unital C∗-algebra with ordered K0-group
isomorphic to Z with positive cone S .

Toms in his paper [9] wondered whether or not every numerical semigroup has
a Toms’ decomposition. Observe that

1
L

n⋂
i=1

〈qi,mi〉 =

n⋂
i=1

〈qi,mi〉

L

(this is easy to deduce and was already observed in [2, Lemma 2.2]). Hence from
Proposition 41 we deduce the following.

Corollary 43. Every numerical semigroup having a Toms’ decomposition is system
proportionally modular.

We have given in this paper numerical semigroups that are not system pro-
portionally modular, and thus the answer to Toms’ question is negative (actually
〈4, 6, 7〉 already appears in [5, Example 28]). In [2] several families of numerical
semigroups having Toms’ decomposition are given.

In [8] it is shown that if S is proportionally modular, then S = S([ a1
b1
, a2

b2
]) for

some positive integers a1, b1, a2, b2 with 1 < a1
b1
< a2

b2
and gcd({a1, a2}) = 1 (this

condition on the gcd is the main difference with Lemma 5). Moreover, a1, b1, a2, b2
can be derived from a representation of the semigroup as the set of solutions of the
inequality ax mod b ≤ cx. Theorem 5 in [8] then states that S = 〈a1,a2〉

d , with
d = a2b1−a1b2. In some sense, d measures the “size” of the interval [ a1

b1
, a2

b2
]. Thus

we could think in Toms’ decomposition, as a decomposition in which all intervals
are taken to have the same size.

Example 44. Observe that

〈4, 6, 7, 9〉 = 〈4, 5, 6, 7〉 ∩ 〈3, 4〉 = 〈4,7〉3 ∩
〈3,4〉

1
= 〈4, 5, 6, 7〉 ∩ 〈2, 7〉 = 〈4,7〉3 ∩

〈2,7〉
1

= 〈2, 7〉 ∩ 〈3, 4〉 = 〈2,7〉1 ∩
〈3,4〉

1

This last decomposition is a Toms’ decomposition.
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