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Abstract Natural hazards, such as big earthquakes, a↵ect the lives of thou-
sands of people at all levels. Extreme-value analysis is an area of statistical
analysis particularly concerned with the systematic study of extremes, pro-
viding an useful insight to fields where extreme values are probable to occur.
The characterization of the extreme seismic activity is a fundamental basis
for risk investigation and safety evaluation. Here we study large earthquakes
in the scope of the Extreme Value Theory. We focus on the tails of the seismic
moment distributions and we propose to estimate relevant parameters, like
the tail index and high order quantiles using the geometric-type estimators.

In this work we combine two approaches, namely an exploratory oriented
analysis and an inferential study. The validity of the assumptions required
are verified and both geometric-type and Hill estimators are applied for the
tail index and quantile estimation. A comparison between the estimators is
carried out and their application to the considered problem is illustrated and
discussed in the corresponding context.

1 Introduction

Earthquakes are present in everyday life of humanity worldwide. A severe
earthquake is one of the most frightening and destructive phenomena of na-
ture. Experiencing an earthquake is certainly the worst experiences anyone
can have. The lived moments are reported as full of panic, terror and death.
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For survivors, the terrible images remain in memory and become part of their
daily lives, as well as the constant fear within each based on the possibility of
a next big earthquake that can take lives and separate families forever. It is
estimated that there are about one million earthquakes per year, however, the
vast majority occur in the mid of oceans or in sparsely populated regions and
they pass relatively unnoticed by the population. There are annually about
20 earthquakes that cause significant damage and some deaths. On average,
only one catastrophic earthquake occurs per year and a highly catastrophic
every 5 years.

Since the phenomena that trigger it is still under study and that there
are uncontrollable forces of nature that dominate them, they are actually
considered unpredictable and mankind will have to learn to live with them.
Thus, the characterisation of the seismic activity is fundamental in order
to reduce the number of deaths and economic losses. This constitutes an
important challenge requiring a large multidisciplinary e↵ort. In this work
we will follow a stochastic approach, taking into account specific features
of big earthquakes. When we are dealing with extreme events, the classical
statistical models are inappropriate for the statistical modelling of earthquake
size. In standard data analysis, unusual observed values are often considered
outliers and ignored in the fitting of a statistical model. In this context, the
main interest of the study relies on the analysis of the tail of the distribution
that fits the data.

The Extreme Value Theory (EVT) is one field of statistics that has been
devised to study these extreme events using only a limited amount of data (see
e.g. Beirlant et al. (2004), and references therein). In the study of earthquakes,
the EVT is a relevant tool, providing important information, such as the
estimation of the probability of occurrence of a large earthquake over a long
period of time or high quantiles (see e.g. Pisarenko et al. (2010)).

In the present work we consider the seismic activity in Philippines and
Vanuatu Islands. The data sets are taken from the Harvard Seismic Catalog
and the tail behaviour of the distributions of large earthquakes seismic mo-
ments is characterised using techniques from EVT. To apply these methods
a preliminary data analysis is performed to investigate the validity of the
underlying usual assumptions. The geometric-type and the Hill estimator, as
well as its bias corrected versions, are considered for the estimation of the tail
index and are employed for the quantile estimation. A comparison between
the estimators is carried out and their performance is carefully discussed.

All the analysis is supported by graphical tools that show in a clear way
the features of the data that are regarded as most relevant to the study that
is addressed here.

The paper is organised as follows. Some important concepts and results
about EVT and earthquakes are briefly presented in Section 2. The investiga-
tion in order to verify the validity of the usual assumptions and the analysis
of the seismic moments are performed in Section 3. Some final comments



Modelling of extremal earthquakes 3

about the study, including an interpretation of the results in terms of the
frequencies of seismic moment exceedances, are provided in Section 4.

2 Essential notions of EVT and earthquakes

2.1 Extreme Value Theory

The Extreme Value Theory is a powerful and fairly robust framework to study
the tail behaviour of a distribution, since it encompasses a set of probabilistic
results that allow characterizing and modelling the extreme values behaviour.
In this way, the EVT is very useful to make statistical inferences about rare
events in several areas of knowledge (e.g. meteorology, hydrology, insurance,
environment, etc) and its use may enable the implementation of appropriate
prevention procedures.

More concretely, through this theory the extreme values may be modeled
using the limiting distribution of the maxima of the random variables or of
its excesses over a threshold. Thus, the statistical basis for applications of
EVT is constituted by the following two main limit theorems.

Theorem 1 (Fisher-Tippett-Gnedenko theorem). Let X
1

, X
2

, . . . , X
n

be independent and identically distributed (i.i.d.) random variables (r.v.) with

distribution function (d.f.) F and M
n

= max(X
1

, X
2

, . . . , X
n

) denote the

maximum of the n observations. If a sequence of real numbers a
n

> 0 and b
n

exists such that

lim
n!1

P

✓
M

n

� b
n

a
n

 x

◆
= lim

n!1
Fn (a

n

x+ b
n

) = G (x) ,

then if G is a non degenerate d.f., it belongs to one of the following types

Type I (Gumbel) : ⇤ (x) = exp{�exp (�x)}, x 2 R;

Type II (Fréchet) : �
↵

(x) =

⇢
0, x  0,
exp

�
�x�1/�

�
, x > 0;

Type III (Weibull) :  
↵

(x) =

⇢
exp{� (�x)1/�}, x > 0,
1, x � 0;

for all continuity points of G.

In the conditions of the theorem is said that F belongs to the domain of
attraction of G

�
F 2 DA(G)

�
.

These three types of distributions may be combined into the single d.f.
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G
�

(x) =

(
exp

⇣
� (1 + �x)�1/�

⌘
, for 1 + �x > 0, � 6= 0,

exp (�exp (�x)) , for x 2 R, � = 0,

where � is the shape parameter, known as tail index, determining the weight
of the right tail of the underlying d.f. F . This distribution is known as the
Generalized Extreme Value (GEV) distribution.

Theorem 2 (Pickands-Balkema-de Haan theorem). Let X
1

, X
2

, . . . , X
n

be a sample of n i.i.d. r.v. with d.f. F , xF

the right endpoint of F and

F
X�u|X>u

(x) = P {X � u  x | X > u} the excess d.f. over a (high) thresh-

old u. Then,

F 2 DA(G
�

) i↵ lim
u!x

F
sup

0x<x

F�u

��F
X�u|X>u

(x)�H
�,�u

(x)
�� = 0,

where H
�,�u(x) represents the Generalised Pareto Distribution, given by:

H
�,�u(x) =

(
1�

�
1 + � x�u

�u

��1/�

, for 1 + � x�u

�u
> 0, � 6= 0,

1� exp(�x�u

�u
), for x � u, � = 0,

where �, u, �
u

> 0 are the shape, location, and scale parameter depending on

threshold u, respectively.

Similarly with GEV, using another parameterization, the GPD is sepa-
rated into three families depending on the value of the shape parameter:

• Type I (Exponential): H(x) = 1� exp(�x), if � = 0,

• Type II (Pareto): H(x) = 1� x�1/� , if � > 0,

• Type III (Beta): H(x) = 1� (�x)�1/� , if � < 0.

These two theorems state that, under their conditions, the limit distribu-
tion of the normalised maximum is the GEV distribution and that the limit
of any excess function is the GPD. Hence, they are fundamental to make
possible the real-world applications.

In order to perform a correct inference about extreme events from the
accessible data, it is necessary to properly select the extreme observations
following some criterion. There are two primary methods to define such ex-
treme observations which arise from the two main results of the classical
EVT: the Block Maxima method, also known as Gumbel’s approach, and the
Peaks Over Threshold method.

The Block Maxima (BM) method consists in dividing the data in equal size
blocks with a previous determined amplitude and the maximum observation
of each block is collected; the interest lies in the asymptotic study of maxima.
In the Peaks Over Threshold (POT) method one selects the observations that
exceed a certain high threshold; the interest lies in the asymptotic behaviour
of the excesses over a high threshold.
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Accordingly with the data set under study, one must deal with these ap-
proaches being aware that both methods have disadvantages. One major
drawback of the BM method is that only one observation in a block is used
to make an inference about the limiting distribution of the maximum, result-
ing in a small final sample size. On other hand, this method is more robust
in respect to the eventual dependence among the observations.

Since our interest is centered in the frequencies of exceedances of certain
critical values, here we adopt the POT approach that picks up all relevant
high observations and seems to make better use of the available information.

In modelling the extreme value distribution, the main issue to be solved
is the parameter estimation. The shape parameter � is of great interest in
the analysis of the tails, since it dominates the behaviour of extremes. This
parameter indicates the heaviness of the tail, since the tail function becomes
more heavy as � increases. It also plays a crucial role in the estimation of
other extreme events’ parameters, namely in high quantiles estimation. In
practice, the tail index is associated to the frequency with which extreme
events occur and the high order quantiles are levels that are exceeded with
a small probability. The adequate estimation of these quantities is the most
important problem.

We assume that X
1

, X
2

, . . . , X
n

is a sample of i.i.d. r.v. with d.f. F and
denote by X

(1,n)

 X
(2,n)

 · · ·  X
(n,n)

the corresponding order statistics
(o.s.). The estimation of � is based on the k top o.s., where k = k

n

is an
intermediate sequence of positive integers (1  k < n), that is,

k ! 1,
k

n
! 0 as n ! 1. (1)

Several estimators have been proposed for the estimation of � (see e.g.
Hill (1975), Pickands (1975), Csörgő et al. (1985), Dekkers et al. (1989)).
Here we consider the following estimator for � > 0, the geometric-type (GT)
estimator

dGT (k) =

vuuuut
M (2)

n

�
h
M (1)

n

i
2

1

k

P
k

i=1

log2(n/i)�
⇣

1

k

P
k

i=1

log(n/i)
⌘
2

(2)

where

M (j)

n

(k) =
1

k

kX

i=1

�
logX

(n�i+1,n)

� logX
(n�k,n)

�
j

. (3)

We also consider the commonly used Hill estimator (see Hill (1975)) defined
by

bH (k) =
1

k

kX

i=1

log X
(n�i+1,n)

� log X
(n�k,n)

. (4)
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The asymptotic properties of these aforementioned estimators were inves-
tigated and, under certain conditions, they share some common desirable
properties, such as consistency and asymptotic normality (cf. Brito and Fre-
itas (2003), Deheuvels et al. (1988) and Haeusler and Teugels (1985)).

The problem of estimating high order quantiles has received increased
attention as a useful tool in data modelling and it has been utilized in a wide
variety of problems in many di↵erent scientific areas. This field addresses
interesting questions such as the size of some extreme event that will only
occur with a given small probability or the expected time until the realization
of an extreme event.

The classical quantile estimator was proposed by Weissman (1978),

b�W

1�p
= X

(n�k,n)

✓
k

np

◆b�

,

where b� is a consistent estimator of �.
Using general quantile techniques and the POT methodology, the well

known POT estimator for high quantiles above the threshold X
(n�k,n)

arises
naturally and is given by

b�P

1�p
=

⇣
k

np

⌘b�
� 1

b� ·X
(n�k,n)

M (1)

n

+X
(n�k,n)

, p <
k

n
, (5)

where b�, X
(n�k,n)

M (1)

n

and u = X
(n�k,n)

are, respectively, suitable estima-
tors of the shape, scale and location parameters of the Generalised Pareto
Distribution.

In the present work both thedGT (k) and bH (k) are used to estimate �. The

high quantiles are estimated considering (5) and using dGT (k) and bH (k) as
estimators of �. The asymptotic behaviour of these quantile estimators was
studied and their asymptotic normality was proved (cf. Brito et al. (2014),
Dekkers et al. (1989) and de Haan and Rootzén (1993)).

The problem of reducing the bias of these tail index estimators was ad-
dressed in Brito et al. (2014), where were proposed the following two asymp-
totic equivalent geometric-type bias corrected estimators

dGT (k) =dGT (k)

 
1�

�
�
n

k

�
⇢

(1� ⇢)2

!
,

and

dGT (k) =dGT (k) exp

(
� �

(1� ⇢)2

⇣n
k

⌘
⇢

)
.

Hill bias corrected estimators may be found in Caeiro et al. (2005), namely
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bH (k) = bH (k)

 
1�

�
�
n

k

�
⇢

1� ⇢

!

and
bH (k) = bH (k) exp

⇢
� �

1� ⇢

⇣n
k

⌘
⇢

�
,

where ⇢ and � are the shape and scale parameters.
Here, in order to get bias corrected high quantiles estimators, we also

consider the form (5) based on the above bias corrected estimators.
The accurate estimation of the tail index is very important also because

of its great influence on the estimation of other relevant parameters of rare
events, such as the right endpoint of the underlying d.f. F . Since the impact
of this influence can be considerable, the appropriate estimation of � is fun-
damental in obtaining a suitable quantile estimator with a good performance.

2.2 Earthquakes

In general, everything in nature tends to the equilibrium. Due to the thermo-
dynamic equilibrium, the constituents of the Earth’s interior are in constant
motion. Boosted by this movement that causes friction with its bottom, the
tectonic plates move and interchange slowly, thereby contributing to the con-
stant evolution of the terrestrial relief.

The earthquakes mainly arise due to forces within the earth’s crust tending
to displace one mass of rock relative to another. Each time the plates interact
with each other, a large amount of energy is accumulated in its rocks. When
its elasticity limit is reached, they will fracture and instantly release all the
energy that had been accumulated during the elastic deformation causing
vibrations, called seismic waves, which travel outwards in all directions from
the fault and give rise to violent motions at the earth’s surface, unleashing
an earthquake.

So, the earthquakes are natural shocks, in which the ground quake strongly
in the matter of seconds to minutes, that occur as a result of this sudden re-
lease of a huge amount of that energy slowly-accumulated over many years.
If the earthquake is large enough, the seismic waves are recorded on seismo-
graphs around the world and can cause the ground to quake strongly.

Earthquakes do not occur at random but are distributed according to a
well-defined pattern. About 90% of earthquake activity is associated with
plate-boundary processes, so the global seismicity patterns reveals a strong
correlation between plate boundaries and the presence of intercontinental
fault zones, indicating that earthquakes often occur at tectonic plate bound-
aries. We can say, without committing a gross error, that the alignments of
earthquakes indicate the boundaries of tectonic plates.
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After the initial fracture, a number of secondary ruptures corresponding to
the progressive adjustment of fractured rocks may occur, causing successive
lower intensity earthquakes called aftershocks. If these vibrations occur at
the sea floor they can produce a long and smooth waving that in shallow
water becomes authentic water columns known as tidal waves or tsunamis.

Therefore, earthquakes, such as volcanoes, represent the more energetic
and rapid manifestations of the planet’s internal dynamics.

The scientific analysis of earthquakes requires measurement. The size of
an earthquake can be measured in several ways. The early methods used a
kind of numerical scale based on a synthesis of observed e↵ects, called the
intensity scales. Some attempts to relate intensity to the amplitude of ground
motion led to a quantity called magnitude, based on the records of ground
amplitudes normalised for their variation with distance from the earthquake
epicenter. However, the known magnitudes present a saturation point which
does not allow a correct estimation of the true earthquake size of larger earth-
quakes, underestimating it. Moreover, it turns out that larger earthquakes,
which have larger rupture surfaces, systematically radiate more long-period
energy. Nowadays, the measure that is preferably adopted for scientific stud-
ies is the seismic moment of the displaced ground (see e.g. Howell (1990)
and Day (2002)). This measure avoids the saturation problem, since it does
not have an intrinsic upper bound, and describes the size of an earthquake
as a essential combination of physical quantities that really matters at the
earthquake source and that determines how strong the seismic motions will
be.

The seismic moment, M , provides more accurate measures of the energy
released from an earthquake taking into account the rock properties, such as
its rigidity, µ, the area of the fault plane that actually moves, A, and the
amount of movement on the fault, D, combining these three factors in the
following form

M = µAD.

Because many people do not really know what means a number with the
“size” of seismic moment and since the magnitude scale has been used for
a very long time, the need to convert it into some kind of magnitude scale
emerged. These factors have led to the definition of a new magnitude scale,
the moment magnitude, m

w

, based on seismic moment

m
w

=
2

3
(logM � 16.1) , (6)

where M is in units of dyne-cm.
The seismic moment, based on classical mechanics, provides in this way a

uniform scale of earthquake size and is considered the most consistent mea-
sure for accurate quantification of the energy released from an earthquake.
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3 Extreme value modelling of earthquake data

In this section we concentrate on the entire route one need to travel from the
raising of the data to our ultimate goal of modeling the tail of the distribution
of earthquakes seismic moments. In order to do this we begin by explaining
the entire procedure which was necessary to make it possible to apply the
POT approach to the data considered in the study. More specifically, we first
describe the data and perform a preliminary exploratory data analysis in
which we discuss the type of distribution to which the data belongs, as well
as we investigate the stationarity and independence of the data, and then
we proceed to the estimation of the tail parameters of the seismic moment
distribution.

3.1 Description of the earthquake data

We consider the earthquake data obtained from the Harvard Seismic Cata-
log, available at Global Centroid-Moment-Tensor (CMT) web page (cf. e.g.
Dziewonski et al. (1981) and Ekström et al. (2012)). Here, we restrict the
territory of our study to earthquakes occurring within the Philippines and
Vanuatu Islands, and the analysis was performed in a similar way for the
both regions. In particular, we extract and analyse the information about
their seismic moments covering the period 01.01.1976 - 31.12.2010. The orig-
inal data-sets contain 1255 events for Philippines Islands and 1012 events for
Vanuatu Islands. However, in order to apply the POT method we selected
an adequate and large enough level u = 1024 dyne-cm, that corresponds
to a moment magnitude m

w

⇡ 5.27, the same value considered in related
works such as in Pisarenko and Sornette (2003). The observations under this
threshold were removed. Since we detect a failure in data acquisition of the
Vanuatu Islands until 01-01-1980, we just consider the Vanuatu Islands data
subsequent to this date. So the final data sets, on which the analysis that
follows has been based, consider 821 cases for Philippines Islands and 647
cases for Vanuatu Islands. We did not exclude the aftershocks because apart
from owning a greatly reduced fraction on the range of seismic moments con-
sidered, their removal may introduce a bias in the parameters estimation (cf.
e.g. Pisarenko and Sornette (2003)). As the considered region has a lot of
deep earthquakes, they also were not excluded. Thus, after the space, time
and seismic moment has been selected, no further elimination of events is
performed. In Fig. 1 the seismic moments of Philippines and Vanuatu Islands
over the above mentioned period are plotted.
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Fig. 1 Seismic moments of Philippines (left) and Vanuatu (right) Islands.

3.2 Preliminary data analysis

Before proceeding it would be useful to discuss if the Pareto-type model
provide a plausible fit to the seismic moment distributions of the data under
study. This can be achieved graphically through quantile-quantile (QQ) plots,
which constitute a very informative and powerful tool to graphically evaluate
how close two distributions are from each other, using for it their quantiles.
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Fig. 2 Pareto QQ plot for Philippines (left) and Vanuatu (right) Islands seismic moment
data.
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Usually, as in this case, the most convenient comparison is between the
empirical quantiles of the sample and the quantiles of the theoretical distri-
bution intended. If the sample data and the reference distribution are derived
from populations with a common distribution, the QQ plot should show a
strong linear trend. So, the type of the distribution can be derived by looking
for the QQ plot.

Since we believe that our data are heavy tailed, we present the Pareto QQ
plots of our data sets in Fig. 2.

Given that Y
D

= logX, where X and Y are Pareto and Exponential dis-
tributed r.v., respectively, then the usual Pareto QQ plots are Exponential
QQ plots of the log-transformed data.

In the resultant scatterplot a linear pattern is evident, which is indicative
of the good agreement between observed values and the values predicted by
the model. We carefully analyse the behaviour of the QQ plot on its upper
right part, which represents the most extreme values and, although slightly
less than in the remaining part of the plot, a linear tail behaviour is made
apparent. The visual impressions based on the Pareto QQ plots suggests
that the Vanuatu and Philippines Islands earthquake data sets do seem to
follow a Pareto distribution, ie, we are dealing with a heavy-tailed underlying
distribution (� > 0).
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Fig. 3 Cumulative number of earthquakes normalised by the total number in the period
considered as a function of time, for seismicity of Philippines (left) and Vanuatu (right)
Islands with M � 1024.

We investigate the stationarity of the data under study. Here we refer to
strict stationarity, that is, the underlying joint distribution does not depend
on time. This is a very convenient property, in particular the statistical pa-
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rameters do not change over time. To analyse the stationarity we plot the
normalised cumulative number of earthquakes versus time.

The linear behaviour that we can observe in Fig. 3 is an indication of the
stationary behaviour of the two data sets over the selected time window, thus
the data is approximately homogeneous in time and assumed as stationary.

Another relevant property that we are interested to verify before proceed-
ing with the extreme value analysis of the data is the independence, since
most of the results in EVT require it as assumption.

In our case, the goal is to analyse the existence of dependence between
consecutive seismic moments, ie, verify how the seismic moment of one event,
M

i�1

, influences the seismic moment of the next, M
i

.
Here we investigate this statistical dependence through the conditional

probability density determined by

P (⌘  M
i

< ⌘ +�
⌘

| M
i�1

� M 0
c

)

�
⌘

,

where M 0
c

is the threshold considered on the previous magnitude when this
condition is imposed. Here we denote the initial threshold, u, as M

c

, and the
condition M � M

c

is always satisfied (see e.g. Corral (2006)).
The conditional probability density of a seismic moment is then defined as

the probability of the seismic moments are within a small interval of values,
divided by the length of the small interval, �

⌘

, tending to zero, considering
only the cases in which the seismic moment of the immediately previous event
is bigger than a threshold M 0

c

.

The dependences will be given by the distribution described above. If
the conditional distribution of M

i

given that M
i�1

� M 0
c

is identical to
the unconditional distribution, then the seismic moment M

i

is statistically
independent of an event M

i�1

� M 0
c

. Note that the case M
c

= M 0
c

gives the
unconditioned distribution.

We observe in Fig. 4 that, in general, the di↵erent densities using di↵erent
thresholds M 0

c

share the same properties, which suggest the independence of
seismic moments M

i

with their history. The small oscillations between the
densities may be caused by the errors associated to the finite sample and the
dependence that arises from this is apparently weak enough to lead to major
di↵erences in the distributions.
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Fig. 4 Conditional probability densities of earthquake seismic moments, for seismicity of
Philippines (left) and Vanuatu (right) Islands, evaluated using di↵erent thresholds M 0

c and
with a constant Mc = 1024 (�⌘ = 1025).

3.3 Estimation of tail parameters

In this section we formalise our main objective of investigating the extremal
behaviour of the large earthquakes and how the proposed estimators behave
with this type of data.

Then, we discuss the estimation of the tail parameters through the POT
approach. The GT and the Hill estimators are considered for the estimation of
the tail index and are employed on POT estimator for the quantile estimation.

Some graphical plots illustrate the tail parameters of large earthquake
data, as a function of k.

We can easily note that the bias dominant components of the bias cor-
rected estimators presented are dependent of the shape ⇢ and scale � second
order parameters. To illustrate the behaviour of the corrected estimators we
consider the suitable estimators of the parameter ⇢ proposed by Fraga Alves
et al. (2003)

b⇢(⌧)
n

(k) = �

������

3
⇣
T (⌧)

n

(k)� 1
⌘

T (⌧)

n

(k)� 3

������
, (7)

where
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as in (3), and the � estimator obtained in Gomes and Martins (2002)
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where

U
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= i

✓
log
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(n�i+1,n)

X
(n�i,n)

◆
,

with 1  i  k < n.
It is known that the external estimation of ⇢ and � at a larger k value

than the one used for �-estimation has clear advantages, allowing the bias
reduction without increasing the asymptotic variance (see e.g. Caeiro et al.
(2005)). In the lines of other studies, and among some suggestions (see e.g.
Gomes et al. (2007)), the level that seemed to be the most appropriate to
consider in illustrations is

k
h

=
⌅
n1�✏

⇧
, for some ✏ > 0 small, (9)

where bxc denotes the integer part of x.
We remark that the class of estimators of ⇢ presented above, and conse-

quently also the � estimators, is dependent on a tuning parameter ⌧ � 0.
Then, firstly we need to choose the tuning parameter ⌧ , in which we will
support the estimation of the second order parameters ⇢ and �.

For this we use consider in (9) ✏ = 0.005 and ✏ = 0.001, ie, we use the
following k

h

levels:

k
h1

=
⌅
n0.995

⇧
and k

h2

=
⌅
n0.999

⇧
. (10)

As usual, the means whereby we do this choice passes by portraying the
sample paths of b⇢

⌧

(k) in (7) for the values ⌧ 2 {0, 0.5, 1}, as functions of k,
in order to analyse the variations that it causes in their behaviour, and use
the following algorithm as a stability criterion for large values of k:

1. Consider b⇢
⌧

(k), ⌧ 2 {0, 0.5, 1}, for the integer values k 2 (
⌅
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,
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)

and compute their median, denoted by �
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;
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⌧

P
k
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)2;
3. Compute the ⇢ estimates b⇢
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) and b⇢
⌧

⇤(k
h2

), and the � estimates
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⇢⌧⇤ (kh1)

(k
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) and b�
⇢⌧⇤ (kh2)

(k
h2

), with k
h1

and k
h2

given by (10).
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The Figs. 5 and 6 show the sample paths of the second order parameter
estimators, b⇢ and b�, based on the Philippines and Vanuatu seismic moment
observations, respectively.
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Fig. 5 Estimates of the second order parameters ⇢ (left) and � (right) for seismicity of
Philippines Islands.
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Fig. 6 Estimates of the second order parameters ⇢ (left) and � (right) for seismicity of
Vanuatu Islands.
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We might see that the sample paths of b⇢ for the three di↵erent values of ⌧
have a very similar behaviour. It is however apparent that the behaviour of
b⇢ is slightly better when considering ⌧ = 0, specially for data concerning the
Vanuatu Islands. As the above described algorithm also points to the choice
of ⌧ = 0 in both cases, we chose this value of ⌧ to estimate ⇢.

Thus, for Philippines Islands, we have k
h1

=
⌅
8210.995

⇧
= 793 and

k
h2

=
⌅
8210.999

⇧
= 815, that is, the corresponding estimates of ⇢ are

b⇢
0

(793) ⇡ �0.25 and b⇢
0

(815) ⇡ �0.32 and the corresponding estimates of

� are b�b⇢0(793)
(793) ⇡ 0.19 and b�b⇢0(815)

(815) ⇡ 0.15, being both represented
graphically through straight lines. Doing the same procedure to Vanuatu Is-
lands, we have k

h1

=
⌅
6470.995

⇧
= 626 and k

h2

=
⌅
6470.999

⇧
= 642, that

is, the corresponding estimates of ⇢ are b⇢
0

(626) ⇡ �0.20 and b⇢
0

(642) ⇡
�0.25 and the corresponding estimates of � are b�b⇢0(626)

(626) ⇡ 0.51 and
b�b⇢0(642)

(642) ⇡ 0.44.

Since from the b� sample paths it is not readily apparent significant di↵er-
ences between the use of k

h1

or k
h2

and due to the fact that the tail index
estimation is more a↵ected by the ⇢ fluctuations than the � ones, we use the
both levels in the remaining study.

Moreover, here we also present a possible optimal level k
0

of top observa-
tions to consider when the geometric-type estimator is used to estimate �,
through the minimisation of the asymptotic mean square error (AMSE) of
the geometric-type estimator. Considering the following distributional repre-
sentation of the geometric-type estimator (see Brito et al. (2014), Theorem
2.2.)
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Although this is not the optimal value for the bias corrected estimators,
the value of the tail index and quantiles calculated with the geometric-type
estimator at the k

dGT

0

level is represented in some illustrations for comparison.

GT H

k

E
st
im
at
es

  o
f  
γ

0 100 200 300 400 500 600 700 800

0.9

1.1

1.3

1.5

1.7

k

E
st
im
at
es

  o
f  
γ

0 100 200 300 400 500 600

0.9

1.1

1.3

1.5

1.7

Fig. 7 Plot for the GT estimator, dGT , and for the Hill estimator, bH, of �, for seismicity
of Philippines (left) and Vanuatu (right) Islands.

As a first step we estimate the tail index, �, using GT estimator and Hill’s
estimator.

Concerning the shape parameter �, the Fig. 7 displays the estimated values
of GT and Hill estimators, as a function of k, for Philippines and Vanuatu
Islands data. As one can observe, for Philippines Islands data both estimators
give similar results stabilising around the same value of �, which is 1.6, with
basically the same scatter for moderate and high values of k, although it is
worth to give emphasis to the smoothness that the geometric-type estimator
shows.

For the Vanuatu Islands data, though not so explicit as to the Philippines
data, the behaviour of GT tends to stabilise around the value of 1.64 as k
increases. The same is true for the Hill estimator around the value of 1.78,
although in a slightly more erratic way.

The GT estimator presents the best performance specially for Philippines
Islands data, displaying almost a straight line around 1.58 for k-values larger
than 300.

In Fig. 8 it is possible to compare the behaviour of the GT estimator with

its corrected versions, dGT and dGT . We note that the corrected estimators
maintain the good behaviour, having less variation in the initial values of
k, and stabilising at slightly lower values than the uncorrected estimator.
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Fig. 8 Plot for the GT estimator, dGT , and for the corresponding GT bias corrected

estimators, dGT and dGT , of �, for seismicity of Philippines (left) and Vanuatu (right)
Islands.

GT(ρ(kh1), β(kh1))
GT(ρ(kh1), β(kh1))

GT(ρ(kh2), β(kh2))
GT(ρ(kh2), β(kh2))

H(ρ(kh1), β(kh1))
H(ρ(kh1), β(kh1))

H(ρ(kh2), β(kh2))
H(ρ(kh2), β(kh2))

k

E
st
im
at
es

 o
f  
γ

GT(k0(ρ(kh1), β(kh1))) = 1.58

GT(k0(ρ(kh2), β(kh2))) = 1.58

0 100 200 300 400 500 600 700 800

0.9

1.1

1.3

1.5

1.7

k

E
st
im
at
es

 o
f  
γ

GT(k0(ρ(kh1), β(kh1))) = 1.17

GT(k0(ρ(kh2), β(kh2))) = 1.25

0 100 200 300 400 500 600

0.9

1.1

1.3

1.5

1.7

Fig. 9 Plot for the GT bias corrected estimators, dGT and dGT , and for the Hill ones, bH
and bH, of �, for seismicity of Philippines (left) and Vanuatu (right) Islands.

Depending on the unknown value of the tail index parameter, that we seek,
this type of behaviour seems to be indicative of a better performance of the
corrected estimators. Particularly for Vanuatu Islands data, this improvement
seems to be evident since the corrected estimators begin to stabilise sooner
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than the non corrected ones, showing a very satisfactory behaviour, right
from the initial values of k.

In order to make the comparison between the bias corrected GT estimators
and the Hill ones, we draw the sample paths of one against the other.

We might see from Fig. 9 that the estimates provided by the corrected
Hill estimators are around the same values of the estimates given by the
corrected GT estimators. However, it is quite clear that the Hill estimators
hold a rather irregular behaviour compared to the GT estimators, specially
for smaller values of k.
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Fig. 10 Plot for the 99-quantile estimators based on the GT estimator, b� dGT , and on

the Hill estimator, b�cH , of �0.99, for seismicity of Philippines (left) and Vanuatu (right)
Islands (empirical quantiles �0.99 = 9.29 ⇥ 1026 and �0.99 = 7.37 ⇥ 1026, for Philippines
and Vanuatu Islands, respectively).

It is suggestive that the value of � that best describes the seismic moment
of the Philippines Islands is a little below 1.5 and of the Vanuatu Islands is
slightly above 1.

As in most of the applications, the main interest lays not on the tail in-
dex but in the quantiles of the extreme distributions, which are more stable
and robust. Now we analyse the sample paths of the quantiles estimators.
We estimate the values of POT high quantiles estimator, in (5), based on
the GT and Hill estimators, as a function of k, for Philippines and Vanuatu
Islands data, considering the percentile 99%. Each tail index estimator leads
to a di↵erent estimation of large quantiles, which is, also, dependent on k.
The straight dashed line represents the estimate of the empirical 99% quan-
tile. When more than one straight line are present, the empirical quantile is
represented by the inferior one.
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We might see from Fig. 10 that, for the Philippines Islands, both estimates
do not present values close to the empirical quantile. For values of k larger
than 300, the estimates tend to stabilise, being apparent that this stabilisation
process is significantly more regular for the GT based quantiles estimator. The
uneven performance that the Hill quantile plot shows, make it extremely hard
to decide upon a specific value for k. For the Vanuatu Islands the behaviour
of both estimators is not the best, but the Hill based quantiles estimator
presents a much more irregular behaviour.
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Fig. 11 Plot for the 99-quantile estimators based on the GT estimator, b� dGT , and on

the corresponding geometric-type bias corrected estimators, b� dGT and b� dGT , of �0.99, for
seismicity of Philippines (left) and Vanuatu (right) Islands (empirical quantiles �0.99 =
9.29⇥ 1026 and �0.99 = 7.37⇥ 1026, for Philippines and Vanuatu Islands, respectively).

Now comparing the GT based quantiles estimator with its corrected ver-
sions, we can observe in Fig. 11 that the improvement caused by the correction
is quite remarkable. It is also to be noted that considering the k

h2

level to
estimate the second order parameters, the performance seems to be a little
better. Also in Fig. 11, and for Philippines Islands data, it can be seen that
the quantile value calculated using the geometric-type estimator at its opti-
mal levels k

dGT

0

, represented by the superior straight lines, almost coincides
with the value of the quantiles estimator based on the geometric-type estima-
tion for k-values larger than 200, which highlights the fairly stable behaviour
of this quantiles estimator in this range of values.

In Fig. 12 we can observe that the bias corrected Hill quantiles estima-
tors present estimate values very similar to the ones presented by the bias
corrected GT quantiles estimators. Although the corrected Hill quantiles es-
timators using the k

h2

level to compute the second order parameters seem
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to have values more close to the empirical quantile than the corresponding
corrected GT quantiles estimators, in case of Philippines Islands only for k-
values greater that 300, their erratic and much less stable behaviour may be
a factor of considerable disadvantage.
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Fig. 12 Plot for the 99-quantile estimators based on the geometric-type bias corrected

estimators, b� dGT and b� dGT , and on the Hill bias corrected estimators, b�cH and b�cH , of �0.99,
for seismicity of Philippines (left) and Vanuatu (right) Islands (empirical quantiles �0.99 =
9.29⇥ 1026 and �0.99 = 7.37⇥ 1026, for Philippines and Vanuatu Islands, respectively).

4 Final considerations

In this study we consider the seismic moments of the Philippines and Vanuatu
Islands larger than the level 1024 recorded during 35 years. We begin by
analysing the data in order to investigate the presence of heavy tails, the
stationarity and the independence of the observations. In this way, we verify
that the exceedances can be modeled by heavy tailed distributions. We use
the geometric-type estimator and its bias corrected versions for estimating
the tail index and high quantiles. For the sake of comparison we also consider
the corresponding Hill estimators.

The geometric-type estimator shows a better performance when compared
to the Hill estimator, namely it is worth to emphasise the contrast between
the smoothed behavior of the geometric-type estimator and the irregular
behavior exhibited by the Hill estimator.
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It is well known that the considerable bias that appears in several esti-
mators reveals a di�cult problem to go beyond the applications. In order
to deal with this problem we also study and apply corrected versions of the
geometric-type estimator. As expected, its performance is improved. We may
emphasise that in some situations the Hill bias corrected estimators present
an erratic and less stable behaviour. This is a real disadvantage for example
in choosing a specific value for k.

In general, it is possible to conclude that the smoother behaviour is a com-
mon quality shared by the estimates obtained for the GT tail index estima-
tors as by GT based quantiles estimates, which show a very small variability,
reflecting the more regular behaviour of the GT estimators.

Regarding the case of Philippines Islands and when considering the geometric-
type estimator, we obtain an estimate for the seismic moment 0.99-quantile
of 1.51⇥1027. In a more practical way, we may say that it is expected that one
out of a hundred earthquakes has a seismic moment larger than 1.51⇥ 1027.
Since, in average, there are 23.43 earthquakes per year, we may say that an
earthquake exceeding a seismic moment of 1.51⇥ 1027 is expected to happen
in Philippines Islands once in every 4.35 years. Moreover, we also may con-
clude that the probability of occurring an earthquake with seismic moment
larger than 1.51⇥ 1027 next year is approximately 1� 0.9923.43, that is, 21%.

As one knows, the performance of the estimators depends on the distri-
bution of the data and there is not a uniformly best estimator. Nevertheless,
from the results of the practical example conducted here, one could say that,
for this type of data, the GT estimator turns out to be the best choice for
tail index estimator and when used in the POT estimator for high quantiles.

On the whole, the application of the EVT to the problem under study
seems quite promising since it provides reasonable estimates of the tails of
the seismic moment distribution.
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