
TOTALLY SYNCHRONIZING MONOTONIC GRAPHS
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Abstract. In this paper, we solve the problem of synchronizing acyclic and

aperiodic digraphs as well as those for which the resulting automata preserve
some order in the vertex set. We also find minimum rank words for the same

classes of graphs.

1. Introduction

Forty five years ago, Černý [24] presented a family of synchronizing automata
with n states whose shortest reset words have size (n−1)2 and conjectured that for
every automaton with n states, if there is a synchronizing word, then there is one
with at most (n−1)2 letters. Several advances have been made towards the proof of
this conjecture [2, 3, 5–9, 12, 13, 16–23, 25, 26], but the general case remains open.
The best known upper bound is (n3 − n)/6, due to Pin [15], using a combinatorial
result from Frankl [10].

The following generalization of Černý’s conjecture was suggested by Pin [14]:
if for a given automaton with n states there is a word of rank r, then there is
such a word of size at most (n − r)2. However, Kari [11] gave a counterexample
to this conjecture. A reformulated version of Pin’s conjecture, which states that
every automaton with n states and minimal rank r has a word of rank r of size at
most (n − r)2, still remains open. This is known as the Rank conjecture, or the
Černý-Pin conjecture, and Černý’s conjecture is the case where r = 1.

In 2008, at the School on Algebraic Theory of Automata in Lisbon, Mikhail
V. Volkov suggested several problems related to the conjectures mentioned above.
Among those problems were the questions of characterizing totally synchronizing
digraphs, that is, such that every automaton obtained from them by suitably label-
ing the edges is synchronizing, and finding universal reset words for such graphs.
Relating this to the Černý-Pin conjecture, one obtains the rank problem for di-
graphs, that is, the problem of computing shortest minimal rank words for such
graphs.

Following the definition of monotonic automata from [4], we solve the rank prob-
lem for monotonic graphs. We also present a solution of that problem for gener-
alized monotonic graphs and aperiodic graphs, corresponding to the definitions of
generalized monotonic automata [5] and aperiodic automata [23], respectively, by
showing that those classes of graphs are equal to the class of acyclic digraphs.

2. Definitions

For a digraph G with n vertices and constant outdegree k, we assume that k is
never greater than n, because in that case every vertex in G would have at least
k − n pairs of outgoing edges with the same end point, hence, we would be able
to delete k − n outgoing edges for each vertex in G and obtain a graph with the
same relevant properties and constant outdegree equal to n. Actually, we assume
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the outdegree of a graph to be the number of distinct outgoing edges in a vertex
for which that number is maximum.

Given a finite digraph G with constant outdegree k and an alphabet Σ with k
letters, we say that a labeling of the edges in G using the letters from Σ is suitable,
if it turns G into a deterministic finite automaton (without sets of initial and final
states) G = (S,Σ, δ), where S is the set of vertices of G (set of states of G) and
δ : S×Σ→ S is the transition function that to (s, x) ∈ S×Σ associates the ingoing
vertex of the only edge leaving s with label x. The function δ is extended on the
second component to the set of all words in the alphabet Σ, Σ∗, in the obvious way.

We call a directed graph G acyclic if all the directed cycles in G are trivial, that
is, they involve only one vertex. We say that a directed cycle is nontrivial if it
involves more than one vertex of G.

A semigroup A is said to be aperiodic if all its subgroups are trivial, which
is equivalent to the property that for every a ∈ A, there is some m ∈ N such
that am = am+1. A deterministic finite automaton G = (S,Σ, δ) whose transition
semigroup is aperiodic is called aperiodic as well. We say that a finite digraph G
with constant outdegree is aperiodic if every automaton obtained from G by a
suitable labeling is aperiodic.

We say that a digraph G with constant outdegree is monotonic if for every
transition function δ associated with a suitable labeling of G, there is a total order ≤
on the vertex set S, such that for all p, q ∈ S and x ∈ Σ, p ≤ q ⇒ δ(p, x) ≤ δ(q, x),
we call such an order a perfect order.

Given a deterministic finite automaton G = (S,Σ, δ), a congruence on the state
set S is an equivalence relation ρ, such that for every x ∈ Σ and every p, q ∈ S,
(p, q) ∈ ρ ⇒ (δ(p, x), δ(q, x)) ∈ ρ. Denote by [p]ρ the ρ-class that contains the
state p ∈ S. We define the quotient automaton G/ρ as the automaton (S/ρ,Σ, δρ),
where S/ρ = {[p]ρ : p ∈ S} and the transition function δρ is such that for every
ρ-class [p]ρ, δρ([p]ρ, x) = [δ(p, x)]ρ.

Consider a congruence ρ on the automaton G = (S,Σ, δ). We say that G is
ρ-monotonic, see [5], if there is a partial order ≤ on the state set S for which:

• the states p and q are ≤-comparable if and only if (p, q) ∈ ρ;
• for all p, q ∈ S and x ∈ Σ, p ≤ q ⇒ δ(p, x) ≤ δ(q, x).

An automaton G is said to be generalized monotonic of level l [5], if there is
a sequence of congruences on G ρ0 ( ρ1 ( . . . ( ρl, such that ρ0 is the equality
relation, ρl is the universal relation and G/ρi−1 is ρi/ρi−1-monotonic for every
i ∈ {1, 2, . . . , l}. This way, generalized monotonic automata of level 1 are just
monotonic automata. We say that the automaton G is generalized monotonic if it
is generalized monotonic of level l for some l. The digraph G is called generalized
monotonic if every automaton obtained from G by suitably labeling its edges is
generalized monotonic.

We say that a digraph G with constant outdegree is synchronizing if there is a
suitable labeling for which the resulting automaton G = (S,Σ, δ) is synchronizing,
that is, there is a word w ∈ Σ∗ such that the function δ restricted to S × {w} is
constant. We say that G is totally synchronizing if each of its suitable labelings
leads to a synchronizing automaton. Given such a graph, a universal reset word is
a word w ∈ Σ, such that w is a reset word for every automaton obtained from G
by suitably labeling its edges.

Given a digraph G with constant outdegree, an automaton G = (S,Σ, δ) resulting
from a suitable labeling of the edges in G and a word w ∈ Σ∗, we say that w has
rank r with respect to G, if δ(S,w) has exactly r elements. The rank of the
automaton G is the minimum rank of all words in Σ∗ with respect to G. The rank
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of the graph G is the maximum rank of all the automata obtained from G by
suitably labeling its edges.

Given a digraph G, a fixed point is a vertex v such that all edges leaving v are
loops. A sink is a fixed point v such that for every vertex u in G there is a path
connecting it to v. From these definitions we conclude that a digraph G cannot
have more than one sink, but it can have several fixed points. We say that the
subset S of vertices of G is invariant if every edge leaving a vertex in S has its
endpoint in S.
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Figure 2.1. A graph and its function-like diagram.

As is shown in Figure 2.1, to represent graphs we will use function-like diagrams,
in which we have two columns, each one with a copy of the vertices represented in
the same order, and arrows going from the first to the second column. An arrow
connecting i on the left column to j on the right column indicates that there is a
directed edge in the graph going from the vertex i to the vertex j. We place labels
on top of certain edges to represent their multiplicity and edges without label have
multiplicity 1. To represent paths (instead of edges) we use dashed arrows.
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Figure 2.2. The function-like diagrams of a deterministic finite
automaton resulting from the graph in Figure 2.1.

When considering deterministic finite automata, the function-like diagram will
be drawn by dividing the edges between several columns, according to their label,
which will be indicated at the top of its column. This way, if a digraph is monotonic,
for every automaton resulting from it, there is an order on the state set, such that
there are no crosses between arrows in the same column of the function-like diagram.
As we can see in Figure 2.2, the graph from Figure 2.1 is not monotonic.

If for a digraph G with constant outdegree, there is an order on its vertex set,
such that there are no crosses between the arrows in its function-like diagram,
then G is monotonic. Examples of such graphs can be seen in Figure 2.3. We were
not able to prove the converse statement nor to find a counterexample for it.

3. Aperiodic, generalized monotonic and acyclic graphs

In this section we establish important relations between the classes of graphs
that are being considered.
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Figure 2.3. Examples of monotonic graphs.

Lemma 3.1. Suppose that C is a nontrivial directed cycle of minimum length in
a digraph G. Then we may consider a suitable labeling of the edges in G such that
every edge in C has the same label x.

Proof. Since C has minimum length among the nontrivial cycles, every vertex t
in C has only one outgoing edge that belongs to C. Therefore, when building a
suitable labeling of the edges in G. we may label all the edges in C with the letter
x. �

Lemma 3.2. Every monotonic graph is acyclic.

Proof. Let G be a monotonic graph with n vertices (n ≥ 2). If G is not acyclic, then
it has some nontrivial cycle. Let C be such a cycle of minimum length and suppose
that it has the form t1 −→ t2 −→ · · · −→ tm −→ t1. According to Lemma 3.1, we
may consider a suitable labeling of G with transition function δ, such every edge
in C has label x. By definition of monotonic graph, we have ti ≤ ti+1 ⇒ δ(ti, x) ≤
δ(ti+1, x), hence ti ≤ ti+1 ⇒ ti+1 ≤ ti+2, for i ∈ {1, 2, . . . ,m − 2}, and equally
tm−1 ≤ tm ⇒ tm ≤ t1. This way, t1 ≤ t2 ⇒ t2 ≤ t3 ⇒ · · · ⇒ tm−1 ≤ tm ⇒ tm ≤
t1 ⇒ t1 ≤ t2, so t1 = t2 = · · · = tm, which is absurd. A similar argument can be
used for the case t1 ≥ t2. Therefore G is acyclic. �

A counterexample to the reverse implication of Lemma 3.2 can be found in
Figure 3.1. The graph represented is acyclic and yet, the chosen automaton is not
monotonic.
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Figure 3.1. A graph with only trivial directed cycles that is not
monotonic.
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Proposition 3.3. For a finite digraph G with constant outdegree, the following
conditions are equivalent:

(1) G is aperiodic;
(2) G is generalized monotonic;
(3) G is acyclic.

Proof. (1)⇒ (3). We prove the contrapositive. Suppose that G has some nontrivial
directed cycle. Let C be such a cycle of minimum length. Using Lemma 3.1 consider
a suitable labeling of the edges in G such that every edge in C has label a ∈ Σ.
Let G be the resulting automaton. If l > 1 is the length of C, then a acts as a
permutation of order l on the vertices of C, thus there can be no m ∈ N such that
am = am+1 and G is not aperiodic.

(3)⇒ (1). We demonstrate the contrapositive. Suppose that G is not aperiodic,
then some automaton G = (S,Σ, δ) obtained from G by suitably labeling its edges
is not aperiodic, that is, there is some element a 6= 1 of the transition semigroup A
of G such that am 6= am+1 for every m ∈ N. On the other hand, since A is finite,
there are l, j ∈ N such that j > l and al = aj . But this means that aj−l labels some
nontrivial directed cycle in G, because if all such cycles involved only one vertex, we
would have δ(p, al) = δ(p, al+1) = · · · = δ(p, aj) for every p ∈ S, which is absurd,
since al 6= al+1. Thus, G is not acyclic.

(2)⇒ (3). Once more, we prove the contrapositive. Suppose that C is a nontriv-
ial directed cycle of G with minimum length m > 1. Using Lemma 3.1 consider a
suitable labeling of the edges in G such that every edge in C has label a ∈ Σ and let
G = (S,Σ, δ) be the resulting automaton. For every congruence ρ on S, if (p, q) ∈ ρ
with p 6= q vertices in C, then either every vertex in C is in [p]ρ or the number of
vertices of C that belong to [p]ρ is a proper divisor d 6= 1 of m. This way, when
trying to build a chain of congruences that makes G generalized monotonic, either
we collapse the entire cycle C at once or we do it in several steps. In the latter case,
we start by joining d1 vertices in the same class, where d1 6= 1 is a proper divisor
of m, and obtain in the quotient automaton a cycle with m/d1 elements. After i
steps, we collapse di+1 vertices of the remaining cycle, where di+1 6= 1 is a divisor of
m/(d1d2 . . . di) and obtain in the quotient automaton a cycle with m/(d1 . . . didi+1)
elements. But at some point, since m is finite a congruence ρj+1 will collapse an
entire nontrivial cycle, that is, dj+1 = m/(d1d2 . . . dj) 6= 1.

Now, let H be a subautomaton of G/ρj consisting only of the nontrivial cycle
that is collapsed by ρj+1. If G/ρj is ρj+1/ρj-monotonic, then H is monotonic and
its underlying graph H is also monotonic (it has only one possible suitable labeling).
But this is absurd, because Lemma 3.2 establishes that every monotonic graph is
acyclic. Hence, G/ρj is not ρj+1/ρj-monotonic and G is not generalized monotonic.

(3) ⇒ (2). Suppose that G has vertex set S and is acyclic. If G has no edges,
then it is obviously monotonic, hence we may assume that G has constant outdegree
greater than 0. We define inductively a sequence of subsets of S as follows. The
graph G must have at least one fixed point, since it is finite and acyclic. Let F1 ⊆ S
be the set of fixed points of G. If F1 = S, then G is obviously generalized monotonic,
actually it is monotonic. Suppose that F1 ( S, that we have already defined the
sets F1 ( F2 ( . . . ( Fi−1 ( S and they are such that |Fj+1 − Fj | = 1, for every
j ∈ {1, 2, . . . , i− 1}. Since G is finite and acyclic, there is some vertex in G− Fi−1

such that all its outgoing edges are loops or end in Fi−1. Let p be such a vertex
and let Fi = Fi−1 ∪ {p}. Since S is finite and the sequence F1, F2, . . . , Fi−1, Fi, . . .
is strictly increasing, there must be some l such that Fl = S.

Define for every j ∈ {1, 2, . . . , l} the equivalence relation ρj on S such that
[s]ρj

= Fj , for each s ∈ Fj and [s]ρj
= {s} for each s /∈ Fj . Given an automaton G

obtained from G by suitably labeling its edges, ρj is a congruence on G, because
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the only ρj-class that is not a singleton is an invariant set. If we consider the
equality relation ρ0, we have ρ0 ( ρ1 ( . . . ( ρl, with ρl the universal relation
on S. Since the only ρ1-class that is not a singleton is the set of fixed points of S, G

is ρ1-monotonic. Also, because |Fj+1 − Fj | = 1, G/ρj is ρj+1/ρj-monotonic for
every j ∈ {1, 2, . . . , l}. We conclude that G is generalized monotonic of level l and,
since G was any automaton obtained from G by suitably labeling its edges, G is
generalized monotonic. �

Alternatively, one could prove directly that every generalized monotonic digraph
is aperiodic as follows. If G is generalized monotonic, any automaton G obtained
from G by suitably labeling its edges is generalized monotonic. But it was observed
in [5] that, since the notion of generalized monotonic automaton is an automata-
theoretic counterpart to the notion of transformation monoid preserving a chain
of interval partitions, introduced and studied by Almeida and Higgins [1], and
every such monoid is aperiodic, then generalized monotonic automata are aperiodic.
Hence G is aperiodic and therefore G is aperiodic.

Using Proposition 3.3, in order to solve the rank problem for aperiodic graphs
and generalized monotonic graphs, all we have to do is solve it for acyclic graphs,
which is what is presented in the next section.

4. Synchronizing acyclic graphs

Throughout this section, G is an acyclic digraph with n vertices (n ≥ 2) and
constant outdegree k (1 < k ≤ n), v is a word with k distinct letters, over the
alphabet Σ = {x1, x2, . . . , xk}, and δ is the transition function associated with a
suitable labeling of the edges in G with the letters in Σ.

Proposition 4.1. The following conditions are equivalent:
(1) every deterministic finite automaton G = (S,Σ, δ) obtained from G by suit-

ably labeling its edges has rank r;
(2) G has rank r;
(3) G has precisely r fixed points.

Proof. (1)⇒ (2). Obvious from the definitions.
(2) ⇒ (3). Consider a suitable labeling of the edges in G and suppose that the

resulting automaton G = (S,Σ, δ) has rank r. Let w ∈ Σ∗ be a word of rank r
with respect to G and let s ∈ δ(S,w). If δ(s, x) = t for t ∈ S, x ∈ Σ, then
δ(s, xw) = δ(t, w) ∈ δ(S,w), hence xw acts as a permutation on the elements
of δ(S,w). This means that xw must be the identity, otherwise it would label one
or more directed cycles involving distinct vertices of G. But if xw is the identity,
then it labels a directed cycle passing through s and t, thus s = t. This way, s is
fixed by every letter in Σ, which means that it is a fixed point of G.

On the other hand, if s is a fixed point of G, then it is necessarily fixed by every
letter in Σ and therefore it is fixed by the word w, which means that it belongs to
δ(S,w).

(3) ⇒ (1). Assume G = (S,Σ, δ) is a deterministic finite automaton resulting
from a suitable labeling of the edges in G. We already know from the proof of the
previous implication that for a word w of minimum rank with respect to G, the r
fixed points from G belong to δ(S,w). We also know that any other element in this
set would be a fixed point for G, hence w has rank r. �

Corollary 4.2. The following conditions are equivalent:
(1) G is totally synchronizing;
(2) G is synchronizing;
(3) G has a sink.
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Lemma 4.3. For every vertex t in G, either δ(t, v) 6= t or t is a fixed point.

Proof. If t is not a fixed point, then for some xi ∈ Σ, δ(t, xi) 6= t. Hence, since xi
is in v, δ(t, v) 6= t, otherwise v would label a nontrivial directed cycle in G, which
is absurd. �

Lemma 4.4. Assume G is totally synchronizing. Let s be a sink in G and T be
an invariant subset of vertices, such that |T | = m. Then, for every vertex q in T ,
δ(q, vm−1) = s.

Proof. For i ≥ 0, δ(q, vi) ∈ T , since T is invariant. This way, Q = {δ(q, vi) : 0 ≤
i ≤ m − 1} ⊂ T . Using Lemma 4.3, we know that for j > i, δ(q, vi) = δ(q, vj) ⇒
(δ(q, vi) = δ(q, vl) = s,∀l > i). Hence, either Q has m distinct elements and
δ(q, vm−1) = s or Q has i < m distinct elements and δ(q, vi) = δ(q, vm−1) = s. �

Lemma 4.5. Let S be the vertex set of G, t ∈ S, St = {q ∈ S : ∃ a directed
path [q, t] from q to t in G} ∪ {t} and nt be the size of St. Then δ(St, vnt−1) ⊆
{t} ∪ (S − St).

Proof. If q ∈ St is such that q 6= t, then q is not a fixed point. Hence, using
Lemma 4.3, we know that δ(q, vi) 6= q for every i > 0. Now, if δ(q, vi) /∈ St,
then δ(q, vj) is also not in St for every j > i. On the other hand, if δ(q, vi) ∈ St
for every i ∈ {0, 1, . . . , nt − 1}, then {δ(q, vi) : i = 0, 1, . . . , nt − 1} = St. But,
since G is acyclic, there can be no path connecting t to any other vertex in St,
hence δ(St, vnt−1) = t. �
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Figure 4.1. A totally synchronizing acyclic graph.
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Theorem 4.6. If G is totally synchronizing, then

w̄nk = (x1x2 . . . xk)(n−2)x1x2

is a universal reset word for G.

Proof. Let S be the vertex set of G, s be its sink and p ∈ S be such that the number
of distinct edges leaving p is equal to k. Considering the set Sp as in Lemma 4.5
and the word u = x1x2 . . . xk, we know that δ(Sp, unp−1) ⊆ {p} ∪ (S − Sp), where
np = |Sp|.

Now, since p has k distinct outgoing edges, δ(p, x1x2) 6= p, because for each
suitable labeling considered, only one letter may fix p. Thus, δ(Sp, unp−1x1x2) /∈ Sp.
Indeed, for q ∈ Sp, the word unp−1 labels a path leaving q and passing through p,
if δ(q, unp−1x1x2) = t ∈ Sp, then by definition of Sp we would have a path from t
to p and so the graph G would have a nontrivial directed cycle.

Let ū = x3x4 . . . xkx1x2 be a word in the alphabet Σ. For q ∈ S−Sp, there is no
path connecting it to p, therefore there is no path connecting it to any vertex in Sp.
Hence S−Sp is an invariant subset of vertices. Using Lemma 4.4, we conclude that
δ(q, ūn−np−1) = s.

Finally, let t be any vertex in G, then δ(t, unp−1x1x2) ∈ S − Sp, hence,

δ(t, unp−1x1x2ū
n−np−1) = δ(t, w) = s. �

For each n > 1 and 1 ≤ k < n, consider the graph Ḡnk represented by the diagram
in Figure 4.1. The word w̄nk in the theorem is a shortest universal reset word for this
graph. Indeed, consider for each i ∈ {1, 2, . . . , k}, a suitable labeling of Ḡnk with
transition function δi, such that for j /∈ {1, k}, δi(j, xi) = j−1 and δi(j, xl) = j when
l 6= i. Since δi(S,w′) ⊂ {1, 2, . . . , k} implies that there are at least n−k xi in w′, we
conclude that a word that takes all the vertices in Ḡnk to {1, 2, . . . , k}, independently
of the suitable labeling considered, must have at least n − k occurrences of each
letter in Σ. After this, we need 2 distinct letters to make sure that the vertex k goes
to some vertex in the subset {1, 2, . . . , k−1}, since the first letter will fix k in some
labelings. Finally, using the same argument as above, we need a word with k − 2
occurrences of each letter in Σ to take {1, 2, . . . , k− 1} to {1} independently of the
labeling.

Theorem 4.7. If G has rank r, then

w̄nk r = (x1x2 . . . xk)(n−r−1)x1x2

is a minimum rank word for G.

Proof. Using Proposition 4.1, we know that G has exactly r fixed points. Any
vertex in G that is not a fixed point must have a path connecting it to at least one
fixed point. Let us call a vertex indecisive if it is connected to more than one fixed
point.

For now, assume that G has no indecisive vertices. In this case, it is the union
of r disjoint acyclic totally synchronizing digraphs, all with no more than n −
r + 1 vertices. Since, by the previous result, the word w̄nk r synchronizes all these
subgraphs, it is a word of rank r for G.

In the general case, we build r new graphs resulting from G, one for each fixed
point. Every new graph contains one fixed point, all the vertices that are connected
to it by some path in G and all the edges in G that have their endpoints in that new
graph. Since all indecisive vertices belong to at least two new graphs, to maintain
the constant outdegree k in those graphs, we add the necessary number of loops.

Every new graph is acyclic, because G is acyclic and the eventual addition of
loops to some vertices will not create nontrivial cycles. Also, the new graphs are
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Figure 4.2. An acyclic graph with rank r.

totally synchronizing and cannot have more than n−r+1 vertices each, hence they
can be synchronized by the word w̄nk r.

In the graph G, w̄nk r sends each indecisive vertex to one of the fixed points to
which it is connected. All the other vertices are sent to the fixed points as in the
new graphs. Thus, w̄nk r is a word of rank r for G. �

Using the example from Figure 4.1, it is easy to see that w̄nk r is a shortest
maximum rank word for the graph Ḡnk r represented in Figure 4.2.

Corollary 4.8. Suppose G has rank r ≥ 1. Then G has a rank r word of size
n(n− r − 1) + 2 and this bound is tight.

Proof. We know that G has a rank r word of size k(n − r − 1) + 2 and that this
bound is tight, according to Theorem 4.7 and Figure 4.2, respectively. Hence to
finish the proof, it is enough to observe that k(n − r − 1) + 2 is maximum when
k = n. �

Corollary 4.9. If G is totally synchronizing, then it has a universal reset word of
size n(n− 2) + 2 and this bound is tight.
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5. Synchronizing Monotonic Graphs

Throughout this section, G is a monotonic graph with n vertices (n ≥ 2) and
constant outdegree k (1 < k ≤ n), Σ = {x1, x2, . . . , xk} is the alphabet used to
form suitable labelings of the edges in G and δ is the transition function associated
with one of those labelings.

The next result is a direct consequence of Lemma 3.2 and Proposition 4.1.

Corollary 5.1. The following conditions are equivalent:
(1) every deterministic finite automaton G = (S,Σ, δ) obtained from G by suit-

ably labeling its edges has rank r;
(2) G has rank r;
(3) G has precisely r fixed points.

Corollary 5.2. The following conditions are equivalent:
(1) G is totally synchronizing;
(2) G is synchronizing;
(3) G has a sink.

For example, among the monotonic graphs considered in Figure 2.3, the second
and the third are totally synchronizing since they have sinks, and the first and
fourth have rank 2, since that is the number of fixed points each one of them has.

Lemma 5.3. Suppose that p and q are vertices and that there is a path from p to q
(or q to p) in G. Consider a suitable labeling of the edges in G, such that all the
edges in that path have the same label, and a perfect order for that labeling. Assume
that p < q for that order. Then every vertex t in the path from p to q (or q to p) is
such that p ≤ t ≤ q.

Proof. Let [p, q] be a path from p to q and assume, without loss of generality, that
it has no loops. We only consider this case, because the other one, in which there
is a path from q to p, is the same as this one applied to the reverse order.

Aiming for a contradiction, assume there is a vertex t in [p, q] such that t <
p. Let t̄ be the first vertex in those conditions and p̄ be the vertex immediately
before t̄ in [p, q]. Let q̄ be the first vertex in [p, q] after t̄ such that q̄ > t̄ (it exists
because q > t̄) and let s̄ be the vertex immediately before q̄ in the path [p, q].
Then there is a cross between the edges (p̄, t̄) and (s̄, q̄), which is absurd because
they have the same label and we considered a perfect order for this labeling. If
we assume that t > q for some vertex t in [p, q], then similar arguments lead to a
contradiction. �

Lemma 5.4. Suppose that G is totally synchronizing. Let p be a vertex in G such
that the number of distinct edges leaving p is equal to k and T = {t1, t2, . . . , tk} be
the set distinct vertices such that the edges (p, t1), (p, t2), . . . , (p, tk) are in G. Then,
there can only be loops at one vertex in T − {p}.

Proof. Aiming towards a contradiction, suppose that ti, tj ∈ T −{p} are such that
the edges (ti, ti) and (tj , tj) are in G. Consider a suitable labeling of the edges in G
such that (p, ti), (tj , tj) have label a ∈ Σ and (p, tj), (ti, ti) have label b ∈ Σ. There
are two possibilities:

(1) we have a path in G from one of the vertices with loops to the other and
we assume, without loss of generality, that path is [ti, tj ];

(2) some other vertex s 6= ti, tj is the sink of G, hence we have paths [ti, s], [tj , s]
and there are no paths of the forms [ti, tj ], [tj , ti].

In case (1), consider the label a in the path [ti, tj ] (that path cannot contain p,
since G is acyclic). So, we have the diagram in Figure 5.1. Assuming that p > ti,
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a b
p

tj

ti ti

p

tj

Figure 5.1

and using Lemma 5.3, we must have ti > tj . But this means we have a cross
between the edges (p, tj) and (ti, ti), both with label b and that is absurd.

a b
p

tj

ti

ss

ti

p

tj

Figure 5.2

In case (2), consider the label a in the path [ti, s] (that path cannot contain
the vertex p, since G is acyclic, and it also cannot contain the vertex tj , because
there is no path from ti to tj). For similar reasons we may label the path [tj , s]
with b. This way, we have the diagram in Figure 5.2. Assuming that p > ti and
using Lemma 5.3, we must have ti > s. According to the same result s < tj < p,
because we have a path from p to s passing through tj and with all edges having
the same label. Now, if ti < tj < p there is a cross between (p, ti) and (tj , tj), hence
s < tj < ti. But then (p, tj) crosses (ti, ti), which is absurd. �

Lemma 5.5. Let p and T be as in Lemma 5.4. Then, there is no path in G passing
through more than two vertices in T − {p}.

Proof. Aiming towards a contradiction, let ti, tj , tl ∈ T − {p} be three distinct
vertices such that there is a path from ti to tl passing through tj , that is, the
paths [ti, tj ] and [tj , tl] are in G. We consider a suitable labeling in the edges of G
such that (p, ti) has label a ∈ Σ, (p, tj) has label b ∈ Σ and (p, tl) has label c ∈ Σ.
There are two possibilities:

(1) there is an edge (tj , tl) in G;
(2) the path [tj , tl] has at least two edges and, in this case we consider a vertex q

such that the path [tj , q] and the edge (q, tl) are in G.
In case (1), label (tj , tl) with c and [ti, tj ] with a (p is not in that path). Since G

has outdegree k ≥ 3, there must be some edge leaving ti besides the one that
belongs to the path [ti, tj ]. Let (ti, t) be that edge and label it c. Given a perfect
order for this labeling, we may assume that p < ti and according to Lemma 5.3,
ti < tj . If tl < t, then (ti, t) crosses (tj , tl), as we can observe in Figure 5.3. If
t < tl, then (ti, t) crosses (p, tl). Since all these edges have label c, we must have
t = tl.

Now, consider in (tj , tl) the label c, in (ti, tl) the label b and in the path [ti, tj ]
the label c, this can be done, since p is not in that path. Considering a perfect order
for this labeling, we may assume that ti < tj . Lemma 5.3 allows us to conclude
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a b c

p

ti

tl

t

tj

tl

t

p

ti

tj

Figure 5.3

a b c

p

tl

tj

ti

tj

tl

p

ti

Figure 5.4

that tj < tl. Now, if ti < p, (p, tj) crosses (ti, tl) and they have the same label b, so
this is absurd. Hence, p < ti and we are in the situation of Figure 5.4. But then,
using Lemma 5.3, we conclude that the edges in the path [ti, tj ] cross (p, tl), since
they have the same label c, this is absurd. Therefore, case (1) is not possible.

a b c

p

ti

tl

t

tj

q

tl

t

p

ti

tj

q

Figure 5.5

In case (2), let (q, tl) have label c, let the path [tj , q] have label b and let the
path [ti, tj ] have label a (p is not in those paths). Since G has outdegree k ≥ 3,
there must be some edge leaving ti besides the one that belongs to the path [ti, tj ].
Let (ti, t) be that edge and label it c. Given a perfect order for this labeling, we may
assume that p < ti and, according to Lemma 5.3, ti < tj < q. If tl < t, then (ti, t)
and (tj , tl) cross each other, as we can see in Figure 5.5. If t < tl, then (ti, t)
and (p, tl) cross each other. Since all these edges have label c, we must have t = tl.

Now, consider in (ti, tl) the label b, in the path [ti, tj ] the label c (p is not in
that path), in the path [tj , q] the label c (p is not in that path, neither is any of the
vertices in the path [ti, tj ]) and in (q, tl) label c also. Considering a perfect order for
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a b c

p

tl

tj

q

ti

tj

q

tl

p

ti

Figure 5.6

this labeling, we may assume that ti < tj . Lemma 5.3 allows us to conclude that
tj < q < tl. Now, if ti < p, (p, tj) crosses (ti, tl) and they have the same label b, so
this is absurd. Hence, p < ti and we are in the situation of Figure 5.6. But then,
using Lemma 5.3, we conclude that the edges in the path [ti, tj ] cross (p, tl), since
they have the same label c, this is absurd. Therefore, case (2) is also impossible
and we have reached the desired contradiction. �

n nk − 1

n− 1 n− 1k − 1

...

n− 2

...

k + 1 k + 1k − 1

k k

k − 1

k − 2

2

1

k − 1

k

...
...

2
k

1 k

Figure 5.7. A totally synchronizing monotonic graph.

Theorem 5.6. If G is totally synchronizing, then

wnk = (x1x2 . . . xk)(n−k)x1 . . . xα,

with α = min{3, k}, is a universal reset word for G.
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Proof. Let S be the vertex set of G and s be its sink. Let p and T be as in
Lemma 5.5. Let Sp and np be as in Lemma 4.5 and let u = x1x2 . . . xk ∈ Σ∗.

Suppose for now that k > 2. Using Lemma 5.4, suppose that tk is the only
vertex in T − {p} that may have loops. We know that δ(p, x1x2) 6= p and that
δ(ti, xj) 6= ti, for all i ∈ {1, 2, . . . , k − 1} and j ∈ {1, 2, . . . , k}. We also know that,
by Lemma 3.2, δ(q, u) = q ⇒ q = s for q ∈ S. Now, according to Lemma 5.5, if
there is a path from q to s then one of the following situations must occur:

(1) the path passes first through p and then through ti and tj for some i, j ∈
{1, 2, . . . , k} (possibly ti = p or i = j);

(2) the path passes first through ti and then through tj for some i, j ∈ {1, 2, . . . , k}
without passing through p (possibly i = j);

(3) the path does not pass through p nor any vertex in T .
In case (1), we know from Lemma 4.5, that δ(q, unp−1) ∈ {p} ∪ (S − Sp), hence

δ(q, unp−1x1x2) ∈ S−Sp. Now, from p we must go to some vertex ti ∈ T , therefore if
i 6= k, then δ(q, unp−1x1x2x3) ∈ S−Sti . Let ū = x4x5 . . . xkx1x2x3. By Lemma 5.5,
the path from q to s can only contain one more vertex in T , while it cannot contain
any more vertices in Sp, hence it can only pass through n−np−k+2 vertices more
(we need to include the case where some tl = p and so when adding np and k we are
counting p twice). This is enough to conclude that δ(q, unp−1x1x2x3ū

n−np−k+1) =
δ(q, wnk ) = s. If i = k, then j 6= k, hence the only difference is that we would have
to use a few copies of ũ = x3x4 . . . xkx1x2 to get from tk to tj , the letter x3 to get
out of tj and then the number of necessary copies of ū to reach s, also concluding
that δ(q, wnk ) = s. For this reason, in the next case we will simply assume i 6= k,
since everything works basically the same way.

In case (2), if ni = |Sti |, then we know from Lemma 4.5 that δ(q, uni−1) ∈
{ti} ∪ (S − Sti), hence δ(q, uni−1x1) ∈ S − Sti and so δ(q, uni−1x1x2x3) ∈ S − Sti ,
because this set is invariant. By Lemma 5.5, the path from q to s can only contain
one more vertex in T while it cannot contain any more vertices in Sti , hence it
can only pass through n − ni − k + 2 vertices more. This way, we conclude that
δ(q, uni−1x1x2x3ū

n−ni−k+1) = δ(q, wnk ) = s.
Finally, in case (3), we know that the path from q to s cannot contain any vertex

in T hence it can only pass through n− k vertices. Therefore δ(q, un−k−1) = s and
so δ(q, un−kx1x2x3) = δ(q, wnk ) = s.

When k = 2, only two letters are necessary (there is no x3), but everything else
works the same and δ(q, wnk ) = s for every q ∈ S. �

For each n > 1 and 1 ≤ k < n, consider the graph Gnk represented by the diagram
in Figure 5.7. The word wnk in the theorem is a shortest universal reset word for
this graph. Indeed, consider for each i ∈ {1, 2, . . . , k}, a suitable labeling of Gnk
with transition function δi, such that for j > k, δi(j, xi) = j − 1 and δi(j, xl) = j
when l 6= i. Since δi(S,w′) ⊂ {1, 2, . . . , k} implies that there are at least n − k
occurrences of xi in w′, we conclude that a word that takes all the vertices in Gnk to
{1, 2, . . . , k}, no matter what suitable labeling is considered, must have at least n−k
occurrences of the letter xi, for each i ∈ {1, 2, . . . , k}. Finally, we need min{3, k}
distinct letters to take {1, 2, . . . , k} to {1} independently of the labeling. To see
this, observe that for some labeling the first letter fixes the vertex k and the second
letter sends it to a vertex j such that 1 ≤ j < k; now, if k > 2 we can have j > 1
and the third letter is necessary to send j to 1.

Lemma 5.7. If G has rank r ≥ 2 and s1, s2 are two fixed points in G, then there
is at most one vertex in G for which there are paths connecting it to s1 and s2.

Proof. Suppose that p and q are distinct vertices such that [p, s1], [p, s2], [q, s1]
and [q, s2] are paths in G. For any suitable labeling of the edges in G and any
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perfect order for that labeling, let i, j ∈ {1, 2}, with i 6= j. If si is between p and sj ,
then there is a cross between some edge in the path [p, sj ] and the edge (si, si) with
the same label, which is absurd. When si is between q and sj , a similar contradic-
tion is reached. Hence, we must have si < p, q < sj . We assume, without loss of
generality that s1 < p, q < s2.

Now, if t is a vertex that belongs to both paths [p, s1] and [q, s2], then there are
paths from p to s2 and from q to s1 going through t, but this is in contradiction
with Lemma 5.3, because t 6= p, s1, s2, hence both the conditions p < t < s2 and
s1 < t < p would have to be satisfied and that is impossible.

This way, there are no common vertices between the paths [p, s1] and [q, s2],
hence we may consider a suitable labeling such that all the edges in these two
paths have label a. Also, there are no common vertices between the paths [q, s1]
and [p, s2], hence we may consider that in the previous labeling all the edges in
these two paths have label b.

Suppose that s1 < p < q < s2. Let t be the first vertex after p in the path [p, s2],
we have t ≤ s2. There must be some vertex in the path [q, s1] that is between p
and s1 in the considered order. Let t̄ be the first vertex in those conditions and
let t̃ be the vertex immediately before that in the path [q, s1]. Then there is a cross
between the edges (t̃, t̄) and (p, t), because p < t̃ and t̄ < p < t. Since they have
the same label, this is absurd.

The case s1 < q < p < s2 is similar and also leads to a contradiction. Therefore,
we cannot have two distinct vertices p and q in the initial conditions. �

Theorem 5.8. If G has rank r ≥ 1, such that k + r < n, then

wnk r = (x1x2 . . . xk)(n−k−r+1)x1 . . . xα,

with α = min{3, k}, is a word of rank r for G.

Proof. Since G has rank r, according to Corollary 5.1 it has r fixed points. Any
vertex in G that is not a fixed point must have a path connecting it to at least one
fixed point and cannot be connected to more than two fixed points, because this
would imply the existence of a cross between one of those connecting paths and the
loops of a fixed point. Let us call the vertices which are connected to two distinct
fixed points indecisive.

For now, assume that G has no indecisive vertices. In this case, it is the union of r
disjoint monotonic totally synchronizing digraphs, all with no more than n− r+ 1
vertices. Since, by Theorem 5.6, the word wnk r synchronizes all these subgraphs, it
is a word of rank r for G.

Now, for the general case, we build r new graphs resulting from G, one for each
fixed point. Besides the fixed point, every new graph contains all the vertices that
are connected to that fixed point by some path in G and all the edges in G that
have their endpoints in that new graph. Each indecisive vertex will belong to two
new graphs, and for that reason, to maintain the constant outdegree k in the new
graphs, we add the necessary number of loops.

According to Lemma 5.7, each new graph cannot contain more than two inde-
cisive vertices. Let p be a vertex that is undecided between the fixed points s1
and s2 and let p̄, q, q̄ be vertices such that the edge (p, p̄) is replaced by (p, p) in
the new graph containing s2 and (q, q̄) is an edge in that graph that was already
in the original one and such that q 6= p. Consider a suitable labeling of G such
that all the edges in a path [p, s1] that contains p̄ have label a. Suppose also that
the edges in a path [q, s2] that contains q̄ have the same label a (if t ∈ [q, s2] then
t /∈ [p, s1], according to Lemma 5.7). Regard a perfect order for that labeling and
the corresponding labeling and order in the new graph. Without loss of generality,
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Figure 5.8. A monotonic graph with rank r.

it can be assumed that s1 > p > s2 for that order. Suppose that there is a cross
between the edges (p, p) and (q, q̄) in the new graph. Then p must be between q
and q̄. By Lemma 5.3, we cannot have q < p < q̄, because q̄ must be between q
and s2, hence q̄ < p < q therefore there is a cross between (p, p̄) and (q, q̄) in G,
which is absurd. This allows us to conclude that the new graphs are all monotonic.

Each new graph is also totally synchronizing, because it has only one fixed point,
and cannot have more than n− r+ 1 vertices, hence it can be synchronized by the
word wnk r.

In the graph G, wnk r sends each indecisive vertex to one of the two fixed points
to which it is connected. All the other vertices are sent to the fixed points as in the
new graphs. This way, wnk r is a word of rank r for G. �

Using the example from Figure 5.7, it is easy to see that wnk r is a shortest
maximum rank word for the graph Gnk r represented in Figure 5.8.
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Corollary 5.9. Let G have rank r ≥ 1. Then, for n− r = 1, 2, 3 there are rank r
words of sizes 2, 4, 6, respectively. If n− r ≥ 4, there is a rank r word for G of size⌊n− r + 1

2

⌋⌊n− r + 2
2

⌋
+ 3.

All these bounds are tight.

Proof. Note that if k = 1, there is only one suitable labeling for G, we have a rank r
word of length at most n− r and this bound is tight. Hence we may assume k > 1,
because this leads to bigger rank r words.

Let
len(n, r, k) = k(n− k − r + 1) + min{3, k}

be the function that associates with each triple (n, r, k) such that n, k > 1, r > 1
and k + r < n, the length of the word wnk r in Theorem 5.8. When k + r ≥ n,
let len(n, r, k) be the maximum length of a shortest minimum rank word for a
monotonic digraph with n vertices, rank r and constant outdegree k. Also let

len(n, r) = max
k
{len(n, r, k)}.

To finish the proof of the result, all we have to do is compute len(n, r). The
conclusions come from Theorem 5.8 and the graph Gnk r considered above, which is
used to show that the bounds are tight.

If k = 2, then len(n, r, 2) = 2(n − r). Otherwise, min{3, k} = 3, len(n, r, k) =
k(n − k − r + 1) + 3 and the maximum is obtained when k = b(n − r + 1)/2c. If
n− r < 5, b(n− r+ 1)/2c < 3, hence we need to study these cases separately. But
when n− r ≥ 5, b(n− r + 1)/2c ≥ 3 and

len(n, r) =
⌊n− r + 1

2

⌋⌊n− r + 2
2

⌋
+ 3,

because ⌊n− r + 1
2

⌋⌊n− r + 2
2

⌋
+ 3 > 2(n− r),

for all n, r as above.
Finally, observing the following table

n− r k len(n, r, k)
1 2 2
2 2 4
2 3 2
3 2 6
3 3 6
3 4 4
4 2 8
4 3 9
4 4 7
4 5 5

allows us to conclude that

n− r len(n, r)
1 2
2 4
3 6
4 9

Observe that for n− r = 4, len(n, r) = 9 = b(4 + 1)/2cb(4 + 2)/2c+ 3. �
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Corollary 5.10. Let G be totally synchronizing. Then, for n = 2, 3, 4 there are
universal reset words of sizes 2, 4, 6, respectively. If n ≥ 5, there is a universal reset
word for G of size ⌊n

2

⌋⌊n+ 1
2

⌋
+ 3.

All these bounds are tight.

6. Acknowledgments

I am very grateful to my supervisor, Prof. Dr. Jorge Almeida, for his many
valuable suggestions and comments.

References

1. J. Almeida and P. M. Higgins, Monoids respecting n-chains of intervals, J.
Algebra 187 (1997), 183–202.

2. J. Almeida, S. W. Margolis, B. Steinberg, and M. V. Volkov, Representation
theory of finite semigroups, semigroup radicals and formal language theory,
Trans. Amer. Math. Soc. 361 (2009), 1429–1461.

3. D. S. Ananichev and M. V. Volkov, Some results on Černý type problems for
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