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1. introduction and preliminaries

1. Introduction and preliminaries

The classical polynomial sequences (Hermite, Laguerre, Bessel and Jacobi) are the only orthog-
onal polynomial sequences (OPS), whose elements are solutions of a certain second order dif-
ferential equation with polynomial coefficients given in (1.8)-(1.9), which is commonly known
as Bochner’s differential equation, in honour to the mathematician S. Bochner, for his work in
1929 [1]. Notwithstanding that, Bochner did not consider the polynomial sequence now called
as Bessel polynomials (after the work of H. L. Krall and O. Frink in 1949 [12]) to be an OPS,
but he realised they were also solution of such differential equation. Also W. Hahn in 1935 [8]
and H.L. Krall in 1938 [11] considered Bessel polynomials to be orthogonal but in a generalised
sense.

In 1938, Krall [11] showed that if the elements of a classical polynomial sequence are eigenfunc-
tions of a differential operator, then it must be of even order. This result motivated a generalisation
on Bochner’s condition characterising the elements of a classical polynomial sequence [13,14].
However, in the cited works, an explicit and precise expression for the generalised equation is
not given. Later, in [16], the authors build the necessary differential equation with polynomial
coefficients having classical polynomials as solution (we review this result: see theorem 2.1).
Such polynomial coefficients were then defined through a recursive relation. In the present work
this result is improved by bringing their explicit expression (see theorem 2.2 below). Therefore,
at the end of section 2.1 the elements of a classical sequence will be described as eigenfunctions
of an explicitly determined even order differential operator Fk for any given positive integer k.

On the other hand, in [20] Miranian has shown that any even order differential operator having
classical polynomials as eigenfunctions must be a polynomial with constant coefficients in the
Bochner’s differential operator, say F , given in (1.9). Again, the methodology adopted is not
constructive. In section 2.2, it is thoroughly explained how the 2k-order differential operator Fk

may be written as a polynomial with constant coefficients in F , and, conversely how any power
of F may be described as a sum in Fτ with 0 6 τ 6 k. The bridge between these two operators
can be done through the Stirling numbers. Therefore, in section 3 we review this concept, which
is sufficient to study the cases of Hermite and Laguerre families, whereas the cases of Bessel or
Jacobi polynomials required the introduction of the concept of the so-called A-modified Stirling
numbers, where A represents a complex parameter. On account of these sets of numbers, we fulfil
our primary objective: to explicitly establish a somewhat “inverse” relation between any power
of F and the operators Fk. The analysis is guided separately for each classical family in section
4. Other authors have dealt with this problem but from a rather different point of view [2,6,15].
As a matter of fact, in [6,15] an explicit expression for any power of the Bochner’s operator in
the cases of Hermite, Laguerre and Jacobi families can be viewed, but in a self adjoint form. As
far as we are concerned, the case of Bessel polynomials has not yet been considered.

First, we review preliminary results needed for the sequel. The vector space of the polynomials
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1. introduction and preliminaries

with coefficients in C (the field of complex numbers) is denoted by P and by P ′ its dual space,
whose elements are called forms. The set of all the nonnegative integers will be denoted as N
and by N∗ we mean N−{0}. The action of u ∈P ′ on f ∈P is denoted as 〈u, f 〉. In particular,
we denote by (u)n := 〈u,xn〉, n ∈ N the moments of u. Since a linear operator T : P→P has a
transpose tT : P ′→P ′ defined by 〈tT (u), f 〉= 〈u,T ( f )〉 , ∀u ∈P ′, f ∈P, then for any form
u, any polynomial g, the forms Du = u′ and gu are as usual defined by duality according to

〈u′, f 〉 :=−〈u, f ′〉 , 〈gu, f 〉 := 〈u,g f 〉, f ∈P,

where D represents the differential operator. Thus, the differential operator D on forms is mi-
nus the transpose of the differential operator D on polynomials. Throughout the text, the k-th
derivative of p ∈P is denoted either as Dkp or (p)(k). For any f ∈P and u ∈P ′, we have:

Dk( f u) =
k

∑
ν=0

[(
k
ν

)
(Dν f )(Dk−ν u)

]
, k > 1. (Leibniz derivation formula)

We will only consider sequences of polynomials {Pn}n∈N such that degPn 6 n, n ∈ N. If the set
{Pn}n∈N spans P , which occurs when degPn = n, n ∈ N, then it will be called a polynomial
sequence (PS). Along the text we will only deal with PS whose elements are monic, that is,
monic polynomial sequences (MPS). It is always possible to associate to {Pn}n∈N a unique se-
quence {un}n∈N, un ∈P ′, n ∈N, called the dual sequence of {Pn}n∈N, and such that 〈un,Pm〉 :=
δn,m, n,m ∈ N, where δn,m represents the Kronecker’s symbol. We recall a result.

Lemma 1.1 For any u ∈P ′ and any integer m > 1, the following statements are equivalent.
(i) 〈u,Pm−1〉 6= 0, 〈u,Pn〉= 0, n > m.

(ii) ∃λν ∈ C, 0 6 ν 6 m−1, λm−1 6= 0 such that u =
m−1

∑
ν=0

λν uν .

Furthermore, λν = 〈u,Pν〉 , 0 6 ν 6 m−1.

We will denote as {P[1]
n }n∈N the MPS obtained from a given MPS through a single differentiation,

precisely, P[1]
n (x) := 1

n+1 P′n+1(x), n ∈ N, and we call it the normalised derivative of the original

sequence. The normalised derivative sequences of higher orders, say k > 1, denoted as {P[k]
n }n∈N,

are recursively defined by

P[k+1]
n (x) =

(
P[k]

n+1 (x)
)′

n+1
, n ∈ N. (1.1)

As a consequence of lemma 1.1, the dual sequence associated to {P[k]
n }n∈N, say {u[k]

n }n∈N, fulfils
the recurrence relation

D
(

u[k]
n

)
=−(n+ k)u[k−1]

n+1 , with u[0]
n = un, n ∈ N. (1.2)

It may be easily derived by finite induction that

Dk
(

u[k]
n

)
= (−1)k

k

∏
µ=1

(n+ µ) un+k , n ∈ N, k > 1. (1.3)
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The MPS {Pn}n∈N is orthogonal with respect to u ∈P ′ when the following conditions hold:
〈u,PnPm〉 = knδn,m with kn 6= 0, for all the integers n,m ∈ N [3,17]. In this case, we say that
{Pn}n∈N is a monic orthogonal polynomial sequence (MOPS) and the form u is regular. Neces-
sarily, u is proportional to u0. Furthermore, we have

un =
(
〈u0,P2

n 〉
)−1 Pn u0, n ∈ N, (1.4)

and the MOPS {Pn}n∈N fulfils the second order recurrence relation given by

P0(x) = 1 P1(x) = x−β0 (1.5)

Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x), n ∈ N. (1.6)

with βn =
〈u0,xP2

n 〉
〈u0,P2

n 〉
and γn+1 =

〈u0,P2
n+1〉

〈u0,P2
n 〉
6= 0 , n ∈ N. For any regular form u and any poly-

nomial A such that Au = 0, we necessarily have A = 0 [17].

The MOPS {Pn}n∈N is said to be classical if {P[1]
n }n∈N is also orthogonal (Hahn’s property,

[8,9]) and u0 is called a classical form (Hermite, Laguerre, Bessel and Jacobi). Among all the
well known characterisations of the classical sequences we recall the following:

Theorem 1.2 For any MPS {Pn}n∈N orthogonal with respect to u0, the following statements are
equivalent:

(i) {Pn}n∈N is a classical sequence.
(ii) There exists k > 1 such that {P[k]

n }n∈N is orthogonal (Hahn’s theorem), [9].
(iii) There exist two polynomials Φ and Ψ such that the associated regular form u0 satisfies

D
(
Φu0

)
+Ψu0 = 0 , (1.7)

where degΦ 6 2 (Φ monic) and deg(Ψ) = 1 [7,17,18].
(iv) There exist two polynomials, Φ monic, degΦ 6 2, Ψ, degΨ = 1 and a sequence {χn}n∈N

with χ0 = 0 and χn+1 6= 0, n ∈ N, such that

F
(
Pn(x)

)
= χnPn, n > 0, (Bochner’s condition [1] ) (1.8)

where

F = Φ(x)D2−Ψ(x)D . (1.9)

Corollary 1.3 [17,18] If the MOPS {Pn}n∈N is classical, then so is {P[k]
n }n∈N, whenever k > 1,

and any polynomial P[k]
n+1 fulfils the following differential equation:

Φ

(
P[k]

n

)′′
− (Ψ− k Φ

′)
(

P[k]
n

)′
= χ

[k]
n

(
P[k]

n

)
, n ∈ N, (1.10)

where Φ, Ψ ∈P (with Φ monic and degΦ 6 2, degΨ = 1) and χ
[k]
0 = 0,

χ
[k]
n+1 = (n+1)

{
n+2k

2
Φ
′′(0)−Ψ

′(0)
}
6= 0, n ∈ N.
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Thus, if {Pn}n∈N is a classical MOPS with respect to u0, so is {P[k]
n }n∈N and the associated

classical form is:

u[k]
0 = ζk Φ

k u0 , (1.11)

for some ζk 6= 0.

In Table 1 we precise the expressions for the polynomials Φ and Ψ and the constants χn and ϑn,
presented respectively in (1.8), for each one of the classical families.

Table 1
Expressions for Φ, Ψ and χn , n > 0, for each classical family.

: Hermite Laguerre Bessel Jacobi

Regularity

conditions

n ∈ N

: α 6=−(n+1) α 6=− n
2

α,β 6=−(n+1)

α +β 6=−(n+2)

Φ(x) : 1 x x2 x2−1

Ψ(x) : 2x x−α−1 −2 (αx+1) −(α +β +2)x+(α−β )

χn : −2n −n n(n+2α−1) n(n+α +β +1)

During the text the Gamma function will be represented, as usual, by Γ(z). For k ∈ N, and we
will consider the shifted factorials

{x}(k) =


1 if k = 0

k−1

∏
ν=0

(x−ν) = x(x−1) . . .(x− k +1) if k ∈ N∗
(1.12)

(x)k =


1 if k = 0

k−1

∏
ν=0

(x+ν) = x(x+1) . . .(x+ k−1) if k ∈ N∗
(1.13)

Naturally {x}(k) = Γ(x+1)
Γ(x−k+1) and (x)k = Γ(x+k)

Γ(x) for k ∈N. The symbol {x}(k) is sometimes called
falling factorial (of order k), and (x)k is sometimes called as rising factorial (of order k) or also
Pochammer symbol. The symbol (x)k is sometimes used, among combinatorialists, to denote
the falling factorial instead of Pochhammer symbol. Despite in the text we will make reference
to the book of Comtet [5] or Riordan [21,22], we will keep the notation that almost everybody
use in what concerns the Pochhammer symbol. Moreover, one may easily observe that {x}(k) =
(x− k +1)k and (x)k = {x+ k−1}(k) for any k ∈ N.
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2. generalisation on bochner’s condition

2. Generalisation on Bochner’s condition about the classical orthogonal polynomials

This section concerns with generalisations on the Bochner’s condition about classical orthogo-
nal polynomials. We begin by reviewing a result of [16], where a differential equation of any
even order having classical orthogonal polynomials as solutions is given (see theorem 2.1 be-
low). In theorem 2.2, we improve this result by giving an explicit expression for the polynomial
coefficients of the differential operator. Later on, in corollary 2.5, we show how the classical
polynomials are eigenfunctions of any polynomial (with constant coefficients) in the operator F

given by (1.9). At the end of this section we expound the relation between the two even order
differential operators: the one given in theorem 2.1 and the one given in corollary 2.5.

2.1. Generalised Bochner’s condition

For the sake of simplicity, whenever there is no danger of confusion, we will adopt the notation
Qn := P[k]

n with k > 1 and the elements of the dual sequence associated to {Qn}n∈N will be
denoted as vn, instead of u[k]

n , n ∈ N.

Theorem 2.1 [16] Let {Pn}n∈N be an OPS. Suppose there is an integer k > 1 such that
{

P[k]
n

}
n∈N

is an OPS. Then any polynomial Pn+k fulfils the following differential equation of order 2k:

k

∑
ν=0

Λν (k;x) Dk+ν Pn+k (x) = Ξn (k)Pn+k (x) , n ∈ N, (2.1)

where

Λν (k;x) =
1
ν!

ν

∑
µ=0

λ
k
µ Ω

k
ν−µ (ν ;x)Pk+µ (x) , 0 6 ν 6 k; (2.2)

Ξn (k) = λ
k
n {n+ k}(k) , n ∈ N; (2.3)

λ
k
n = (−1)k

〈
v0,Qn

2 〉〈
u0,P2

n+k

〉 {n+ k}(k) , n ∈ N; (2.4)

and 
Ωk

0(0; ·) = 1,

Ωk
0 (µ +1; ·) = 1, µ ∈ N,

Ωk
µ+1−ξ

(µ +1; ·) =−
µ

∑
ν=ξ

1
ν!
(
Qµ+1

)(ν)
Ωk

ν−ξ
(ν ; ·) , 0 6 ξ 6 µ,

(2.5)

with {n+ k}(k) is defined according to (1.12).

More information concerned with the differential equation (2.1) were obtained in [16] for each
classical family: namely, the explicit expressions for λ k

n , n > 0, given by (2.4). Such expressions
are summarised in Table 2.
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2.1 Generalised Bochner’s condition

Table 2
Expressions for λ k

n , with n ∈ N, given by (2.4), for each classical family. (Note the regularity conditions already men-
tioned in Table 1)

... Hermite Laguerre Bessel Jacobi

...
λ k

n

... (−2)k (−1)k

(α +1)k
C(k,α) (2α−1+ k +n)k C(k,α,β ) (α +β +1+ k +n)k

with C(k,α) = 4−k(2α)2k and C(k,α,β ) = (−4)−k (α+β+2)2k
(α+1)k (β+1)k

.

In [16] were obtained the explicit expressions of (2.1) for each one of the classical families and
for the first values of k with the help of symbolic computations made in Mathematica. The next
result allows us to obtain the explicit expressions for the polynomial coefficients presented in
(2.1) for any integer k > 1 and for each classical family.

Theorem 2.2 Under the same assumptions of theorem 2.1, the polynomials Λν(k; ·), with 0 6

ν 6 k, given by (2.2) may also be expressed by:

Λν(k;x) =
λ k

0 ωk,ν

ν!
Φ

ν(x)
(

Pk(x)
)(ν)

, 0 6 ν 6 k, (2.6)

with

ωk,ν =


(
−Ψ′(0)

)−ν if 0 6 degΦ 6 1 ,

1
( k−1−Ψ′(0) )

ν

if degΦ = 2 ,

(2.7)

where Φ represents a monic polynomial with degΦ 6 2, Ψ a one-degree polynomial, and the
elements of the two nonzero sequences {λ k

n}n∈N and {Ξn(k)}n∈N, are respectively given in (2.4)
and (2.3) .

In section 4 will be given the precise expressions for Λν(k; ·), with 0 6 ν 6 k, for each classical
family.

PROOF. Since {Pn}n∈N and {Qn}n∈N are two OPS, from (1.4) we have

un =
(〈

u0,P2
n
〉)−1

Pn u0, n ∈ N, (2.8)

vn =
(〈

v0,Qn
2〉)−1

Qn v0, n ∈ N. (2.9)

By virtue of (2.8)-(2.9), the relation given by (1.3) becomes like:

(Qn v0)
(k) = λ

k
n Pn+ku0, n ∈ N, (2.10)

with

λ
k
n = (−1)k

〈
v0,Q2

n
〉〈

u0,P2
n+k

〉 k

∏
µ=1

(n+ µ) , n ∈ N. (2.11)
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2.1 Generalised Bochner’s condition

Using the Leibniz derivation formula, we have

(Qn v0)
(k) =

k

∑
ν=0

(
k
ν

)
(Qn)

(ν) (v0)
(k−ν) , n ∈ N, (2.12)

which allows to transform (2.10) into
k

∑
ν=0

(
k
ν

)
(Qn)

(ν) (v0)
(k−ν) = λ

k
n Pn+k u0, n ∈ N. (2.13)

The fact that {Pn}n∈N and {Qn}n∈N are both orthogonal provides the classical character of
{Pn}n∈N, so there exist a monic polynomial Φ and a polynomial Ψ, with degΦ 6 2 and degΨ = 1,
such that the regular form u0 fulfils (1.7). By virtue of corollary 1.3, {Qn}n∈N is a classical MOPS
with respect to v0 = ζk Φk u0, where ζk represents a nonzero constant, and {P[ j]

n }n∈N is also a
MOPS whose elements fulfil the differential equation (1.10) with k replaced by j and n by n+1,
which, according to the definition of {P[ j]

n }n∈N, may be written as follows:

Φ(x)
(

P[ j+1]
n (x)

)′
−
{

Ψ(x)− j Φ
′(x)
}

P[ j+1]
n (x) = χ̃n, jP

[ j]
n+1(x), 1 6 j 6 k, n ∈ N. (2.14)

Thus, differentiating both members of v0 = ζkΦk u0 and then taking into consideration (1.7), we
obtain the identity

(v0)′ = ζk
{
(k−1)Φ′Φk−1 u0−Φ

k−1
Ψu0

}
,

which, on attempt of (2.14) with n = 0 and j = k−1, may be written like

(v0)′ = ζk Φ
k−1{(k−1)Φ′′(0) −Ψ(0)

}
P[k−1]

1 u0.

By finite induction it is not hard to prove that(
v0
)( j) = ζk

(
j

∏
τ=1

χ̃τ−1,k−τ

)
P[k− j]

j Φ
k− j u0 , 1 6 j 6 k, (2.15)

where
χ̃µ,σ =

µ +2σ

2
Φ
′′(0)−Ψ

′(0) , µ,σ ∈ N.

Indeed, differentiating both members of (2.15) once, leads to

(v0)( j+1) = ζk

(
j

∏
τ=1

χ̃τ−1,k−τ

) {(
P[k− j]

j

)′
Φ

k− j u0

+P[k− j]
j

(
(k− j−1)Φ′ Φk− j−1 u0 +Φ

k− j−1(
Φ u0

)′ )}

which, on account (1.7), becomes like:

(v0)( j+1)

= ζk

{
j

∏
τ=1

χ̃τ−1,k−τ

}
Φ

k− j−1
{

Φ

(
P[k− j]

j

)′
+
(
(k− j−1)Φ′ −Ψ

)
P[k− j]

j

}
u0.
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2.1 Generalised Bochner’s condition

By virtue of (2.14) with the pair (n, j) replaced by ( j,k− j− 1), we conclude that the previous
identity corresponds to (2.15) with j + 1 instead of j, whence we conclude that (2.15) holds for
each positive integer j. In particular, when j = k, (2.15) becomes like

(v0)(k) = ζk

(
k

∏
τ=1

χ̃τ−1,k−τ

)
Pk u0 . (2.16)

On the other hand, if we consider n = 0 in (2.13) we also obtain

(v0)(k) = λ
k
0 Pk u0 . (2.17)

From the comparison between (2.16) and (2.17) we achieve the conclusion:

ζk =

(
k

∏
τ=1

χ̃τ−1,k−τ

)−1

λ
k
0 .

Bringing this information into (2.15) with j replaced by k−ν , we obtain:

(v0)(k−ν) = ωk,ν λ
k
0 Φ

ν P[ν ]
k−ν

u0 (2.18)

where

ωk,ν =



(
k

∏
τ=k−ν+1

χ̃τ−1,k−τ

)−1

, 1 6 ν 6 k

1 , ν = 0 .

Based on the definition of χ̃k−τ−1,τ , the coefficients ωk,ν may be expressed like:

ωk,ν =



[
ν−1

∏
τ=0

(
k + τ−1

2
Φ
′′(0)−Ψ

′(0)
)]−1

, 1 6 ν 6 k

1 , ν = 0 ,

Since Φ is a monic polynomial with degΦ 6 2, then, recalling (1.13), it is also possible to express
ωk,ν as in (2.7). Hence, on account (2.18), the relation (2.13) may be transformed into

k

∑
ν=0

(
k
ν

)
(Qn)

(ν)
λ

k
0 ωk,ν P[ν ]

k−ν
Φ

ν u0 = λ
k
n Pn+k u0 , n ∈ N. (2.19)

which, owing to the regularity of u0, provides
k

∑
ν=0

(
k
ν

){
λ

k
0 ωk,ν P[ν ]

k−ν
(x) Φ

ν(x)
} (

Qn(x)
)(ν) = λ

k
n Pn+k(x) , n ∈ N. (2.20)

Following the definition of the polynomials Qn, one has(
Qn(x)

)(ν) =
n!

(n+ k)!
(

Pn+k(x)
)(k+ν)

, n ∈ N, (2.21)

so, (2.20) may actually be written as
k

∑
ν=0

Λ̂ν(k;x) Dk+ν
(
Pn+k(x)

)
= Ξn(k) Pn+k(x) , n ∈ N. (2.22)
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2.1 Generalised Bochner’s condition

where

Λ̂ν(k;x) =
(

k
ν

)
λ

k
0 ωk,ν P[ν ]

k−ν
(x) Φ

ν(x), 0 6 ν 6 k,

and Ξn(k) is given by (2.3). Clearly, under the definition of P[ν ]
k−ν

(·), we easily observe that

Λ̂ν(k;x) =
λ k

0 ωk,ν

ν!
Φ

ν(x)
(

Pk(x)
)(ν)

, 0 6 ν 6 k.

Now, comparing (2.1) with (2.22) and representing by

Aν(k;x) = Λν(k;x)− Λ̂ν(k;x) , 0 6 ν 6 k ,

we deduce that
k

∑
ν=0

Aν(k;x) Dk+ν(Pn+k) = 0 , n ∈ N .

Since Dk+ν
(
Pj(x)

)
= 0, 0 6 j 6 k−1, it is obvious that

k

∑
ν=0

Aν(k;x) Dk+ν(Pn) = 0 , n ∈ N .

Based on the fact that {Pn}n∈N forms a basis of P , we conclude from the previous equalities that
k

∑
ν=0

Aν(k;x) Dk+ν f = 0 , f ∈P. (2.23)

The particular choice f (x) = xk in (2.23) provides A0(k; ·) = 0. Let us suppose that

Aν(k; ·) = 0, 0 6 ν 6 µ 6 k−1.

If we consider f (x) = xk+µ+1 in (2.23), then, under the assumption, we easily derive that

Aµ+1(k;x) (k + µ +1)! = 0

which implies Aµ+1(k;x) = 0, 0 6 µ 6 k− 1. Therefore Aν(k;x) = 0, 0 6 ν 6 k, whence the
result.

Remark 2.3 Consider {Pn}n∈N to be a classical MOPS. By virtue of Hahn’s theorem (statement
ii of theorem 1.2), there exists k > 1 such that {P[k]

n }n∈N is a MOPS, whence, if τ is an integer
between 1 and k, {P[τ]

n }n∈N is also orthogonal. Therefore from theorem 2.1 and theorem 2.2,
we deduce that Pn stills fulfilling the differential equation (2.1) with the pair (n,k) replaced by
(n− τ,τ) and n > τ .
Besides, it can be easily seen that when 0 6 n 6 τ−1, necessarily Dτ+ν(Pn) = 0 (with 0 6 ν 6 τ)
and Ξn−τ(τ) = 0. This last equality is due to the fact that {n}(τ) = 0 when 0 6 n 6 τ−1 (it is a
simple consequence of the definition of the falling factorial of a number (1.12) ). This allows us
to conclude that each element of {Pn}n∈N is also a solution of the differential equation

τ

∑
ν=0

Λν(k;x) Dτ+ν Pn(x) = Ξn−τ(τ)Pn(x), n > 0. (2.24)

Moreover, with the convention P[0]
n := Pn, there is no danger to consider in (2.24) the case where

τ = 0 since it is identically satisfied.
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2.2 An extension of Bochner’s differential equation

Remark 2.4 The differential equation (2.1) characterises the classical polynomials [16, theo-
rem 3.3].

2.2. An extension of Bochner’s differential equation

From now on, the k-th power of the second order differential operator F given in (1.9) will be
denoted by F k and is inductively defined through F k[y](x) = F

(
F k−1[y](x)

)
, for k ∈ N∗ and

F 0 denote the identity operator.

As a direct consequence of the Bochner’s property for the classical polynomial sequences (state-
ment (iv) of theorem 1.2 ), we present the following result.

Corollary 2.5 Let {Pn}n∈N be a classical OPS and k a positive integer. Consider the differential
operator F given by (1.9) where Φ represents a monic polynomial with degΦ 6 2, and Ψ a
polynomial such that degΨ = 1. Then, for any set {ck,µ : 0 6 µ 6 k} of complex numbers not
depending on n, each element of {Pn}n∈N fulfils the differential equation given by

k

∑
µ=0

ck,µ F µ Pn(x) =
k

∑
µ=0

ck,µ (χn)µ Pn(x) , n ∈ N, (2.25)

where {χn}n>1 represents a sequence of nonzero complex numbers.

PROOF. Since {Pn}n∈N is a classical OPS, then, according to theorem statement iv of 1.2, there
is a monic polynomial Φ with degΦ 6 2, a polynomial Ψ with degΨ = 1 and a sequence {χn}n∈N

with χ0 = 0 and χn+1 6= 0, n ∈ N, such that (1.8) holds. Let us suppose that, for ν−1 > 1, Pn is
a solution of the differential equation given by F ν−1 Pn(x) = (χn)ν−1Pn(x) , n ∈ N.

Under the assumption we have F ν Pn(x) = F
(
F ν−1Pn(x)

)
= F

(
(χn)ν−1Pn(x)

)
.

On account of (1.8) we easily deduce that

F ν Pn(x) = (χn)ν Pn(x), n ∈ N,

holds for any integer ν > 1. If {ck,µ}06µ6k represents any set of complex numbers not depending
on n, (2.25) is trivially verified.

2.3. Relation between the generalisations of the Bochner’s differential equation

As a consequence of theorem 2.1 and corollary 2.5 we present the following result.

Corollary 2.6 Let {Pn}n∈N be a classical sequence and k a positive integer. If there exist coeffi-
cients dk,µ and d̃k,µ 0 6 µ 6 k, not depending on n, such that
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2.3 Relation between the generalisations of the Bochner’s differential equation

Ξn−k(k) =
k

∑
τ=0

dk,τ (χn)τ , n > 0, (2.26)

(χn)k =
k

∑
τ=0

d̃k,τ Ξn−τ(τ) , n > 0, (2.27)

where χn and Ξn−τ(τ), 1 6 τ 6 k, n > 0, are respectively the ones presented in (1.8) and (2.3),
then the two following equalities hold:

k

∑
ν=0

Λk(k;x)Dk+ν =
k

∑
τ=0

dk,τ F τ , (2.28)

F k =
k

∑
τ=0

d̃k,τ

{
τ

∑
ν=0

Λν(τ;x)Dτ+ν

}
(2.29)

where F is given by (1.9) and

{
τ

∑
ν=0

Λν(τ;x)Dν+τ

}
the one presented in (2.24).

PROOF. Let {Pn}n∈N be a classical MOPS and k > 1. First we are going to show how (2.26)
implies (2.28) and afterwards how (2.27) implies (2.29). According to theorem 2.1, Pn fulfils the
equation

k

∑
ν=0

Λν(k;x)Dν+kPn(x) = Ξn−k(k)Pn(x) , n > k.

It is clear, from (2.3), that whenever n is a integer such that 0 6 n 6 k−1, Ξn−k(k) = 0. So, we
actually deduce from theorem 2.1, that

k

∑
ν=0

Λν(k;x)Dν+kPn(x) = Ξn−k(k)Pn(x) , n > 0.

If {dk,τ : 0 6 τ 6 k} represents a set of coefficients such that (2.26) holds, then we have

k

∑
ν=0

Λν(k;x)Dν+kPn(x) =
k

∑
τ=0

dk,τ (χn)τ Pn(x) , n > 0,

where χn corresponds to the eigenvalues of (1.8). On the other hand, corollary 2.5 allows us to
write

k

∑
µ=0

dk,µ (χn)µ Pn(x) =
k

∑
µ=0

dk,µ F µ Pn(x) , n > 0.

Hence we get

L2k Pn(x) = 0 , n > 0. (2.30)

where L2k =
k

∑
µ=0

dk,µ F µ −
2k

∑
ν=k

Λν−k(k;x)Dν . Since {Pn}n∈N forms a basis of P , then (2.30)

provides that L2k f = 0, for any f ∈P , whence we get (2.28).
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3. sums relating powers of a variable and its factorials

Likewise, by virtue of corollary 2.5 and by taking into account (2.27), from (2.24) we derive

F k Pn(x) =
k

∑
τ=0

d̃k,τ

{
τ

∑
ν=0

Λν (τ;x) Dτ+ν

}
Pn(x) , n ∈ N,

which implies the relation (2.29), regarding the fact that {Pn}n∈N forms a basis of P .

We intend to know whether it is possible to express the eigenvalues of the differential equation
(2.1) as a sum of powers of the eigenvalues of the differential equation (1.8). In other words, we
face the problem of finding two sets of coefficients {dk,τ : 1 6 τ 6 k , k > 1} and {d̃k,τ : 1 6 τ 6

k , k > 1} realising the equalities (2.26)-(2.27). Considering the information contained in Table
1 and Table 2, one realises that the determination of those two sets of coefficients shall be done
separately for each one of the classical families. Indeed, observing the nature of the eigenvalues
χn and Ξn−τ(τ), the problem under analysis resembles the relation between the powers of a
variable and its factorials. The bridge between those two sequences can be done in a natural way
through the Stirling numbers. In order to have a more clear understanding in the next section
we review some basic concepts concerned with this subject. That revision is basically enough to
derive the expression for dk,τ and d̃k,τ (presented in the relations (2.26)-(2.27)) for the cases of
Hermite and Laguerre families, while for the analysis of the cases of Bessel or Jacobi families we
introduce a slight modification in the concepts of the factorial of a complex number and Stirling
numbers.

3. Sums relating powers of a variable and its factorials

In this section, we begin by reviewing the definition of the Stirling numbers and its properties.
Later, we will introduced the concept of A-modified falling factorial and also the A-modified
Stirling numbers, motivating the reason for such names.

Representing by s(k,ν) and S(k,ν), with k,ν ∈ N, the Stirling numbers of first and second
kind, respectively, the following equalities hold [5,21,22]:

{x}(k) =
k

∑
ν=0

s(k,ν)xν . (3.1)

and

xk =
k

∑
ν=0

S(k,ν){x}(ν) , (3.2)

where {x}(k) represent the falling factorial of x and is defined in (1.12). Indeed, such numbers
fulfil a ”triangular” recurrence relation, namely we have
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3. sums relating powers of a variable and its factorials
s(k +1,ν +1) = s(k,ν)− k s(k,ν +1)

s(k,0) = s(0,k) = δk,0

s(k,ν) = 0 , ν > k +1

and 
S(k +1,ν +1) = S(k,ν)+(ν +1)S(k,ν +1)

S(k,0) = S(0,k) = δk,0

S(k,ν) = 0 , ν > k +1

with k,ν ∈N (see, for instance [5, Chapter V]). Moreover the Stirling numbers of first and second
kind fulfil the biorthogonality conditions

max{k,ν}

∑
τ=0

s(k,τ)S(τ,ν) =
max{k,ν}

∑
τ=0

S(k,τ) s(τ,ν) = δk,ν .

The matrix s := [s(k,ν)]k,ν∈N consisting of the Stirling numbers of the first kind is the inverse of
the matrix S := [S(k,ν)]k,ν∈N of the Stirling numbers of the second kind (s−1 = S). Furthermore,
the Stirling number of the second kind S(k,ν) equals:

S(k,ν) =
1
ν!

ν

∑
τ=0

(−1)ν−τ

(
ν

τ

)
τ

k , 1 6 ν 6 k .

We now introduce a slight modification on the concept of the falling factorial (1.12).

Definition 3.1 Let A be a number (possibly complex) and k ∈ N. For any number x we define

{x}(k;A) :=


1 i f k = 0,

k−1

∏
ν=0

(x−ν(ν +A)) i f k ∈ N∗,
(3.3)

to be the A-modified falling factorial (of order k).

It is clear that
{
{x}(n;A)

}
n∈N

is a MPS, as well as {xn}n∈N is. As a result, there exist two unique

sequences of numbers {ŝA(k,ν)}k,ν∈N and {ŜA(k,ν)}k,ν∈N such that

{x}(k;A) =
k

∑
ν=0

ŝA(k,ν) xν , k ∈ N (3.4)

xk =
k

∑
ν=0

ŜA(k,ν){x}(ν ;A) , k ∈ N, (3.5)

The next result provides more information about these two sequences.

Proposition 3.2 The numbers ŝA(k,ν) defined by (3.4) satisfy the following “triangular” recur-
rence relation
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3. sums relating powers of a variable and its factorials

ŝA(k +1,ν +1) = ŝA(k,ν)− k(k +A) ŝA(k,ν +1) , (3.6)

ŝA(k,0) = ŝA(0,k) = δk,0 , (3.7)

ŝA(k,ν) = 0 ,ν > k +1 , (3.8)

whereas ŜA(k,ν) defined by (3.5) satisfy the “triangular” recurrence relation given by

ŜA(k +1,ν +1) = ŜA(k,ν)+(ν +1)(ν +1+A)ŜA(k,ν +1) , (3.9)

ŜA(k,0) = ŜA(0,k) = δk,0 , (3.10)

ŜA(k,ν) = 0 ,ν > k +1 , (3.11)

for k,ν ∈ N.

PROOF. Suppose that the relations (3.4)-(3.5) hold. The fact that x0 = 1 = {x}(0;A) provides
that ŝA(0,0) = ŜA(0,0) = 1. It is clear that {x}(k;A) , with k ∈ N, is a polynomial in x and

deg
(
{x}(k;A)

)
= k. Therefore, the relations (3.8) and (3.11) are just a consequence of (3.4)

and (3.5), respectively. Meanwhile, due to (3.3), the following identity

{x}(k+1;A) =
(
x− k(k +A)

)
{x}(k;A) , k ∈ N, (3.12)

holds. Therefore, we successively have:

k+1

∑
ν=0

ŝA(k +1,ν)xν = {x}(k+1;A) =
(
x− k(k +A)

)
{x}(k;A)

=
(
x− k(k +A)

) k

∑
ν=0

ŝA(k,ν) xν

=
k

∑
ν=1

{
ŝA(k,ν−1)− k(k +A)ŝA(k,ν)

}
xν

+ŝA(k,k) xk+1− k(k +A)ŝA(k,0), k ∈ N.

Now, the comparison of the coefficients of xν , 0 6 ν 6 k, in the first and last members of the
previous equalities provides

ŝA(k +1,0) =−k(k +A)ŝA(k,0) , ŝA(k +1,k +1) = ŝA(k,k) (3.13)

and also (3.6) with ν replaced by ν +1. Clearly, (3.13) implies (3.7).

Likewise, from (3.5), we deduce

k+1

∑
ν=0

ŜA(k +1,ν){x}(ν ;A) = xk+1 = x · xk =
k+1

∑
ν=0

ŜA(k,ν) x {x}(ν ;A)

which, on attempt of (3.12) with k replaced by ν , becomes like

k+1

∑
ν=0

ŜA(k +1,ν){x}(ν ;A) =
k

∑
ν=0

ŜA(k,ν)
{
{x}(ν+1;A) +ν(ν +A){x}(ν ;A)

}
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3. sums relating powers of a variable and its factorials

The fact that {{x}(ν ;A)}ν∈N forms an independent system on P allows us to conclude that
ŜA(k +1,0) = 0, ŜA(k + 1,k + 1) = ŜA(k,k) and also (3.9) after replacing ν by ν + 1. Thus, we
have (3.10).

Inserting (3.4) into (3.5), that is

xk =
k

∑
ν=0

ν

∑
τ=0

ŜA(k,ν) ŝA(ν ,τ)xτ

shows that

∑
ν∈N

ŜA(k,ν) ŝA(ν ,τ) = δk,τ .

Conversely, if we insert (3.5) into (3.4), we derive that

∑
ν∈N

ŝA(k,ν) ŜA(ν ,τ) = δk,τ .

The similar-looking of ŝA(k,ν) and ŜA(k,ν) with the Stirling numbers of first and second kind,
respectively, compels us to call the numbers ŝA(k,ν) and ŜA(k,ν) as the A-modified Stirling
numbers of first and second kind, respectively. Several authors have studied the Stirling num-
bers, its generalisations or some of their analogies (among them we cite [4,10,19]), however, as
far as we are concerned, the study of ŝA(k,ν) and ŜA(k,ν) still remains somewhat unexplored.
It might be worth to explore more properties about the so called A-modified Stirling numbers.
Either way, this is not the main purpose of the present paper, so we will leave the study of other
interesting properties for a future work. Nevertheless, we present some few considerations spe-
cially those about the A-modified Stirling numbers of the second kind.

Corollary 3.3 The numbers ŜA(k,ν) presented in (3.5) equal

ŜA(k,ν) =
1
ν!

ν

∑
σ=1

(
ν

σ

)
(−1)ν+σ (A+2σ)Γ(A+σ)

Γ(A+σ +ν +1)

(
σ(σ +A)

)k

, (3.14)

for 1 6 ν 6 k .

PROOF. From proposition 3.2, it follows that (3.5) holds for all the integers k ∈ N where the
numbers ŜA(k,ν) satisfy the relations (3.9)-(3.11). Now, let

ck,ν(A) =
1
ν!

ν

∑
σ=1

(
ν

σ

)
(−1)ν+σ (A+2σ)Γ(A+σ)

Γ(A+σ +ν +1)

(
σ(σ +A)

)k

, 1 6 ν 6 k .

When we take ν = 0 in (3.9), we get

ŜA(k +1,1) =

 1 , k = 0

(A+1) ŜA(k,1) , k > 1
,

therefore
ŜA(k,1) = (A+1)k−1 , k > 1. (3.15)

16 Ana F. Loureiro



3. sums relating powers of a variable and its factorials

Now, the relation (3.9) with ν = 1 and on account of (3.15) becomes like

ŜA(k +1,2) = (A+1)n−1 +2(A+2)ŜA(k,2), k > 2,

from which we derive

ŜA(k,2) =

(
2(2+A)

)n−1−2(1+A)n−1

2(3+A)

=
1
2

{(
2(2+A)

)k (A+4)Γ(A+2)
Γ(A+5)

−2
(1+A)k (A+2)Γ(A+1)

Γ(A+4)

} (3.16)

for all the integers k > 2. Hence (3.15)-(3.16) show that ŜA(k,ν) = ck,ν(A) for ν = 1,2 and k > 1.
Now suppose that ŜA(k,ν) = ck,ν(A) for 1 6 ν 6 k. From (3.9), we have

ŜA(k +1,ν) = ŜA(k,ν−1)+
(
ν(ν +A)

)
ŜA(k,ν)

= ck,ν−1(A)+
(
ν(ν +A)

)
ck,ν(A)

=
ν(ν +A)(A+2ν)Γ(A+ν)

ν! Γ(A+2ν +1)
(
ν(ν +A)

)k

+
ν−1

∑
σ=1

{
−1+

ν(ν +A)
(ν−σ)(A+σ +ν)

}
(−1)ν+σ (A+2σ) Γ(A+σ)

(
σ(σ +A)

)k

(ν−σ −1)! σ ! Γ(A+σ +ν)

=
ν(ν +A)(A+2ν)Γ(A+ν)

ν! Γ(A+2ν +1)
(
ν(ν +A)

)k

+
ν−1

∑
σ=1

σ(σ +A) (−1)ν+σ (A+2σ) Γ(A+σ)
(
σ(σ +A)

)k

(ν−σ)! σ ! Γ(A+σ +ν +1)

= ck+1,ν(A) , 1 6 ν 6 k +1,

whence we conclude that ŜA(k,ν) = ck,ν(A) for all k,ν ∈ N with ν 6 k.

Remark 3.4 When x = n(n + A) for n ∈ N and A ∈ C, its A-modified factorial (of order k) is
given by:

{n(n+A)}(k;A) =
k−1

∏
ν=0

(
n(n+A)−ν(ν +A)

)
=

k−1

∏
ν=0

(
(n−ν)(n+A+ν)

)
which, in accordance with (1.12)-(1.13), may be expressed like

{n(n+A)}(k;A) = {n}(k) (n+A)k. (3.17)

The previous equalities bring a relation between the A-modified Stirling numbers and the Stirling
numbers itself. Namely, on attempt of (3.4) and (3.1), the comparison of the first and last members
of the previous equality, leads to
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3. sums relating powers of a variable and its factorials

k

∑
ν=0

ŝA(k,ν)
(
n(n+A)

)ν =
k

∑
ν=0

ν

∑
τ=0

s(k,ν) s(ν ,τ) nν (n+A+ k−1)τ

or, equivalently,

k

∑
ν=0

ŝA(k,ν)
(
n(n+A)

)ν =
k

∑
ν=0

ν

∑
τ=0

(−1)ν+τ s(k,ν) s(ν ,τ) nν (n+A)τ

Such expression may be simplified, nevertheless we will leave the study of the properties of such
numbers to a future work. Analogously, due to (3.5) and (3.2), from the relation

(
n(n + A)

)k =
nk (n+A)k we derive

k

∑
ν=0

ŜA(k,ν) {n(n+A)}(ν ;A) =
k

∑
ν=0

ν

∑
τ=0

S(k,ν) S(ν ,τ) {n}(ν) {n+A}(τ) .

We finish this section with two tables about the A-modified Stirling numbers.

Table 3
A list of the first A-modified Stirling numbers of 1st kind: ŝA(k,ν), with 1 6 ν ,k 6 5.

k
\ ν 1 2 3 4 5

1 1 0 0 0 0

2 −(1+A) 1 0 0 0

3 2 (1+A)2 −5−3A 1 0 0

4 −6 (1+A)3 49+A(48+11A) −2(7+3A) 1 0

5 24 (1+A)4 −2(410+515A)

−2A2(202+25A)

273+5A(40+7A) −10(3+A) 1

Table 4
A list of the first A-modified Stirling numbers of 2nd kind: ŜA(k,ν), with 1 6 ν ,k 6 5.

k
\ ν 1 2 3 4 5

1 1 0 0 0 0

2 1+A 1 0 0 0

3 (1+A)2 5+3A 1 0 0

4 (1+A)3 21+A(24+7A) 14+6A 1 0

5 (1+A)4 (5+3A)(17+A(18+5A)) 147+5A(24+5A) 10(3+A) 1
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4. sums relating powers of the bochner differential operator and the obtained differential operators of even
order

4. Sums relating powers of the Bochner differential operator and the obtained differential
operators of even order

In this section it will be explicitly presented the 2k-order differential equation (2.1) given in
theorem 2.1 for each classical family (Hermite, Laguerre, Bessel and Jacobi) and any integer
k > 1. The expression for the polynomials Λν(k; ·) (with 0 6 ν 6 k) that will be in use is the one
given in theorem 2.2, in spite of the one given by (2.2).

Following corollary 2.6 it is possible to express the even order differential operator associated to
the equation (2.1) as a polynomial in F , the Bochner differential operator, providing there is a
set of numbers {dk,µ : 0 6 µ 6 k} such that the condition (2.26) holds. Conversely, if there is a
set of numbers {d̃k,µ : 0 6 µ 6 k} such that (2.27) holds, then we obtain an explicit expression
for any power of the Bochner’s operator according to (2.29) and considering (2.6).

The determination of the sets {dk,µ : 0 6 µ 6 k} and {d̃k,µ : 0 6 µ 6 k} will be thoroughly
revealed for each classical family, by taking into account the considerations made in section
3. To accomplish this issue, we will work separately with each one of the classical families.
Naturally, it won’t be necessary to compute the successive powers of the Bochner’s operator F .
For the sequel we will strongly use the information contained in Table 1 and Table 2.

4.1. Hermite case

Let {Pn(·)}n∈N be an Hermite monic polynomial sequence. Based on the information given in
Table 2 and according to (2.3)-(2.4), we have Ξn(k) = (−2)k {n+ k}(k) , n ∈ N. On the other
hand, considering the information provided by Table 1, the relation (2.7) becomes like ωk,ν =
(−2)−ν , 0 6 ν 6 k, and the polynomial Λν(k;x) defined in (2.6) may be expressed as follows:

Λν(k;x) =
1
ν!

(−2)k−ν (Pk)(ν)(x) =
(

k
ν

)
(−2)k−ν P[ν ]

k−ν
(x) , 0 6 ν 6 k.

For each integer ν > 1, P[ν ]
n (·) = Pn(·), n ∈ N, therefore

Λν(k;x) =
(

k
ν

)
(−2)k−ν Pk−ν(x) , 0 6 ν 6 k, (4.1)

where

P2τ(x) = (2τ)!
τ

∑
µ=0

(−1)τ−µ

22(τ−µ) (τ−µ)!
x2µ

(2µ)!
, τ ∈ N ,

P2τ+1(x) = (2τ +1)!
τ

∑
µ=0

(−1)τ−µ

22(τ−µ) (τ−µ)!
x2µ+1

(2µ +1)!
, τ ∈ N .

Thus, Y (x) = Pn(x) is a solution of the following differential equation:
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4.2 Laguerre case

k

∑
ν=0

(
k
ν

)
(−2)−ν Pk−ν(x) Dk+νY (x) = {n}(k) Y (x) , n ∈ N .

The relation (3.1) with x replaced by n permits to successively deduce the equalities

Ξn−k(k) = (−2)k{n}(k) = (−2)k
k

∑
τ=0

s(k,τ) nτ =
k

∑
τ=0

(−2)k−τ s(k,τ)
(
χn
)τ

, n ∈ N,

since χn = −2n, n ∈ N. Equating the first and last members of the previous equalities we meet
the relation (2.26) and therefore

dk,τ = (−2)k−τ s(k,τ) , 0 6 τ 6 k .

Conversely, on account of (3.2) with x replaced by n, we derive

(χn)
k = (−2)k

k

∑
τ=0

S(k,τ){n}(τ) =
k

∑
τ=0

(−2)k−τ S(k,τ) Ξn−τ(τ), n ∈ N,

Thus, we have just obtained (2.27) if we consider

d̃k,τ = (−2)k−τ S(k,τ) , 0 6 τ 6 k .

As a result, by virtue of corollary 2.6, we conclude

k

∑
ν=0

Λν (k;x)Dk+ν =
k

∑
τ=0

(−2)k−τ s(k,τ)F τ

F k =
k

∑
τ=0

(−2)k−τ S(k,τ)
τ

∑
ν=0

Λν (τ;x)Dτ+ν

, (4.2)

where Λν(k;x) is given in (4.1) and, considering Table 1, F = D2−2xD.

4.2. Laguerre case

Consider {Pn(·;α)}n∈N with α 6=−(n+1), n∈N, to be a Laguerre monic polynomial sequence.

From Table 1 and in accordance with (2.3)-(2.4) we get Ξn(k) =
(−1)k

(α +1)k
{n+ k}(k) , with n ∈ N,

while the information in Table 2 permits to obtain from (2.7) ωk,ν = (−1)−ν , for 0 6 ν 6 k .
Therefore the polynomial coefficients given by (2.6) may be expressed as follows:

Λν(k;x) =
1
ν!

(−1)k−ν

(α +1)k
xν (Pk)(ν)(x) =

(
k
ν

)
(−1)k−ν

(α +1)k
xν P[ν ]

k−ν
(x;α)

Since, for each integer ν > 1, P[ν ]
n (·;α) = Pn(·,α +ν), n ∈ N, then we have

Λν(k;x) =
(

k
ν

)
(−1)k−ν

(α +1)k
xν Pk−ν(x;α +ν) (4.3)
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4.3 Bessel case

with

Pk−ν(x;α +ν) =
k−ν

∑
µ=0

(
k−ν

µ

)
(−1)k−ν−µ Γ(k +α +1)

Γ(µ +α +ν +1)
xµ , 0 6 ν 6 k .

Following (2.1), Y (x) = Pn(x;α) is a solution of the differential equation

k

∑
ν=0

(
k
ν

){
(−1)ν xν Pk−ν(x;α +ν)

}
Dk+ν

(
Y (x)

)
= {n}(k) Y (x) , n ∈ N .

The problem of determining the two sets of coefficients {dk,µ : 0 6 µ 6 k} and {d̃k,µ : 0 6 µ 6 k}
realising the conditions (2.26)-(2.27) in this case, is analogous to the corresponding problem in
the Hermite case. Indeed, if we replace x by n in (3.1), then the eigenvalues Ξn−k(k) may be
expressed in terms of χn given in Table 1:

Ξn−k(k) =
(−1)k

(α +1)k

k

∑
ν=0

s(k,ν) nν =
k

∑
ν=0

(−1)k

(α +1)k
s(k,ν)

(
χn
)ν

, n ∈ N,

providing (2.26) with

dk,τ =
(−1)k−τ

(α +1)k
s(k,τ) , 0 6 τ 6 k .

Conversely, we have

(χn)
k = (−1)k nk = (−1)k

k

∑
τ=0

S(k,τ){n}(τ)

=
k

∑
τ=0

(−1)k S(k,τ)
(

(−1)τ

(α +1)
τ

)−1

Ξn−τ(τ) , n ∈ N,

whence we attain (2.27) with

d̃k,τ = (−1)k−τ (α +1)
τ

S(k,τ) , 0 6 τ 6 k .

From corollary 2.6 it follows

k

∑
ν=0

Λν (k;x)Dk+ν =
k

∑
τ=0

(−1)k−τ

(α +1)k
s(k,τ)F τ

F k =
k

∑
τ=0

(−1)k−τ (α +1)
τ

S(k,τ)
τ

∑
ν=0

Λν (τ;x)Dτ+ν

, (4.4)

where Λν(k;x) is given by (4.3) and, according to Table 1, F = xD2− (x−α−1)D.

4.3. Bessel case

Let {Pn(·;α)}n∈N with α 6=− n
2 , n∈N, represent a Bessel monic polynomial sequence. Recalling

the information provided in Table 2, it follows from (2.3)-(2.4) Ξn(k) = λ k
n {n+ k}(k) where
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4.3 Bessel case

λ k
n = C(k;α) (2α−1+ k +n)k and C(k,α) = 4−k (2α)2k , for n ∈ N. On the other hand from

Table 1 and following (2.7) we have ωk,ν =
1

(2α−1+ k)
ν

, (with 0 6 ν 6 k ). Therefore the

polynomials defined in (2.6), become like

Λν(k;x) =
(

k
ν

)
C(k;α) (2α−1+ k +ν)k−ν

x2ν P[ν ]
k−ν

(x;α) , 0 6 ν 6 k.

Since, for each integer ν > 1, P[ν ]
n (·;α) = Pn(·,α +ν), n ∈ N, then we have

Λν(k;x) =
(

k
ν

)
C(k;α) (2α−1+ k +ν)k−ν

x2ν Pk−ν(x;α +ν), 0 6 ν 6 k, (4.5)

where

Pk−ν(x;α +ν) =
k−ν

∑
µ=0

(
k−ν

µ

)
2k−ν−µ xµ

(2α−1+ k +ν + µ)k−ν−µ

, 0 6 ν 6 k .

Following (2.1), Y (x) = Pn(x;α) is a solution of the differential equation

k

∑
ν=0

(
k
ν

) {
(2α−1+ k +ν)k−ν

x2ν Pk−ν(x;α +ν)
}

Dk+ν
(
Y (x)

)
= {n}(k) (2α−1+n)k Y (x) , n ∈ N .

Now we face the problem of determining the two sets of coefficients {dk,µ : 0 6 µ 6 k} and
{d̃k,µ : 0 6 µ 6 k} realising the conditions (2.26)-(2.27) for this case. Indeed, the relation (3.17)
presented in remark 3.4 under the particular choice of A = 2α−1, yields

Ξn−k(k) = C(k,α) {n(n+2α−1)}(k;2α−1)

and, on account of (3.4), we deduce

Ξn−k(k) = C(k,α)
k

∑
ν=0

ŝ2α−1(k,ν)
(
n(n+2α−1)

)ν

= C(k,α)
k

∑
ν=0

ŝ2α−1(k,ν)
(
χn
)ν

, n ∈ N,

according to the expression of χn, n ∈ N, given in Table 1. Equating the first and last members
of the previous equalities, we obtain (2.26) with

dk,τ = C(k,α) ŝ2α−1(k,τ) , 0 6 τ 6 k.

Conversely, by virtue of (3.5) we have

(χn)
k =

(
n (n+2α−1)

)k =
k

∑
τ=0

Ŝ2α−1(k,τ) {n (n+2α−1)}(τ;2α−1)

=
k

∑
τ=0

(
C(τ;α)

)−1 Ŝ2α−1(k,τ) Ξn−τ(τ) , n ∈ N,
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4.4 Jacobi case

whence we achieve (2.27) with

d̃k,τ = C(τ;α)−1 Ŝ2α−1(k,τ) , 0 6 τ 6 k.

From corollary 2.6 it follows

k

∑
ν=0

Λν (k;x)Dk+ν =
k

∑
τ=0

C(k,α) ŝ2α−1(k,ν)F τ

F k =
k

∑
τ=0

(
C(τ;α)

)−1 Ŝ2α−1(k,τ)
τ

∑
ν=0

Λν (τ;x)Dτ+ν

(4.6)

where Λν(k;x) is given in (4.5) and F = x2D2 +2(αx+1)D.

4.4. Jacobi case

Let {Pn(·;α,β )}n∈N with α,β 6=−(n+1), α +β 6=−(n+2), n ∈ N, represent a Jacobi monic
polynomial sequence. From (2.3)-(2.4) and based on Table 2, it follows Ξn(k) = λ k

n {n+ k}(k) ,

n ∈ N. Considering the information presented in Table 1 for the Jacobi case, (2.7) becomes like

ωk,ν =
1

(α +β +1+ k)
ν

, (with 0 6 ν 6 k ). Consequently, the polynomial Λν(k;x) , defined in

(2.6), may be expressed like:

Λν(k;x) =
(

k
ν

)
C(k;α,β ) (α +β +1+ k +ν)k−ν

(x2−1)ν P[ν ]
k−ν

(x;α,β )

Since, for each integer ν > 1, P[ν ]
n (·;α,β ) = Pn(·,α +ν ,β +ν), n ∈ N, then we have

Λν(k;x) =
(

k
ν

)
C(k;α,β ) (α +β +1+ k +ν)k−ν

(x2−1)ν Pk−ν(x;α +ν ,β +ν) (4.7)

where

Pk−ν(x;α +ν ,β +ν) =
(−2)k−ν Γ(k +α +1)

Γ(2k +α +β +1)

k−ν

∑
µ=0

{ k−ν

∑
τ=µ

(−2)−τ

(
k−ν

τ

)(
τ

µ

)

×Γ(τ + k +ν +α +β +1)
Γ(τ +α +ν +1)

}
xµ , 0 6 ν 6 k.

Following (2.1), Y (x) = Pn(x;α,β ) is a solution of the following differential equation

k

∑
ν=0

(
k
ν

) {
(α +β +1+ k +ν)k−ν

(x2−1)ν Pk−ν(x;α +ν ,β +ν)
}

Dk+ν
(

Y (x)
)

= {n}(k) (α +β +1+n)k Y (x) , n ∈ N.

23 Ana F. Loureiro



5. some final remarks

The determination of the two sets of coefficients {dk,µ : 0 6 µ 6 k} and {d̃k,µ : 0 6 µ 6 k}
realising the conditions (2.26)-(2.27) for this case is analogous to the corresponding problem in
the Bessel case. In turn, the relation (3.17), with A = α +β +1, yields

Ξn−k(k) = C(k,α,β ) {n(n+α +β +1}(k;α+β+1) , n ∈ N,

and (3.4) permits to write

Ξn−k(k) = C(k,α,β )
k

∑
ν=0

ŝα+β+1(k,ν)
(
n(n+α +β +1)

)ν

= C(k,α,β )
k

∑
ν=0

ŝα+β+1(k,ν)
(
χn
)ν

, n ∈ N .

whence we obtain (2.26) with

dk,τ = C(k,α,β ) ŝα+β+1(k,τ) , 0 6 τ 6 k .

Conversely, due to (3.5) we have

(χn)
k =

(
n (n+α +β +1)

)k =
k

∑
τ=0

Ŝα+β+1(k,τ) {n(n+α +β +1}(τ;α+β+1)

=
k

∑
τ=0

(
C(τ;α,β )

)−1 Ŝα+β+1(k,τ) Ξn−τ(τ) , n ∈ N.

The first and last members of the previous equality correspond to (2.27) if we consider

d̃k,τ =
(
C(τ;α,β )

)−1 Ŝα+β+1(k,τ) , 0 6 τ 6 k.

From corollary 2.6 it follows

k

∑
ν=0

Λν (k;x)Dk+ν =
k

∑
τ=0

C(k,α,β ) ŝα+β+1(k,τ)F τ

F k =
k

∑
τ=0

(
C(τ;α,β )

)−1 Ŝα+β+1(k,τ)
τ

∑
ν=0

Λν (τ;x)Dτ+ν

, (4.8)

where Λν(k;x) is given by (4.7), and F = (x2−1)D2 +
{
(α +β +2)x− (α−β )

}
D .

5. Some final remarks

It might be worthy to bring the attention of a well known result that is, in particular, presented in
[5,21,22] but mostly developed in [22, chapter VI]. Considering the differential operator θ = xD.
It is possible to relate the powers of θ and its “factorials”, say θ j = x jD j, through the following
equalities:

θ
k =

(
xD
)k =

k

∑
j=0

S(k, j)x j D j =
k

∑
j=0

S(k, j)θ j

θk = xk Dk =
k

∑
j=0

s(k, j)
(
xD
) j =

k

∑
j=0

s(k, j) θ
j
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5. some final remarks

In the previous section ( more precisely in (4.2), (4.4) ,(4.6) and (4.8) ) we have shown that
for each of the classical families, we can establish a similar-looking “inversion" formula. For

instance, representing by Fτ :=
τ

∑
ν=0

Λν(τ;x)Dτ+ν , we have determined two sets of coefficients

{dk,τ}06τ6k and {d̃k,τ}06τ6k for each classical family such that

Fk =
k

∑
τ=0

dk,τ F τ and F k =
k

∑
τ=0

d̃k,τ Fτ .

The A-modified Stirling numbers introduced in section 3, could also be called Bessel-Stirling
numbers or Jacobi-Stirling numbers depending on the context and the values of the complex
parameter A. Indeed, in [6] the authors have dealt with the Jacobi polynomials and they have
already used the name Jacobi-Stirling numbers in the same sense as the one presented here.
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