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Abstract. Given a Lie bialgebra (g, g∗), we present an explicit procedure to construct
coisotropic subalgebras, i.e. Lie subalgebras of g whose annihilator is a Lie subalgebra of
g∗. We write down families of examples for the case that g is a classical complex simple Lie
algebra. The construction follows naturally from considerations about pre-Poisson maps
between Poisson manifolds.
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1. Introduction

A Lie bialgebra [5] structure on a Lie algebra (g, [•, •]) is a degree 1 derivation δ of ∧•g
which squares to zero and satisfies δ([X,Y ]) = [δ(X), Y ]+[X, δ(Y )]. Dualizing δ|g : g→ ∧2g
one obtains a Lie bracket on g∗, encoding δ, so that the Lie algebra structures on g and g∗ are
compatible. The aim of this paper is to construct Lie subalgebras h of g with the property
that h◦, the subspace of g∗ consisting of elements that vanish on h, is a Lie subalgebra of
g∗. Such an h is called coisotropic subalgebra.

Our main result (Thm. 4.3) is a explicit and computationally friendly construction that
works for Lie bialgebras arising from r-matrices. Recall that any r-matrix on a Lie algebra
g, i.e. any π ∈ ∧2g such that [π, π] is ad-invariant, gives rise to a Lie bialgebra by setting
δ = [π, •]. Our result can be phrased as follows:

Theorem. Let g be a Lie bialgebra arising from an r-matrix π. Suppose X ∈ g satisfies

[X, [X,π]] = λ[X,π] for some λ ∈ R.
Then the image of the map g∗ → g given by contraction with [X,π] ∈ ∧2g is a coisotropic
subalgebra of g.

We remark that the coisotropic subalgebras that arise as in the theorem are all even
dimensional, therefore they are by no means all coisotropic subalgebras. Using this theorem
we produce in a straightforward way families of coisotropic subalgebras when g is one of the
four classical simple complex Lie algebras or one of their split real forms.

2000 Mathematics Subject Classification: primary 17B62, secondary 53D17.
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We point out a few reasons for the relevance of coisotropic subalgebras. First, via k 7→
k ⊕ k◦ they correspond to lagrangian subalgebras of the Drinfeld double g ⊕ g∗ and hence
give rise to Poisson homogeneous spaces [7]. Second, coisotropic subalgebras are interesting
because they have a counterpart in the Hopf algebra setting after quantization [4].

The paper is organized as follows. In Section 2 we make general considerations about
maps between Poisson manifolds. Given a Lie bialgebra g, making a choice of element g
of a Poisson-Lie group G integrating g, in Section 3 we construct a subspace hg of g. The
considerations of Section 2, applied to the left translation Lg : G → G, imply that if hg

is a Lie subalgebra of g then automatically it is a coisotropic subalgebra. In Section 4 we
restrict our attention to Lie bialgebras arising from r-matrices and elements g of the form
exp(X), proving the theorem stated above. Section 5 is devoted to explicit examples in
which g is a semi-simple Lie algebra.

Acknowledgments: I thank Camille Laurent and Jiang-Hua Lu for helpful conversa-
tions. I am indebted to Alberto Cattaneo and to Francesco Bonechi for remarks that im-
proved the final version of this note. Thanks to Philippe Monnier and Olena Parkhomenko
for a visit to Toulouse in October 2008 that helped complete this work.

This work was partially supported by the Centro de Matemática da Universidade do
Porto, financed by FCT through the programs POCTI and POSI, with Portuguese and
European Community structural funds, and by the FCT program Ciencia 2007.

2. Pre-poisson maps

In this section we make some considerations about maps between Poisson manifolds.
Recall that a Poisson manifold is a manifold P endowed with a bivector field Λ ∈

Γ(∧2TP ) satisfying [Λ,Λ] = 0, where [•, •] denotes the Schouten bracket on multivector
fields. We denote by Λ] : T ∗P → TP the map given by contraction with Λ.

A submanifold C of a Poisson manifold P is called coisotropic if Λ]N∗C ⊂ TC, where
N∗C (the conormal bundle of C) is defined as the annihilator of TC. Here we need a
generalization of the notion of coisotropic submanifold:

Definition 2.1. A submanifold C of a Poisson manifold (P,Λ) is called pre-Poisson [2] if
the rank of TC+Λ]N∗C is constant along C, or equivalently if prNC ◦Λ] : N∗C → TP |C →
NC := TP |C/TC has constant rank.

A map φ : (P1,Λ1)→ (P2,Λ2) between Poisson manifolds is a pre-Poisson map if graph(φ)
is a pre-Poisson submanifold of the product P1× P̄2, where P̄2 denotes the Poisson manifold
(P2,−Λ2).

A map between Poisson manifolds is a Poisson map iff its graph is coisotropic, hence we
see that pre-Poisson maps generalize the notion of Poisson map. We make more explicit
what it means to be a pre-Poisson map.

Lemma 2.2. A map φ : (P1,Λ1)→ (P2,Λ2) is pre-Poisson iff for all x ∈ P1 the rank of

E(x) = {(Λ2 − φ∗Λ1)]ξ : ξ ∈ T ∗φ(x)P2} ⊂ Tφ(x)P2

is constant. Here φ∗ : TxP1 → Tφ(x)P2.
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Proof. Let Γ := graph(φ) ⊂ P1 × P̄2 and x ∈ P1. We have

T(x,φ(x))Γ + (Λ1 − Λ2)]N∗(x,φ(x))Γ = {(X,φ∗X) : X ∈ TxP1}+ {(Λ]1φ
∗ξ,Λ]2ξ) : ξ ∈ T ∗φ(x)P2}

= {(X,φ∗X) : X ∈ TxP1}+ {(0,Λ]2ξ − φ∗(Λ
]
1φ
∗ξ)) : ξ ∈ T ∗φ(x)P2}

= {(X,φ∗X) : X ∈ TxP1}+ {0} × E(x).

A complement of this subspace in T(x,φ(x))(P1×P2) is (0, R(x)), where R(x) is a complement
to E(x) in Tφ(x)P2. Hence Γ is a pre-Poisson submanifold iff R(x), or equivalently E(x),
has constant rank as x varies over all points of P1. �

Remark 2.3. 1) The composition of pre-Poisson maps is not pre-Poisson. Let P1 = (R2, ∂∂x∧
∂
∂y ), P2 = (R2, 0) and P3 = (R2, (1 + x2 + y2) ∂

∂x ∧
∂
∂y ). The identity maps id : P1 → P2

and id : P2 → P3 are pre-Poisson maps (this is seen easily using Lemma 2.2), however the
composition is not.

2) Let P1, P2 be Poisson manifolds and φ : P1 → P2 be a submersive Poisson map. If
C ⊂ P2 is a pre-Poisson submanifold (for example a point), then f−1(C) is a pre-Poisson
submanifold of P1 [3]. When φ is just a submersive pre-Poisson map this statement is
not longer true: the projection φ : (R3,−z2 ∂

∂x ∧
∂
∂y ) → (R2, ∂∂x ∧

∂
∂y ) onto the first two

components is a pre-Poisson map, but φ−1(0) = {(0, 0, z) : z ∈ R} is not a pre-Poisson
submanifold.

From now on we consider only the case when the map φ of Lemma 2.2 is a diffeomorphism.
Then Dy := E(φ−1(y)) defines a singular distribution on P2 which measures how φ fails to
be a Poisson map.

Definition 2.4. Given a diffeomorphism φ : (P1,Λ1)→ (P2,Λ2) between Poisson manifolds,
the deficit distribution associated to φ is the singular distribution on P2 given by

D = {(Λ2 − φ∗Λ1)]ξ : ξ ∈ T ∗P2}.

The deficit distribution D singles out an interesting subalgebra of C∞(P2):

Lemma 2.5. Let φ : (P1,Λ1)→ (P2,Λ2) be a diffeomorphism. Then the set of D-invariant
functions {f : dyf |Dy = 0 for all y ∈ P2} coincides with

(1)
{
f : φ∗{f, g} = {φ∗f, φ∗g} for all g ∈ C∞(P2)

}
,

and is a Poisson subalgebra of C∞(P2).

Proof. Expressing D in terms of hamiltonian vector fields we have D = {XP2
g − φ∗(X

P1
φ∗g) :

g ∈ C∞(P2)}. The claimed equality follows from

dyf(XP2
g − φ∗(X

P1
φ∗g)) = {f, g}y − dφ−1(y)(φ

∗f)XP1
φ∗g = (φ∗{f, g} − {φ∗f, φ∗g})φ−1(y)

for all y ∈ P2.
To show that (1) is a Poisson subalgebra we compute for D-invariant functions f and f̃

on P2 and for g ∈ C∞(P2) that

φ∗{{f, g}, f̃} = {φ∗{f, g}, φ∗f̃} = {{φ∗f, φ∗g}, φ∗f̃}.
Hence using twice the Jacobi identity we obtain

φ∗{{f, f̃}, g} = φ∗{{f, g}, f̃}+ φ∗{f, {f̃ , g}}
= {{φ∗f, φ∗g}, φ∗f̃}+ {φ∗f, {φ∗f̃ , φ∗g}} = {{φ∗f, φ∗f̃}, φ∗g} = {φ∗{f, f̃}, φ∗g}.

�
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Summarizing the results obtained in this section we have

Proposition 2.6. A diffeomorphism φ : (P1,Λ1)→ (P2,Λ2) is a pre-Poisson map iff Λ2 −
φ∗Λ1 is a constant rank bivector on P2, i.e. iff D is a smooth constant rank distribution on
P2. If D is integrable and the leaf space P2/D is smooth, then P2/D has a Poisson structure
induced by the projection map π : P2 → P2/D. In this case the composition π◦φ : P1 → P2/D
is a Poisson map.

Proof. φ is a pre-Poisson map by Lemma 2.2. By the second part of Lemma 2.5 the D-
invariant functions on P2 form a Poisson subalgebra of C∞(P2), so P2/D has an induced
Poisson structure. By the first part of Lemma 2.5 in particular φ∗{f, f̃} = {φ∗f, φ∗f̃} for
all D-invariant functions f, f̃ on P2, so π ◦ φ is a Poisson map. �

3. Coisotropic subalgebras

We recall some notions from the theory of Poisson Lie groups; we refer to the expositions
[13, 11, 12] for more details.

Definition 3.1. A Poisson Lie group is a Lie group G equipped with a Poisson bivector
Λ such that the multiplication map m : G×G→ G is a Poisson map, or equivalently such
that

(2) Λ(gh) = (Lg)∗Λ(h) + (Rh)∗Λ(g) for all g, h ∈ G.

To every element g of the Poisson Lie group G we associate a subspace of its Lie algebra
g as follows:

(3) hg := (ηg)] g∗,

where we use the short-hand notation

(4) ηg := (Lg)∗Λ(g−1) ∈ ∧2g.

The subspace hg is the left-translation to the identity of Tg−1O, where O denotes the sym-
plectic leaf of (G,Λ) through g−1; in particular it is always even dimensional.

The importance of the subspace hg lies in the fact that it generates the deficit distribution
of the left translation Lg : G→ G.

Lemma 3.2. a) Lg : G→ G is a pre-Poisson map.
b) Its deficit distribution is

−→
hg, the right-invariant distribution obtained translating hg ⊂

TeG.

Proof. a) By Prop. 2.6 we have to show that Λ− (Lg)∗Λ is a constant rank bivector on G.
This bivector field at the point k ∈ G is

(5) Λ(k)− (Lg)∗[Λ(g−1k)] = −(Lg)∗(Rk)∗Λ(g−1) = −(Rk)∗ηg,

where we have used (2) applied to Λ(g−1k) in the first equality. For all k ∈ G the map
(Rk)∗ is injective, hence the rank of the above bivector field at k is equal to the rank of ηg,
which is independent of k.

b) The deficit distribution is defined as [Λ− (Lg)∗Λ]]T ∗G. Using (5) we see that at the
point k it is

[(Rk)∗ηg]]T ∗kG = (Rk)∗[(ηg)]g∗] = (Rk)∗hg.
�
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Remark 3.3. We an alternative proof of Lemma 3.2 a). Sincem : G×G→ G is a submersive
Poisson map, the result recalled in Remark 2.3 implies that m−1(i(g)) = graph(i ◦ Lg) is
pre-Poisson as a submanifold of G×G, i.e. that i ◦Lg : G→ Ḡ is a pre-Poisson map. Here
i is the inversion map on G, which viewed as a map i : G→ Ḡ is a Poisson diffeomorphism,
hence it follows that Lg : G→ G is a pre-Poisson map.

Definition 3.4 (Sec. 3.1 of [13]). Let g be a Lie bialgebra. A Lie subalgebra h of g is called
coisotropic1 if its annihilator h◦ is a Lie subalgebra of g∗.

Since we realized
−→
hg as a deficit distribution we obtain

Proposition 3.5. Let G be a Poisson Lie group and g ∈ G. If hg ⊂ g is a Lie subalgebra
then it is automatically a coisotropic subalgebra.

Proof. For any f1, f2 ∈ C∞(G) and X ∈ g we have (see [13], Ch. 2.3)

(6) 〈[def1, def2], X〉 = X{f1, f2}.

Any element of (hg)◦ can be realized as def where f is a function on G which is invariant
along the integrable distribution obtained right-translating hg. This distribution coincides
with the deficit distribution of Lg : G → G by Lemma 3.2 b). Hence, if f1 and f2 are
invariant functions, by Lemma 2.5 {f1, f2} is also invariant. Therefore the right hand side
of (6) vanishes for all X ∈ hg, from which we deduce that [def1, def2] ∈ (hg)◦. �

The set {g ∈ G : hg is a Lie subalgebra} is closed under inversion but is not a subgroup
of G (see Remark 4.7). Further (hg)◦ is usually not an ideal2 in g∗ (see Remark 5.9).

We conclude with two remarks on Poisson actions which will not affect the rest of this
note.

Remark 3.6. The considerations of Lemma 3.2 can be extended to locally free left Poisson
actions (i.e. actions for which σ : G × P → P is a Poisson map, where G × P is equipped
with the product Poisson structure). In this case we obtain:
a) for all g ∈ G, σg : P → P is a pre-Poisson map.
b) the deficit distribution of σg is generated by the infinitesimal action of hg ⊂ g.
If hg is a Lie subalgebra of g and P/Hg is a smooth manifold, where Hg the connected
subgroup of G integrating hg, then P/Hg has a Poisson structure for which the projection
map π : P → P/Hg is Poisson. This is a well-known fact (see Thm. 6 of [14] or Prop. 3.4
of [13]). Prop. 2.6 in addition tells us that π ◦ σg : P → P/Hg is also a Poisson map.

Remark 3.7. Recall that a right Poisson homogeneous space for G is a Poisson manifold X
with a transitive right action X × G → X which is a Poisson map. Consider the action
by left multiplication G on itself, and let g ∈ G so that hg is a Lie subalgebra of g. Then
Hg\G (if smooth), together with the action of G by right multiplication, is a right Poisson
homogeneous space. Further both the projection π and π ◦ Lg : G → Hg\G are Poisson
maps which are equivariant for the G-actions by right multiplication.

1A Lie subalgebra h is coisotropic iff the connected subgroup H integrating it is a coisotropic subgroup
of (G, Λ) (see for instance [4]).

Another equivalent characterization of the fact that h is a coisotropic Lie subalgebra is the following: h

is a coisotropic submanifold of g, endowed with the linear Poisson structure induced by the Lie algebra g∗,
and h◦ is a coisotropic submanifold of the linear Poisson manifold g∗.

2It is an ideal in g∗ iff the connected subgroup integrating it is a Poisson subgroup of (G, Λ) (see for
instance [4]).
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4. Poisson Lie groups arising from r-matrices

Let (G,Λ) be a Poisson Lie group. In this section we determine elements g ∈ G for which
the subspace hg ⊂ g of eq. (3) is a Lie subalgebra, for Prop. 3.5 tells us that then it is a
coisotropic subalgebra.

Lemma 4.1. If [ηg, ηg] = 0 ∈ ∧3g then hg is a Lie subalgebra of g.

Proof. By equation (5) Λ − (Lg)∗Λ equals −−→ηg , the right-invariant bivector on G whose
value at the identity is −ηg. Hence [ηg, ηg] = 0 iff Λ− (Lg)∗Λ is a Poisson bivector. In this
case the right-invariant distribution (Λ− (Lg)∗Λ)] T ∗G is integrable. Hence its value at the
identity, which by Lemma 3.2 b) is hg, is a Lie subalgebra of g. �

Definition 4.2. Let g be a Lie algebra. An r-matrix is an element π ∈ ∧2g such that [π, π]
is ad-invariant.

It is known [6] that if π is an r-matrix for the Lie algebra g then Λ :=←−π −−→π makes G,
any Lie group integrating g, into a Poisson Lie group. From now on we restrict ourselves to
such Poisson Lie groups. Notice that from definition (4) we get

(7) ηg = π −Adgπ.
Now we are able to state the main result of this paper.

Theorem 4.3. Let G be a Poisson Lie group corresponding to an r-matrix π, X ∈ g,
g := exp(X). Assume that

(8) [X, [X,π]] = λ[X,π] for some λ ∈ R.
Then hg is a coisotropic subalgebra of g. Further

(9) hg = [X,π]]g∗.

Proof. Notice that

Adexp(X)π = eadXπ = π+ [X,π] +
1
2

[X, [X,π]] +
1
3!

[X, [X, [X,π]]] + · · · = π+
eλ − 1
λ

[X,π].

Therefore

ηg = π −Adgπ = π − (π +
eλ − 1
λ

[X,π]) = −e
λ − 1
λ

[X,π].

Now we use twice the fact that [π, [X,π]] = 1
2 [X, [π, π]] = 0 (by the graded Jacobi

identity) to show that

[[X,π], [X,π]] = [X, [π, [X,π]]]− [π, [X, [X,π]]] = 0− λ · 0 = 0.

This means that [ηg, ηg] = 0, and by Lemma 4.1 and Prop. 3.5 hg is a coisotropic subalgebra.
The last part of the theorem follows since the function eλ−1

λ never vanishes. �

Remark 4.4. If X ∈ g satisfies condition (8) then Λ =←−π −−→π and
−→
ηg (or

←−
ηg) are commuting

Poisson structures on G. This follows at once from the computations of the proof of Thm
4.3, noticing that ηg is a multiple of [X,π]. Here at usual g := exp(X).

We now display two very simple examples.

Example 4.5. Let g = su(2,R), so that for a suitable basis we have [e1, e2] = e3, [e2, e3] =
1, [e3, e1] = e2, and take the r-matrix π = 2e2 ∧ e3 as in Ex. 2.10 of [13]. Then the only
elements of su(2,R) that satisfy eq. (8) are the multiples X of e1, and applying (9) we see
that they all give hexp(X) = {0}.
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Example 4.6. Let g = sl(2,R), with basis

e1 =
1
2

(
1 0
0 −1

)
, e2 =

1
2

(
0 1
−1 0

)
, e3 =

1
2

(
0 1
1 0

)
.

Then [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = −e2, and π = 2e2 ∧ e3 is an r-matrix (Ex. 2.9 of
[13]). The vectors X of sl(2,R) that satisfy eq. (8) are exactly those of the form αe1+β(e2+
e3) (the upper triangular matrices) and αe1 + β(e2 − e3) (the lower triangular matrices).
Applying Thm. 4.3 we obtain coisotropic subalgebras span{e1, e2 − e3}, span{e1, e2 + e3}
and {0}.

Using (4) one can compute directly all the elements g ∈ G = SL(2 R) for which [ηg, ηg] =
0: they those of the form

(
a b
0 a−1

)
and

(
a 0
c a−1

)
. By Lemma 4.1 and Prop. 3.5 these group

elements g give rise to a coisotropic subalgebra of g. The first class of elements g with b 6= 0
all give rise to span{e1, e2 − e3}, the second class of elements g with c 6= 0 all give rise to
span{e1, e2 + e3}, and the diagonal matrices give rise to the trivial subalgebra {0}, i.e. we
obtain exactly the same coisotropic subalgebras as above.

Remark 4.7. We show that {g ∈ G : hg is a Lie subalgebra} is closed under the inversion
map but not under multiplication. Indeed notice that ηg−1

= −Adg−1ηg by (2), so hg
−1

=
Adg−1hg, and since Adg−1 is a Lie algebra isomorphism the first statement follows.

To show the second statement consider g = sl(2,R) as in Example 4.6. The elements
g = ( 1 1

0 1 ), h =
(

1 0
−1 1

)
of G = SL(2,R) have the property that hg and hh are Lie subalgebras,

by Example 4.6. However ηgh = π −Adghπ = 2(e1 ∧ e2 + 2e2 ∧ e3 − e1 ∧ e3), implying that
hgh is not a Lie subalgebra of g.

5. Examples: semi-simple complex Lie algebras

In this section we consider the standard Lie bialgebra structure on a semi-simple com-
plex Lie algebra, and out of its roots, using Thm. 4.3 we construct families of coisotropic
subalgebras. We write down explicitly3 the resulting families for the classical simple Lie
algebras sl(n+ 1,C), so(2n+ 1,C), sp(2n,C), so(2n,C) and for their split real forms sl(n+
1,R), so(n + 1, n), sp(2n,R), so(n, n). We refer to Ch. 2.6 of [1], to [9] and to [10] for
background material about semi-simple complex Lie algebras and their real forms.

Let g be a semi-simple Lie algebra over C, and fix a Cartan subalgebra h. There is a
decomposition g = h ⊕α∈R gα where gα denotes the one dimensional eigenspace for the
adjoint action of h associated to the “eigenvalue” α ∈ h∗. The set R ⊂ h∗ is called root
system; make a choice R+ of positive roots. For each α ∈ R+ choose non-zero eα ∈ gα and
fα ∈ g−α.

Then an r-matrix is given by

(10) π :=
∑
α∈R+

λαeα ∧ fα

where λα := 1
B(eα,fα) (see Ex. 2.10 of [12]). Notice that, since the subspaces gα are one

dimensional and the Killing form B is C-bilinear, the above r-matrix depends only on the
choice of Cartan subalgebra4.

3One reason for doing this is that we were not able to find any explicit families of examples of coisotropic
subalgebras in the literature.

4It would be interesting to study the variety of Lagrangian subalgebras of the Drinfeld double g ⊕ g∗,
since the coisotropic subalgebras we are constructing in this section are points of this variety. Evens and Lu
[8] study the variety of Lagrangian subalgebras of the direct sum Lie algebra g⊕ g endowed with a natural
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Lemma 5.1. Let X ∈ g and assume that for all α ∈ R+

1) [X, [X, eα]] ∧ fα = 0
2) [X, [X, fα]] ∧ eα = 0
3) [X, eα] ∧ [X, fα] = 0.

Then X satisfies condition (8) (with λ = 0).

Proof. We compute

[X,π] =
∑
α∈R+

λα([X, eα] ∧ fα + eα ∧ [X, fα]),

so
[X, [X,π]] =

∑
α∈R+

λα([X, [X, eα]] ∧ fα + 2[X, eα] ∧ [X, fα] + eα ∧ [X[X, fα]]),

each term of which vanishes by our assumptions. �

Proposition 5.2. Let β ∈ R+ satisfy this condition:

(11) For all α ∈ R : (α+ Zβ) ∩R does not contain a string of 3 consecutive elements.

Then eβ and fβ satisfy condition (8).

Proof. We check that X = eβ satisfies the assumptions of Lemma 5.1; the proof for fβ is
similar. Let α ∈ R.

Suppose that [eβ, [eβ, eα]] 6= 0. Then α, α+ β and α+ 2β form a string of 3 consecutive
elements in (α + Zβ) ∩ (R ∪ {0}). Since the intersection of R with any line through the
origin is either empty or of the form {α,−α} (Prop. 2.20 of [1]) it follows that β = −α. So
[eβ, [eβ, eα]] is a multiple of fα, and assumption 1) of Lemma 5.1 is satisfied.

Similarly, if [eβ, [eβ, fα]] 6= 0, then −α,−α+β and −α+2β form a string of 3 consecutive
elements in (α + Zβ) ∩ (R ∪ {0}), so we must have β = α. So [eβ, [eβ, fα]] is a multiple of
eα, and assumption 2) of Lemma 5.1 is satisfied.

At most one of α+β or α−β lie in R: if they both did then {α−β, α, α+β} would be a
string of 3 consecutive elements in (α+Zβ)∩R, contradicting our assumption. If α−β /∈ R
then either α − β = 0, in which case [eα, eβ] = 0, or [eα, fβ] ∈ gα−β = {0}. A similar
reasoning holds for α+ β, so we conclude that assumption 3) of Lemma 5.1 holds. �

Corollary 5.3. Assume the notation above and assume that β ∈ R+ satisfy condition (11).
Let gR denote g viewed as a real Lie algebra. Then [eβ, π]]gR

∗ and [fβ, π]]gR
∗

• are coisotropic subalgebras of gR
• their complexifications are coisotropic subalgebras of the complex Lie bialgebra g.

Proof. The first statement follows from Prop. 5.2 and applying Thm. 4.3 to gR.
Now choose ẽα ∈ gα and f̃α ∈ g−α to be part of a Chevalley basis (Ch. 2.6 of [1]) of g,

so that
g0 := {h ∈ h : α(h) ∈ R for all α ∈ R+} ⊕α∈R+ spanR{ẽα, f̃α}

is a Lie subalgebra of gR, namely a split real form of g ([10] p. 296). Since π ∈ ∧2g0 and
ẽβ ∈ g0, applying Thm. 4.3 to g0 we deduce that [ẽβ, π]]g0

∗ is a coisotropic subalgebra of
g0. The complexification of [ẽβ, π]]g0

∗ = [ẽβ, π]]gR
∗ coincides with the complexification of

[eβ, π]]gR
∗, hence the second statement follows. �

pairing (for g a semi-simple Lie algebra) and endow it with a Poisson structure. However it seems that our
Drinfeld double g⊕ g∗ is not isomorphic to Evens and Lu’s g⊕ g.
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Our main references for the computation of the examples below are [9](part III) and [15].
Two remarks about the derivation of the examples are in order.

Remark 5.4. 1) We use the fact that the Killing form B(A1, A2) is a non-zero real multiple
of Tr(A1A2) (see Ex. 14.36 of [9]). Since the elements eα and fα we choose are always real
matrices, the bivector π is also real, and the coisotropic subalgebras of gR we obtain are
also coisotropic subalgebras of g ∩Mat(n,R), which agrees with the split real form of g.

2) The coisotropic subspace associated to fβ will be obtained just applying the transpo-
sition map to the one associated to eβ . Indeed in all the examples below the transposition
map •T is an anti-homomorphism of g which switches the eα’s and the fα’s, so it maps π
to −π and [eβ, π] to [fβ, π].

Example 5.5 (An). Let g = sl(n + 1,C) with Cartan subalgebra h given by the diagonal
matrices, so that as roots we obtain R = {Li−Lj}(i 6=j) ⊂ Rn+1, where L1, · · · , Ln+1 denotes
the standard basis of Rn+1. It is easy to check that all roots satisfy assumption (11).

For a root α = Li−Lj with i < j we choose eα := Eij ∈ gLi−Lj and fα := Eji ∈ g−Li+Lj ,
where Eij denotes the matrix with 1 in the (i, j)-entry and zeros elsewhere. We have
π ∼

∑
i<j Eij∧Eji, where “∼” means “is a non-zero real multiple of”. Fix a root β = Li−Lj

with i < j. A computation shows that

[Eij , π] ∼
( ∑
i<k≤j

+
∑
i≤k<j

)
Eik ∧ Ekj = 2

∑
i<k<j

Eik ∧ Ekj − Eij ∧ (Hi −Hj),

where Hi := Eii, so for all i < j we obtain a coisotropic subalgebra of g spanned by
Eij , Hi −Hj , {Ekj}i<k<j and {Eik}i<k<j .

For instance, letting n = 2 and taking eβ = E13 leads to the coisotropic subalgebra
a b c

0 0 d
0 0 −a

 : a, b, c, d ∈ R

 .

The coisotropic subalgebra we obtain from fβ = Eji (i < j) is spanned by

Eji, Hi −Hj , {Eki}i<k<j and {Ejk}i<k<j .
All of the above are also coisotropic subalgebras of the split real form sl(n+ 1,R).

Example 5.6 (Bn). Let g = so(2n + 1,C), with Cartan subalgebra given by the diagonal
matrices. Then R = {±Li±Lj}(i<j)∪{±Li} ⊂ Rn. The roots that satisfy assumption (11)
are exactly those of the form ±Li ± Lj (i < j).

The root space of a root Li−Lj (with i 6= j) is spanned byXij = Ei,j−En+j,n+i. The root
space of a root Li+Lj is spanned by Yij = Ei,j+n−Ej,n+i, the one of −Li−Lj is spanned by
Zij = En+i,j −En+j,i. Finally, the root space of Li is spanned by Ui = Ei,2n+1 −E2n+1,n+i

and the one of −Li is spanned by Vi = En+i,2n+1 − E2n+1,i. As earlier, Eij denotes the
matrix with 1 in the (i, j)-entry and zeros elsewhere. The r-matrix of eq. (10) satisfies

π ∼ 1
2
(∑
i<j

Xij ∧Xji −
∑
i<j

Yij ∧ Zij −
∑
i

Ui ∧ Vi
)
.

Given a root β = Li−Lj (with i < j), a lengthy but straightforward computation shows

[Xij , π] ∼ −2
∑
i<k<j

(
Xik ∧Xkj

)
+Xij ∧ (Hi −Hj).

So for all i < j we obtain a coisotropic subalgebra spanned by
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{Xik, Xkj}(i<k<j), Xij , Hi −Hj

where Hi := Ei,i−En+i,n+i ∈ h. The negative root vector fβ = Xji delivers the coisotropic
subalgebra spanned by

{Xki, Xjk}(i<k<j), Xji, Hi −Hj .

If instead we pick a root β = Li + Lj (with i < j) we obtain

[Yij , π] = −2
∑
i<k 6=j

(Xik ∧ Ykj) + 2
∑
j<k

(Xjk ∧ Yki) + Yij ∧ (Hi −Hj) + 2Ui ∧ Uj ,

giving rise to a coisotropic subalgebra spanned by

{Xik, Ykj}(i<k 6=j), {Xjk, Yki}(j<k), Yij , Hi −Hj , Ui, Uj .

The root −(Li + Lj) (with i < j) delivers the coisotropic subalgebra spanned by

{Xki, Zkj}(i<k 6=j), {Xkj , Zki}(j<k), Zij , Hi −Hj , Vi, Vj .

All of the above are also coisotropic subalgebras of the split real form so(n+ 1, n).

Example 5.7 (Cn). Let g = sp(2n,C). Then, choosing the diagonal matrices as Cartan
subalgebra, R = {±Li ± Lj} ⊂ Rn. The only roots that satisfy assumption (11) are those
of the form ±2Li.

For i 6= j the root space of a root Li − Lj is spanned by Xij = Ei,j − En+j,n+i, as in
Ex. 5.6; the root space of a root Li + Lj is spanned by Yij = Ei,n+j + Ej,n+i, the one of
−Li − Lj is spanned by Zij = En+i,j +En+j,i. Finally, the root space of 2Li is spanned by
Ui = Ei,n+i and the one of −2Li is spanned by Vi = En+i,i. We obtain the r-matrix

π ∼ 1
2

∑
i<j

Xij ∧Xji +
1
2

∑
i<j

Yij ∧ Zij +
∑
i

Ui ∧ Vi.

Let us consider the root 2Li. A computation shows

[Ui, π] ∼
∑
i<k

(Yik ∧Xik) + Ui ∧Hi,

where Hi := Eii − En+i,n+i, so as coisotropic subspace we obtain the span of

{Yik, Xik}i<k, Ui, Hi .

For instance, when n = 2, taking eβ = U2 = E24 and eβ = U1 = E13 we obtain the
coisotropic subalgebras of sp(4,C)


0 0 0 0
0 a 0 b
0 0 0 0
0 0 0 −a

 : a, b ∈ R

 and



a c b d
0 0 d 0
0 0 −a 0
0 0 −c 0

 : a, b, c, d ∈ R

 .

For the root −2Li, whose root space is spanned by Vi, as coisotropic subspace we obtain
the span of

{Zik, Xki}i<k, Vi, Hi .

All of the above are also coisotropic subalgebras of the split real form sp(2n,R).

Example 5.8 (Dn). Let g = so(2n,C). Then R = {±Li ± Lj}{i<j} ⊂ Rn, and the same
computation as in Ex. 5.6 shows that all roots satisfy assumption (11). The root spaces of
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Li−Lj , Li+Lj and −Li−Lj are spanned by elements Xij , Yij and Zij defined by the same
formulae as in Ex. 5.6, and the r-matrix of eq. (10) satisfies

π ∼ 1
2
(∑
i<j

Xij ∧Xji −
∑
i<j

Yij ∧ Zji)

(it consists of the first two summands of the r-matrix for the Bn case).
The same computations as in Ex. 5.6 show that (with i < j) from the root Li − Lj we

obtain the coisotropic subalgebras spanned by

{Xik, Xkj}(i<k<j), Xij , Hi −Hj

and
{Xki, Xjk}(i<k<j), Xji, Hi −Hj ,

whereas from the root Li + Lj we obtain the coisotropic subalgebras spanned by

{Xik, Ykj}(i<k 6=j), {Xjk, Yki}(j<k), Yij , Hi −Hj

and
{Xki, Zkj}(i<k 6=j), {Xkj , Zki}(j<k), Zij , Hi −Hj .

(Here Hi := Ei,i − En+i,n+i). All of the above are also coisotropic subalgebras of the real
form so(n, n).

Remark 5.9. In Example 5.5, taking n = 2 and g = exp(E13), we showed that hg =
spanR{E12, E13, E23, H1 − H3} is a coisotropic subalgebra of sl(3,R). In particular its
annihilator (hg)◦ is a Lie subalgebra, but it is not a Lie ideal. Indeed, taking the basis of
sl(3,R) given by {Eij}(i 6=j), H1 − H2, H1 − H3 and considering the dual basis, we have
(H1 −H2)∗ ∈ (hg)◦ but 〈[(E12)∗, (H1 −H2)∗], E12〉 6= 0.
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