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Abstract. In this note we show that a ring R is left perfect if and only if every left
R-module is weakly supplemented if and only if R is semilocal and the radical of the
countably infinite free left R-module has a weak supplement.

H.Bass characterized in [1] those ring R whose left R-modules have projective covers and
termed them left perfect rings. He characterized them as those semilocal rings which have
a left t-nilpotent Jacobson radical Jac (R). Bass’ semiperfect rings are those whose finitely
generated left (or right) R-modules have projective covers and can be characterized as
those semilocal rings which have the property that idempotents lift modulo Jac(R). Kasch
and Mares transfered in [3] the notions of perfect and semiperfect rings to modules and
characterized semiperfect modules by a lattice theoretical condition as follows: a module
M is called supplemented if for any submodule N of M there exists a submodule L of M
minimal with respect to M = N + L. The left perfect rings are then shown to be exactly
those rings whose left R-modules are supplemented while the semiperfect rings are those
whose finitely generated left R-modules are supplemented. Equivalently it is enough for a
ring R to be semiperfect if the left (or right) R-module R is supplemented. Recall that a
submodule N of a module M is called small, denoted by N � M , if N + L 6= M for all
proper submodules L of M . Weakening the “supplemented”-condition one calls a module
weakly supplemented if for every submodule N of M there exists a submodule L of M with
N + L = M and N ∩ L � M . The semilocal rings R are precisely those rings whose
finitely generated left (or right) R-modules are weakly supplemented. Again it is enough
that R is weakly supplemented as left (or right) R-module. Semilocal rings which are not
semiperfect are examples of weakly supplemented modules which are not supplemented.
In this note we prove that if R is semilocal and the radical of the countably infinite free left
R-module has a weak supplement, then R has to be left perfect, i.e. every left R-module
is supplemented.

Throught this note all rings are associative with unit and modules are considered to be
unital. An ideal I of a ring R is called left t-nilpotent if for any family {ai}i∈N of elements
of R there exists n > 0 such that a1a2 · · · an = 0. A ring R is left perfect if and only if it
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is semilocal and Jac (R) is left t-nilpotent. Recall that an infinite family {Aλ | λ ∈ Λ} of
left ideals of R is called left vanishing if given any sequence a1, a2, . . . , with ai ∈ Aλi

and
λi 6= λj for all i 6= j, there exists a number n ≥ 1 for which a1a2a3 · · · an = 0. Ware and
Zelmanowitz proved in [5, Theorem 1] that for any endomorphism f ∈ End (F ) of a free
module F and endomorphism which belongs to the Jacobson radical Jac (End (F )), the
family {πλ(Im (f))}Λ of left ideals of R is left vanishing. Using this result we can prove
our main theorem:

Theorem 1. The following statements are equivalent for a ring R:

(a) Every left R-module is weakly supplemented;
(b) R(N) is weakly supplemented;
(c) R is semilocal and Rad (R(N)) has a weak supplement in R(N).
(d) R is left perfect.

Proof. (d) ⇒ (a) ⇒ (b) ⇒ (c) is clear and we just need to show (c) ⇒ (d): Set F = R(N)

and denote J = Jac (R). Suppose that R is semilocal and JF = Rad (F ) has a weak
supplement in F . Let L be a weak supplement of JF in F , i.e. JF + L = F and
JF ∩ L � F . Then R = πi(JF + L) = J + πi(L) = πi(L) for any i ∈ N implies that
there exists xi ∈ L such that πi(xi) = 1. Let {ai}i∈N be any family of elements of J
then aixi ∈ JL ⊆ JF ∩ L � F and πi(aixi) = ai for any i ∈ N. Define f : F → F by
f(z) =

∑
i∈N ziaixi for all z ∈ F . Since Im (f) � F , we get by Ware and Zelmanowitz’s

Theorem [5, Theorem 1] that {πi(JL)}i∈N is left vanishing. Thus there exists n > 0 such
that

a1a2 · · · an = π1(a1x1)π2(a2x2) · · · πn(anxn) = 0.

This shows that Jac (R) is left t-nilpotent and hence R is left perfect. �

Let σ[M ] denote the Wisbauer category of a module M , i.e. the full category of R-Mod
consisting of submodules of quotients of direct sums of copies of M . A module M is called
a self-generator if any of its submodules is an image of a direct sum of copies of M .

Corollary 2. Let M be a finitely generated, self-projective, self-generator. Then every
module in σ[M ] is weakly supplemented if and only if End (M) is left perfect.

Proof. By [6, 18.3] M is projective in σ[M ] and by [6, 8.5] M is a generator in σ[M ].
Hence by [6, 46.2] the functor Hom (M,−) is a Morita equivalence between σ[M ] and
End (M)-Mod. Thus every module in σ[M ] is weakly supplemented if and only if every
left End (M)-module is weakly supplemented, which holds if and only if End (M) is left
perfect by the Theorem. �

We finish the paper with a comment on weak supplements of images of endomorphisms.
Recall that a left R-module M is called semi-projective if for any endomorphism f ∈ S =
End (M) we have Sf = Hom (M, Im (f)). The module M is called π-projective if for any
submodules N,L of M with M = N + L we have S = Hom (M,N) + Hom (M,L).

Proposition 3. Suppose M is a semi-projective and π-projective R-module. Then S/Jac(S)
is regular if and only if Im (f) has a weak supplement in M for each f ∈ S.
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Proof. (⇒) Let f ∈ S. By hypothesis there is a g ∈ S such that f − fgf ∈ J(S). We have
Im (f) + Im (1− fg) = M . It is easy to see that Im (f) ∩ Im (1− fg) ⊆ Im (f − fgf),
but since f − fgf ∈ Jac (S) we have Im (f − fgf) � M . Hence Im (1− fg) is a weak
supplement of Im (g) in M .

(⇐) Let f ∈ S and K be a weak supplement of Im (f) in M . Since M is semi-projective
and π-projective we have S = Hom (M, Im (f)) + Hom (M,K) = Sf + Hom (M,K). Since
Sf∩Hom(M,K) = Hom(M, Im (f)∩K) and Im (f)∩K �M , we get Sf∩Hom(M,K) ⊆
Jac (S). Thus Sf has weak supplement for all f , which implies S/Jac (S) being von
Neumann regular by [4, 3.18]. �

The last proposition generalizes [4, 3.18]. Also as a consequence we conclude that the en-
domorphism ring of a semi-projective, π-projective weakly supplemented module is regular
modulo its Jacobson radical.
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