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Abstract

We establish that an exchange economy, i.e., preferences and en-
dowments, that generates a given aggregate excess demand (AED)
function is close to the economy generating the AED obtained by an
arbitrary perturbation of the original one.
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1 Introduction

Genericity results — such as establishing that the set of equilibrium prices
constitutes a manifold of a certain dimension or that the number of regular
equilibria is finite and stable — are obtained by perturbation techniques,
where the underlying primitives (e.g., preferences and endowments) are sub-
jected to infinitesimal changes.

Debreu’s [3] proof of local isolation of regular economies, for example,
requires a perturbation of endowments. Extending this result to critical
economies requires additional effort. Mas-Colell [10, Proposition 8.8.3], who
shows that for a one-dimensional parametrization of economies, a “flat” ag-
gregate excess demand (AED) is not generic in the first agent’s utility, must
resort not only to a perturbation of endowments, but also to a quadratic
perturbation of (indirect) utility.

Part of the challenge, of course, is to show that perturbations of AED
functions correspond to “legal” perturbations of preferences, i.e, perturbed
utility functions must continue to satisfy the canonical properties of utility
functions.

Furthermore, the relation between AED and deeper economic primitives
such as preferences and endowments requires a clear statement. For in-
stance, Allen [1] establishes finiteness for multi-dimensional parametrization
of economies by employing a theorem by Tougeron [13], according to which
local finiteness of the number of pre-images is a generic property of smooth
functions. Notably, Allen uses AED functions as primitives rather than the
agents’ underlying preferences and endowments. Mas-Colell and Nachbar [11]
obtain a comparable result (albeit finiteness of critical equilibria only), but
chose to work with preferences and endowments as their economic primitives.

In this paper, we show that the two approaches to obtaining genericity
results are equivalent in the following sense: we establish that small vari-
ations in deep primitives of an economy, i.e., preferences and endowments,
give rise to small variations in the AED function representing the economy.
Conversely, we also establish that an economy, defined by its deep primi-
tives, that generates a given AED function can be taken to be close to the
economy that generates the AED obtained by an arbitrary perturbation of
the initial AED.1 Indeed, we prove that preferences are related to AEDs by

1Lehmann-Waffenschmidt [9] obtains a result in the same spirit for the family of one-
parametrized exchange economies with an equal number of goods and agents.
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a continuous map. This map is open provided preferences are smooth. This
restriction is not a serious one, however, as continuous preferences can be
approximated by smooth ones.

Our results open wider the door to further genericity and determinacy
research based on transversality arguments since results obtained by direct
perturbation of AED are as strong as results obtained through the often
much more tedious exercise of perturbing preferences and endowments. Cas-
tro and Dakhlia [2], for instance make full use of this result to establish
that generically in the space of preferences and endowments, AED is Thom-
Boardman stratified, a result that requires high-order perturbations that
would have been more difficult to obtain by conventional means. The strat-
ification result, in turn, provides an alternative proof of generic finiteness of
all equilibria, including critical ones.

This paper is organized as follows: in the next section we introduce no-
tation and some preliminary results to be used throughout the paper. In
section 3 we establish results that allow us to use preferences and utilities
interchangeably. Section 4 contains our main theorem concerning how per-
turbations of an AED function are related to perturbations of the underlying
economy, and vice-versa. As a corollary, we prove that, provided the utility
describing the preferences is at least C2, perturbations of AED and of the
corresponding economy are equivalent. The proof of the theorem relies on
several lemmas, which finish the section. In the subsequent section we pro-
vide a simple proof, using convolution with a smooth kernel, that continuous
utility functions may be approximated by smooth ones. The final section
concludes.

2 Preliminary results and notation

Consider an economy with L commodities (ℓ = 1, . . . , L) and I agents (i =
1, . . . , I). Let Ω be the non-negative orthant of R

L and let each agent i be
defined by her endowment ωi ∈ Ω and her preferences %i, a complete order
on Ω with the following “rationality” properties:

(P1) completeness, reflexivity, and transitivity.

If x %i y and y %i x, then x is indifferent to y and we write x ∼i y. If x %i y
but not x ∼i y, then x is strictly preferred to y and we write x ≻i y. We call
the partial preference order ≻i continuous if it satisfies:
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(P2) continuity ({x : y ≻i x} and {y : y ≻i x} are open).

In addition, we shall assume non-satiation and strict convexity:

(P3) non-satiation (x ≥ y (xℓ ≥ yℓ, ∀ℓ = 1, . . . , L) and x 6= y ⇒ x ≻i y);

(P4) strict convexity (x ∼i y and x 6= y ⇒ ∀α ∈ (0, 1), αx + (1− α)y ≻i x).

Let Ξ denote the space of all such preference orders. Following Kannai
[7], every ≻i∈ Ξ may be represented by a unique continuous utility function
ui : Ω → R defined as follows: for any x ∈ Ω, there exists a unique x̂ in the
principal diagonal of Ω such that x ∼i x̂ (i.e., agent i is indifferent between
x and x̂). Then, let ui(x) ≡ ‖x̂‖, where ‖.‖ is the Euclidean norm. Denote
by C∗ the class of utility functions thus defined. We then have a bijective
correspondence between Ξ and C∗.

Let u1, u2 ∈ C∗ represent the preferences ≻1,≻2∈ Ξ of agents 1 and 2.
The metric

ρ(≻1,≻2) = maxx∈Ω

|u1(x) − u2(x)|

1 + ‖x‖2
(1)

induces a topology on Ξ which, as shown by Kannai [7], is natural in the
sense that it is minimal with the property that A ≡ {(x, y,≻) : x ≻ y} is
open in Ω × Ω × Ξ.

The space of utilities C∗ also has a natural topology as a subspace of
C0(Ω, R), the space of continuous functions u : Ω → R. Indeed, it can be
endowed with the subspace topology induced from the compact–open topology
on C0(Ω, R): a basis of open sets for this topology is given by

V (u0; K, ε) = {u : max
x∈K

|u(x) − u0(x)| < ε}

where u0 ∈ C0(Ω, R), K ⊂ Ω is compact and ε > 0. Thus u1 is close to u2 if
the Euclidean distance |u1(x) − u2(x)| is bounded by a small number for all
x in any compact set. In section 3 below we show that the natural topologies
on Ξ and C∗ correspond under the identification of these two spaces.

Denote by Ck(Ω, R) the space of k times continuously differentiable func-
tions u : Ω → R, endowed with the compact–open topology. In particular,
C0(Ω, R) is the space of continuous functions. We denote by Ck ⊂ Ck(Ω, R)
the subspace of utilities, i.e., the functions u : Ω → R of class Ck such that
the associated partial preference order ≻ on Ω satisfies (P1)–(P4). This hap-
pens if and only if u is strictly increasing in each coordinate and strictly
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quasi-concave. The latter condition is equivalent to the level hypersurfaces
of u being strictly convex. Note that Ck = C0 ∩Ck(Ω, R) and that C∗ ⊂ C0.
Correspondingly, we let

Ξk = {≻∈ Ξ : u ∈ Ck}

be the set of preferences that may be represented by utilities in Ck. We shall
define a Ck economy as one defined by preferences ≻∈ Ξk.

Finally, we define a perturbation of a point x0 in a topological space X as
a point x ∈ X which is contained in an arbitrarily small open neighborhood
of the original point x0. Thus, a map between topological spaces f : X → Y
is continuous if and only if, for a perturbation x of any point x0 ∈ X, the
image f(x) is a perturbation of f(x0). Equivalently, this means that the
preimage f−1(V ) ⊂ X is open for any open set V ⊂ Y . Conversely, if for any
perturbation y of f(x0), there is a perturbation x of x0 such that f(x) = y,
then this is equivalent to saying that the map f is open, i.e., f(V ) ⊂ Y is
open for any open set V ⊂ X.

3 Preferences and utilities

The purpose of this section is to show that a perturbation of preferences
corresponds to a perturbation of utility, and vice-versa.

As explained in the previous section, any preference ordering in Ξ can
be represented by exactly one utility function in C∗. Give Ξ the topology
induced by the metric ρ defined in (1) and C∗ the subspace topology induced
from the compact–open topology on C0(Ω, R).

Proposition 3.1. The bijective correspondence between the spaces Ξ and C∗

is a homeomorphism.

Proof. Immediate from Lemmas 3.2 and 3.3.

In light of this proposition, we can henceforth interchangeably work with
preference and C∗-utility perturbations, depending on which is more conve-
nient.

Lemma 3.2. Consider preferences ≻0∈ Ξ represented by a utility function
u0 ∈ C∗. Let u ∈ C∗, representing preferences ≻, be a perturbation of u0.
Then ≻∈ Ξ is a perturbation of ≻0. In other words, the correspondence
C∗ → Ξ is continuous.
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Proof. There exists a constant C, depending only on L = dim Ω, such that
for any u ∈ C∗, one has 0 ≤ u(x) < C‖x‖ (see Kannai [7, p. 798]). We have

∀ x ∈ Ω,
|u(x) − u0(x)|

1 + ‖x‖2
≤

|u(x)| + |u0(x)|

1 + ‖x‖2
≤

2C‖x‖

1 + ‖x‖2
,

which converges to zero as ‖x‖ approaches infinity, that is,

∀ ε > 0, ∃R > 0 : ‖x‖ > R ⇒
2C‖x‖

1 + ‖x‖2
< ε. (2)

Given ε > 0, take K to be the compact set B(0, R), the closure of the ball of
radius R about the origin. Then, for any u such that maxx∈K |u(x)−u0(x)| <
ε, we have by (2) that

ρ(≻,≻0) = maxx∈Ω

|u(x) − u0(x)|

1 + ‖x‖2
< ε.

Lemma 3.3. Consider preferences ≻0∈ Ξ represented by a utility function
u0 ∈ C∗. Let ≻∈ Ξ, represented by a utility u ∈ C∗, be a perturbation of ≻0.
Then u is a perturbation of u0. In other words, the correspondence Ξ → C∗

is continuous.

Proof. We need to establish that for any compact subset K ⊂ Ω,

∀ ε > 0, ∃δ > 0 : ρ(≻,≻0) < δ ⇒ maxx∈K |u(x) − u0(x)| < ε.

From Kannai’s [7, equation 3.2, p. 799], we have

{≻: ρ(≻,≻0) < δ} =

{

≻: maxx≤R

|u(x) − u0(x)|

1 + ‖x‖2
< δ

}

.

Since K is compact, we can choose R such that K ⊂ B(0, R) so that ‖x‖2 ≤
R2. Then

|u(x) − u0(x)| < δ(1 + ‖x‖2) ≤ δ(1 + R2).

In order to have |u(x) − u0(x)| < ε, it suffices to choose δ such that δ <
ε/(1 + R2).
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Given a utility u in C0, there is a unique utility u∗ in C∗ representing the
same preferences as u. This defines a map

π : C0 → C∗.

Let ∆ ⊂ Ω be the principal diagonal; we shall identify R+ with ∆ via t 7→
t · 1√

L
(1, . . . , 1). Write u|∆(t) for the restriction of u to ∆, which is of course

a strictly increasing function. Since, in this notation, u∗ is defined by the
property u∗

|∆(t) = t = ‖t · 1√
L
(1, . . . , 1)‖, we have that

u∗(x) = u−1

|∆ ◦ u(x),

where u−1

|∆ is the inverse function of the restriction of u to ∆. Note that this

shows that u∗ ∈ Ck, whenever u ∈ Ck. Therefore we have the following.

Proposition 3.4. For any k ≥ 0, the space of preferences Ξk which can be
represented by utilities in Ck coincides with the space of preferences which
can be represented by utilities in C∗ ∩ Ck.

4 Perturbations of aggregate excess demand

We now turn to the excess demand of an agent endowed with ωi ∈ Ω. Agent
i solves Utility Maximization Problem (UMP)

maxxi∈Ω ui(x
i) such that p · xi ≤ p · ωi. (3)

Strict convexity of preferences ensures that the solution, xi(p, p·ωi), is unique
and a continuous function of both price vector p and endowment ωi. Non-
satiation guarantees that the budget constraint is binding and can thus be
written as

p · xi = p · ωi ⇔ p · (xi − ωi) = 0. (4)

Geometrically, the constraint is the hyperplane through ωi orthogonal to p,

H(p, ω) = {x ∈ Ω : p · (x − ωi) = 0},

while the solution to the UMP corresponds to the point of tangency between
the level curves of ui and the hyperplane. For smooth level curves, the point
of tangency is located where ∇ui, the gradient of ui, is parallel to p.
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The excess demand for agent i is defined as

zi(p) = xi(p, p · ωi) − ωi,

and the AED for the economy is given by z(p) =
∑n

i=1
zi(p).

The main result of this section, Theorem 4.1, establishes that a perturba-
tion of AED is equivalent to a perturbation of economic primitives, that is,
preferences and endowments. Note that, from the definition of AED, it suf-
fices to consider the perturbation of the excess demand of a single agent. We
will thus drop the agent-specific superscript, when no confusion is possible.

In more formal terms, we are considering the following: for a fixed price
vector p, demand for a given agent (say, the first) is a map

ξ : Ξ × Ω → Ω

(≻, ω) 7→ ξ(≻, ω) = x(p).

Analogously, excess demand is a map

ζ : Ξ × Ω → H(p, 0)

(≻, ω) 7→ ζ(≻, ω) = z(p),

where H(p, 0) is the hyperplane through the origin perpendicular to p. We
can also consider demand and excess demand as maps defined on any of the
spaces of utilities C∗ or Ck and we shall denote these maps by the same letters
ξ and ζ , taking care to make the domain clear in each case. Furthermore, for
a fixed endowment ω, we can think of ξ and ζ as functions of just the utility
u. Thus, for example, we shall use the notation

ξ : C∗ → H(p, ω)

u 7→ ξ(u),

where ξ(u) is the demand x(p) that solves the UMP defined by the utility
u ∈ C∗, and fixed endowment ω and price vector p.

We can now state our main result.

Theorem 4.1. Let z0(p) be the AED for an economy with L goods and I
agents characterized by preferences ≻i

0 satisfying (P1)–(P4) and endowments
ωi

0, i = 1, . . . , L.
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(I) Any perturbation of preferences ≻i
0 and endowments ωi

0 gives rise to a
perturbation of the AED z0(p). In other words, the map ζ : Ξ × Ω →
H(p, 0) is continuous.

(II) Conversely, if the preferences of the first agent can be represented by
a twice continuously differentiable utility, then any perturbation of the
AED z0(p) arises from a perturbation of preferences ≻1

0 and endowment
ω1

0. In other words, the map ζ : Ξ2 × Ω → H(p, 0) is open.

Proof. It is immediate from the definition of AED that it suffices to prove the
analogous statements for the demand function ξ : (≻, ω) 7→ x(p) of a single
agent. The remainder of this section is devoted to this task.

As already observed, demand is continuous in ω and p. From Proposi-
tion 3.1 we know that Ξ and C∗ are homeomorphic. Thus, to establish (I), it
suffices to show that demand is a continuous function of utilities in C∗. Since
C∗ ⊂ C0 is a subspace of the space of all continuous utilities, this follows
from Lemma 4.3.

To prove that demand is an open map, i.e., that sufficiently small pertur-
bations of demand arise from perturbations of preferences and endowments,
we first consider preferences represented by twice continuously differentiable
utilities (not necessarily in C∗). This allows us to prove Theorem 4.4, which
establishes openness of demand as a function of utilities in C2.

Finally, to complete the argument for Ξ2 (identified with C∗ ∩ C2 by
Proposition 3.4), we shall use the constructions and notation of the proof
of Theorem 4.4. Let ū∗ = π|C2(ū) be the C∗ ∩ C2 utility defining the same
preferences as ū. Then ū∗(x) = ‖x̂‖, where x̂ is the unique element of the
principal diagonal of Ω with ū(x) = ū(x̂). Since u ∈ C∗, we have ū∗(x) =
‖x̂‖ = u(x̂). Therefore, for all x ∈ Ω and all ε > 0,

|ū∗(x) − u(x)| ≤ |ū∗(x) − ū(x)| + |ū(x) − u(x)|

= |u(x̂) − ū(x̂)| + |ū(x) − u(x)|

< ε + ε = 2ε,

where the last inequality comes from (9).

We note that part (II) is more restrictive than part (I) since it requires
twice differentiability, whereas part (I) needs only continuity in order to hold.

An immediate consequence is the following:
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Corollary 4.2. Let z0(p) be the AED for a C2 economy with L goods and I
agents characterized by C2-preferences ≻i

0 satisfying (P1)–(P4) and endow-
ments ωi

0, i = 1, . . . , L. An AED z(p) is a perturbation of z0(p) if and only
if z(p) is the AED for an economy with L goods and I agents such that the
new preferences ≻1 of the first agent are perturbations of ≻1

0 and the new
endowments ω1 are perturbations of ω1

0.

Thus, in the context of smooth (at least C2) pure exchange economies, it
is equivalent to perturb AED or the underlying economy.

The remainder of this section is devoted to the statement and proof of all
the results needed in the proof of Theorem 4.1.

Lemma 4.3. Let x be the unique solution to the UMP defined by a utility u
and endowment ω. Then x is a continuous function of u, i.e., ξ : C0 → Ω is
continuous.

Proof. We proceed by contradiction. Let un be a sequence of utility functions
such that as n → +∞, we have un → u. Let xn = xn(p) be the unique
maximum of un on H(p, ω). Assume that the sequence xn does not converge
to x. By compactness of H(p, ω), we may assume that xn → x∗ 6= x, passing
to a subsequence if necessary.

Define δ = |u(x) − u(x∗)|. Then δ > 0 because x is the unique maximum
of u on H(p, ω).

Since un converges uniformly to u on the compact set H(p, ω), the se-
quence of maxima un(xn) converges to the maximum u(x) of u. Thus

∃ N1 ∈ N : n ≥ N1 ⇒ |u(x) − un(xn)| <
δ

3
. (5)

Continuity of u in conjunction with the hypothesis that xn → x∗ implies that

∃ N2 ∈ N : n ≥ N2 ⇒ |u(xn) − u(x∗)| <
δ

3
. (6)

Finally, again by uniform convergence, we have that

∃ N3 ∈ N : n ≥ N3 ⇒ |u(y) − un(y)| <
δ

3
∀y ∈ H(p, ω)

and so, taking y = xn,

∃ N3 ∈ N : n ≥ N3 ⇒ |un(xn) − u(xn)| <
δ

3
. (7)
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Combining (5), (6) and (7), we obtain for n ≥ max{N1, N2, N3} that

δ = |u(x) − u(x∗)|

≤ |u(x) − un(xn)| + |un(xn) − u(xn)| + |u(xn) − u(x∗)| < δ,

which is a contradiction. Hence x∗ = x, proving that demand is a continuous
function of utility.

Theorem 4.4. Consider an agent with endowment ω ∈ Ω and preferences
satisfying (P1)–(P4) that are represented by a C2 utility function u (not
necessarily in C∗). Let demand x0(p) be the unique solution to the UMP (3).
Then a perturbation x̄(p) of x0(p) is the unique solution of the UMP defined
by a perturbation (ū, ω̄) of (u, ω). In other words, ξ : C2 × Ω → Ω is open.

Proof. We shall show that a perturbation of the solution must originate in a
perturbation of utility and endowments. In other words, given ε > 0 and a
compact subset K ⊂ Ω, we must find a δ > 0 such that

‖x̄ − x0‖ < δ

=⇒ ∃(ū, ω̄) : max
x∈K

|ū(x) − u(x)| + ‖ω̄ − ω‖ < ε and ξ(ū, ω̄) = x̄.

At the solution x0(p), the budget constraint (4) is tangent to the indiffer-
ence curve containing x0, which means that the gradient of u at x0, ∇u(x0),
is orthogonal to p · (x − ω) = 0. As such, ∇u(x0) is parallel to p.

Let x̄(p) be a perturbation of x0(p), say ‖x̄−x0‖ < δ for small δ > 0. If x̄
does not satisfy the budget constraint, we perturb ω, in the direction of p, to
ω̄ so that p · (x̄ − ω̄) = 0. In addition, since p remains unchanged, ω̄ is such
that the hyperplane described by p · (x − ω̄) = 0 is parallel to the original
one. Note that ‖ω̄−ω‖ ≤ ‖x0− x̄‖. Denote the solution to the UMP defined
by u and the new restriction by x′

0(p). We have

‖x′
0 − x̄‖ ≤ ‖x′

0 − x0‖ + ‖x0 − x̄‖,

where ‖x0 − x̄‖ < δ and ‖x′
0 − x0‖ can be made small by uniform continuity

of the demand with ω in the compact set K, since ‖ω̄ − ω‖ ≤ ‖x0 − x̄‖ < δ.
Hence, x̄ is also a perturbation of x′

0 and we can henceforth suppose that
the demand for the unperturbed problem and x̄ belong to the same budget
constraint, dropping the use of the prime.
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It remains to show that we can perturb the utility so that x̄(p) is the
solution to the UMP.

Fix a δ1 > 0 such that the closed ball B(x0, 2δ1) of radius 2δ1 centered at
x0 is contained in Ω. For a given x̄ such that ‖x̄−x0‖ < δ1, define Φ : Ω → Ω
by

Φ(x) = x − ϕ(‖x − x0‖)(x̄ − x0),

where ϕ : R → R is constant and equal to 1 for 0 ≤ t ≤ δ1, ϕ(t) is
constant and equal to zero for t ≥ 2δ1 and ϕ(t) is smooth and decreasing for
δ1 ≤ t ≤ 2δ1. (See Figure 1.)

δ1 δ12

1

t

φ

Figure 1: Graph of a function satisfying the conditions imposed on ϕ.

Note that there are constants A and B such that

|ϕ′(t)| ≤
A

δ1

and |ϕ′′(t)| ≤
B

δ2
1

(8)

for some constants A and B. Clearly, Φ is the identity for ‖x − x0‖ ≥ 2δ1

and a translation by x̄ − x0 for ‖x − x0‖ ≤ δ1.
Next, define

ū(x) = u(Φ(x)) = u(x − ϕ(‖x − x0‖)(x̄ − x0)).

We shall show that, for ‖x̄− x0‖ sufficiently small, the function ū is a utility
in C2 with associated demand x̄.

We have

ū(x̄) = u(Φ(x̄)) = u(x̄ − ϕ(‖x̄ − x0‖)(x̄ − x0))

= u(x0)

and ∇ū(x̄) = ∇u(x0) (see Lemma 4.5 below). The level hypersurface of ū at
x̄ is thus tangent to p · (x − ω) = 0 and hence, x̄ is a solution to the UMP
defined by ū.
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Since u is uniformly continuous on the compact set

B(x0, 2δ1) ∪ Φ(B(x0, 2δ1)),

there is a δ > 0 such that, for all x and x′ in this set,

‖x′ − x‖ < δ =⇒ |u(x′) − u(x)| < ε.

On the other hand, it is clear from the definition of Φ that ‖Φ(x) − x‖ ≤
‖x̄ − x0‖ for all x. Hence, for x̄ such that ‖x̄ − x0‖ < δ, we have

|ū(x) − u(x)| = |u(Φ(x)) − u(x)| < ε ∀x ∈ Ω. (9)

Lemmas 4.6 and 4.7 below show that, by further decreasing δ if necessary,
we can guarantee that ū is increasing in x and that its indifference curves are
strictly convex, thus ensuring that the underlying preferences satisfy (P1)–
(P4), thereby completing the proof.

Lemma 4.5. Let δ < δ1 and ‖x̄− x0‖ < δ. Let u and ū be as defined in the
proof of Theorem 4.4. Then we have ∇u(x0) = ∇ū(x̄).

Proof. We use the definition of ū to calculate partial derivatives and obtain

∂ū

∂xj

(x) =

L
∑

i=1

∂u

∂xi

(Φ(x))
∂Φi

∂xj

(x)

and
∂Φi

∂xj

(x) = δij − ϕ′(‖x − x0‖)(x̄i − x0i)
∂‖x − x0‖

∂xj

,

where δij = 1 if i = j and δij = 0 otherwise. At x = x̄, ϕ′(‖x̄ − x0‖) = 0
because ϕ(‖x̄ − x0‖) = 1 for 0 ≤ ‖x̄ − x0‖ ≤ δ1. Hence,

∂ū

∂xj

(x̄) =
∂ū

∂xj

(Φ(x̄)) =
∂ū

∂xj

(x0).

Lemma 4.6. There is a δ > 0 such that the following holds. For ‖x̄−x0‖ < δ,
let ū be as defined in the proof of Theorem 4.4. Then ū is increasing in each
of its arguments.
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Proof. From the proof of Lemma 4.5, we know that

∂ū

∂xj

(x) =

L
∑

i=1

∂u

∂xi

(Φ(x))
∂Φi

∂xj

(x) (10)

and
∂Φi

∂xj

(x) = δij − ϕ′(‖x − x0‖)(x̄i − x0i)
∂‖x − x0‖

∂xj

= δij − ϕ′(‖x − x0‖)(x̄i − x0i)
xj − x0j

‖x − x0‖
.

(11)

By taking ‖x̄ − x0‖ < δ, we have
∣

∣

∣

∣

ϕ′(‖x − x0‖)(x̄i − x0i)
xj − x0j

‖x − x0‖

∣

∣

∣

∣

≤ |ϕ′(‖x − x0‖)(x̄i − x0i)|

≤
A

δ1

δ.

(12)

Again, if ‖x − x0‖ ≤ δ1 or ‖x − x0‖ ≥ 2δ1, we have

∂ū

∂xj

(x) =
∂u

∂xj

(Φ(x)).

Otherwise, x is in the compact annular region

{x ∈ Ω : δ1 ≤ ‖x − x0‖ ≤ 2δ1}

bounded by the discs of radius δ1 and 2δ1. In this compact set ∂u
∂xj

is bounded

away from zero (as u is increasing in each of its arguments), and the absolute
value of the partial derivatives ∂u

∂xi
is bounded for i 6= j. Hence, if the absolute

value of ∂Φi

∂xj
is sufficiently small for i 6= j and close to one for i = j, then the

jth term of the sum (10) dominates, and we obtain

∂ū

∂xj

(x) > 0.

for all x. It follows from (11) and (12) that this can be achieved by choosing
δ > 0 sufficiently small.

Lemma 4.7. There is a δ > 0 such that the following holds. For ‖x̄−x0‖ < δ,
the indifference curves of ū as defined in the proof of Theorem 4.4 are convex.
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Proof. From Thorpe [12], we know that the normal curvature of a level hyper-
surface of a function u in the direction of a vector v (‖v‖ = 1) perpendicular
to ∇u(x) is given by

−
1

‖∇u(x)‖
< v, Hu(x)v >,

where Hu(x) is the Hessian of u at x and < v, Hu(x)v > represents the
quadratic form defined by Hu(x) (see [12, exercise 2.1] and Gladiali and
Grossi [5, section 2]). Thus, the convexity of the level hypersurfaces of u is
equivalent to Hu(x) being positive definite for all x. We shall show that, for
δ sufficiently small, ‖x̄ − x0‖ < δ implies the entries of Hū(x) are close to
the entries of Hu(Φ(x)). Hence, Hū(x) is also positive definite and the level
hypersurfaces of ū are therefore convex.

By differentiating the first derivatives obtained in the proof of Lemma
4.5, we obtain

∂2ū(x)

∂xk∂xj

=
∂

∂xk

[

L
∑

i=1

∂u

∂xi

(Φ(x))
∂Φi

∂xj

(x)

]

=

=
∑

i,l

∂2u

∂xl∂xi

(Φ(x))
∂Φl(x)

∂xk

∂Φi(x)

∂xj

+
∑

i

∂u

∂xi

(Φ(x))
∂2Φi(x)

∂xk∂xj

=

=
∂2u

∂xk∂xj

(Φ(x)) +
∂2u

∂xk∂xj

(Φ(x))[ϕ′(‖x − x0‖)]
2.

.(x̄ − x0)j(x̄ − x0)k

∂‖x − x0‖

∂xk

∂‖x − x0‖

∂xj

+

+
∑

i6=j,l 6=k

∂2u

∂xl∂xi

(Φ(x))
∂Φl(x)

∂xk

∂Φi(x)

∂xj

+
∑

i

∂u

∂xi

(Φ(x))
∂2Φi(x)

∂xk∂xj

.

Note that
∂2Φi(x)

∂xk∂xj

depends on terms of the form (x̄−x0)j . Note also that for x such that either
0 ≤ ‖x−x0‖ ≤ δ1 or ‖x−x0‖ ≥ 2δ1, the derivatives of ϕ are zero (because ϕ
is constant) and therefore, the second derivatives of u and ū coincide. Since

{x ∈ Ω : δ1 ≤ ‖x − x0‖ ≤ 2δ1}
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is compact, the derivatives of u are bounded. We may then use our choice of
δ < δ1 to bound the remaining derivatives in the same way as in the proof of
Lemma 4.6, so that the products involving derivatives of ϕ, and hence of Φ,
become small.

5 Smooth approximation of continuous utili-

ties

It was proved by Kannai [8] that any preference in Ξ can be appoximated
arbitrarily well by a preferences represented by a smooth utility function.
Here, using convolution as an alternative method, we extend this result to
show that any C0 utility function can appoximated arbitrarily well by a
smooth one. This shows that the restriction to C2 economies in (II) of
Theorem 4.1 is a minor one.

Let f : R
n → R be a function. Then the notation x > y means, as usual,

that
∃ i : xi > yi and xj ≥ yj, for i 6= j.

In the proof of Theorem 5.2, we need the following:

Lemma 5.1. Let f : R
n → R be continuous and such that x > y ⇒ f(x) >

f(y). Then f is strictly quasi-concave if and only if f is strictly concave on
chords of level sets, that is, if x1, x2 are such that f(x1) = f(x2) we have

∀ λ ∈ (0, 1) : f(λx1 + (1 − λ)x2) > λf(x1) + (1 − λ)f(x2). (13)

Proof. The if part of the statement is trivial. To show the converse, suppose
that (13) holds. Note that λf(x1) + (1− λ)f(x2) = f(x1) = f(x2). We want
to show that

∀ λ ∈ (0, 1) ∀ x, y f(λx + (1 − λ)y) = f(yλ) > min {f(x), f(y)},

which holds trivially if f(x) = f(y). Let f(x) 6= f(y) and assume f(x) <
f(y). Denote by Lz = {x : f(x) = f(z)} the level set of z. By monotonicity,
Lx ∩ Ly = ∅.

Take w ∈ Ly such that w > x, that is, f(w) > f(x). Consider the points
on the segment connecting x to w,

wt = tx + (1 − t)w, for t ∈ (0, 1).

17



By monotonicity, Lwt
lies between Lx and Lw and f(wt) > f(x). Since

yλ ∈ Lwt
for some t, we have f(yt) > f(x), concluding the proof.

Theorem 5.2. Let u ∈ C0 be a utility representing preferences that satisfy
(P1)–(P4). Endow C0 with the uniform norm on compact sets. There exists
a C∞ perturbation ũ of u representing preferences that satisfy (P1)–(P4).

Proof. We need to show that u can be uniformly approximated on compact
subsets by ũ which is C2, strictly quasi-concave and increasing in each coor-
dinate.

We use a convolution kernel or mollifier, θε : R
L → R, as in Hirsch [6,

Chapter 2], or Ghomi [4]. The mollifier is a non-negative function which
takes the value zero outside a ball of radius ε > 0 and such that

∫

RL θε = 1.
An explicit construction for such a θε is given in Ghomi [4]. Define

ũ(x) =

∫

RL

u(x − y)θε(y)dy.

Hirsch [6, Theorem 2.3] asserts that ũ and u are close on compact sets.
Note that we can use Tietze’s theorem to extend u to a continuous func-

tion on a neighborhood of Ω and this guarantees that ũ is smooth in Ω.
However, since we cannot control convexity and monotonicity properties of
the extension of u, we shall additionally require a modification of θε for the
arguments below to be correct: by a translation in the argument of θε we can
achieve that it has support in the non-negative orthant of R

L, and this mod-
ification guarantees that the various integrands vanish when the argument
of u is outside of Ω.

Since u is strictly quasi-concave, using Lemma 5.1, we have, for λ ∈ (0, 1)
(cf. Ghomi [4, p. 2257]),

ũ(λx1 + (1 − λ)x2) =

∫

RL

u(λx1 + (1 − λ)x2 − y)θε(y)dy

=

∫

RL

u(λ(x1 − y) + (1 − λ)(x2 − y))θε(y)dy

>

∫

RL

[λu((x1 − y) + (1 − λ)u(x2 − y)] θε(y)dy

= λũ(x1) + (1 − λ)ū(x2).

Again by Lemma 5.1, ũ is strictly quasi-concave and, since monotonicity is
preserved by integration, it is monotonous.
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Corollary 5.3. The space Ξ∞ of smooth preferences is dense in the space Ξ
of all continuous preferences.

Proof. This follows by applying Theorem 5.2 to utilities in C∗ and using the
same argument as in the last paragraph of the proof of Theorem 4.1.

6 Conclusion

We clarify the relation between AED functions and the underlying economic
primitives of agent preferences and endowments by showing that perturba-
tions of one correspond to perturbations of the other. While our results are
stated for smooth economies only, we show that these are dense among all
continuous economies.

Furthermore, our results imply that the Sonnenschein-Mantel-Debreu re-
sults (roughly, if it “looks” like an AED, it is an AED for some economy) are
stable in the following sense: the economy underlying a perturbed AED func-
tion can be taken to be close to the economy underlying the original AED.
Last but not least, the two economies only need to differ in the preferences
and endowments of the first agent.
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