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Abstract. We study functions defined in (n + 1)-dimensional domains that
are invariant under the action of a crystallographic group. We give a com-
plete description of the symmetries that remain after projection into an n-
dimensional subspace and compare it to similar results for the restriction to a
subspace. We use the Fourier expansion of invariant functions and the action
of the crystallographic group on the space of Fourier coefficients. Intermediate
results relate symmetry groups to the dual of the lattice of periods.

1. Introduction

We study real functions with domain Rn+1 that are invariant under the action of
a crystallographic group Γ, whose subgroup of translations is a lattice L. We work
in XΓ, the space of Γ-invariant functions, that in particular are L-periodic, and
that have formal Fourier expansion in terms of the waves ωk(x, y) = e2πi<k,(x,y)>,
with x ∈ Rn and y ∈ R, k ∈ Rn+1.

A crystallographic group Γ is a subgroup of the Euclidean group E(n + 1), the
semi-direct product E(n+1) ∼= Rn+1

⋉O(n+1). We denote its elements γ = (v, δ),
where v ∈ Rn+1 and δ ∈ O(n+1). We identify all elements of the form (v+l, δ) ∈ Γ,
l ∈ L and denote them all by (vδ, δ).

Given α ∈ O(n), we define the elements of O(n + 1):

σ =

(

Idn 0
0 −1

)

, α+ =

(

α 0
0 1

)

and α− = σα+ =

(

α 0
0 −1

)

.

For y0 > 0, consider the region in Rn+1 lying between the hyperplanes y = 0
and y = y0. The projection operator Πy0

integrates f along the width y0, yielding
a new function with domain Rn:

Πy0
(f)(x) =

∫ y0

0

f(x, y)dy.

Our main result, Theorem 1.1, relates the symmetry of the functions f ∈ XΓ to
the symmetry of the projected functions Πy0

(f) in the space Πy0
(XΓ):

Theorem 1.1. All functions in Πy0
(XΓ) are invariant under the action of (vα, α) ∈

Rn
⋉ O(n) if and only if one of the following conditions holds:

(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, y0), α−) ∈ Γ,

(III) (0, y0) ∈ L and either ((vα, y1), α+) ∈ Γ or ((vα, y1), α−) ∈ Γ, for some
y1 ∈ R .
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Consider the subgroup Γ0 of elements of Γ with orthogonal part α± for some
α ∈ O(n) of the form

(

(vα, yα),

(

α 0
0 β

))

with β = ±1

and let Γπ be the subgroup of Γ0 given by:

• If (0, y0) 6∈ L then Γπ contains those elements of Γ0 where either yα = 0
with β = 1 or where yα = y0 with β = −1.

• If (0, y0) ∈ L then Γπ = Γ0.

The following corollary to Theorem 1.1 states that the elements in Γ that effec-
tively contribute to the symmetry of Πy0

(XΓ) are those in Γπ. It also describes
how elements of Γπ are transformed by the projection:

Corollary 1.1. Let Σ be the group of symmetries of Πy0
(XΓ), i.e., the largest

subgroup of E(n) ∼= Rn
⋉ O(n) that fixes all the elements in Πy0

(XΓ). Then Σ is
the image of Γπ by the homomorphism

Γ0 −→ E(n) ∼= Rn
⋉ O(n)

(

(vα, yα),

(

α 0
0 β

))

7−→ (vα, α)

whose kernel is given by elements such that vα = 0 and α = Idn.

The result was motivated by the study of patterns in reaction-diffusion experi-
ments on thin layers, where the observation method carries information from the
depth of a layer and thus corresponds to a projection whose role in the formation
of a pattern is not always clear (see De Kepper et al. [6], Borckmans et al. [2]
and other articles by the same authors). Gomes [8] proposes that some of these
patterns may arise as the projection of a three-dimensional structure. Knowledge
of projected patterns is useful when deciding whether this is the case, as in Zhou
et al. [15]. When the thickness of the layer acts as a bifurcation parameter, as ob-
served by De Kepper et al. [6], then the symmetries of the pattern may be subject
to change as thickness varies.

Restricting a pattern to a slice allows its visualisation in a lower dimension. In
Parker et al. [11], for instance, patterns are drawn through restriction to a hyper-
plane, but projecting a slice would codify more of its symmetries since invariant
functions when restricted to a hyperplane have less symmetry than their projec-
tions, as we show in Theorem 5.1 in section 5, below.

Symmetries that do not remain after projection may give rise to structures of the
projected functions that cannot be described as the invariance under an element of
the Euclidean group. An illustrative example of the second case is the quasiperiodic
structure obtained by the canonical projection of a periodic one, see Senechal [13,
section 2.6].

Structure of the paper. After definitions, notation and some preliminary results
in section 2, the bulk of the paper contains the proof of Theorem 1.1. Each one of
the conditions (I), (II) and (III) of Theorem 1.1 is sufficient by basic properties of
the integrals. Thus, we omit the proof of sufficiency for Theorem 1.1, see Pinho [12]
for details.

In order to prove that the conditions of Theorem 1.1 are necessary we establish
first, in Proposition 3.1, an equivalence between the (vα, α)-invariance of all the
functions in Πy0

(XΓ) and properties of Γ and of the dual lattice L∗. This is done
in section 3 using the induced action of Γ in the space of Fourier coefficients of Γ-
invariant functions, that appears as relations on the coefficients that may be traced
after projection.
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Then, in section 4, we show that these properties impose restrictions on Γ and
on L by implying the presence of some particular elements in Γ, establishing The-
orem 1.1.

Finally, in section 5 a similar study is carried out for the symmetries of the
restriction of invariant function to a hyperplane. This is useful in comparing the
restriction and projection of a pattern. The main result of this section, Theorem 5.1,
may be proved using simpler versions of the arguments developed for the projection.

The formulation of the results for sufficiently large spaces of Γ-invariant functions
highlights their common characteristic, the symmetry.

2. Notation and Preliminary Results

The reader is referred to Armstrong [1] for results on Euclidean and plane crys-
tallographic groups, to Senechal [13] and Miller [10] for results on lattices and
crystallographic groups and to Golubitsky et al. [7] for results on symmetry. A
detailed description appears in Pinho [12].

The action of an element (v, δ) of the Euclidean group E(n+1) on (x, y), x ∈ Rn,
y ∈ R is given by (v, δ) · (x, y) = v + δ(x, y) with the group operation (v1, δ1) ·
(v2, δ2) = (v1 + δ1v2, δ1δ2), for (v1, δ1), (v2, δ2) ∈ E(n + 1).

A crystallographic group Γ ≤ E(n + 1) with lattice L is a group such that the
orbit of the origin by translations {v : (v, Idn+1) ∈ Γ} is a Z-module generated
by n + 1 linearly independent vectors l1, . . . , ln+1 ∈ Rn+1: L = {l1, . . . , ln+1}Z =
{

∑n+1
i=1 mili : mi ∈ Z

}

. We also use the symbol L for the subgroup of translations

of Γ isomorphic to (L, +).
The projection (v, δ) 7−→ δ, of Γ into O(n+1), has kernel L. Its image, J = {δ :

(v, δ) ∈ Γ for some v ∈ Rn+1}, called the point group of L, is isomorphic to the
finite quotient Γ/L and is a subgroup of the holohedry of L, the largest subgroup
of O(n + 1) that leaves L invariant. Thus, JL = {δl : δ ∈ J, l ∈ L} = L.

The set of all the elements in Γ with orthogonal component δ ∈ J is the coset
L · (v, δ) = {(l + v, δ) : l ∈ L} for any v ∈ Rn+1 such that (v, δ) ∈ Γ. We use the
symbol (vδ, δ) for any element of that coset, i.e., vδ is the non-orthogonal component
of (v, δ) ∈ Γ defined up to elements of L. The group Γ is thus characterized by the
n + 1 generators of L plus a finite number of elements (vδ, δ), with δ ∈ J.

The action of Γ in Rn+1 induces the scalar action on functions: (γ · f)(x, y) =
f(γ−1 · (x, y)) for γ ∈ Γ and (x, y) ∈ Rn+1, see Melbourne [9]. A function f is
Γ-invariant if (γ · f)(x, y) = f(x, y), for all γ ∈ Γ and all (x, y) ∈ Rn+1.

The dual lattice of L is the set of all the elements k ∈ Rn+1 such that ωk is
L-periodic, given by L∗ = {k ∈ Rn+1 :< k, li >∈ Z, i = 1, . . . , n + 1}, where
< ·, · > denotes the usual inner product in Rn+1. It may be written as L∗ =
{l∗1, . . . , l

∗
n+1}Z, where l∗i ∈ Rn+1 is the dual basis satisfying < l∗i , lj >= δij for all

i, j ∈ {1, . . . , n + 1}. The lattices L and L∗ have the same holohedry.
The formal Fourier expansion of a function f ∈ XΓ is

f(x, y) =
∑

k∈L∗

ωk(x, y)C(k)

where C : L∗ −→ C are the Fourier coefficients. We assume that in XΓ this
expansion is unique. For a real function f we have C(k) = C(−k). From the action
of Γ on XΓ we get:

(vδ, δ) · f(x, y) =
∑

k∈L∗ ωδk(x, y)ωδk(−vδ)C(k), by orthogonality of δ,
=

∑

k∈L∗ ωk(x, y)ωk(−vδ)C(δ−1k), because δL∗ = L∗.
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By the unicity of the Fourier expansion, this induces an action of Γ on the space
of Fourier coefficients (vδ, δ) · C(k) = ωk(−vδ)C(δ−1k). Analogously, the (vδ, δ)-
invariance of f implies C(k) = ωk(−vδ)C(δ−1k) for all its Fourier coefficients.

The simplest Γ-invariant functions are the real and imaginary components of
Ik(x, y) =

∑

δ∈J
ωδk(x, y)ωδk(−vδ), for k ∈ L∗, and we will assume that they lie in

XΓ. Each function Ik, for k ∈ L∗, is the sum of the elements in the Γ-orbit of ωk.
If f ∈ XΓ then the projected function satisfies Πy0

(f)(x) =
∫ y0

0

∑

k∈L∗ ωk(x, y)C(k)dy.
When the integral and the summation commute, then

Πy0
(f)(x) =

∑

k∈L∗

∫ y0

0 ωk(x, y)C(k)dy
=

∑

k∈L∗ ωk1
(x)C(k1, k2)

∫ y0

0
ωk2

(y)dy,

where k = (k1, k2), with k1 ∈ Rn and k2 ∈ R. Grouping terms with common n
first components in L∗, we obtain

Πy0
(f)(x) =

∑

k1∈L∗
1
ωk1

(x)
∑

k2:(k1,k2)∈L∗ C(k1, k2)
∫ y0

0 ωk2
(y)dy

=
∑

k1∈L∗
1
ωk1

(x)D(k1),

where L∗
1 = {k1 : (k1, k2) ∈ L∗} and D(k1) =

∑

k2:(k1,k2)∈L∗ C(k1, k2)
∫ y0

0
ωk2

(y)dy.

Note that the coefficients D(k1) depend on y0.
The functions Πy0

(f) may be invariant under the action of some element (vα, α)
of E(n) ∼= Rn

⋉ O(n). For f ∈ XΓ this is equivalent to
∑

k1∈L∗
1

ωk1
(x)D(k1) =

∑

k1∈L∗
1

ωk1
(α−1x)ωk1

(−α−1vα)D(k1).

This equation imposes restrictions on the coefficients D(k1), see Lemma 3.3 below.
Summarising, we assume XΓ is a vector space of functions such that:

(1) Γ is a (n+1)-dimensional crystallographic group with lattice L, dual lattice
L∗ and point group J,

(2) if f ∈ XΓ then:
(i) f : Rn+1 −→ R is Γ-invariant,
(ii) f has a unique formal Fourier expansion in waves ωk(x, y), k ∈ L∗,
(iii) the integral and the summation commute in the projection of f ,

(3) Re(Ik), Im(Ik) ∈ XΓ for all k ∈ L∗ with Ik(x, y) =
∑

δ∈J
ωδk(x, y)ωδk(−vδ).

3. Symmetry of Πy0
(XΓ) Related to Γ and L∗

For simplicity of notation we write (v+, α+) for (vα+
, α+) and (v−, α−) for

(vα−
, α−). The simultaneous presence of the reflection (vσ, σ) and of (v+, α+)

in a group Γ imposes strong restrictions on L∗. One of these restrictions is the
subject of the next Lemma.

Lemma 3.1. If both (vσ, σ) ∈ Γ and (v+, α+) ∈ Γ then 2(σv+ − v+) ∈ L.

Proof. Since (vσ, σ) · (v+, α+) = (vσ + σv+, α−) and (v+, α+) · (vσ , σ) = (v+ +
α+vσ, α−), then v = vσ +σv+ − v+ −α+vσ ∈ L. As σL = L then v−σv = 2(σv+ −
v+)+(Idn+1−α+−σ+α−)vσ also belongs to L. Using −α+−σ+α− = −Idn+1 we get
v − σv = 2(σv+ − v+) or, equivalently, 2 < k, σv+ − v+ >∈ Z for all k ∈ L∗. �

Proposition 3.1. All functions in Πy0
(XΓ) are invariant under the action of

(vα, α) ∈ Rn
⋉ O(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ and
for each k ∈ L∗ either < k, (0, y0) >∈ Z − {0} or < k, v+ − (vα, 0) >∈ Z,

(B) (v−, α−) ∈ Γ and
for each k ∈ L∗ either < k, (0, y0) >∈ Z − {0} or < k, v− − (vα, y0) >∈ Z,
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(C) both (vσ, σ) ∈ Γ and (v+, α+) ∈ Γ. Moreover, if < k, σv+ − v+ >∈ Z then
one of the conditions (Ci), (Cii) or (Ciii) below holds and, if < k, σv+ −
v+ > + 1

2 ∈ Z, one of the conditions (Ci) or (Civ) holds:
(i) < k, (0, y0) >∈ Z − {0},
(ii) < k, v+ − (vα, 0) >∈ Z,
(iii) < k, vσ − (0, y0) > + 1

2 ∈ Z,
(iv) < k, v− − (vα, y0) >∈ Z and

either < k, vσ − (0, y0) > + 1
4 ∈ Z or < k, vσ − (0, y0) > − 1

4 ∈ Z.

A more concise formulation of this result is possible using the subsets of L∗ that
we proceed to define. Let M∗, M∗

+ and M∗
− be the modules

M∗ = {k ∈ L∗ : < k, σv+ − v+ >∈ Z} ,
M∗

+ = {k ∈ L∗ : < k, v+ − (vα, 0) >∈ Z} ,M∗
− = {k ∈ L∗ : < k, v− − (vα, y0) >∈ Z}

and let

N ∗ =

{

k ∈ L∗ : < k, σv+ − v+ > +
1

2
∈ Z

}

N ∗
y0

= {k ∈ L∗ : < k, (0, y0) >∈ Z− {0}}

N ∗
σ =

{

k ∈ L∗ : < k, vσ − (0, y0) > +
1

2
∈ Z

}

N ∗
σ̃ =

{

k ∈ L∗ : < k, vσ − (0, y0) > ±
1

4
∈ Z

}

.

The last four sets are not modules. The smallest modules generated by them are

N ∗ = N ∗ ∪M∗ N ∗
y0

= N ∗
y0

∪M∗
y0

N ∗
σ = N ∗

σ ∪M∗
σ N ∗

σ̃ = N ∗
σ̃ ∪N ∗

σ ,

where N ∗ = L∗ under the conditions of Lemma 3.1, all the unions are disjoint and
M∗

y0
and M∗

σ are the modules

M∗
y0

= {k ∈ L∗ : < k, (0, y0) >= 0} and M∗
σ = {k ∈ L∗ : < k, vσ − (0, y0) >∈ Z} .

In the sequel we will use:

Properties of N ∗
σ and N ∗

σ̃ . Let m1, m2 ∈ Z.

(1) If g1, g2 ∈ N ∗
σ then m1g1 + m2g2 ∈

{

M∗
σ if m1 + m2 even

N ∗
σ if m1 + m2 odd

.

(2) If g1, g2 ∈ N ∗
σ̃ then m1g1 + m2g2 ∈

{

N ∗
σ if m1 + m2 even

N ∗
σ̃ if m1 + m2 odd

.

Lemma 3.2 (Properties of the bases for L and L∗ and notation). Let {l1, . . . , ln+1}
be a basis for L and

{

l∗1 , . . . , l
∗
n+1

}

be its dual basis. The matrices M with rows

l1, . . . , ln+1 and M∗ with rows l∗1 , . . . , l
∗
n+1, are related by M∗ =

(

M−1
)T

and sat-
isfy:

(1) If (vδ, δ) ∈ Γ then, given the real numbers r1, . . . , rn+1, we may write vδ =
∑n+1

i=1 sili with (si − ri) ∈ [0, 1[ for all i ∈ {1, . . . , n + 1}.
(2) If (0, a) ∈ L for some a 6= 0 then we may choose the basis {l1, . . . , ln+1} for

L such that

(i) M =

(

A B
0 b

)

where A is an n×n matrix with rows a1, . . . , an ∈ Rn

and B = (b1, . . . , bn)T , with b = a
m

for some m ∈ Z and bi ∈ R.

(ii) M∗ =

(

A∗ 0
− 1

b
BT A∗ 1

b

)

, where A∗ =
(

A−1
)T

has rows a∗
1, . . . , a

∗
n

with < a∗
i , aj >= δij for i, j ∈ {1, . . . , n}.

(iii) The set {a1, . . . , an} is a basis for a lattice in Rn and {a∗
1, . . . , a

∗
n} is

a basis for its dual.
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(iv) l∗i = (a∗
i , 0) for i ∈ {1, . . . , n} and M∗

y0
= {l∗1, . . . , l

∗
n}Z .

(3) If σ lies in the holohedry of L then L contains an element of the form (0, a),
a 6= 0 and each entry bi of B may be taken to be either zero or b/2.

Proof. (1) The set {l1, . . . , ln+1} is a basis for Rn+1 and so vδ =
∑n+1

i=1 sili with
si ∈ R for all i ∈ {1, . . . , n + 1}. As vδ is defined up to elements of L then we may
restrict each si to an interval [ri, ri + 1[, where ri ∈ R.

(2) Given (0, a) ∈ L, a 6= 0, then (0, b), b 6= 0, the smallest element of L in the
direction of (0, a), is a generator and (0, a) = m(0, b) for some m ∈ Z. Moreover,
there are elements l1, . . . , ln in L such that L = {l1, . . . , ln, (0, b)}

Z
. For li = (ai, bi),

with i ∈ {1, . . . , n}, and (0, b) = ln+1 we obtain the matrix M and M∗ has the form
given in (2ii). Property (2iv) follows by definition of M∗

y0
.

(3) For (c, d) in L with d 6= 0, since σL = L then (c, d)−σ(c, d) = (0, 2d) ∈ L and
property (2) is valid. For li = (ai, bi), with i ∈ {1, . . . , n}, the elements li − σli =
(0, 2bi) lie in L and so (0, 2bi) = m(0, b) for some m ∈ Z. Therefore li =

(

ai,
mb
2

)

,

and either li = (ai, 0) or li =
(

ai,
b
2

)

up to multiples of (0, b) = ln+1. �

With the notation above Proposition 3.1 takes the equivalent form:

Proposition 3.2. All functions in Πy0
(XΓ) are invariant under the action of

(vα, α) ∈ Rn
⋉ O(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ and L∗ = N ∗
y0

∪M∗
+,

(B) (v−, α−) ∈ Γ and L∗ = N ∗
y0

∪M∗
−,

(C) both (vσ, σ) and (v+, α+) belong to Γ and, moreover,
M∗ ⊂

(

N ∗
y0

∪M∗
+ ∪ N ∗

σ

)

and N ∗ ⊂
(

N ∗
y0

∪
(

M∗
− ∩ N ∗

σ̃

))

.

There are three main steps in the proof of Proposition 3.1. First, in Lemma 3.3,
we write the (vα, α)-invariance of the projection of f ∈ XΓ as conditions relating
the operator Πy0

to the projection of the dual lattice L∗ and to the coefficients of
the formal Fourier expansion of f in waves. Second, we prove that the conditions
(A), (B) and (C) are sufficient, by writing explicitly the restrictions they impose
on L∗ and on the Fourier coefficients. Finally we conclude that the conditions
of Proposition 3.1 are necessary by the (vα, α)-invariance of the projection of the
Γ-invariant functions Ik.

The tools used in this proof are properties of waves and of Fourier coefficients,
due to the symmetries in Γ and to the symmetry (vα, α) ∈ Rn

⋉ O(n), together
with properties of the modules and subsets of L∗ defined above. For αL∗

1 = {αk1 :
k1 ∈ L∗

1}, we have:

Lemma 3.3. Let f ∈ XΓ and (vα, α) ∈ Rn
⋉ O(n). The projection Πy0

(f)(x) is
(vα, α)-invariant if and only if for each k1 ∈ L∗

1 the following conditions hold:

(1) if k1 ∈ L∗
1 ∩ αL∗

1 then D(k1) = ωk1
(−vα)D(α−1k1),

(2) if k1 /∈ L∗
1 ∩ αL∗

1 then D(k1) = 0.

Proof. Notice first that the equality

Πy0
(f)(x) = (vα, α) · Πy0

(f)(x) = Πy0
(f)(α−1x − α−1vα)

is equivalent to

(1)
∑

k1∈L∗
1

ωk1
(x)D(k1) =

∑

k1∈L∗
1

ωk1
(α−1x)ωk1

(−α−1vα)D(k1),

where, by orthogonality, the right hand side equals
∑

k1∈L∗
1
ωαk1

(x)ωαk1
(−vα)D(k1)

and, for k̃1 = αk1, is given by
∑

k̃1∈αL∗
1

ωk̃1
(x)ωk̃1

(−vα)D(α−1k̃1). Thus, by the

unicity of the Fourier expansion, expression (1) is valid for all x ∈ Rn if and only
if, for any k1 ∈ L∗

1, the conditions hold. �
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Proof of sufficiency in Proposition 3.1. We write D(k1) − ωk1
(−vα)D(α−1k1), in

the form
∑

k2:(k1,k2)∈L∗

C(k1, k2)G(k1, k2)

∫ y0

0

ωk2
(y)dy,

which is zero since, by conditions (A), (B) or (C), either
∫ y0

0 ωk2
(y)dy = 0, if <

k, (0, y0) >∈ Z−{0}, or G(k1, k2) vanishes. Below we compute G(k1, k2) explicitly
for each case.

Suppose either condition (A) or condition (B) happens. Since α± (either α+

or α−) is in J then α±L
∗ = {α±k : k ∈ L∗} = L∗, which implies αL∗

1 = L∗
1.

Therefore, for any f ∈ XΓ, the projection Πy0
(f)(x) =

∑

k1∈L∗
1
ωk1

(x)D(k1) is

(vα, α)-invariant if and only if condition (1) of Lemma 3.3 holds for all k1 ∈ L∗
1.

The (v±, α±)-invariance of f implies C(k) = ωk(−v±)C(α−1
± k) for all its Fourier

coefficients. Writing L∗
± = {k2 : (α−1k1,±k2) ∈ L∗} then D(α−1k1) is

∑

k2∈L∗
±

C(α−1k1,±k2)

∫ y0

0

ω±k2
(y)dy =

∑

k2∈L∗
±

ωk(v±)C(k1, k2)

∫ y0

0

ω±k2
(y)dy.

As {k2 : (k1, k2) ∈ L∗} = L∗
± then, using in the minus sign case the property

(2)

∫ y0

0

ω−k2
(y)dy = ωk2

(−y0)

∫ y0

0

ωk2
(y)dy,

we obtain G(k1, k2) = 1 − ωk(v± − (vα, β±)), with β+ = 0 and β− = y0, which is
zero for < k, v± − (vα, β±) >∈ Z.

When (C) happens then σ ∈ J and so (k1,−k2) ∈ L∗ if (k1, k2) ∈ L∗. Thus
D(k1) is

1

2

∑

k2:(k1,k2)∈L∗

(

C(k1, k2)

∫ y0

0

ωk2
(y)dy + C(k1,−k2)

∫ y0

0

ω−k2
(y)dy

)

and D(α−1k1) has a similar expression. By property (2), and by the invariance of
f under the action of (v+, α+) and (v−, α−), as α− = σα+ ∈ J, we obtain

2G(k1, k2) = 1 + ωk(vσ)ωk2
(−y0) − ωk1

(−vα) (ωk(v+) + ωk(v−)ωk2
(−y0)) .

The hypotheses of Lemma 3.1 are valid and (see the proof of Lemma 3.1)

(3) ωk(v−) = ωk(vσ)ωk(σv+).

If < k, σv+ − v+ >∈ Z then ωk(σv+ − v+) = 1 and 2G(k1, k2) equals, using (3),

1 + ωk(vσ)ωk2
(−y0) − ωk1

(−vα)ωk(v+) (1 + ωk(σv+ − v+)ωk(vσ)ωk2
(−y0))

= (1 − ωk(v+ − (vα, 0))) (1 + ωk(vσ − (0, y0))) = 0

because either 1−ωk(v+−(vα, 0)) = 0, by condition (Cii), or 1+ωk(vσ−(0, y0)) = 0,
by (Ciii).

If < k, σv+ − v+ > + 1
2 ∈ Z then ωk(σv+)ωk(−v+) = −1 and

ωk1
(−vα)ωk(v+) = −ωk1

(−vα)ωk(σv+)
= −ωk1

(−vα)ωk(v−)ωk(−vσ), by expression (3)
= −ωk(v− − (vα, y0))ωk(−vσ + (0, y0)).

Thus 2G(k1, k2) is 1+ωk(vσ−(0, y0))+ωk(v−−(vα, y0)) (ωk(−vσ + (0, y0)) − 1) = 0
because, by condition (Civ), ωk(vσ−(0, y0)) = ±i and ωk(v−−(vα, y0)) = 1. Notice

that we use the property ωk(−v) = ωk(v) in order to obtain this result. �



8 E. M. PINHO, I. S. LABOURIAU

Proof of necessity in Proposition 3.1. We will show that if the hypothesis of Propo-
sition 3.1 holds for the projection of the real and imaginary parts of Ik(x, y), then
one of the three conditions (A), (B) or (C) must hold.

The functions Ik are given by a summation over a J-orbit on L∗. Its projection
into L∗

1 is a new orbit that may be used as an index for the summation of Πy0
(Ik)

writing it in a form suitable for the use of Lemma 3.3.
For δ ∈ O(n+1) and k ∈ L∗, let δk = (k̃1, k̃2), where k̃1 ∈ Rn and k̃2 ∈ R. With

the notation δk|1 = k̃1 and δk|2 = k̃2, we have Πy0
(Ik)(x) =

∑

δ∈J
ωδk|1(x)D′(δ, k),

where D′(δ, k) = ωδk(−vδ)
∫ y0

0
ωδk|2(y)dy. This corresponds to a summation over

the projection of the orbit Jk given by: Jk|1 = {δk|1 : δ ∈ J} ⊂ L∗
1. Grouping

terms with the same first n components we obtain

Πy0
(Ik)(x) =

∑

k̃1∈Jk|1

ωk̃1
(x)

∑

k̃2:(k̃1,k̃2)∈Jk

D′(δ, k̃).

For k = (k1, k2), the Fourier coefficient of Πy0
(Ik) associated to ωk1

is
∑

δ∈JId(k) D′(δ, k),

where JId(k) is the subset of J that preserves k1, given by JId(k) = {δ ∈ J : δk|1 = k1}
and Jα(k) =

{

δ ∈ J : δk|1 = α−1k1

}

.
Since by hypothesis Πy0

(Ik) is (vα, α)-invariant, then by Lemma 3.3 , for all
k = (k1, k2) ∈ L∗, the following invariance conditions hold:

(a) if k1 ∈ L∗
1 ∩ αL∗

1 then
∑

δ∈JId(k) D′(δ, k) = ωk1
(−vα)

∑

δ∈Jα(k) D′(δ, k),

(b) if k1 /∈ L∗
1 ∩ αL∗

1 then
∑

δ∈JId(k) D′(δ, k) = 0.

Although these conditions involve the sets JId(k) and Jα(k) for all k ∈ L∗, we will
show that for this proof we will only need to consider the sets:

JId = {Idn+1, σ} ∩ J and Jα =
{

α−1
+ , α−1

−

}

∩ J.

In Lemma 3.4 we describe all the possibilities for JId and Jα and obtain in each
case some consequences for L∗ in terms of the subsets defined before the statement
of Proposition 3.2. In Lemma 3.5 we study the set of all k ∈ L∗ such that either
JId(k) 6= JId or Jα(k) 6= Jα. Finally, conditions (A), (B) and (C) are obtained in
Lemma 3.6. �

Properties of JId(k) and Jα(k). Let k ∈ L∗.

(1) JId(k) = {δ ∈ J : δk = k ∨ δk = σk} and
Jα(k) =

{

δ ∈ J : δk = α−1
+ k ∨ δk = α−1

− k
}

.

(2) JId ⊂ JId(k) , Jα ⊂ Jα(k) and JId(0, 0) = Jα(0, 0) = J.

Proof. Property (1), for JId(k), follows by orthogonality of J, since any element of
the orbit J(k1, k2) whose n first components equal k1 is of the form (k1,±k2). For
Jα(k), the elements on J(k1, k2) with n first components α−1k1 are of the form
(α−1k1,±k2), by orthogonality of J and of α.

Property (2) follows directly from the previous one and from the definitions of
JId and Jα. �

The next lemma describes, under the hypothesis of Proposition 3.1, the set

O∗ =
{

k ∈ L∗ : JId(k) = JId ∧ Jα(k) = Jα
}

according to each of the cases for JId and Jα. This allows us to restate the invariance
conditions (a) and (b) in simpler form in terms of subsets of L∗.

Lemma 3.4. Suppose that the invariance conditions (a) and (b) hold for all k =
(k1, k2) ∈ L∗. Then we have one of the following cases:

(1) JId = {Idn+1}, Jα = ∅ and O∗ ⊂ N ∗
y0

,

(2) JId = {Idn+1, σ}, Jα = ∅ and O∗ ⊂
(

N ∗
y0

∪ N ∗
σ

)

,
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(3) JId = {Idn+1}, Jα = {α−1
+ } and O∗ ⊂

(

N ∗
y0

∪M∗
+

)

,

(4) JId = {Idn+1}, Jα = {α−1
− } and O∗ ⊂

(

N ∗
y0

∪M∗
−

)

,

(5) JId = {Idn+1, σ}, Jα = {α−1
+ , α−1

− },
(O∗ ∩M∗) ⊂

(

N ∗
y0

∪M∗
+ ∪N ∗

σ

)

and (O∗ ∩ N ∗) ⊂
(

N ∗
y0

∪
(

M∗
− ∩ N ∗

σ̃

))

.

Proof. Cases (1) to (5) enumerate all the possibilities for JId and Jα. This happens
because JId is a group; if α−1

+ , α−1
− ∈ J then α+α−1

− = σ ∈ J and if σ ∈ J then
either Jα = ∅ or Jα has two elements.

The equations in (a) and (b) may be written in the form G(k1, k2)
∫ y0

0
ωk2

(y)dy =
0 for k = (k1, k2) ∈ O∗, as in the proof of sufficiency. Thus one of the sufficient
conditions appearing in all five cases is

∫ y0

0 ωk2
(y)dy = 0, implying k ∈ N ∗

y0
. For

each case we compute G(k1, k2) and the constraints that follow when it vanishes,
for k = (k1, k2) ∈ O∗.

If (vσ , σ) ∈ Γ then (vσ, σ) · (vσ, σ) = (vσ + σvσ, I) ∈ Γ implying vσ + σvσ ∈ L
and therefore we have

(4) ωk(−σvσ) = ωk(vσ) if k ∈ L∗ and (vσ , σ) ∈ Γ.

If Jα = ∅ then, for all k = (k1, k2) ∈ O∗, the conditions in the hypothesis of
the lemma become

∑

δ∈JId D′(δ, k) = 0. Thus, either G(k1, k2) = 1 or G(k1, k2) =
1 + ωk(vσ − (0, y0)) according to the absence or presence of σ in J and using (2),
orthogonality and property (4) in the second case.

Cases (1) and (2) follow because 1 + ωk(vσ − (0, y0)) = 0 implies k ∈ N ∗
σ .

In the remaining cases either α+ or α− belongs to J. Thus, αL∗
1 = L∗

1 and
condition (a) must be verified for all k1 ∈ L∗

1. For k ∈ O∗ this means

(5)
∑

δ∈JId

D′(δ, k) = ωk1
(−vα)

∑

δ∈Jα

D′(δ, k).

In case (3), G(k1, k2) = 1−ωk1
(−vα)ωα

−1

+
k(α−1

+ v+) = 0 is equivalent, by orthog-

onality, to 1 − ωk1
(−vα)ωk(v+) = 0, which implies k ∈ M∗

+.
For case (4), condition (5) leads to G(k1, k2) = 1−ωk1

(−vα)ωk(v−)ωk2
(−y0) = 0,

which implies k ∈ M∗
−.

For case (5), condition (5) defines, by orthogonality and properties (2) and (4),
2G(k1, k2) = 1 + ωk(vσ)ωk2

(−y0) − ωk1
(−vα) (ωk(v+) + ωk(v−)ωk2

(−y0)) . In this
case we are under the conditions of Lemma 3.1 and so O∗ ⊂ (M∗ ∪ N ∗). If k =
(k1, k2) ∈ M∗ then G(k1, k2) = 0 is equivalent, as shown in the proof of sufficiency,
to (1 − ωk(v+ − (vα, 0))) (1 + ωk(vσ − (0, y0))) = 0 and the result follows. For k =
(k1, k2) ∈ N ∗, by the proof of sufficiency the term 2G(k1, k2) equals 1 + ωk(vσ −

(0, y0)) + ωk(v− − (vα, y0))
(

ωk(vσ − (0, y0)) − 1
)

. For ωk(vσ − (0, y0)) = z1 and

ωk(v−− (vα, y0)) = z2, quation G(k1, k2) = 0 is equivalent to (1+ z1)/(1− z1) = z2

because z1 = 1 is not a solution of G(k1, k2) = 0. Therefore, |(1 + z1)/(1 − z1)| = 1
which implies Re(z1) = 0 ⇔ ωk(vσ − (0, y0)) = ±i and z2 = ωk(v− − (vα, y0)) = 1,
leading to k ∈

(

M∗
− ∩ N ∗

σ̃

)

. �

Let P∗ be the complement of O∗ in L∗:

P∗ =
{

k ∈ L∗ : JId(k) 6= JId ∨ Jα(k) 6= Jα
}

.

In Lemma 3.6 we reformulate the cases of Lemma 3.4 in terms of L∗ instead of
O∗. The first two cases of Lemma 3.4 cannot occur since P∗ is too small. In
the remaining cases we show that P∗ may be ignored and, therefore, that L∗ can
replace O∗ in the expressions given. Thus, the estimate of the size of P∗ in the
next lemma is an essential step.

Lemma 3.5. P∗ is the intersection of L∗ with the union of a finite number of
vector subspaces of Rn+1 with codimension at least one.
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Proof. P∗ is the union of the submodules
⋃

δ∈J−JId

M∗
δ,Id ∪

⋃

δ∈J−Jα

M∗
δ,α

where M∗
δ,Id =

{

k ∈ L∗ : δ ∈ JId(k)
}

and M∗
δ,α = {k ∈ L∗ : δ ∈ Jα(k)} . This union

is finite because J is finite. Moreover, for all ξ 6= Idn+1 ∈ O(n + 1), Fix(ξ) =
{

(x, y) ∈ Rn+1 : ξ(x, y) = (x, y)
}

is a proper vector subspace of Rn+1.

Let δ ∈ J − JId. If k ∈ M∗
δ,Id then either δk = k or δk = σk ⇔ σδk = k,

which implies M∗
δ,Id = L∗ ∩ (Fix(δ) ∪ Fix(σδ)) . Moreover, neither δ = Idn+1 nor

σδ = Idn+1, by the hypothesis δ ∈ J−JId. Thus, the codimensions of the subspaces
Fix(δ) and Fix(σδ) are at least one.

Analogously, if δ ∈ J− Jα and k ∈ M∗
δ,α then either δk = α−1

+ k ⇔ α+δk = k or

δk = α−1
− k ⇔ α−δk = k. Therefore, M∗

δ,α = L∗ ∩ (Fix(α+δ) ∪ Fix(α−δ)) , where

both Fix(α+δ) and Fix(α−δ) have codimensions at least one due to the hypothesis
δ ∈ J − Jα. �

Lemma 3.6. Suppose that the invariance conditions (a) and (b) hold for all k =
(k1, k2) ∈ L∗. Then we have one of the following cases:

(A) Jα = {α−1
+ } and L∗ = N ∗

y0
∪M∗

+,

(B) Jα = {α−1
− } and L∗ = N ∗

y0
∪M∗

−,

(C) Jα = {α−1
+ , α−1

− },

M∗ ⊂
(

N ∗
y0

∪M∗
+ ∪ N ∗

σ

)

and N ∗ ⊂
(

N ∗
y0

∪
(

M∗
− ∩N ∗

σ̃

))

.

Notice that the conditions in Lemma 3.6 are the same of Proposition 3.1 as
δ−1 ∈ Jα is equivalent to (vδ, δ) ∈ Γ for some vδ ∈ Rn+1, by definition.

Proof. At first, we prove the statement:

(6) If (0, a) ∈ L for some a 6= 0 then M∗
y0

6⊂ P∗.

If (0, a) ∈ L for some a 6= 0 then property (2) of the bases, in Lemma 3.2, ensures
that M∗

y0
has n linearly independent generators, l∗i = (a∗

i , 0) for i ∈ {1, . . . , n},
where {a∗

1, . . . , a
∗
n}R

= Rn. If M∗
y0

⊂ P∗ then, by Lemma 3.5, the module M∗
y0

is
a subset of one of the subspaces forming P∗. Therefore, there is either an element
δ ∈ J − JId such that δ(k1, 0) = (k1, 0) for all (k1, 0) ∈ M∗

y0
, or some δ ∈ J − Jα

such that δ(k1, 0) = (α−1k1, 0) for all (k1, 0) ∈ M∗
y0

. By orthogonality of δ the

first case implies either δ = I or δ = σ, which is equivalent to δ ∈ JId. Similarly,
the second case implies δ ∈ Jα, by orthogonality of δ and α, and the statement is
proved.

For any element k 6= (0, 0) of the dual lattice L∗, let g 6= (0, 0) be the smallest
element of L∗ in the direction of k. Thus, there are elements g1, . . . , gn ∈ L∗ such
that L∗ = {g, g1, . . . , gn}Z

. Let M∗
k be the submodule M∗

k = {g1, g2, . . . , gn}Z
⊂ L∗

and, given h ∈ M∗
k, let Q∗

k,h be the set Q∗
k,h = {k + mh : m ∈ Z} .

We claim that there is some h ∈ M∗
k such that Q∗

k,h∩P
∗ is a finite set. Lemma 3.5

asserts that P∗ ⊂
⋃m

i=1 Hi, where each Hi is a subspace of Rn+1 of codimension
one. Let p ∈ N and consider the subset of k + M∗

k with pn elements:

Wp = {k + m1g1 + · · · + mngn : mi ∈ Z, 1 ≤ mi ≤ p} .

Each Hi has at most pn−1 elements in Wp and so Wp∩
⋃m

i=1 Hi has, at most, mpn−1

elements. For p > m we have pn > mpn−1 and there is some h ∈ M∗ such that
k +h /∈

⋃m

i=1 Hi. For this h, let r be a line containing Q∗
k,h. Since for each i, r∩Hi

is either r or a finite set, and r contains at least the element k + h /∈ Hi, it follows
that

⋃m

i=1 (r ∩ Hi) is a finite set. The claim is proved because Q∗
k,h ∩P∗ is a subset

of
⋃m

i=1 (r ∩ Hi).
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Let k be any element of L∗−{(0, 0)} and choose some h ∈ M∗
k such that Q∗

k,h∩P
∗

is a finite set. For simplicity of notation we write Q∗ instead of Q∗
k,h.

Since N ∗
y0

is a module, the intersection Q∗ ∩N ∗
y0

is either the empty set or a set
with only a point or an infinite set of equally spaced points with a characteristic
period, τy0

. For the set Q∗ ∩N ∗
σ there are also the three possible results. Although

N ∗
σ is not a module, the smallest difference between two elements of Q∗∩N ∗

σ defines
a period τσ ∈ M∗

σ, by the properties of N ∗
σ stated before Lemma 3.2. An analogous

construction may be done for the sets Q∗ ∩M∗
+, Q∗ ∩M∗

− and Q∗ ∩
(

M∗
− ∩ N ∗

σ̃

)

.
Thus, if these sets have more than one element we may define characteristic periods
τ+, τ− and τσ̃, respectively.

Under the hypothesis of the Lemma, one of the cases (1) to (5) of Lemma 3.4
must happen.

If case (1) happens then L∗ = N ∗
y0

∪ P∗, which implies M∗
y0

⊂ P∗. Moreover,
Q∗ ∩N ∗

y0
must be an infinite set because Q∗ ∩P∗ is, by construction, finite. Thus,

there exists the period τy0
implying that Q∗ − N ∗

y0
is either the empty set or an

infinite set. Since
(

Q∗ −N ∗
y0

)

⊂ (Q∗ ∩ P∗) is finite, it follows that L∗ = N ∗
y0

, which
implies that (0, y0) ∈ L. However, by the statement (6), under this condition, M∗

y0

cannot be a subset of P∗ and so case (1) cannot occur.
In case (2), L∗ = N ∗

y0
∪N ∗

σ∪P
∗ which implies M∗

y0
⊂ (N ∗

σ ∪ P∗). Moreover, there
is an element (0, a) ∈ L, with a 6= 0, due to the existence of σ in J, (see properties (2)

and (3) of Lemma 3.2), and thus M∗
y0

∩ N ∗
σ 6= ∅. Suppose k̃ ∈ M∗

y0
− P∗ and

k̃ 6= (0, 0). Thus, k̃ ∈ N ∗
σ and 2k̃ ∈ M∗

y0
. However, by the properties of N ∗

σ ,

2k̃ /∈ N ∗
σ and, by Lemma 3.5, 2k̃ /∈ P∗. Therefore, case (2) is also impossible.

For case (3) we follow the arguments of case (1). As L∗ = N ∗
y0

∪ M∗
+ ∪ P∗

then Q∗ ∩
(

N ∗
y0

∪M∗
+

)

is an infinite set and at least one of the periods τy0
or

τ+ must exist. The least common multiple of the existing periods is a period of
Q∗∩

(

N ∗
y0

∪M∗
+

)

which implies that Q∗−
(

N ∗
y0

∪M∗
+

)

is the empty set. Therefore

k ∈
(

N ∗
y0

∪M∗
+

)

and condition (A) follows by definition of k and because (0, 0) ∈
M∗

+.
In a similar way, with M∗

− and τ− instead of M∗
+ and τ+, we prove that case (4)

of Lemma 3.4 leads to condition (B).
In case (5) (Q∗ ∩M∗) −

(

N ∗
y0

∪M∗
+ ∪ N ∗

σ

)

must be the empty set by the nec-
essary existence of, at least, one of the periods τy0

, τ+ or τσ and, analogously,
(Q∗ ∩N ∗) −

(

N ∗
y0

∪
(

M∗
− ∩ N ∗

σ̃

))

is empty due to the least common multiple of
the periods τy0

and τσ̃. Besides, either k ∈ (Q∗ ∩M∗) or k ∈ (Q∗ ∩N ∗) and, as
(0, 0) /∈ N ∗, condition (C) follows. �

This completes the proof of Propositions 3.1 and 3.2.

4. Proof of Theorem 1.1

In this section we show that conditions (A), (B) and (C) of Proposition 3.1 imply
the cases (I), (II) and (III) of Theorem 1.1.

Proposition 3.1 states that elements of Γ ensuring symmetry after projection have
orthogonal components α+ or α−. Information on the non-orthogonal components
(v+, v− ∈ Rn+1) appears as constraints on the structure of L∗.

We translate restrictions on Γ and L∗ into restrictions on Γ and L. The main
tool will be to obtain restrictions on a basis of L∗ to find a suitable basis for L.

Each condition of Proposition 3.2 is now treated in a separate lemma.

Lemma 4.1. If (v+, α+) ∈ Γ and L∗ = N ∗
y0
∪M∗

+ then one of the conditions holds:
I. ((vα, 0), α+) ∈ Γ,
III. (0, y0) ∈ L and ((vα, y1), α+) ∈ Γ for some y1 ∈ R .
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Proof. If L∗ = N ∗
y0

∪M∗
+ then either L∗ = N ∗

y0
or L∗ = M∗

+. In the second case
< k, v+ − (vα, 0) >∈ Z for all k ∈ L∗, i.e. , v+ − (vα, 0) ∈ L, and so

(−v+ + (vα, 0), I) · (v+, α+) = ((vα, 0), α+) ∈ Γ.

If L∗ = N ∗
y0

then (0, y0) ∈ L and we may use the basis
{

l∗1 , . . . , l
∗
n+1

}

for L∗

having the properties (2) in Lemma 3.2. As M∗
y0

⊂ M∗
+, it follows that < l∗i , v+ −

(vα, 0) >∈ Z for all i ∈ {1, . . . n}. Now we show that v+ − (vα, y1) ∈ L for some
y1 ∈ R. For any element k ∈ L∗ and any y1 ∈ R,

< k, v+ − (vα, y1) > = < k, v+ − (vα, 0) > − < k, (0, y1) >
= m1 + m2 < l∗n+1, v+ − (vα, 0) > −m2

m
y0

y1,

with m1, m2 ∈ Z. Taking, for instance, y1 =< l∗n+1, v+ − (vα, 0) > y0

m
we obtain <

k, v+ − (vα, y1) >∈ Z. Thus, (−v+ + (vα, y1), I) · (v+, α+) = ((vα, y1), α+) ∈ Γ. �

Lemma 4.2. If (v−, α−) ∈ Γ and L∗ = N ∗
y0
∪M∗

− then one of the conditions holds:
II. ((vα, y0), α−) ∈ Γ,
III. (0, y0) ∈ L and ((vα, y1), α−) ∈ Γ for some y1 ∈ R .

Proof. The proof is analogous to that of Lemma 4.1 with v− − (vα, y0) instead of
v+ − (vα, 0) and y1 =< l∗n+1, v− − (vα, y0) > y0

m
+ y0. �

Lemma 4.3. If both (vσ, σ) and (v+, α+) belong to Γ, and if both

M∗ ⊂
(

N ∗
y0

∪M∗
+ ∪ N ∗

σ

)

and N ∗ ⊂
(

N ∗
y0

∪
(

M∗
− ∩ N ∗

σ̃

))

,

then one of the following conditions of Theorem 1.1 holds:
I. ((vα, 0), α+) ∈ Γ,
II. ((vα, y0), α−) ∈ Γ,
III. (0, y0) ∈ L, either ((vα, y1), α+) ∈ Γ or ((vα, y1), α−) ∈ Γ, for some y1 ∈ R.

Proof. Let v+ = (v1, v2) with v1 ∈ Rn and v2 ∈ R. Since σ ∈ J, the bases for L
and L∗ satisfy properties (1) to (3) in Lemma 3.2. In particular, l1 = (a1, b1) and
(0, b) ∈ L. We claim:

(a) vσ + σvσ ∈ L.
(b) σv+ − v+ = −(0, 2v2). Therefore

(i) (0, 4v2) ∈ L and
(ii) if (0, 2v2) ∈ L then N ∗ = ∅.

(c) M∗
y0

⊂
(

M∗
+ ∪N ∗

σ

)

.
(d) Either v1 = vα or we may choose a1 = 2 (v1 − vα).
(e) In both cases of property (d), l∗i ∈ M∗

+ for all i ∈ {2, . . . , n}.

We now prove these claims. For (a) see (4). Since Lemma 3.1 holds, (b)
follows from the definitions of M∗ and N ∗. The hypothesis of Lemma 4.3 im-
plies (c) since M∗

y0
and N ∗ are disjoint, by claim (b) and by property (2iv)

of the bases (Lemma 3.2). This implies that for all i ∈ {1, . . . , n}, either <
(a∗

i , 0), v+ − (vα, 0) >∈ Z or < (a∗
i , 0), vσ − (0, y0) > + 1

2 ∈ Z. If l∗i ∈ N ∗
σ then

2l∗i /∈ N ∗
σ and so, for all i ∈ {1, . . . , n},

2 < (a∗
i , 0), v+ − (vα, 0) >=< a∗

i , 2(v1 − vα) >∈ Z,

therefore, 2(v1 − vα) =
∑n

i=1 miai with mi ∈ Z for i ∈ {1, . . . , n}. If v1 6= vα, we

may choose a1 = 2(v1−vα)
m

for some m ∈ Z, by the property (2iii) in Lemma 3.2. If
vα =

∑n
i=1 riai, with ri ∈ R, by property (1) in Lemma 3.2, v+ may be writen as

∑n+1
i=1 sili with 2 (ri − si) ∈ [0, 2[ for i ∈ {1, . . . , n}. Thus, m = 1 and (d) follows.
For (e) notice that v1 − vα is either zero or a1/2. Therefore, for i ∈ {2, . . . , n}

< l∗i , v+ − (vα, 0) >=< a∗
i , v1 − vα >= 0.

The two cases of Property (d) above are now treated separately.
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Suppose v1 = vα. Then v+ − (vα, 0) = (0, v2) and l∗1 , . . . , l
∗
n lie in M∗

+.
If l∗n+1 ∈ M∗

+ then L∗ = M∗
+ and, as in Lemma 4.1, ((vα, 0), α+) ∈ Γ, i.e.,

condition (I) holds.
If l∗n+1 ∈ N ∗

y0
then, by property (2iv) of the bases (Lemma 3.2), L∗ = N ∗

y0
and

this implies (0, y0) ∈ L. Condition (III) follows since ((vα, v2), α+) ∈ Γ.
Now suppose that

(7) l∗n+1 /∈
(

M∗
+ ∪ N ∗

y0

)

⇒ l∗i + l∗n+1 /∈
(

M∗
+ ∪ N ∗

y0

)

i ∈ {1, . . . , n}.

If (0, 2v2) ∈ L we take 2v2 = b. Since N ∗ = ∅, then (7) implies that l∗n+1 ∈ N ∗
σ

and l∗i ∈ M∗
σ for i ∈ {1, . . . , n}. Moreover, if vσ =

∑n+1
i=1 sili, with si ∈ [0, 1[

for i ∈ {1, . . . , n}, then sn+1 − y0/b + 1/2 ∈ Z and si = 0 for i ∈ {1, . . . , n}.
Therefore, up to multiples of (0, b), we have vσ = (0, y0 + b/2) = (0, y0 + v2) and
((0, y0 + v2), σ) · ((vα, v2), α+) = ((vα, y0), α−) ∈ Γ, i.e., condition (II).

If (0, 2v2) /∈ L then (7) implies l∗n+1 ∈ M∗
− and l∗i ∈ M∗

− for i ∈ {1, . . . , n}.
Thus, L∗ = M∗

− and, as in Lemma 4.1, ((vα, y0), α−) ∈ Γ, completing the proof in
the case v1 = vα.

Now suppose v1 6= vα and let a1 = 2(v1 − vα). Since l∗1 /∈ M∗
+, from (c) we get

l∗1 ∈ N ∗
σ and l∗i ∈ M∗

σ for i ∈ {2, . . . , n}. Then vσ =
∑n+1

i=1 sili may be writen as
s1 = 1/2 and si = 0 for i ∈ {2, . . . , n}. Thus, vσ = l1/2 + sn+1(0, b) and, by (a),
(a1, 0) ∈ L, i.e., b1 = 0. As vσ = (a1/2, 0)+sn+1(0, b) = v+−(vα, 0)+(0, sn+1b−v2),
it follows from (a) that (−σv+ + (vα, sn+1b − v2), σ) ∈ Γ.

If l∗n+1 ∈ N ∗
y0

then (0, y0) ∈ L. Condition (III) follows from

(−σv+ + (vα, sn+1b − v2), σ) · (v+, α+) = ((vα, sn+1b − v2), α−) ∈ Γ.

Now suppose that l∗n+1 /∈ N ∗
y0

and, consequently, that l∗i + l∗n+1 /∈ N ∗
y0

for i ∈
{1, . . . , n}. If l∗n+1 ∈ M∗

+ then < l∗n+1, l1/2 + (0, v2) >= v2/b ∈ Z and (0, v2) ∈ L,
since (0, b) ∈ L. Moreover, as l∗1 /∈ M∗

+, we must impose l∗1 + l∗n+1 ∈ N ∗
σ , which

implies sn+1 + y0/b ∈ Z. Therefore, choosing sn+1 = y0/b, we get

((0, v2), I) · (−σv+ + (vα, y0 − v2), σ) · (v+, α+) = ((vα, y0), α−) ∈ Γ.

For (0, 2v2) ∈ L, the only missing case is l∗n+1 ∈ N ∗
σ , where sn+1+y0/b+1/2 ∈ Z

and, up to multiples of (0, b), sn+1b − v2 = y0. Condition (II) follows because

(−σv+ + (vα, y0), σ) · (v+, α+) = ((vα, y0), α−) ∈ Γ.

If (0, 2v2) /∈ L then both l∗n+1 and l∗i + l∗n+1 lies in M∗
− for i ∈ {1, . . . , n} and

condition (II) follows. �

5. Restriction

In this section we present results for the restriction of functions in XΓ analogous
to those obtained for the projection.

For r ∈ R, let Φr be the operator that maps f(x, y) to its restriction to the affine
subspace {(x, r) : x ∈ Rn} given by Φr(f)(x) = f(x, r). If f ∈ XΓ then, formally,
for D(k1) =

∑

k2:(k1,k2)∈L∗ C(k1, k2)ωk2
(r), the restriction of f is

Φr(f)(x) =
∑

k∈L∗

ωk(x, r)C(k) =
∑

k1∈L∗
1

ωk1
(x)D(k1)

where L∗
1 = {k1 : (k1, k2) ∈ L∗}.

Theorem 5.1. All functions in Φr(XΓ) are invariant under the action of (vα, α) ∈
Rn

⋉ O(n) if and only if one of the following conditions holds:

(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, 2r), α−) ∈ Γ.
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Given f ∈ XΓ, the formal Fourier series for Φr(f) is similar to that of Πy0
(f),

with ωk2
(r) in the restriction corresponding to

∫ y0

0
ωk2

(y)dy in the projection. Thus,
results concerning Φr are similar those proved in the previous sections for Πy0

. In
particular, the proof of Theorem 5.1 is analogous to that of Theorem 1.1. The
condition ωk2

(r) = 0 is never verified and so the sets N ∗
y0

and M∗
y0

disappear and
we don’t have an analogue to the condition (0, y0) ∈ L. Moreover, the expression

∫ y0

0

ωk2
(y)dy − ωk2

(y0)

∫ y0

0

ω−k2
(y)dy = 0

has the analogue ωk2
(r) − ωk2

(2r)ω−k2
(r) = 0.

The following analogue of Proposition 3.1 is used to prove Theorem 5.1.

Proposition 5.1. All functions in Φr(XΓ) are invariant under the action of (vα, α) ∈
Rn

⋉ O(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ and L∗ = M∗
+,

(B) (v−, α−) ∈ Γ and L∗ = M∗
−,

(C) both (vσ, σ) and (v+, α+) belong to Γ, M∗ ⊂
(

M∗
+ ∪ N ∗

σ

)

and N ∗ ⊂
(

M∗
− ∩ N ∗

σ̃

)

.

The analogue of Lemma 3.4 is, for D′(δ, k) = ωδk(−vδ)ωδk|2(r):

Lemma 5.1. Suppose that

(a) if k1 ∈ L∗
1 ∩ αL∗

1 then
∑

δ∈JId(k) D′(δ, k) = ωk1
(−vα)

∑

δ∈Jα(k) D′(δ, k) and

(b) if k1 /∈ L∗
1 ∩ αL∗

1 then
∑

δ∈JId(k) D′(δ, k) = 0,

for all k = (k1, k2) ∈ L∗. Then one of the following cases holds:

(1) JId = {Idn+1, σ}, Jα = ∅ and O∗ ⊂ N ∗
σ ,

(2) JId = {Idn+1}, Jα = {α−1
+ } and O∗ ⊂ M∗

+,

(3) JId = {Idn+1}, Jα = {α−1
− } and O∗ ⊂ M∗

−,

(4) JId = {Idn+1, σ}, Jα = {α−1
+ , α−1

− }, (O∗ ∩M∗) ⊂
(

M∗
+ ∪ N ∗

σ

)

and (O∗ ∩ N ∗) ⊂
(

M∗
− ∩ N ∗

σ̃

)

.

The proof of Proposition 5.1 also uses the analogue of Lemma 3.6. Under the
conditions for the restriction, property (6) in the proof of Lemma 3.6, concerning
the set M∗

y0
, does not hold. By Lemma 5.1 the case (1) of Lemma 3.6 disappears.

For case (2) of Lemma 3.6 the dual lattice is L∗ = N ∗
σ ∪ P∗ and the arguments

concerning M∗
y0

and N ∗
y0

must be replaced by: if k̃ /∈ P∗ then k̃ ∈ N ∗
σ . However

both 2k̃ /∈ P∗ and 2k̃ /∈ N ∗
σ , by definition of P∗ and the properties of N ∗

σ , and so
this case is not possible.
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Trends in Mathematics (2003) pages 123-127

[4] T. K. Callahan and E. Knobloch, ‘Symmetry-breaking bifurcations on cubic lattices’, Non-

linearity 10 (1997) 1179-1216
[5] T. K. Callahan and E. Knobloch, ‘Pattern formation in three-dimensional reaction-diffusion

systems’, Physica D 132 (1999) 339-362



PROJECTION OF INVARIANT FUNCTIONS 15

[6] P. De Kepper, E. Dulos, J. Boissonade, A. De Wit, G. Dewel and P. Borckmans, ‘Reaction-
diffusion patterns in confined chemical systems’, J. Stat. Phys. 101 (2000) 495-508

[7] M. Golubitsky, I. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory

- vol II, Appl. Math. Sci. 69, Springer-Verlag, 1988
[8] M. G. M. Gomes, ‘Black-eye patterns: A representation of three-dimensional symmetries in

thin domains’, Phys. Rev. E 60 (1999) 3741-3747
[9] I. Melbourne, ‘Steady-state bifurcation with Euclidean symmetry’, Trans. Amer. Math. Soc.

351 (1999) 1575-1603
[10] W. Miller, Symmetry Groups and their Applications, Academic Press, 1972
[11] M. J. Parker, I. Stewart and M. G. M. Gomes, ‘Examples of forced symmetry-breaking to

homoclinic cycles in three-dimensional euclidean-invariant systems’, Int. J. Bif. Chaos 18

(2008) 83–107
[12] E. M. Pinho, Symmetries of Projected Symmetric Patterns, Thesis, University of Porto, 2006
[13] M. Senechal, Quasicrystals and Geometry, Cambridge University Press, 1995
[14] H. Shoji, K. Yamada, D. Ueyama and T. Ohta, ‘Turing patterns in three dimensions’, Phys.

Rev. E 75 (2007) 046212
[15] C. Zhou, H. Guo and Q. Ouyang, ‘Experimental study of the dimensionality of black-eye

patterns’, Phys. Rev. E 65 (2002) 036118
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