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Abstract. Some relationships between the arithmetic and the geome-
try of Lipschitz and Hurwitz integers are here presented. In particular,
it is shown that the vector product of two left multiples of a Lipschitz
integer α with any other Lipschitz integer is still a left multiple of α,
and that the vector product of a Lipschitz integer α with two other such
integers orthogonal to it is both a left and a right multiple of α. Some
possible connections with factorization algorithms are mentioned.

1. Introduction

Frénicle de Bessy seems to have been the first to notice that from two

different decompositions of an integer n as a sum of two squares one can

obtain a factorization of n ([D], vol. I, cap. XIV, p. 360). This amounts to the

fact that a decomposition n = a2+b2 gives a factorization n = (a+bi)(a−bi)
in Z[i], and if one has another decomposition n = c2 + d2, then, using the

Euclidean algorithm in Z[i], one can find the gcd of a+ bi and c+di, whose

norm yields a factor of n.

As Bachet de Méziriac conjectured and Lagrange proved, every number

is a sum of four squares ([D], vol. II, cap. VIII, p. 275). Such a decomposition

of an integer n yields a factorization n = αᾱ in the ring of Hurwitz integers.

Since this ring is both a left and a right Euclidean domain, it is natural to

wonder if two distinct decompositions of a number as a sum of four squares

could yield, in a manner analogous to the above, a factorization of that

number. Moreover, while there is no known fast algorithm to decompose

a number as a sum of two squares, there is a very efficient probabilistic

algorithm, due to Rabin and Shallit [RS], to express a number as a sum of

four squares. Therefore, if all worked well, one would get in this manner an

interesting factorization algorithm.

However, if one has two decompositions n = αᾱ = ββ̄, it is not always

the case that α and β will have a non-trivial gcd. In fact, for a number
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that is a product of two odd primes, n = pq, only a small (for p and q big)

fraction, exactly p+q+2
(p+1)(q+1)

, of all possible pairs α, β will have a gcd whose

norm is neither 1 nor n. But, in [P], Gordon Pall proves a series of inter-

esting results (namely, theorems 6 and 7), which imply, in particular, that

given two quaternions α and β with integral pairwise coprime coordinates,

if they are orthogonal and have the same norm, then they either have the

same right divisors, or the same left divisors, or both. This suggests look-

ing for orthogonal decompositions of an integer as a sum of four squares,

i.e. orthogonal integral quaternions whose norm is that integer.

It was this line of thought that made us study ways of constructing

quaternions that are orthogonal to a given quaternion, namely using the

vector product, and that led to the discovery of the main results here pre-

sented, namely theorems 4.3 and 4.4.

2. Quaternions, Lipschitz and Hurwitz integers

We start by recalling that the quaternion ring H is the division ring

formed by the additive group R4 endowed with the only multiplication de-

termined (so one gets a ring structure) by choosing e1 as the multiplicative

unit and by the relations:

e2
2 = e2

3 = e2
4 = e2e3e4 = −1,

where {e1, e2, e3, e4} is the canonical basis of R4. Usually, in this context,

one denotes the elements of this basis by 1, i, j, k, respectively. Given a

quaternion u = a+bi+cj+dk, its conjugate is defined by ū = a−bi−cj−dk,

and its norm is N(u) = uū.

The quaternions with integral coordinates are called Lipschitz integers,

and they form a subring of H that we will denote by L. This is almost a left

Euclidean ring for the norm, in the sense that for any α, β ∈ L one can find

q, r ∈ L such that α = βq+r and N(r) ≤ N(β), but a strict inequality cannot

always be guaranteed (and the same for right division). In fact one needs

only to slightly enlarge L by adding the quaternions whose coordinates are

all halves of odd numbers to obtain a (left and right) Euclidean ring. This

yields the set H = L ∪ (ω + L), with ω = 1
2
(1 + i+ j + k), whose elements

are called Hurwitz integers. One can easily show that any Hurwitz integer

has both a left and a right associate which is a Lipschitz integer.

In particular, every left or right ideal of H is principal, and from this, a

sort of unique factorization into primes can be deduced for primitive Hur-

witzian integers, i.e. those not divisible by a rational prime. We recall that a

Hurwitz prime is simply an Hurwitz integer whose norm is a rational prime.
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Theorem 2.1 (Unique Factorization Theorem). To each factorization of

the norm n of a primitive Hurwitzian integer α into a product p1p2 · · · pk−1pk
of rational primes, there is a factorization

α = π1π2 · · · πk−1πk

of α into a product of Hurwitzian primes modelled on that factorization of

n, that is, with N(πi) = pi.

Moreover, if α = π1π2 · · · πk−1πk is any one factorization modelled on

p1p2 · · · pk−1pk, then all the others have the form

α = π1ε1 · ε−11 π2ε2 · ε−12 π2ε3 · · · · · ε−1k−1πk−1εk · ε
−1
k πk,

where ε1, . . . , εk ∈ H∗, i.e. the factorization on a given model is unique up

to unit-migration.

This result is essentially contained in [L] (p. 434), where Lipschitz proves

that integral quaternions have that same sort of unique factorization up to

factors of norm 2. For a modern proof see Theorem 2, p. 57 in [CS].

Given m ∈ N, a quaternion α = a + bi + cj + dk ∈ L is said to be

primitive modulo m if (a, b, c, d,m) = 1. In [P] (theorem 1), Pall proves the

following result:

Theorem 2.2. If α ∈ L is primitive modulo m, where m is odd and positive

with m | N(α), then α has exactly a set of eight right divisors of norm m, in

L, all of them left-associated. One has an analogous result for left divisors.

Notice that while theorem 2.1 relates factorizations modelled on the same

prime decomposition of the norm, theorem 2.2 gives information about fac-

torizations of a primitive quaternion modelled on different prime decom-

position of its norm. For example, if α = π1π2π3 is a factorization of a

primitive quaternion α corresponding to N(α) = p1p2p3, and α = π′2π
′
1π
′
3

is a factorization corresponding to N(α) = p2p1p3, then it follows from the

last theorem that π1π2 and π′2π
′
1 are right associates, and therefore π3 and

π′3 are left associates.

3. Orthogonality and Arithmetic

From the expression for the product of two quaternions, u and v, one

readily sees that, for the inner product u · v,

(3.1) u · v =
1

2
(uv̄ + vū) .

This very simple observation can be used to obtain some curious relations

between common divisors, the inner product and orthogonality, as it will
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be demonstrated in this section. In what follows, we will use the notation

u ⊥ v to mean that the quaternions u and v are orthogonal, i.e. u · v = 0.

Theorem 3.1. For any u, v, w ∈ H, one has

(uv) · (uw) = N(u) (v · w).

In particular, if α, β ∈ L have a common left divisor τ , then N(τ) | α · β.

One has analogous results for right common divisors.

Proof. All follows immediately from:

2 (uv) · (uw) = uvw̄ū+ uwv̄ū = u (vw̄ + wv̄) ū = 2 (v · w) N(u).

�

Corollary 3.2. Let ε, δ ∈ {1, i, j, k} with ε 6= δ. Then, for any α ∈ H,

αε ⊥ αδ and εα ⊥ δα.

Proof. This is an immediate consequence of the previous proposition, and

the fact that ε ⊥ δ. �

It follows from theorem 6 in [P] that two non-associate Hurwitzian primes

cannot be orthogonal. We show here that this can be directly deduced from

the unique factorization theorem.

Theorem 3.3. If α, β ∈ H are primes with the same norm, and α ⊥ β,

then each one is a left and right associate of the other.

Proof. Let p = N(α) = N(β). From α ⊥ β one gets that αβ̄ = −βᾱ. Now,

if the quaternion γ = αβ̄ is not primitive, then m | γ for some m ∈ N
with m > 1. But then, from m2 | N(γ) = p2, it follows that m = p. But

then αβ̄ = pε = εp, for some unit ε. Since p = ββ̄, one gets α = εβ. From

βᾱ = −αβ̄ = pε, one gets β = −εα (and in this case one sees that ε2 = −1,

and therefore ε = ±i,±j,±k).

If γ is primitive, then αβ̄ and −βᾱ are two factorizations of γ modelled

on N(γ) = pp, and the unique factorization theorem implies that α and β

are right associates.

Finally note that α ⊥ β⇒ ᾱ ⊥ β̄, which allows to deduce the left version

of the result from its right version, and vice-versa. �

With non-primes one can obtain examples that are a little more inter-

esting. For instance, from the previous corollary, it follows that if π and ρ

are any two quaternions, then πiρ and πρ have the same norm and are or-

thogonal. The question of what exactly is the left greatest common divisor

of these two quaternions, led to:
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Theorem 3.4. Let γ = z +wj ∈ L, with z, w ∈ Z[i], be an odd quaternion

(i.e. γ has an odd norm). Then:

(iγ, γ)R = 1 ⇐⇒ (z, w) = 1 (in Z[i])

Proof. It is clear that if δ | z and δ | w, with δ ∈ Z[i], then δ is a left

divisor of iγ, since of course δ | γ and it commutes with i. Therefore,

(z, w) = (δ)⇒ (iγ, γ)R ⊆ (δ)R.

On the other hand, putting I = (iγ, γ)R, and since iγ = zi + wk, γi =

zi− wk, one has:

2zi = iγ + γi ∈ I
and

2wk = iγ − γi ∈ I.
Hence:

2z, 2w ∈ I.
Now, (2,N(γ)) = 1 implies that there are x, y ∈ Z such that 2x+ γγ̄y = 1.

In particular, there is x ∈ Z with 2x ≡ 1 (mod I). From this one concludes

that z, w ∈ I, and so, if these are coprime, it follows that I = 1. �

Note that from an algorithm to compute πiρ from the quaternion πρ one

gets a factorization algorithm for integers. To exemplify this, suppose we

have a semi-prime number n = pq with p and q to be determined. Using an

algorithm like the one in [RS], one can find α ∈ L such that N(α) = n, and

one has α = πρ, for some primes π, ρ ∈ H. If one could somehow determine

πiρ, then using the Euclidean algorithm, one would get π, and therefore p

and q.

4. The vector product in H and the arithmetic of L

We start by recalling the notion of vector product in Rn.

Definition 4.1. For u1,u2, . . . ,un−1 ∈ Rn, define their vector product by

×(u1,u2, . . . ,un−1) = u1 × u2 × · · · × un−1 :=

∣∣∣∣∣∣∣∣
u1,1 u1,2 · · · u1,n

...
... · · · ...

un−1,1 un−1,2 · · · un−1,n
e1 e2 · · · en

∣∣∣∣∣∣∣∣
(with the obvious meaning), where ei is the i-th vector of the canonical

basis of Rn, and ui,j is the j-th coordinate of the vector ui, on that same

basis.

It easily follows from this definition that, for any vectors ui,vj,v ∈ Rn,

where i, j = 1, . . . , n− 1, one has:
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(1) (u1 × u2 × · · · × un−1) · v =

∣∣∣∣∣∣∣∣
u1,1 u1,2 · · · u1,n

...
... · · · ...

un−1,1 un−1,2 · · · un−1,n
v1 v2 · · · vn

∣∣∣∣∣∣∣∣
(2) (u1 × u2 × · · · × un−1) ⊥ ui, for all i = 1, . . . , n− 1.

(3) (u1 × u2 × · · · × un−1) · (v1 × v2 × · · · × vn−1) = det(ui · vj).

From this last relation, one sees that, for any α, β, γ ∈ H,

N(α× β × γ) = (α× β × γ) · (α× β × γ) =

∣∣∣∣∣∣
N(α) α · β α · γ
α · β N(β) β · γ
α · γ β · γ N(γ)

∣∣∣∣∣∣ ,
from which one easily gets

N(α× β × γ) = N(αβγ)− N(α)(β · γ)2 − N(β)(α · γ)2−

− N(γ)(α · β)2 + 2(α · β)(α · γ)(β · γ).

In particular, if β ⊥ α and γ ⊥ α, then N(α) | N(α × β × γ). It follows

from theorem 2.2 that α × β × γ has a left and a right divisor both with

the same norm as α. We will show that, in both cases, α is that divisor. In

order to do that, we need the following result.

Lemma 4.2. Let α = a + bi + cj + dk ∈ L be a primitive quaternion, and

let g1 = (a, b), g2 = (c, d), and x0, y0, z0, t0 ∈ Z be such that: ax0 + by0 = g1,

cz0 + dt0 = g2. Then the Z-module α⊥ ∩ L is generated by the quaternions:

g2(x0 + y0i)− g1(z0 + t0i)j,
1

g 1

(b− ai), 1

g 2

(d− ci)j

Proof. Suppose we are given α = a+bi+cj+dk ∈ L, primitive. We want to

find all vectors in L∩α⊥. Put g1 = (a, b), g2 = (c, d), and let x0, y0, z0, t0 ∈ Z
be such that:

ax0 + by0 = g1(4.1)

cz0 + dt0 = g2(4.2)

Now, the elements γ = x+ yi+ zj + tk ∈ L such that

(4.3) ax+ by + cz + dt = 0.

must satisfy

ax+ by = r1g1

cz + dt = r2g2,

for some r1, r2 ∈ Z with r1g1 +r2g2 = 0. Because α is primitive, (g1, g2) = 1,

and therefore there exists r ∈ Z such that r1 = rg2 and r2 = −rg1. It
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then follows from the well known caracterization of the solutions of linear

Diophantine equations that:

x = r1x0 +
b

g1
s = rg2x0 +

b

g1
s

y = r1y0 −
a

g1
s = rg2y0 −

a

g1
s

z = r2z0 +
d

g2
u = −rg1z0 +

d

g2
u

t = r2t0 −
c

g2
u = −rg1t0 −

c

g2
u,

(4.4)

for some s, u ∈ Z. �

Theorem 4.3. Given α ∈ L, and β, γ ∈ L such that β ⊥ α and γ ⊥ α,

one has

α× β × γ ∈ αL ∩ Lα.

Proof. Let α = a+bi+cj+dk ∈ L, which may be assumed to be a primitive,

without loss of generality. Let g1 = (a, b), g2 = (c, d), and x0, y0, z0, t0 ∈ Z
be as in theorem 4.2. Since, by that result, the Z-module α⊥∩L is generated

by the quaternions: β1 = g2(x0 + y0i) − g1(z0 + t0i)j, β2 = 1
g 1

(b − ai), β3 =
1
g 2

(d − ci)j, it is enough to check the validity of the claimed statement for

the products α× β1 × β2, α× β1 × β3, and α× β2 × β3. Now, more or less

straighforward computations show that:

α× β2 × β3 = α(−j) 1

g1g2
(a+ bi)(c− di)

=
1

g1g2
(a+ bi)(c+ di)(−j)α.

α× β1 × β2 = α(g2i− j(b− ai)(z0 − t0i))

= (−g2i+ j(b+ ai)(z0 − t0i))α.

α× β1 × β3 = α(g1i+ k(d+ ci)(y0 − x0i))

= (g1i+ k(d+ ci)(y0 + x0i))α.

�

Using corollary 3.2, one sees that, for example, α × αi × αj ∈ αL ∩
Lα. While doing some computational experimentation, we noticed that, for

example, α × αi × β ∈ αL. This led to the discovery of the next result. In

its proof, one needs to compute several vector products, for which it was

found convenient to consider the exterior algebra, over R:∧
H =

∧0
H⊕

∧1
H⊕

∧2
H⊕

∧3
H⊕

∧4
H
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where ∧0
H '

∧4
H ' R∧1

H '
∧3

H ' H.

One also makes free use of the unique R-linear application
∧3H→ H such

that, for {ε1, ε2, ε3} ⊂ {1, i, j, k} satisfying εr 6= ±εs, for all r, s ∈ {1, 2, 3}
with r 6= s,

ε1 ∧ ε2 ∧ ε3 7→ ε1ε2ε3

which is a (linear) isomorphism and the image of α ∧ β ∧ γ is precisely

α× β × γ.

Theorem 4.4. Given α, β, γ, δ ∈ L, one has

αβ × αγ × δ ∈ αL.

Proof. By (multi)linearity, it is enough to show that the claimed result holds

for β, γ, δ ∈ {1, i, j, k}. Let then α = a+ bi+ cj+dk, with a, b, c, d ∈ Z, and

ε1, ε2, ε3 ∈ {1, i, j, k}. One has:

αε1 ∧ αε2 = (aε1 + biε1 + cjε1 + dkε1) ∧ (aε2 + biε2 + cjε2 + dkε2) =

= a2 (ε1 ∧ ε2) + ab (ε1 ∧ iε2) + ac (ε1 ∧ jε2) + ad (ε1 ∧ kε2) +
ab (iε1 ∧ ε2) + b2 (iε1 ∧ iε2) + bc (iε1 ∧ jε2) + bd (iε1 ∧ kε2) +
ac (jε1 ∧ ε2) + bc (jε1 ∧ iε2) + c2 (jε1 ∧ jε2) + cd (jε1 ∧ kε2) +
ad (kε1 ∧ ε2) + bd (kε1 ∧ iε2) + cd (kε1 ∧ jε2) + d2(kε1 ∧ kε2).

For ε2 one now has only three non-trivial cases to consider, up to sign,

depending on whether ε2 ε
−1
1 = i, j, k:

(i) ε2 = iε1:

αε1 ∧ αiε1 ∧ ε3 = (a2 + b2) ε1 ∧ iε1 ∧ ε3 − (c2 + d2) jε1 ∧ kε1 ∧ ε3 +

(ac− bd) (kε1 ∧ ε1 ∧ ε3 + jε1 ∧ iε1 ∧ ε3) +

(ad+ bc) (kε1 ∧ iε1 ∧ ε3 + ε1 ∧ jε1 ∧ ε3).

Now, one has to consider four cases for ε3, up to sign: ε3/ε1 = 1, i, j, k. For

ε3 = ε1, one gets, identifying εi ∧ εj ∧ εk with εiεjεk,

αε1 × αiε1 × ε1 =
(
−(c2 + d2)i− (ac− bd)k + (ad+ bc)j

)
ε31 =

= (−ak + bj − ci+ d)c+ (aj + bk − c− di)d)ε31

= α(−ck + dj)ε31.
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Analogously, one obtains:

αε1 × αiε1 × iε1 = α(−cj − dk)ε31

αε1 × αiε1 × jε1 = α(ak + bj)ε31

αε1 × αiε1 × kε1 = α(−aj + bk)ε31

(j) ε2 = jε1

αε1 ∧ αjε1 ∧ ε3 = (a2 + c2) ε1 ∧ jε2 ∧ ε3 + (b2 + d2) iε1 ∧ kε1 ∧ ε3
+(ab+ cd) (iε1 ∧ jε1 ∧ ε3 + ε1 ∧ kε1 ∧ ε3)

+(ad− bc) (kε1 ∧ jε1 ∧ ε3 − ε1 ∧ iε1 ∧ ε3)

Now, according to whether ε3 ε
−1
1 = 1, i, j, k, one obtains:

αε1 × αjε1 × ε1 = α(bk − di)ε31
αε1 × αjε1 × iε1 = α(−ak + ci)ε31

αε1 × αjε1 × jε1 = α(−bi− dk)ε31

αε1 × αjε1 × kε1 = α(ai+ ck)ε31

(k) ε2 = kε1

αε1 ∧ αkε1 ∧ ε3 = (a2 + d2) ε1 ∧ kε1 ∧ ε3 − (b2 + c2) iε1 ∧ jε1 ∧ ε3
+(ab− cd) (iε1 ∧ kε1 ∧ ε3 − ε1 ∧ jε1 ∧ ε3)

+(ac+ bd) (jε1 ∧ kε1 ∧ ε3 + ε1 ∧ iε1 ∧ ε3)

Again, according to whether ε3 ε
−1
1 = 1, i, j, k, one obtains:

αε1 × αkε1 × ε1 = α(ci− bj)ε31
αε1 × αkε1 × iε1 = α(aj + di)ε31

αε1 × αkε1 × jε1 = α(−ai+ dj)ε31

αε1 × αkε1 × kε1 = α(−bi− cj)ε31
�

One obviously has a right version of this result. However, it is not true

that αβ × αγ × δ ∈ Lα, as can be seen by taking α = 1 + 2i, β = δ = 1 + i,

and γ = 1 + j.

5. Final remarks

As pointed out in the introduction, the results here presented where

obtained while investigating a possible extension, to integral quaternions,

of the method of factoring an integer from two of its representations as a

sum of two squares. Using results of Pall, this led us to look for integral

quaternions that are orthogonal to a given one. To construct these later
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ones, we turned to the vector product, just to find that this did not yield

what we where looking for, but nevertheless yielded results that do not seem

at all trivial.

In the end, integral quaternions do encode factoring information about

integers, and therefore it is natural to expect that there should exist subex-

ponential factorization methods using quaternions. We hope that others are

stimulated by this paper to find these algortihms.
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somme de deux ou de trois carrés en elle-même, Journal de Mathématiques Pures
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