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a b s t r a c t

Modelling chaotic and intermittent behaviour, namely the excursions and reversals of the
geomagnetic field, is a big problem far from being solved. Armbruster et al. [5] considered
that structurally stable heteroclinic networks associated to invariant saddles may be the
mathematical object responsible for the aperiodic reversals in spherical dynamos. In this
paper, invoking the notion of heteroclinic switching near a network of rotating nodes,
we present analytical evidences that the mathematical model given by Melbourne et al.
[19] contributes to the study of the georeversals. We also present numerical plots of solu-
tions of the model, showing the intermittent behaviour of trajectories near the heteroclinic
network under consideration.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The geomagnetic field can be roughly described as a
dipole aligned with the axis of rotation of the Earth as in
Fig. 1(a), but the polarity of the dipole did not always coin-
cide with the one observed nowadays. Paleomagnetic
studies show that the Earth’s magnetic field flips from time
to time, reversing poles. Although we know that in the past
the average time between such reversals was about
2 � 105 years (source: [27]), the time of the next reversal
is unpredictable, since the reversals occur irregularly. The
reasons of this irregularity is an important question of
modern geophysics.

The geodynamo model, based on equations of magneto-
hydrodynamics, is at present the only plausible model of
the mechanism, by which the Earth generates and main-
tains a magnetic field. Several phenomenological models
were proposed to explain the reversals of the geomagnetic
field. According to Pétrélis and Fauve [20], one of these
mechanisms is the use of normal forms, based on the

assumption that magnetic eigenmodes are competing. In
this context, heteroclinic structures provide a framework
to describe georeversals connecting quasi-steady states
with a given polarity.

The dynamics near heteroclinic cycles and networks has
many properties that appeal for a model of aperiodic
georeversals. Armbruster et al. [5] proposed a dynamo
model considering convection in a spherical shell without
rotation where symmetric heteroclinic cycles associated
to seven equilibria appear in the associated flow. The
heteroclinic cycles are structurally stable due to the
symmetries of the system. Introduction of a magnetic field
transformed the hydrodynamic equilibria into others with
a non-vanishing magnetic field. The dynamics near the
network explains the changes of orientation of the
magnetic dipole and then the georeversals.

Later, Chossat and Armbruster [6] gave a rigorous proof
of the existence of structurally stable heteroclinic cycles
involving dipolar magnetic fields generated by convection
in a spherical shell. The authors demonstrated the exis-
tence of heteroclinic cycles only in the case of non-rotating
spherical dynamo; they have also presented numerical
simulations showing the existence of heteroclinic cycles
for order 1 rotation rates. More recently, in [21], reversals
may be seen as a interaction of two distinct attractors,
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apparently via heteroclinic connections due to the inter-
section of stable and unstable manifolds of periodic orbits.
The interactions depend on the Reynolds number.

In 2001, Melbourne et al. [19] designed a simple model
involving nine parameters with a heteroclinic network in
which the associated geometry resembled the Earth’s mag-
netic field reversals. The system of [19] has four ordinary
differential equations compatible with the symmetries of
the velocity fields in a rotation sphericall shell. It is based
on the fact that the dominant modes in the geomagnetic
field are dipoles and quadrupoles with some symmetry
features. The authors assumed that the flow has (Z3 � Z2 -
� Z2) symmetry because the flow is invariant under rota-
tions of 120 degrees1. Since the Z3 symmetry acts non-
absolutely irreducibly, slight changes of the magnetic diffu-
sivity behave like a Hopf bifurcation and the velocity ac-
quires an SO(2) symmetry. The amplitude of the
corresponding normal form, (y1,y2,x3,x4), may be seen as
coordinates of a continuous dynamical system whose flow
contains an asymptotically stable heteroclinic network asso-
ciated to two pairs of saddle-foci and a non trivial closed tra-
jectory with real Floquet multipliers, embedded in a four
dimensional manifold.

Since the network is asymptotically stable, trajectories
whose initial condition lies outside the invariant subspaces
will approach one of the cycles in the heteroclinic network.
The fixed point subspaces work as barriers and the time
spent near consecutive saddles increases geometrically
with each visit. The absence of geomagnetic reversals on
numerics is one of the reasons why the constructed model
was unsatisfactory. This fact led the authors in [19] to con-
sider breaking the original symmetries to kick the system
away from the invariant saddles and to generate random
reversals with a finite mean period. Observe that the dyna-
mo model must have Z2 symmetry which is never broken:
B ´ � B (this means that if a magnetic field B is a solution
for the differential equation, then �B is another solution).

Recently, Aguiar et al. [4] defined and proved a strong
form of switching near generic heteroclinic networks of
rotating nodes embedded in a three dimensional smooth
manifold. This phenomenon is characterised by the follow-
ing property: close to the heteroclinic network there are
trajectories that visit neighbourhoods of the saddles fol-
lowing any prescribed and admissible set of heteroclinic
connections of the network. More recently, Homburg and
Knobloch [14] gave an equivalent definition of forward
switching for a heteroclinic network, using the notion of
connectivity matrix (which characterises the admissible
sequences) and symbolic dynamics.

The perturbed dynamo model presented in [19] has a
flow-invariant plane whose invariance is not broken and
the nearby dynamics have not been studied rigorously
yet. In particular, the considered perturbation does not
break the heteroclinic network. The retention of this
flow-invariant set has some effects on the switching prop-
erties. This is the interesting bridge between the works [4]
and that of [19].

The main goal of this paper is to frame the model of
Melbourne et al. [19] and its numerics, in the context of
the works of Aguiar et al. [2,3] and [4] and Rodrigues
et al. [23], to conclude analytically that all the properties
for infinite switching hold. We show that the flow associ-
ated to the amplitude equations of the model in [19] has
a heteroclinic network involving a periodic solution and
four equilibria, embedded in an flow-invariant three-
dimensional manifold. Near the heteroclinic network of
the perturbed flow, there are trajectories making excur-
sions around the whole network in an irregular way.

1.1. Framework of the paper

This paper is organised as follows. Section 3 sets up the
construction of the heteroclinic model given by Melbourne
et al. [19] as a convection dynamo problem with symmetry,
preceded by definitions and preliminary results in Section
2. Using the equivariance of the system under a Lie group,
Section 4 gives an analytical description of the associated
equivariant Birkhoff normal form of degree 3 and we dis-
cuss the geometry of the flow of the corresponding lift.

1 The evidence from magnetic field measurements at the surface,
extrapolated down to the core-mantle boundary suggest that in fact the
flow field is neither Z2 (180 degrees rotation) nor Z3 (120 degrees rotation)
symmetric, but somewhere in between – see Jackson et al. [15].

(a) (b)

Fig. 1. (a) Scheme of the Earth’s magnetic field, approximated as a magnetic axial dipole. Note that the locus of points with the same intensity of magnetic
field is a closed curve; MN – Magnetic North; GN – Geographical North; (b) Scheme of the lave flow layers; the magnetic alignment preserved after cooling
records reversion of the geomagnetic field. Each layer maintains the original magnetic field at its time of cooling.
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Section 5 contains a proof of switching near the network
which appears near the perturbation constructed in Sec-
tion 4. This phenomenon enables the occurrence of chaotic
intermittency. Section 6 is a short explanation of the phys-
ics underlying the system, in the context of georeversals.
After the analysis of the geometry of some solutions and
the corresponding time series, we include a discussion
and a conclusion about the main result.

2. Preliminaries

This section provides some preliminary results and
notation required. Let f be a smooth vector field on Rn with
flow given by the unique solution x(t) = u(t,x0) 2 Rn of

_x ¼ f ðxÞ; xð0Þ ¼ x0: ð2:1Þ

2.1. Heteroclinic cycles and networks

Following Field [8], if A � Rn is a compact flow-invariant
set for the flow of f, we say that A is an invariant saddle if

A # WsðAÞ n A and A # WuðAÞ n A;

where Ws(A) and Wu(A) is the stable and unstable manifold
of A, respectively. In this paper, the saddles consist of
either saddle-foci or non-trivial closed trajectories – as in
[4], these are what we call hereafter rotating nodes. We as-
sume that all the saddles are hyperbolic.

Given two invariant saddles A and B, an m-dimensional
heteroclinic connectionfrom A to B, denoted [A ? B], is an
m-dimensional connected invariant manifold contained
in Wu(A) \Ws(B).

Let S ¼ fAj : j 2 f1; . . . ; kgg be a finite ordered set of
mutually disjoint invariant saddles. Following Field [8],
we say that there is a heteroclinic cycleassociated to S if

8j 2 f1; . . . ; kg;WuðAjÞ \WsðAjþ1Þ – ; ðmod kÞ:

Sometimes, we refer to the saddles defining the heteroclin-
ic cycle as nodes. In this paper, a heteroclinic network is sim-
ply a finite connected union of heteroclinic cycles such that
given any two saddles in the network, there is a sequence
of heteroclinic connections taking one to the other.

2.2. Symmetry and heteroclinic switching

Here, we introduce some background on group theory
and equivariant dynamics. We refer the reader to Golubit-
sky et al. [9] for other concepts and results about differen-
tial equations with symmetry. Let C be a compact Lie
group acting linearly on Rn. The vector field f is C-equivari-
ant if for all c 2C and x 2 Rn, we have f(cx) = cf(x). In this
case c 2 C is said to be a symmetry of f.

The C-orbit of x0 2 Rn is the set C(x0) = {cx0,c 2C}. If x0

is an equilibrium of (2.1), so are the elements in its C-orbit.
More generically, if n is a flow-invariant set, then so are the
sets cn, with c 2 C. A relative equilibrium is a group orbit of
an equilibrium.

The isotropy subgroup of x0 2 Rn is Cx0 ¼ fc 2 C;
cx0 ¼ x0g. For an isotropy subgroup R of C, its fixed-point
subspace is

FixðRÞ ¼ fx 2 Rn : 8c 2 R; cx ¼ xg:

We say that the action C on Rn is absolutely irreducible
when the only linear mappings Rn ? Rn that commute
with the action of C on Rn are the scalar real multiples of
Id.

The existence of heteroclinic networks is a common
phenomenon in problems where there exist invariant
spaces forced by symmetry. Symmetry forces the existence
of fixed point subspaces, which are not destroyed under
symmetric perturbations.

We follow the set-up in Aguiar et al. [4] to define the
concept of heteroclinic switching. Roughly speaking,
switching near a heteroclinic network means that any infi-
nite sequence of pseudo-orbits (defined by heteroclinic
connections) can be shadowed. For a heteroclinic network
Rwith node set A, a path of order k, on Ris a finite sequence
sk = (cj)j2{1,. . .,k} of heteroclinic connections cj = [Aj ? Bj] in
R such that Aj;Bj 2 A and Bj = Aj+1 i.e. cj = [Aj ? Aj+1]. An
infinite path, corresponds to an infinite sequence of con-
nections in R.

Let NR be a neighbourhood of the network R and let UA

be a neighbourhood of each node A in R. For each hetero-
clinic connection in R, consider a point pj on it and a small
neighbourhood Vj of pj. We assume that the neighbour-
hoods of the nodes are pairwise disjoint, as well for those
of points in connections as shown in Fig. 2.

Given neighbourhoods as before, the trajectory u(t,q),
follows the finite path sk = (cj)j2{1,. . .,k} of order k, if there ex-
ist two monotonically increasing sequences of times (ti)-
i2{1,. . .,k+1} and (zi)i2{1,. . .,k} such that for all i 2 {1,. . .,k},
we have ti < zi < ti+1 and:

� u(t,q) � NR for all t 2 (t1,tk+1);
� uðti; qÞ 2 UAi

and u(zi,q) 2 Vi and
� for all t 2 (zi,zi+1), u(t,q) does not visit the neighbour-

hood of any other node except that of Ai+1.

There is finite switching near R if for each finite path
there is a trajectory that follows it as depicted in scheme
2. Analogously, we define infinite switching near R by
requiring that each infinite path is followed by a trajectory.
We refer to the type of switching described as persistent. In
Aguiar et al. [4], the authors proved that under generic
hypothesis on the heteroclinic network, persistent switch-
ing arises.

In a three-dimensional manifold this seems to be the
only possible mechanism for the existence of infinite
switching. This mechanism also works in higher dimen-
sions if we can capture the heteroclinic network inside a
three-dimensional manifold. This may be achieved using
either the centre manifold of heteroclinic cycles [25,26] or
the normal hyperbolicity of a three-dimensional flow-
invariant set.

3. Construction and description of the model

In this section, we give a short description of the model
designed by Melbourne et al. [19]. It describes the evolu-
tion of a magnetic field B, through the magnetic induction
equation (3.2), obtained combining Maxwell’s equations
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and Ohm’s Law, and the Eq. (3.3). The latter means that B is
a divergence-free vector field. Here Rm ¼ UL

g is the dimen-
sionless magnetic Reynolds number, where U is the charac-
teristic flow velocity, L is the typical length scale of the
flow and g is magnetic diffusivity.

@B
@t
¼ Rmr� ðv � BÞ þ r2B ð3:2Þ

divB ¼ 0: ð3:3Þ

Since (3.2) is linear in B, it is known that solutions of
(3.2) with different symmetries are independent – see
Gubbins [10]. The velocity field assumed by Melbourne
et al. [19] in (3.2) can be regarded as the system of rolls
which has the so-called cartridge belt structure, with three
pairs of columnar cells aligned with the rotation axis. Then
v is invariant under the equatorial reflection and the rota-
tion by 2p

3 about the axis of the Earth. Because of the sym-
metries of the velocity field, the solution of (3.2) can be
expressed as a linear combination of the symmetric modes
De, Qa, Da and Qe (notation of Holme [13]), as depicted in
Fig. 3, where:

� Da is a dipolar solution of (3.2) antisymmetric with
respect to the equatorial plane and symmetric with
respect to rotations by angle p around the polar axis;
� Qa is a quadrupolar solution of (3.2) symmetric with

respect to the equatorial plane and symmetric with
respect to rotations by angle p around the polar axis;
� De is a dipolar solution of (3.2) symmetric with respect

to the equatorial plane and antisymmetric with respect
to rotations by angle p around the polar axis;
� Qe is a quadrupolar solution of (3.2) antisymmetric with

respect to the equatorial plane and antisymmetric with
respect to rotations by angle p around the polar axis

For the dynamo model involving the Kumar–Roberts flow,
the modes Da, De and Qa become unstable for close values of
magnetic diffusivity, which hinted to the authors of [19] to
use the following ansatz for the magnetic field B(r,t):

Bðr; tÞ ¼ y1ðtÞD
1
e ðrÞ þ y2ðtÞD

2
e ðrÞ þ x2ðtÞQ aðrÞ

þ x3ðtÞDaðrÞ; ð3:4Þ

where r = (k(y1,y2)k,x2,x3) and De ¼ D1
e ;D

2
e

� �
is an oscilla-

tory mode. Note that the symmetric modes may be seen

Fig. 2. Solution shadowing a path of order 3, in a three-dimensional manifold: given the three heteroclinic connections [Aj�1 ? Aj], [Aj ? Aj+1] and [Aj+1 ?
Aj+2], there is a solution following them.

(a) (b) (c)
Fig. 3. Symmetric Modes. (a) Equatorial Dipole De; (b) Axial Quadripole Qa; (c) Axial Dipole Da.
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as vector fields in R3 where r is a general position in the
phase space. We are interested in the geometry of
(y1,y2,x2,x3), the coefficients of the symmetric modes, here-
after called the amplitude of the symmetric modes.

In the next section, we concentrate our attention in the
dynamics of the amplitude equations of B(r,t).

4. Truncated Birkhoff normal form

Before adding perturbing terms, note that the model
constructed in [19] has the particularity that the velocity
of the flow which generates the dynamo action is equivari-
ant under the action of compact Lie group C = SO(2) � Z2 -
� Z2. Recall that the authors of [19] assumed that the flow
had (Z3 � Z2 � Z2) symmetry – the flow is invariant under
120 degree rotations. Since the Z3 symmetry acts non-
absolutely irreducibly, slight changes of the magnetic dif-
fusivity g give rise generically to a Hopf Bifurcation and
the system acquires a SO(2) symmetry.

4.1. Heteroclinic network in R3

In R4, assuming the usual representation of SO(2) in the
first two coordinates and the usual representation of
Z2 � Z2 generated by the linear maps f1 and f2:

f1ðy1; y2; x2; x3Þ ¼ ðy1; y2;�x2; x3Þ and f2ðy1; y2; x2; x3Þ
¼ ðy1; y2; x2;�x3Þ;

the truncated Birkhoff normal form of degree 3 in real
coordinates, acting as organising centre, is given by:

_y1 ¼ y1 l1 � y2
1 þ y2

2

� �
þ A12x2

2 þ A13x2
3

� �
�x1y2

_y2 ¼ y2 l1 � y2
1 þ y2

2

� �
þ A12x2

2 þ A13x2
3

� �
þx1y1

_x2 ¼ x2 l2 þ A21 y2
1 þ y2

2

� �
� x2

2 þ A23x2
3

� �
_x3 ¼ x3 l3 þ A31 y2

1 þ y2
2

� �
þ A32x2

2 � x2
3

� �

8>>><
>>>:

ð4:5Þ

The procedure of reduction to the normal form is rather
straightforward involving step by step elimination of the

non resonant terms. Following Aguiar et al. [3] and Rodri-
gues et al. [23], the vector field X4 associated to system
(4.5) can be seen as the lifted by rotation associated to the
pair (x1,x1) applied to the vector field X3 where

X3ðx1; x2; x3Þ ¼
x1 l1 � x2

1 þ A12x2
2 þ A13x2

3

� �
;

x2 l2 þ A21x2
1 � x2

2 þ A23x2
3

� �
;

x3 l3 þ A31x2
1 þ A32x2

2 � x2
3

� �
0
B@

1
CA: ð4:6Þ

Passing from (4.5) to (4.6) can be understood as a stan-
dard technique of phase-amplitude equations: (4.6) corre-
sponds to the amplitude equations. We refer the technique

lifting by rotation presented in the papers of Aguiar et al. [3]
and Rodrigues et al. [23], because their results about lifted
vector fields will be relevant for our further conclusions.
The vector field X3 is equivariant under the action of the
finite Lie group H = hc1,c2,c3i where

c1ðx1; x2; x3Þ ¼ ð�x1; x2; x3Þ; c2ðx1; x2; x3Þ
¼ ðx1;�x2; x3Þ and c3ðx1; x2; x3Þ ¼ ðx1; x2;�x3Þ;

whose action is isomorphic to the usual action of Z2 �
Z2 � Z2 in R3. This implies that the coordinate planes and
axes are flow-invariant; they correspond to Fix Z2(ci) and
Fix(Z2(ci) � Z2(cj)), respectively (i – j 2 {1,2,3}).

Definition 1. If A is a set of parameter space such that A is
not bounded by surfaces with tangencies at the bifurcation
point, we say that A is large (see Fig. 4).

It has already been proved by Melbourne [18] that:

Theorem 1 (Melbourne [18, 1989]). For i 2 {1,2,3}, if the
following conditions hold (if i = 2, then i + 2 = 1; if i = 3, then
i + 1 = 1):

(1) li > 0;
(2) li + Ai,i+2li+2 > 0;
(3) li + Ai,i+1li+1 < 0;
(4) li + Ai,i+1li+1 + li+1 + Ai+1,ili < 4 min{li,li+1};
(5) �

Q3
i¼1ðli þ Ai;iþ1liþ1Þ >

Q3
i¼1ðli þ Ai;iþ2liþ2Þ,

then the flow associated to Eq. (4.6) has an asymptotically
stable heteroclinic cycle R2 associated to six equilibria on
the three-coordinate axes. Moreover, there is a large set of
values of Aij for which there is a large set of choices of param-
eters (l1,l2,l3) where conditions (1)–(5) hold.

The network R2 is the union of eight heteroclinic cycles
(related by the symmetry group H), each one lying on the
boundary of each octant (see Fig. 5). Next table contains
the information about the eigenvalues and eigenvectors
for the H-orbit of the equilibria contained in R2.

Since the network is asymptotically stable, solutions
starting near the heteroclinic cycle will approach closer
and closer the heteroclinic cycle and they remain near the
equilibria for increasing periods of time; moreover, near
the network, solutions make fast transitions from one node
to the next. The existence of a radial component near each
equilibrium stresses the existence of a two-dimensional
flow-invariant region SH

2 � R2 contained in an ellipsoid
(the origin is repelling). In the restriction to its first octant,
the unstable manifolds of the saddles are given by:

1. WuðfþP1gÞ � fðx1; x2; x3Þ 2 ðRþ0 Þ
3 : x3 ¼ 0 ^ x1 P 0g;

Equilibrium Radial Contracting Expanding

Eigenvalue Direction Eigenvalue Direction Eigenvalue Direction

�P1 # ð� ffiffiffiffiffiffil1
p

;0;0Þ �2l1 (1,0,0) l3 + A31l1 (0,0,1) l2 + A21l1 (0,1,0)
�P2 # ð0;� ffiffiffiffiffiffil2

p
;0Þ �2l2 (0,1,0) l1 + A12l2 (1,0,0) l3 + A32l2 (0,0,1)

�P3 # ð0; 0;� ffiffiffiffiffiffil3
p Þ �2l3 (0,0,1) l2 + A23l3 (0,1,0) l1 + A13l3 (1,0,0)
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2. WuðfþP2gÞ � fðx1; x2; x3Þ 2 ðRþ0 Þ
3 : x1 ¼ 0 ^ x3 P 0g;

3. WuðfþP3gÞ � fðx1; x2; x3Þ 2 ðRþ0 Þ
3 : x2 ¼ 0 ^ x2 P 0g.

This network is very similar to that of Dos Reis [22],
who observed that it is possible to have robust cycles of
non-transverse saddle-connections for a Z3

2 equivariant
vector field. This kind of networks has also been considered
by Guckenheimer and Holmes [11] – their case is more re-
strict since the differential equation has O3 symmetry.

4.2. Lifting by rotation

Due to the Z2(c1) equivariance, the vector field X3 is
lifted by the rotation associated to the pair (x1,x1), to the
(SO(2) � Z2 � Z2) equivariant vector field _X ¼ X4ðXÞ where
X4 is the vector field defined in (4.5).

Using the notation of Rodrigues et al. [23] and according
to the Proposition 15 of [23], the asymptotically stable het-
eroclinic network R2 � SH

2 gives rise to an asymptotically
stable heteroclinic network LðR2Þ ¼ R3 � SH

3 , associated
to a relative equilibrium c ¼ Lð�P1Þ, with real Floquet mul-
tipliers and to the set of four equilibria

B ¼ fQ :¼ �i3ð�P2Þ;D :¼ �i3ð�P3Þg;

two by two Z2 symmetric. The Floquet multipliers are pre-
cisely the eigenvalues whose eigendirections are trans-
verse to the rotation. Here, it is important to note that c
lies in the plane Fix(Z2 � Z2) defined by x2 = x3 = 0 and that
the one-dimensional heteroclinic connections from �Q to
�D lie in the plane Fix(SO(2)) defined by the equations
y1 = y2 = 0 (see Fig. 6).

Any one-dimensional heteroclinic connection lying in-
side Fix(Z2(c1)) lifts to a one-dimensional heteroclinic con-
nection; a one-dimensional connection lying outside
Fix(Z2(c1)) lifts to a two-dimensional connection of the un-
ique relative equilibrium. To be more precise, in the
restriction to SH

3 � R4, each heteroclinic connection involv-
ing c has dimension 2 and the others have dimension 1.
The invariant manifolds Ws(c) and WuðQÞ coincide, as well
as WsðDÞ and Wu(c). After the lift by rotation, the map DX4,
at an equilibrium i3(±Pi), i = 2,3, has four eigenvalues. The
eigenvalue of DX3(Pi) whose associated eigenvector has
the same direction as the rotation gives rise to two com-
plex non-real eigenvalues: the real part is equal to that of
the original linearisation at each equilibrium and the imag-
inary part is equal to the speed of rotation x1(x1 – 0); the

Fig. 4. The set A is not a large set (bounded by tangent lines) and B is a large set. The origin represents the bifurcation point.
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Fig. 5. (a) The network R2 can be seen as the union of eight heteroclinic cycles (related by symmetry), each one lying on the boundary of each octant. The
network R2 is the H-orbit of the cycle depicted on the first octant. (b) Time series for a trajectory starting in the first octant – it starts near the heteroclinic
cycle approaching closer and closer the heteroclinic cycle, remaining near consecutive equilibria for increasing periods of time.
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other eigenvalues and the corresponding eigendirection
(transverse to the lift) remain. This is a general property
for the eigenvalues of the equilibria for liftings of vector
fields. In summary, we have proved that:

Theorem 2. Under the conditions of Theorem 1, the flow
associated to Eq. (4.5), has an asymptotically stable hetero-
clinic cycle R3 associated to four saddle-foci and a non-trivial
periodic solution with real Floquet multipliers.

The heteroclinic network R3 can be decomposed into
four cycles. Due to the symmetry, trajectories whose initial
condition starts outside the invariant subspaces will ap-
proach in positive time one of the cycles. The hyperplanes
defined by x2 = 0 and x3 = 0 prevent switching and the time
spent near either each equilibrium or the periodic solution
increases geometrically. The limit of the ratio between
consecutive times of flight inside the neighbourhoods of
the saddles is related to the ratio between the real part
of the eigenvalues at the corresponding saddles.

At this point, the existence of the heteroclinic network
R3 ‘‘connecting’’ ±B cannot describe georeversals because
the period goes to infinity as the solutions are attracted
to one cycle. In the next section, an arbitrary symmetry
breaking term will kick the trajectories away from the
nodes and will generate random reversals.

5. Analysis of the perturbed vector field in R4

The flow associated to the differential Eq. (4.5) has a
heteroclinic network but no connection of states with
opposite polarities, except when additional perturbing
terms that break the symmetries are taken into account.
The perturbation (5.7) considered in [19] may be explained
by the fact that the Earth does not have exact rotational
and reflectional symmetries due to the inhomogeneities

of the convection of the fluid motions inside the Earth’s
core. It corresponds to the Eqs. (6)–(8) of [19].
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ð5:7Þ

Observe that the vector field associated to (5.7) is equi-
variant under the action of the symmetry � Id. The nodes
of R3 are hyperbolic and persist under the perturbation. It
is done in such a way that the invariance of the plane de-
fined by the equations y1 = y2 = 0 is not broken. This means
that the non-robust heteroclinic connections lying in Fix(-
SO(2)) from �Q to �D persist. Since �Q and c are hyper-
bolic, dim Wuð�QÞ ¼ 2 and dim Ws(c) = 3, then for a non-
empty open set of parameters (e1,e2,e3), the invariant man-
ifolds meet transversely and their intersection consists of a
finite number of trajectories. The same holds for the other
intersections involving the saddle c. Hence, generically the
perturbation (5.7) does not destroy the heteroclinic net-
work, which we denote from now on by Re

3.
Using the centre manifold theorem for heteroclinic cycles

studied by Shaskov et al. [25] in the context of homoclinic
loops, and by Shilnikov et al. [26] in the general case, pro-
vided that the radial eigenvalue is the most contractive at
all saddles, generically it is possible to reduce the interest-
ing dynamical behaviour to a three-dimensional manifold
M3 containing the network Re

3. More precisely, we require
that:

� 2l1 < l1 þ A12l2 < 0; �2l2 < l2 þ A23l3 < 0
and
� 2l3 < l3 þ A31l1 < 0

ð5:8Þ

to assure the trichotomy condition (meaning that the radial
component must correspond to the strong stable manifold
of each node). In particular, we have shown that restricted
to the centre manifold M3, the heteroclinic network Re

3 is
of the type studied by Aguiar et al. [4]: the invariant sad-
dles of the network are either periodic solutions with
non zero real Floquet exponents or hyperbolic saddle-foci,
and all connections that take place in two-dimensional
invariant manifolds occur as tranverse intersections. In
the following lemma, we provide sufficient conditions for
the flow to be C1-linearizable around each saddle. These
conditions are related to the eigenvalues of the linearisa-
tion of X4 at the saddles.

Lemma 3. For all i 2 {1,2,3}, if

jli þ Ai;iþ1liþ1j– liþ2 þ Aiþ2;i�1li�1; ð5:9Þ

then the flow is C1-linearizable around each saddle.

Fig. 6. Representation of the two planes Fix(SO(2)) (horizontal) and
Fix(Z2 � Z2) (vertical), in which the invariant saddles associated to R3 lie.
In Fix(SO(2)), the non trivial closed trajectory c is a sink; in Fix(Z2 � Z2),
we observe the non robust heteroclinic connections of the network which
do not involve c. Note that R4 = Fix(SO(2)) � Fix(Z2 � Z2).
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Proof. See Aguiar et al. [4] and Rodrigues et al. [23] – the
proof relies on the Samovol’s theorem [24]. h

Condition (5.9) for C1-linearisation shows that linearisa-
tion is not possible for subsets defined by lines in the
parameter space. These restrictions have zero Lebesgue
measure, thus they do not place serious constraint on the
following analysis.

5.1. Poincaré maps

In this section, we describe the construction of the local
and global maps required for modelling the dynamics near
the heteroclinic network Re

3, via the composition in the
usual way. We give the details for the flow near the nodes
c, �Q and �D.

By Lemma 3, the vector field of (5.7) may be linearised
around each equilibrium point, up to a set of measure zero.
Hence it is possible to obtain cylindrical neighbourhoods
near each invariant saddle (hollow cylinder in the case of
the non trivial closed trajectory). The boundary of each
cylindrical neighbourhood forms an isolating block: the
flow is transverse to the cylinder walls, top and bottom.
We study the discrete time dinamics obtained by looking
at points on the isolating block. Let Q+,Q�,D+,D� cylindrical
neighbourhoods of þQ;�Q;þD and �D, respectively,
where the linearisation holds. After a linear rescaling of
the local variables, the cylinders may be choosen to have
radius 1 and height 2 as shown in Fig. 7. We omit the sym-
bols + and � since the local dynamics nearþQ and�Q are
the same (the same holds for þD and �D). In cylindrical
coordinates ðq; h; zÞ 2 Rþ0 � Rðmod 2pÞ � ½�1;1	, the linear-
isations have the form:

Q : _q ¼ C1q ^ _h ¼ x1 ^ _z ¼ E1z

and

D : _q ¼ E2q ^ _h ¼ x1 ^ _z ¼ C2z;

where

C1 ¼ l1 þ A12l2 < 0; E1 ¼ l3 þ A32l2 > 0; C2

¼ l2 þ A23l3 < 0 and E2 ¼ l1 þ A13l3 > 0:

We define the cross sections transverse to the cycle:

InðQÞ ¼ OutðDÞ
¼ ðq; h; zÞ 2 Rþ0 � Rðmod 2pÞ � ½�1;1	 :
�
q ¼ 1 ^ jzj 6 1g

and

OutðQÞ ¼ InðDÞ
¼ ðq; h; zÞ 2 Rþ0 � Rðmod 2pÞ � ½�1;1	 :
�
q 6 1 ^ jzj ¼ �1g;

parametrized by the coverings:

ðx; yÞ# ð1; x; yÞ ¼ ðq; h; zÞ
and
ðr;uÞ# ðq; h;�1Þ ¼ ðq; h; zÞ;

respectively. Note that OutðQÞ and InðDÞ have two con-
nected components: top and bottom that will be denoted
by OutðQ;þÞ;OutðQ;�Þ;OutðD;þÞ or OutðD;�Þ, according
to the sign of z – see Fig. 7.

Close to the saddle-foci Q, the flow goes in, at the cylin-
der walls, and it goes out at the top and bottom. Near D,
the flow goes in, at the cylinder top and bottom and it goes
out at the wall. Inside the cylinder the vector field is linear,
so the transition from the wall to top/bottom and top/bot-
tom to the wall is well understood. The local flows near Q
and D induce the maps /1 : InðQÞ ! OutðQÞ and /2 :

InðDÞ ! OutðDÞwhich to lowest order is given by:

/1ðx; yÞ ¼ yd1 ;�x1

E1
lnðyÞ þ x

� 	
and

/2ðr;/Þ ¼ �x1

E2
lnðrÞ þ /; rd2

� 	

where for i 2 {1,2}, we have di ¼ � Ci
Ei

. Assuming (5.9), let P
the cross section to p 2 c. The Poincaré first return map de-
fined on P may be linearised around p. The linearisation
takes the form:

_q ¼ C3ðq� 1Þ ^ _h ¼ x1 ^ _z ¼ E3z

where

C3 ¼ l3 þ A31l1 < 0 and E3 ¼ l2 þ A21l1 > 0:

Let C be a hollow three-dimensional cylindrical neighbour-
hood of c. Define the cross sections:

(a) (b) (c)
Fig. 7. (a) and (b) cylindrical neighbourhoods of the saddle-foci Q;D; (c): hollow cylindrical neighbourhood of the non-trivial closed trajectory c.
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InðcÞ ¼ ðq; h; zÞ 2 Rþ0 � Rðmod 2pÞ � ½�1;1	 : jq� 1j
�
¼ e ^ jzj 6 1g

and

OutðcÞ ¼ ðq; h; zÞ 2 Rþ0 � Rðmod 2pÞ � ½�1;1	 : jq� 1j
�
6 e ^ jzj ¼ �1g;

parametrized by the covering:

ðx; yÞ# ð1� e; x; yÞ ¼ ðq; h; zÞ and ðr;uÞ# ðq; h;1� �Þ
¼ ðq; h; zÞ;

The local flow near c induces the map /3:In(c) ? Out(c)
which to lowest order is given by:

/3ðx; yÞ ¼ �yd3 þ 1;�x1

E3
lnðyÞ þ x

� 	
;

where d3 ¼ � C3
E3

.

The heteroclinic trajectories from OutðQÞ to InðDÞ, from
OutðDÞ to In(c) and from Out(c) to InðQÞ are nonsingular.
Applying the flow box theorem around each heteroclinic
connection, we shall define the connecting diffeomor-
phism W½D!Q	 from a neighbourhood of OutðQÞ \WuðQÞ
into a neighbourhood of InðDÞ \WsðDÞ. We may define
similar diffeomorphisms W½Q!c	 and W½c!D	, which will be
called by transition maps.

The transition from one isolating block to the next may
be seen, to first order, either a linear map, when the nodes
are both saddle foci, or a rotation, when at least one saddle
is the periodic solution. The study of the local map near
rotating nodes is given in Sections 5 and 6 of [4]. Return
maps approximating the dynamics near the heteroclinic
cycle can now be computed by composing the local and
global maps in an appropriate order.

5.2. Coarse geometry near the saddles

We recall the results in [4]. A segment b on InðQÞ (resp.:
In(c)) is a smooth regular parametrized curve
b : ½0;1	 ! InðQÞ (resp.: b:[0,1] ? In(c)), that meets the sta-
ble manifold of Q (resp.: the stable manifold of c) trans-
verselly at the point b(1) only.

Let U be an open set in a plane in Rn and p 2 U. A spiral
on U around p is a curve a:[0,1) ? U satisfying
lims!1�aðsÞ ¼ p and such that, if a(s) = (a1(s),a2(s)) are its
expressions in polar coordinates (q,h) around p, then a1

and a2 are monotonic, with lims!1� ja2ðsÞj ¼ þ1.
Let a,b 2 R such that a < b and let H be a surface param-

etrized by a cover (h,h) 2 R � [a,b] where h is periodic. A he-
lix on H accumulating on the circle h = h0 is a curve
c:[0,1) ? H such that its coordinates (h(s),h(s)) are mono-
tonic functions of s with lims!1�hðsÞ ¼ h0 and
lims!1� jhðsÞj ¼ þ1.

Proposition 4.

1. A segment bon InðQÞ is mapped by /1 into a spiral on
OutðQÞ around the local unstable manifold of Q.

2. A spiral on InðDÞ around the local stable manifold of D is
mapped by /2 into a helix on OutðDÞ accumulating on
the circle OutðDÞ \Wu

locðDÞ.

3. A segment bon In(c) is mapped by /3 into a helix on Out(c)
accumulating on the circle OutðcÞ \Wu

locðcÞ.

Proof. See Aguiar et al. [4] (Section 6) and Rodrigues
et al.[23] (Section 4) – the proof is based on the k-lemma
for flows. h

On the proof of item 2 of the above lemma, the authors
of [4] used implicitly that the orientations in which trajec-
tories turn around the connection ½Q ! D	 are the same
(when restricted to the neighbourhoods of Q and D) – de-
tailed study in Labouriau and Rodrigues [17]. By the way
the vector field (4.5) has been constructed, this hypothesis
is straightforwardly satisfied.

5.3. Main result

Here, we put together the local behaviour of trajectories
near each node, to state the main result of the present pa-
per. We adapt the proofs of [2,4] to our purposes.

Theorem 5. Under the conditions of Theorem 1, (5.8) and
(5.9), near Re

3 \M3, there exists:

(a) a set of initial conditions with positive Lebesgue mea-
sure (on a section transverse to the network) exhibiting
finite switching of any order;

(b) infinite switching which may be realised by infinitely
many initial conditions;

(c) a suspended horseshoe H containing the heteroclinic
network on its closure.

Proof. We suggest that the reader follows the proof
observing Fig. 8.

(a) The initial conditions which shadow a given finite
heteroclinic path are obtained by a recursive con-
struction. Any segment of initial conditions lying
across the stable manifold of Q, say b, is wrapped
around the isolating block. By item 1 of Proposition
4, it accumulates as a spiral on the unstable mani-
fold of Q and then on the stable manifold of the next
saddle, D (see Fig. 8(a)). This spiral of initial condi-
tions on the top/bottom of the neighbourhood
aroundD is mapped, by the map /2, into points lying
on a helix accumulating on its unstable manifold
(item 2 of Proposition 4), which crosses transversely
the stable manifold of c infinitely many times (see
Fig. 8(b)), giving rise to infinitelly many segments
lying across In(c).
This is the crucial point in which the equilibria must
be saddle-foci. The complex eigenvalues force the
spreading of solutions around all the unstable man-
ifold of D, allowing visits to all possible connections
starting at D. The transversality enables the exis-
tence of solutions that follow heteroclinic connec-
tions on the two different connect components of
M3 nWsðcÞ, the upper and the lower part on the wall
of the hollow cylinder.
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Any curve of initial conditions lying across the stable
manifold of c winds around the isolating block C and,
by item 3 of Proposition 4, it accumulates as a helix
on its unstable manifold following all the possible
heteroclinic connections starting at c. Any hetero-
clinic connection is followed by a piece of helix
and it is mapped, under the transition map ½c ! Q	,
into a new segment across the stable manifold of
Q (see Fig. 8(c)), giving rise to a new segment across
the stable manifold of Q.
The composition of consecutive local and transition
functions, maps the original segment of initial con-
ditions lying across the stable manifold of Q into
infinitely many segments with the same property.
Thus, it is possible to construct recursively a nested
sequence of intervals accumulating on the stable
manifold of Q that follow a prescribed sequence of
heteroclinic connections and thus that exhibit finite
heteroclinic switching.

(b) On the initial segment b � InðQÞ, there are infinitely
many (sub) segments of initial conditions following
any heteroclinic connection starting at D (see
Fig. 9). Each (sub) segment contains a point which
is mapped by W½Q!c	 
 /2 
W½D!Q	 
 /1 into Ws

locðcÞ.
This point divides the segments into two parts
(points that are mapped into the lower part of C
and that whose solutions follow the upper part).
This construction may be continued ad infinitum,
giving rise to a nested sequence of subsegments in
b, whose infinite intersection is non-empty. In

particular, for each sequence of nested compacts,
there is at least a point realising any given infinite
heteroclinic path.

(c) Allowing some thickness on the segments, instead of
a nested sequence of intervals, we may construct a
nested sequence of rectangles (Hn)n2N with positive
Lebesgue measure2 of initial conditions which sha-
dow a given finite heteroclinic path (see Fig. 9). The
sequence of heights associated to a sequence of rect-
angles accumulating on the network is decreasing. By
construction, for each n 2 N, the intersection of
/3 
W½D!c	 
 /2 
W½Q!D	 
 /1ðHnÞ with W�1

½c!Q	ðHnÞ is a
topological horseshoe as depicted in Fig. 8. h

The first return map W to InðQÞ is hyperbolic in all
strips. For each i 2 N, the set

K ¼
\
k2Z

[k
i¼1

WkðHiÞ
 !

is a Cantor set of initial conditions where the return map
to
S

i2NHi is well defined in forward and backward time,
for arbitrarily large times. The dynamics of W restricted
to invariant set K is semi-conjugated to a full shift over
an infinite alphabet that represents the paths in R3

e (possi-
bly not unique).

The two main ingredients of the previous proof were
the transversality and the existence of rotating nodes
which forces the spreading of solutions along the unstable

(a)

(c)

(b)

Fig. 8. Local and global dynamics near the heteroclinic network. (a) A segment of initial conditions lying across the stable manifold of Q is mapped, by the
local map /1, into a spiral accumulating on its unstable manifold and thus on the stable manifold of D; (b) a spiral of initial conditions on the top of the
neighbourhood ofD is mapped, by the local map /2, into a helix accumulating on the unstable manifold of D, which crosses transversely the stable manifold
of c infinitely many times; (c) a segment of initial conditions lying across the stable manifold of c is mapped into a spiral accumulating on its unstable
manifold. Each piece of helix is a new segment across the stable manifold of Q. In (c), it is also possible to observe the first step of the construction of the
Cantor set on the wall of the cylinder InðQÞ.

2 The heteroclinic network is embedded in R4.
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manifolds of the nodes and then along the connections
starting there.

A heteroclinic path on the network can be realised by
trajectories in Wu(c) since the unstable manifold of c meets
InðQÞ at a segment. In particular, there are infinitely many
transverse homoclinic connections associated to c. Beside
the original transverse connections, there exists infinitely
many subsidiary heteroclinic trajectories turning around
the original network.

5.4. Georeversals as a consequence of heteroclinic switching

The existence of heteroclinic switching near Re
3 \M

3

implies that trajectories will make repeated passes near
the network, which may be seen as a consequence of the
hyperbolic suspensed horseshoe with the same shape as
the whole recorrent set. The suspended horseshoe meets
each cross section in a Cantor set – the first iteration of this
set is depicted in Fig. 8(c). Next result is the core of this pa-
per: it says that the intermittency of the flow associated to
perturbation (5.7), numerically studied in [19], is closely
linked to the georeversals.

Corollary 6. According to Melbourne et al. [19], the
geomagnetic field B changes its polarity.

Proof. From Theorem 5(b) we can conclude the existence
of persistent switching near Re

3, i.e. close to the network,
there are trajectories that visit the neighbourhoods of the
saddles following all the heteroclinic connections of the
network in any given order. These trajectories correspond
to the evolution of the amplitude equations of (3.4). In par-
ticular, since the coefficient of the axial dipole, x3, changes
its sign then the vector field B changes its polarity. h

The proof of Theorem 5(c) also shows that switching is
realised by infinitely many initial conditions, which are
coded by the number of revolutions near each saddle with
respect to a Poincaré section. The arguments of Rodrigues
et al. [23] used for non trivial periodic solutions can be
slightly adapted for our case and thus we may conclude
the existence of a transitive set of initial conditions with
the same shape as Re

3, whose trajectories follow the net-
work forwards and backwards and that is at least semi-
conjugate to a Markov shift over a finite alphabet. This
set lies arbitrarily close to the heteroclinic network Re

3.

Fig. 9. On a segment b � InðQÞ, there are infinitely many segments of initial conditions that follow the connections 1 and 2. There are infinitely many points
that go away from the network. Varying x 2 [�e,e] (e > 0 small), each segment gives rise to a horizontal rectangle across InðQÞ. Caption: A – points that
follow the connection 1 and the upper part of C; B – points that follow the connection 1 and the lower part of C; C – points that go away from the network; D
– points that follow the connection 2 and the upper part of C; E – points that follow the connection 2 and the lower part of C.

A.A.P. Rodrigues / Chaos, Solitons & Fractals 47 (2013) 73–86 83



Author's personal copy

The perturbing term (e1,e2,e3) in (5.7) is responsible for
driving the dynamics far from the equilibria; nevertheless
its magnitude is irrelevant for the existence of intermit-
tency. The different parameters ei control the degree to
which the symmetries are broken: e1 breaks the rotational
symmetry and e2 and e3 destroy the reflectional symme-
tries. Note that the three different symmetry-breaking
terms are required for the existence of switching.

6. Discussion

6.1. Switching in the context of the geodynamo problem

The existence of heteroclinic switching near a general
heteroclinic network implies that infinite pseudo-orbits
with infinitely many discontinuities may be shadowed.
This means that for any admissible sequence of nodes like

þQ ! þD ! c! �Q ! �D ! c ! . . . ;

we find at least one solution that visit neighbourhoods of
these nodes in the same sequence. In the context of this
problem, switching near Re

3 proved in Theorem 5 implies
that there are aperiodic itineraries visiting randomly the
various cycles of the network. Therefore the amplitude
coefficients may assume any value in the centre manifold
M3 (and more importantly any sign), implying that the
magnetic field B may change the orientation.

Due to the chaotic behaviour induced by the presence of
suspended horseshoes near the network, we may conclude
that there is no satisfactory way to predict the duration of
any given polarity. Beyond the existence of geomagnetic
reversals, the model in [19] also explains the existence of
excursions, i.e., changes of symmetric modes without
changing the orientation of the magnetic field. This behav-
iour is at least superficially consistent with the real behav-
iour of the geomagnetic field, in spite of the fact that it
should be more chaotic than what is stated in Theorem 5.

We present some time series and the projections of a
particular solution of (5.7) in Fig. 10 which are consistent
with the analysis of the model presented in [19]. The figure
also shows evidence of instant chaos near the perturbed
heteroclinic network due to the explosion of suspended
horseshoes and homoclinic classes. The initial condition
and the parameters are the same in all simulations. The
field in the model is predominantly axially dipolar because
this is the way the constants have been chosen. We point
out that if the constants in the model had been chosen dif-
ferently, or if the interpretation of x2 and x3 had been
swapped, the conclusion could equally well have been that
the Earth should have an axial quadrupole magnetic field.
Fig. 10 has been obtained using the dynamical systems
package Dstool [12].

In the context of qualitative theory of differential equa-
tions, in terms of future work, it would be interesting to
investigate the measure of initial conditions whose trajec-
tory stays near this kind of networks for all time – we con-
jecture that Lebesgue – almost all solutions go away from
any given neighbourhood of the network.

6.2. Comparison with other models

In the symmetry breaking context, Kirk and Rucklidge
[16] analised a codimension three bifurcation and con-
cluded that when all the symmetries are broken, the het-
eroclinic network is destroyed and orbits may switch, i.e.,
they may make traversals near more than one of the origi-
nal cycles, giving a satisfactory model for the numerical
evidences of intermittency. This is what the authors call
switching – note that in their case, the heteroclinic network
is completely broken. While in [16] it is not clear that
switching is not a transient behaviour, here we are able
to prove that it holds for any infinite sequence of hetero-
clinic paths.

As in [16], we start with a heteroclinic network with
reflectional and rotational symmetry. Nevertheless, in
contrast to their work, we present switching in a pertur-
bation that does not break the network. The presence of
the non-robust heteroclinic connection has important ef-
fects: since the connections ½Q ! D	 are off-centered at
the top/bottom of the cylindrical neighbourhood near D,
the authors in [16] were only able to conclude the exis-
tence of initial conditions following finite heteroclinic
paths on the network.

In 1991, in the context of Bénard problem, it has been
shown by Armbruster and Chossat [1] that for a class of dif-
ferential equations with spherical symmetry, intermit-
tency between axisymmetric steady states occurs. In [7],
it has been demonstrated that in an open set of the param-
eter space, a robust and Lyapunov-stable heteroclinic net-
work exists, involving m-dimensional heteroclinic
connections, m > 1. Introducing the effect of the Coriolis
force in the differential equation, the authors designed a
system which is equivariant under a compact Lie group
isomorphic to SO(2) � Z2. In its flow, a network (of differ-
ent nature) persists as long as the norm of the perturbing
term is small. Numerical simulations have shown that in
certain regions in parameter space, random heteroclinic
switching between magnetic dipoles exists. It has been ob-
served that, providing certain inequalities for parameters
are satisfied, one of the cycle within the network is essen-
tially asymptotically stable: solutions converge to the cycle
whenever the initial condition do not belong to a cuspoidal
wedge in a neighbourhood of the network.

In contrast to the finding of [7], who claim numerically
that the stability is preserved under perturbations, in our
case a nested sequence of invariant suspended horseshoes
accumulating on the network is created when the symme-
try is broken implying that none of the cycles in Re cannot
be Lyapunov-stable. In the present case, since the nodes
are either saddle-foci or periodic solutions, all heteroclinic
connections are possible and they are equaly possible –
there is no a preferred cycle to converge.

Finally, we also point out that recent dynamo experi-
ments have shown pole reversals in a cylindrical shell
and where the dynamo is driven by a von Karman swirling
flow of liquid sodium. When two impellers are operated in
counter-rotation, these flows display various qualities of
interest for a potential dynamo. Under generic conditions
about the frequency of rotation, stationary magnetic fields
as well as random reversals may be generated. Pétrélis and
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Fauve [20] have proposed a simple and low-dimensional
mechanism explaining this behaviour, differing to that of
Melbourne et al. [19] because it does not involve the exis-
tence of heteroclinic structures.

6.3. Conclusion

Geomagnetic reversals are one of the main interesting
points of the geomagnetism, one of the most challenging

phenomena in geophysics. Although the details of the
reversal process are not completely understood, the
occurrence of reversals is well documented by studying
the layered of iron-rich lava rocks. Among several phenom-
enological models that explain georeversals, in this paper,
exploiting the symmetries of the model in [19] supported
by the observational evidence, we proved analytically that
a heteroclinic network of rotating nodes exists which is
asymptotically stable for an open set of parameters of the

(I)

(II)

Fig. 10. (I) Projection in the (y1,y2), (x3,x4), (y1,x3) and (y1,x4) – planes of the trajectory with initial condition (�0.5000,0.0116,�0.1623,�0.2781) for the
flow corresponding to the vector field (5.7), with l1 = 0.3, l2 = 0.2, l3 = 0.4, A12 = A21 = �0.33333, A13 = A31 = �0.5, A23 = A32 = �0.16667, x1 = 1, e1 = 0.12,
e2 = 0.1 and e3 = 0.001. The initial condition is (�0.5000,0.0116, �0.1623,�0.2781). Caption: (a) periodic solution; (b) equilibria; (c) non robust heteroclinic
orbit from Q to D. The interval range for all the variables is [�3.5,3.5]. (II) Time series for the trajectory considered in I. Caption: (d) Reversion (the vector
field B change its sign); (e) Excursion (the geometry of the flow associated to B varies without changing the sign); (f) the axial dipole symmetric mode is the
predominant situation.
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three-dimensional normal form representing the evolution
of the dominant modes. We proved that slight breaking
both symmetries (reflectional and rotational) of this nor-
mal form induces intermittent and persistent heteroclinic
switching of the dipole for the nearby dynamics, which
contributes to the understanding of reversals of the geo-
magnetic field. In [19], the existence of the network and
switching was demonstrated only numerically.

The considered route to the chaos – the addition of
symmetry breaking perturbing terms – corresponds to a
curious interaction between symmetry breaking, hetero-
clinic switching and cycling. This dynamical phenomenon
is even more interesting because the emergence of hetero-
clinic switching does not depend on the magnitude of the
Lyapunov exponents of the nodes.

Through Theorem 5 and Corollary 6, we proved that the
simple mathematical model [19] reproduces intermittent
behaviour of the geomagnetic field and georeversals; the
lengths of time intervals of constant polarity and the short
duration of each reversal suggested by the model are sim-
ilar with those of the Earth.

Beside the interest of reviving the geodynamo question
from the mathematical perspective, this work describes
the behaviour of a flow associated to a explicit vector field
unfolding the symmetry breaking of an equivariant organ-
ising centre. In the fully non-equivariant case at first glance
the return map is intractable, but here we are able to pre-
dict qualitative features of the dynamics by assuming that
Xe

4 is very close to X4. This is an important advantage of
studying systems with some symmetry. A lot more needs
to be done before the model [19] is well understood; we
hope that this article could be a starting point for further
related studies.
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