SYMPLECTIC RIGIDITY AND FLEXIBILITY OF ELLIPSOIDS

J. BASTO-GONÇALVES

Abstract

Rigidity is proved for symplectic embeddings of an ellipsoid into another of the same shape type, and new flexibility results are derived from a variant of the symplectic folding process.

A volume form on a smooth n-dimensional manifold M is a nowhere vanishing n-form Ω. On every open set $U \subset \mathbb{R}^{n}$ we consider the standard volume $\Omega_{0}=\mathrm{d} x_{1} \wedge \ldots \wedge \mathrm{~d} x_{n}$; a smooth embedding $\varphi: U \hookrightarrow M$ is said to be volume preserving if:

$$
\varphi^{*} \Omega=\Omega_{0}
$$

A symplectic manifold is a pair (M, ω), where M is a $2 n$-dimensional differentiable manifold and ω is a symplectic form: a closed non degenerate 2 -form. Then:

$$
\Omega=\frac{1}{n!} \omega^{n} \text { is a volume form, and } \mathrm{d} \omega=0
$$

A symplectic map is a map $\varphi:(M, \omega) \longrightarrow\left(M^{\prime}, \omega^{\prime}\right)$, such that:

$$
\varphi^{*} \omega^{\prime}=\omega
$$

Let $\mathcal{D}(n)$ be the group of symplectic diffeomorphisms, or symplectomorphisms, or canonical transformations, of $\mathbb{R}^{2 n}$, and $\operatorname{Sp}(n)$ its subgroup of linear isomorphisms.

On every open set $U \subset \mathbb{R}^{2 n}$ we consider the standard symplectic form $\omega_{0}=\mathrm{d} x \wedge \mathrm{~d} y=\mathrm{d} x_{1} \wedge \mathrm{~d} y_{1}+\ldots+\mathrm{d} x_{n} \wedge \mathrm{~d} y_{n}$; a smooth embedding $\varphi: U \hookrightarrow M$ is said to be symplectic if it is a symplectic map:

$$
\varphi^{*} \omega=\omega_{0}, \text { and therefore } \varphi^{*} \Omega=\Omega_{0}
$$

where Ω and Ω_{0} are the volume forms induced by the symplectic forms.

[^0]Definition 1. An open symplectic ellipsoid of $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ with radii $r_{i}=\sqrt{a_{i} / \pi}$ is the set:

$$
E(a)=E\left(a_{1}, \ldots, a_{n}\right)=\left\{z \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a_{1}}+\cdots+\frac{\pi\left|z_{n}\right|^{2}}{a_{n}}<1\right.\right\}
$$

where we assume $a_{1} \leq \ldots \leq a_{n}$, and $z_{j}=x_{j}+i y_{j}$.
Definition 2. An open symplectic cylinder of $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ with radius $r=\sqrt{a / \pi}$ is the set:

$$
\begin{aligned}
Z(a) & =\left\{(x, y) \in \mathbb{R}^{2 n}: \pi\left|\left(x_{1}, y_{1}\right)\right|^{2}<a\right\} \\
& =\left\{z \in \mathbb{C}^{n}: \pi\left|z_{1}\right|^{2}<a\right\}
\end{aligned}
$$

Remark 1. The ball of radius r is denoted by $B\left(\pi r^{2}\right)$:

$$
B(a)=E(a, a, \ldots, a), \quad Z(a)=E(a, \infty, \ldots, \infty)
$$

In dimension 2, an embedding is volume preserving if and only if it is symplectic; in higher dimensions there exists symplectic rigidity, as first shown in [4]:

Gromov Theorem. If there is a symplectic embedding $\varphi: B(a) \longrightarrow$ $Z(A)$ of a ball into a symplectic cylinder, then $a \leq A$.

The detection of embedding obstructions and the proof of the corresponding rigidity results will be based on symplectic capacities:
Definition 3. An extrinsic symplectic capacity c on $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ is a map c such that, for every $A \subset \mathbb{R}^{2 n}, c(A) \in[0,+\infty]$, satisfying the following properties:

Monotonicity: $c(A) \leq c\left(A^{\prime}\right)$ if there exists $\varphi \in \mathcal{D}(n)$ such that $\varphi(A) \subset A^{\prime}$.
Conformality: $c(\alpha A)=\alpha^{2} c(A)$, for any nonzero $\alpha \in \mathbb{R}$.
Nontriviality : $0<c(B(\pi)), \quad c(Z(\pi))<\infty$

1. Rigidity

When considering linear symplectic embeddings, there exists symplectic rigidity:
Theorem 1 ([7]). Given two ellipsoids $E(a)$ and $E\left(a^{\prime}\right)$, there exists a linear symplectic map $S \in S p(n)$ such that $S(E(a)) \subset\left(E\left(a^{\prime}\right)\right.$ if and only if $a_{i} \leq a_{i}^{\prime}$, for all $i=1, \ldots, n$.

Even when allowing nonlinear symplectomorphisms, symplectic rigidity can still be present:

Theorem 2 ([3]). Given two ellipsoids $E\left(a_{1}, a_{2}\right)$ and $E\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ with:

$$
\nu \leq a_{1}, a_{2}, a_{1}^{\prime}, a_{2}^{\prime} \leq 1, \quad \frac{1}{2}<\nu<1
$$

there exists a symplectic embedding φ such that $\varphi(E(a)) \subset E\left(a^{\prime}\right)$ if and ony if $a_{i} \leq a_{i}^{\prime}$, for $i=1,2$.

In $\mathbb{C}^{2} \cong \mathbb{R}^{4}$ it is natural to characterize the shape of a symplectic ellipsoid by:
Definition 4. Two ellipsoids $E\left(a_{1}, a_{2}\right)$ and $E\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ in $\mathbb{C}^{2} \cong \mathbb{R}^{4}$ have the same shape type if:

$$
\exists k \in \mathbb{N}: \quad k \leq \frac{a_{2}}{a_{1}}<k+1, \quad k \leq \frac{a_{2}^{\prime}}{a_{1}^{\prime}}<k+1
$$

In higher dimensions the definition will be more general.
Definition 5. Given an ellipsoid $E\left(a_{1}, \ldots, a_{n}\right)$, let $\left\{\mu_{i}\right\}$ be the sequence of the numbers $\left\{k a_{j}\right\}$, with $k \in \mathbb{N}$ and $j=1, \ldots, n$, written (maybe with repetitions) in increasing order. The Ekeland-Hofer icapacity for $E(a)$ is given by:

$$
c_{i}(E(a))=\mu_{i}
$$

Definition 6. Two ellipsoids $E(a)$ and $E\left(a^{\prime}\right)$ in $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ have the same shape type if:

$$
\exists \alpha_{1}=1<\ldots<\alpha_{n}: \quad \mu_{\alpha_{i}}(a)=a_{i}, \quad \mu_{\alpha_{i}}\left(a^{\prime}\right)=a_{i}^{\prime} .
$$

This is an equivalence relation if we exclude resonant ellipsoids, for which the sequence $\left\{\mu_{i}\right\}$ is not strictly increasing; it is easy to see that then the two definitions agree for $n=2$.
Example 1. $B(a)$ and $E(a, 2 a)$ have the same shape type using definition 6: their Ekeland-Hofer capacities are respectively:

$$
\begin{aligned}
\mu & =\{a, a, 2 a, 2 a, 3 a, 3 a, 4 a, 4 a, \ldots\} \\
\mu^{\prime} & =\{a, 2 a, 2 a, 3 a, 4 a, 4 a, 5 a, 6 a, \ldots\}
\end{aligned}
$$

and we can choose $\alpha_{1}=1$ and $\alpha_{2}=2$. On the other hand, they have different shape types using the first definition (def. 4).

Theorem 2 considers ellipsoids with the shape type of a ball $(k=1)$, but the result can be extended to ellipsoids having the same shape type:
Theorem 3. If the two ellipsoids $E(a)$ and $E\left(a^{\prime}\right)$ in $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ have the same shape type, there exists a symplectic embedding φ such that $\varphi(E(a)) \subset E\left(a^{\prime}\right)$ if and only if:

$$
a_{i} \leq a_{i}^{\prime}, \quad i=1, \ldots, n
$$

Proof. If $E(a)$ embeds in $E\left(a^{\prime}\right)$ then it follows from the definition of capacity that:

$$
c_{j}(E(a)) \leq c_{j}\left(E\left(a^{\prime}\right)\right)
$$

for all Ekeland-Hofer capacities, in particular if they have the same shape type:

$$
a_{i}=c_{\alpha_{i}}(E(a)) \leq c_{\alpha_{i}}\left(E\left(a^{\prime}\right)\right)=a_{i}^{\prime}, \quad i=1, \ldots, n
$$

This is a generalization of a result of F. Schlenk [11, 12]: If $a_{n} \leq$ $2 a_{1}$, there exists no symplectic embedding of the ellipsoid $E(a)=$ $E\left(a_{1}, \ldots, a_{n}\right)$ into a ball $B(A)$ with $A<a_{n}$ (the shape type of the ellipsoid is that of a ball).

2. Flexibility

The following result shows that, if the shape type of the ellipsoids is sufficiently different, there is flexibility:

Theorem 4 ([5, 3]). For any $a>0$, and for a sufficiently small $\varepsilon>0$, there exists a symplectic embedding φ such that:

$$
\varphi(E(\varepsilon, \ldots, \varepsilon, a)) \subset B(\pi)
$$

There are no estimates on the size of ε, but F. Schlenk, using symplectic folding, proved:

Theorem 5 ([11, 12]). If $\beta>2 \alpha$, there exists a symplectic embedding φ of the ellipsoid $E(r)=E(\alpha, \ldots, \alpha, \beta) \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ into a ball $B(A)$ with:

$$
E(\alpha, \ldots, \alpha, \beta) \hookrightarrow B(A), \quad A>\frac{\beta}{2}+\alpha
$$

Remark 2. This theorem has been much improved in (complex) dimension 2 ([10]). But the methods used to obtain the best embedding results do not have a straightforward generalization to higher dimensions.

Definition 7. An open polydisk is the set:

$$
\begin{aligned}
P(a) & =P\left(a_{1}, \ldots, a_{n}\right)=B\left(a_{1}\right) \times \cdots \times B\left(a_{n}\right) \\
& =\left\{z \left\lvert\, \pi \frac{\left|z_{1}\right|^{2}}{a_{1}}<1\right., \ldots, \pi \frac{\left|z_{n}\right|^{2}}{a_{n}}<1\right\},
\end{aligned}
$$

where we assume $a_{1} \leq \ldots \leq a_{n}$.
A very impressive result concerning flexibility of polydisks is due to L. Guth:

Theorem 6 ([6]). There is a dimensional constant C_{n} such that, given two polydisks $P(r)$ and $P\left(r^{\prime}\right)$, if:

$$
C_{n} a_{1}<r_{1}^{\prime}, \quad C_{n} a_{1} \ldots a_{n}<a_{1}^{\prime} \ldots a_{n}^{\prime}
$$

there exists a symplectic embedding of $P(a)$ into $P\left(a^{\prime}\right)$.
This result has an obvious application to ellipsoids:
Example 2. In $\mathbb{C}^{3} \cong \mathbb{R}^{6}$, there exists a constant $K>C_{3} \pi$ such that:

$$
E(\pi, a, a) \hookrightarrow E\left(3 K, 3 K, \frac{4}{K} a^{2}\right) \quad a>3 K
$$

This follows from the embedding:

$$
P(\pi, a, a) \hookrightarrow P\left(K, K, \frac{a^{2}}{C_{3} \pi}\right)
$$

and the inclusions $E(\pi, a, a) \subset P(\pi, a, a)$ and:

$$
P\left(K, K, \frac{a^{2}}{C_{3} \pi}\right) \subset E\left(3 K, 3 K, \frac{4}{K} a^{2}\right)
$$

A similar result is valid in any dimension; it shows that if the shape type of the ellipsoid is sufficiently different from that of a ball ($a>$ $3 K$ above) then there exists considerable flexibility and the relevant obstructions are (derived from) just the first capacity and the volume.

Capacities (in general) involve the 2-dimensional area of some object; volume can considered a generalized capacity and is $2 n$-dimensional. It is natural to search for intermediate capacities that involve $2 k$ dimensional volumes; it follows from the results of [6] that there are no reasonably continuous intermediate capacities.

Symplectic folding is described in $[8,9,11,12]$; we shall use a slightly different version, but we rely on the very careful and detailed presentation in $[11,12]$ for all technical aspects and specially for the proofs; the adaptation to the situation described here is straightforward, but very laborious and long.

We define $T(a, b)$ as the set:

$$
\begin{aligned}
T(a, b)= & \left\{\left(z_{1}, z_{2}\right)=\left(u_{1}, v_{1}, u_{2}, v_{2}\right)\right\} \subset \mathbb{R}^{4} \\
& \left.\left(u_{1}, v_{1}\right) \in\right] 0, a[\times] 0,1\left[, \quad\left(u_{2}, v_{2}\right) \in\right] 0, b[\times] 0,1[\\
& \frac{u_{1}}{a}+\frac{u_{2}}{b}<1
\end{aligned}
$$

and $T(a)=T(a, a)$. The projection of $T(a, b)$ on the $\left(u_{1}, u_{2}\right)$ plane is a triangle and the fibres the unit square.

Lemma 1 ([11, 12]). Assume $\varepsilon>0$. Then:
(1) $E(a, b)$ symplectically embeds into $T(a+\varepsilon, b+\varepsilon)$
(2) $T(a, b)$ symplectically embeds into $E(a+\varepsilon, b+\varepsilon)$.

Sketch of the proof. The main fact involved in the proof is the existence of an area preserving map $(u, v)=\sigma(z)$ in the plane $[11,12]$ that, outside an arbitrarily small neighbourhood of the origin, where it is a translation, essentially takes open circles of area a into open rectangles] $0, a[\times] 0,1[$ (fig. 1).

Figure 1. Area preserving map in the plane, $a=\pi$
Let $D(a)$ be the disk of area a; then:

$$
\left.E(a, b)=\left\{z \mid z_{1} \in D(a), z_{2} \in D\left(b\left(1-\pi\left|z_{1}\right|^{2} / a\right)\right)\right)\right\}
$$

The symplectic embedding of E into T is then:

$$
\left(z_{1}, z_{2}\right) \mapsto\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\left(\sigma\left(z_{1}\right), \sigma\left(z_{2}\right)\right.
$$

The inverse of this map is used to embed T into E.
Here and subsequently we ignore everything 'small': we should consider maps σ_{δ} with sufficiently small δ, but it is easier to proceed as if δ could be zero.

It follows from lemma 1 that embedding results for ellipsoids can be obtained from the corresponding results for sets of the form $T(a, b)$, and we describe symplectic folding for these sets.

Since U embedding symplectically into V is equivalent to λU embedding symplectically into λV for $\lambda \neq 0$, we normalize the ellipsoids $E(a)$, and therefore the sets T, so that $a_{1}=\pi$. In the figures we really represent $T(a, \pi)$ instead of $T(\pi, a)$, as in [11].

Step 1: We separate the region $u_{2}>\pi$ from the region $u_{2}<\pi$, the large fibres from the small ones, extending the in-between region: here the fibres are related to the projection on the $\left(u_{1}, v_{1}\right)$ plane, and the symplectic map is the product $\varphi \times$ id of an area preserving map φ in the $\left(u_{1}, v_{1}\right)$ plane (figure 2) and the identity on the $\left(u_{2}, v_{2}\right)$ plane.

Figure 2. Separating the fibres: black regions have the same area

Remark 3. Again we should consider the regions $u_{2}>b / 2+\delta$ and $u_{2}<b / 2-\delta$ and deform $b / 2-\delta<u_{2}<b / 2+\delta$ for a conveniently small δ (the map outside that region is the identity on the left and a translation on the right).

The result can also be seen in the $\left(u_{1}, u_{2}\right)$ plane:

Figure 3. Separating the fibres, $\left(u_{1}, u_{2}\right)$ plane
Step 2: We rearrange the fibres: the symplectic map is the product of an area preserving map σ_{1} in the (u_{2}, v_{2}) plane (first line of figure 4), and the identity on the $\left(u_{1}, v_{1}\right)$ plane; the second line of figure 4 shows the result as seen in the $\left(u_{1}, u_{2}\right)$ plane.

Step 3: We lift the region $a / 2+\pi / 2<u_{1}<a+\pi / 2$ by $\pi / 2$ along the u_{2} direction. Now the symplectic map is not a product of area preserving maps: its action can be seen in the $\left(u_{1}, u_{2}\right)$ and $\left(u_{1}, v_{1}\right)$ planes (figure 5).

The grey region is the projection in $\left(u_{1}, v_{1}\right)$ of points lifted less than $\pi / 2$ (and more than 0) and has area bigger than $\pi / 2$.

Step 4: We contract along the v_{1} direction, and extend along the u_{1} direction, by $a /(a+\pi)$, keeping (u_{2}, v_{2}) unchanged (figure 6).

Step 5: We now turn T over B : we extend the grey area, then we fold twice in the base (figure 7).

The transformation of the grey area (in the $\left(u_{1}, v_{1}\right)$ plane) is as in the previous step, with a factor of π / a now, but using the identity outside

Figure 4. Rearranging the fibres in the $\left(u_{2}, v_{2}\right)$ plane

Figure 5. Lifting
that area on the left and a translation on the right. The end result in the $\left(u_{1}, u_{2}\right)$ plane is described in figure 8.

Step 6: We rearrange the fibres:
The symplectic map is the product of an area preserving map σ_{2} in the (u_{2}, v_{2}) plane (figure 9$)$, and the identity on the (u_{1}, v_{1}) plane.

Figure 6. Rearranging in the $\left(u_{1}, v_{1}\right)$ plane
The symplectic folding construction is summarised in figure 10 (it should be compared to figure 3.13 in [11]): the advantage of the change

Figure 7. Folding in the $\left(u_{1}, v_{1}\right)$ plane

Figure 8. Folding in the $\left(u_{1}, u_{2}\right)$ plane

Figure 9. Rearranging the fibres in the $\left(u_{2}, v_{2}\right)$ plane
relative to $[11,12]$ is that we can get embeddings into ellipsoids, keeping the same estimates obtained for embeddings into balls.

Theorem 7. If the ellipsoid $E(r)=E\left(r_{1}, r_{2}\right)$ in $\mathbb{C}^{2} \cong \mathbb{R}^{4}$ has shape type $k \geq 3$ with:

$$
3 \leq k<r_{2} / r_{1}<k+1
$$

there exists a symplectic embedding φ such that $\varphi(E(r)) \subset E\left(r^{\prime}\right)$ with:

$$
r_{2}^{\prime}<r_{2} \quad \text { and } \quad n \leq \frac{r_{2}^{\prime}}{r_{1}^{\prime}}<n+1
$$

for all shape types $n=1, \ldots,\left[\frac{k+1}{2}\right]$.

Proof. We consider the normalised ellipsoid $E(\pi, a)$, with $k \pi<a<$ $(k+1) \pi$ and $k \geq 3$. Symplectic folding gives an embedding (fig. 11):

$$
T(\pi, a) \hookrightarrow T\left(\frac{a}{2}+\pi+\varepsilon\right)
$$

and lines above the image of $T(\pi, a)$ in the $\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$-plane correspond to sets $T(\alpha, \beta)$ into which $T(\pi, a)$ embeds; $(\alpha, 0)$ and $(0, \beta)$ are the intersections of the line with the coordinate axes.

Going from T-type sets to ellipsoids:

$$
E(\pi, a) \hookrightarrow E\left(\frac{3}{2} \pi+\varepsilon, \frac{3}{4}(a+\pi)+\varepsilon\right), \quad \frac{3}{4}(a+\pi)<a \Longleftrightarrow k \geq 3
$$

Figure 10. Scheme of symplectic folding in the $\left(u_{1}, u_{2}\right)$ plane
As

$$
\frac{r_{2}^{\prime}}{r_{1}^{\prime}}=\frac{\frac{3}{4}(a+\pi)+\varepsilon}{\frac{3}{2} \pi+\varepsilon}=\frac{a+\pi}{2 \pi}-\frac{a-\pi}{3 \pi^{2}} \varepsilon+\ldots
$$

if $\varepsilon>0$ is sufficiently small, then:

$$
\left[\frac{k+1}{2}\right]<\frac{r_{2}^{\prime}}{r_{1}^{\prime}}<\left[\frac{k+1}{2}\right]+1
$$

The same construction also gives an embedding:

$$
E(\pi, a) \hookrightarrow B\left(\frac{a}{2}+\pi+\varepsilon\right)
$$

and clearly embeddings for all in between shape types.

Figure 11. Lines correspond to ellipsoids or balls

Remark 4. There is a trivial embedding (again see figure 11):

$$
E\left(\frac{3}{2} \pi+\varepsilon, \frac{3}{4}(a+\pi)+\varepsilon\right) \hookrightarrow E\left(\frac{3}{2} \pi+\varepsilon, b\right), \quad \frac{3}{4}(a+\pi)<b<a
$$

and the shape type can thus be extended up to $\left[\frac{2 k}{3}\right]$.
Open Question ([11, 12]). Does the ellipsoid $E(a, 2 a, 3 a)$ symplectically embed into $B(A)$ for some $A<3 a$?

Ekeland-Hofer capacities show that:

- $E(a, 3 a, \ldots, 3 a)$ does not symplectically embed into a ball $B(A)$ with $A<3 a$.
- $E(a, 2 a, \ldots, 2 a, 3 a)$ does not symplectically embed into a ball $B(A)$ with $A<2 a$.
On the other hand, there is also some flexibility, as it follows from theorem 5 that:

$$
E(a, 3 a) \hookrightarrow B\left(\frac{5}{2} a+\varepsilon\right)
$$

The change introduced in the symplectic folding process allows estimates (lemma 2) that are decisive in the proof of:

Theorem 8. For any positive ε, there exists a symplectic embedding:

$$
E\left(\pi, b_{1}, \ldots, b_{n-2}=b, a\right) \hookrightarrow B(A+\varepsilon), \quad A<a
$$

when $a>b+\pi$, with A given by:

$$
A=\frac{a+b+\pi}{2}
$$

Remark 5. For $n=3, b=2 \pi, a=3 \pi$:

$$
E(\pi, 2 \pi, 3 \pi) \hookrightarrow B(A+\varepsilon), \quad A=\frac{3 \pi+2 \pi}{2}+\frac{\pi}{2}=3 \pi
$$

and thus $E(\pi, 2 \pi, 3 \pi)$ is in the boundary of (known) flexibility.
Remark 6. $b=\pi$ gives theorem 3.1.1 in [11] (or theorem 5):
$E(\pi, \ldots, \pi, a)$ symplectically embeds into $B\left(\frac{a}{2}+\pi+\varepsilon\right), \quad \forall \varepsilon>0$
Lemma 2. For any $\varepsilon>0$, symplectic folding gives an embedding ψ :

$$
\psi: T(\pi, a) \hookrightarrow \mathbb{C}^{2} \cong \mathbb{R}^{4}, \quad \psi\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\left(\left(u_{1}^{\prime}, v_{1}^{\prime}\right),\left(u_{2}^{\prime}, v_{2}^{\prime}\right)\right)
$$

such that

$$
u_{1}^{\prime}+u_{2}^{\prime}<A-b+\frac{b}{\pi} u_{1}+\frac{b}{a} u_{2}+\varepsilon, \quad A=\frac{a+b+\pi}{2}
$$

Sketch of the proof. We assume

$$
u_{1}^{\prime}+u_{2}^{\prime}<A-b+\frac{b}{a} u_{1}+\frac{b}{\pi} u_{2}+\varepsilon, \quad \forall \varepsilon>0
$$

and look for the smaller admissible A; this is done considering separately the four regions in $T(a, \pi)$ (figure 11).

Case I:

$$
\psi: \begin{cases}u_{1}^{\prime}=\frac{a+\pi}{a} u_{1}, & \left.u_{1} \in\right] 0, a / 2[\\ u_{2}^{\prime}=u_{2}, & \left.u_{2} \in\right] 0, \pi / 2[\end{cases}
$$

From:

$$
\frac{a+\pi}{a} u_{1}+u_{2}<A-b+\frac{b}{a} u_{1}+\frac{b}{\pi} u_{2}+\varepsilon
$$

it follows that:

$$
A+\varepsilon>\frac{a+\pi-b}{a} u_{1}+\left(1-\frac{b}{\pi}\right) u_{2}+b
$$

Taking $u_{1}=a / 2, u_{2}=0$ gives the supremum of the right hand side:

$$
A+\varepsilon>\frac{a+b+\pi}{2}
$$

Case II:

$$
\psi: \begin{cases}u_{1}^{\prime}=\frac{a+\pi}{a} u_{1}-\frac{a+\pi}{2}, & \left.u_{1} \in\right] a / 2, a[\\ u_{2}^{\prime}=u_{2}+\frac{\pi}{2}, & \left.u_{2} \in\right] 0, \pi-(\pi / a) u_{1}[\end{cases}
$$

Now:

$$
\frac{a+\pi}{a} u_{1}-\frac{a+\pi}{2}+u_{2}+\frac{\pi}{2}<A-b+\frac{b}{a} u_{1}+\frac{b}{\pi} u_{2}+\varepsilon
$$

and proceeding as in case I (taking $u_{1}=a, u_{2}=0$) leads to:

$$
A+\varepsilon>\frac{a+\pi-b}{a} u_{1}+\left(1-\frac{b}{\pi}\right) u_{2}-\frac{a+\pi}{2}+\frac{\pi}{2}+b, \quad A+\varepsilon>\frac{a}{2}+\pi
$$

Since $b \geq \pi$, the desired estimate is true in case II if:

$$
A+\varepsilon>\frac{a+b+\pi}{2}
$$

Case III:

$$
\psi: \begin{cases}u_{1}^{\prime}=\frac{a+\pi}{a} u_{1} & \left.u_{1} \in\right] 0, a / 2[\\ u_{2}^{\prime}=u_{2}+\frac{\pi}{2}-\frac{\pi}{a} u_{1}, & u_{2} \in\left[\pi / 2, \pi-(\pi / a) u_{1}[\right.\end{cases}
$$

This time:

$$
\frac{a+\pi}{a} u_{1}+u_{2}+\frac{\pi}{2}-\frac{\pi}{a} u_{1}<A-b+\frac{b}{a} u_{1}+\frac{b}{\pi} u_{2}+\varepsilon
$$

gives (taking $u_{1}=a / 2, u_{2}=\pi / 2$) the same estimate as in case II:

$$
A+\varepsilon>\frac{a+\pi-\pi-b}{a} u_{1}+\left(1-\frac{b}{\pi}\right) u_{2}+\frac{\pi}{2}+b, \quad A+\varepsilon>\frac{a}{2}+\pi
$$

Case IV:

$$
\psi: \begin{cases}\left.u_{1}^{\prime} \in\right] 0, \frac{a+\pi}{2}[, & u_{1}=a / 2 \\ u_{2}^{\prime}+\frac{\pi}{a+\pi} u_{1}^{\prime}=u_{2}+\frac{\pi}{2}, & \left.u_{2} \in\right] 0, \pi / 2[\end{cases}
$$

Then:

$$
u_{1}^{\prime}+u_{2}^{\prime}=\frac{a}{a+\pi} u_{1}^{\prime}+u_{2}+\frac{\pi}{2}
$$

and A should satisfy:

$$
\frac{a}{a+\pi} u_{1}^{\prime}+u_{2}+\frac{\pi}{2}<A-b+\frac{b}{2}+\frac{b}{\pi} u_{2}+\varepsilon
$$

As above (with $u_{1}^{\prime}=(a+\pi) / 2, u_{2}=0$):

$$
A+\varepsilon>\frac{a+b+\pi}{2}
$$

In this analysis, we ignored everything 'small' in the symplectic folding process: the symplectomorphism ψ is as close as wanted, but not equal, to the above map; the details of a rigourous proof (that needs a slight adaptation to the folding process presented here) can be founded in $[11,12]$. Still, the conclusion is that A can be chosen to be $(a+b+\pi) / 2$.

Lemma 3. If for any positive ε there exists a symplectic embedding ψ :

$$
\psi: T(\pi, a) \hookrightarrow \mathbb{C}^{2} \cong \mathbb{R}^{4}, \quad \psi\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\left(\left(u_{1}^{\prime}, v_{1}^{\prime}\right),\left(u_{2}^{\prime}, v_{2}^{\prime}\right)\right)
$$

such that:

$$
u_{1}^{\prime}+u_{2}^{\prime}<A-b+\frac{b}{\pi} u_{1}+\frac{b}{a} u_{2}+\varepsilon
$$

then there exists a a symplectic embedding Φ :

$$
E\left(\pi, b_{1}, \ldots, b_{n-2}=b, a\right) \hookrightarrow B(A+\varepsilon)
$$

Proof. It follows from lemma 1 and the estimate on ψ that there exists a symplectic embedding σ :

$$
\sigma: E(\pi, a) \hookrightarrow \mathbb{C}^{2} \cong \mathbb{R}^{4}, \quad \sigma\left(z_{1}, z_{2}\right)=\left(z_{1}^{\prime}, z_{2}^{\prime}\right)
$$

such that:

$$
\pi\left|z_{1}^{\prime}\right|^{2}+\pi\left|z_{2}^{\prime}\right|^{2}<A-b+\frac{b}{\pi} \pi\left|z_{1}\right|^{2}+\frac{b}{a} \pi\left|z_{2}\right|^{2}+\varepsilon, \quad A=\frac{a+b+\pi}{2}
$$

Then $\sigma \times \mathrm{id}_{n-2}$, after a suitable permutation τ, defined by $\tau\left(z_{1}, z_{2}, \ldots\right)=$ $\left(z_{1}, z_{n}, z_{2}, \ldots\right)$, gives a symplectic embedding:

$$
\Phi=\left(\sigma \times \operatorname{id}_{n-2}\right) \circ \tau: E\left(\pi, b_{1}, \ldots, b_{n-2}=b, a\right) \hookrightarrow \mathbb{C}^{n} \cong \mathbb{R}^{2 n}
$$

The image of Φ is contained in the ball $B(A+\varepsilon)$:

$$
\begin{aligned}
& \pi\left|\Phi\left(z_{1}, \ldots, z_{n}\right)\right|^{2}=\pi\left|z_{1}^{\prime}\right|^{2}+\pi\left|z_{2}^{\prime}\right|^{2}+\ldots+\pi\left|z_{n}^{\prime}\right|^{2} \\
&<A-b+\frac{b}{\pi} \pi\left|z_{1}\right|^{2}+\frac{b}{a} \pi\left|z_{n}\right|^{2}+\pi\left|z_{2}\right|^{2}+\ldots+\pi\left|z_{n-1}\right|^{2}+\varepsilon \\
&<A-b+b\left[\frac{\pi}{\pi}\left|z_{1}\right|^{2}+\frac{\pi}{a}\left|z_{n}\right|^{2}+\frac{\pi}{b}\left|z_{2}\right|^{2}+\ldots+\frac{\pi}{b}\left|z_{n-1}\right|^{2}\right]+\varepsilon \\
&<A-b+b\left[\frac{\pi}{\pi}\left|z_{1}\right|^{2}+\frac{\pi}{b_{1}}\left|z_{2}\right|^{2}+\ldots+\frac{\pi}{b_{n-2}}\left|z_{n-1}\right|^{2}+\frac{\pi}{a}\left|z_{n}\right|^{2}\right]+\varepsilon \\
&<A-b+b+\varepsilon=A+\varepsilon
\end{aligned}
$$

and therefore:

$$
\Phi\left(E\left(\pi, b_{1}, \ldots, b_{n-2}=b, a\right)\right) \subset B(A+\varepsilon)
$$

Proof of theorem. The conclusion follows from lemmas 2 and 3.

References

[1] I. Ekeland, H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), 355-378.
[2] I. Ekeland, H. Hofer, Symplectic topology and Hamiltonian dynamics II, Math. Z. 203 (1990), 553-567.
[3] A. Floer, H. Hofer, K. Wysocki, Applications of symplectic homology I, Math. Z. 217 (1994), 577-606.
[4] M. Gromov, Pseudo-holomorphic curves in symplectic maniolds, Inv. Math., 82 (1985), 307-347.
[5] M. Gromov, Partial Differential Relations, Ergebniss der Math. 9, Springer, 1986.
[6] L. Guth, Symplectic embeddings of polydisks, Inv. Math., 172 (2008), 477-489.
[7] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhauser Advanced Texts, Birkhauser, 1994.
[8] F. Lalonde, D. McDuff, The geometry of symplectic energy, Ann. of Math., 141 (1995), 349-371.
[9] F. Lalonde, D. McDuff, Hofer's L^{∞}-geometry: energy and stability of Hamiltonian flows II, Inv. Math. 122 (1995), 35-69.
[10] D. McDuff, Symplectic Embeddings and Continued fractions: a survey, Japanese J. Math. 4 (2009), 121-129
[11] F. Schlenk, Embedding Problems in Symplectic Geometry, De Gruyter Expositions in Mathematics 40, Walter de Gruyter, 2005.
[12] F. Schlenk, Symplectic embedding of ellipsoids, Israel J. Math. 138 (2003), 215-252.

Centro de Matemática da Universidade do Porto, Portugal
E-mail address: jbg@fc.up.pt

[^0]: Date: April, 2010.
 1991 Mathematics Subject Classification. Primary: 53.
 Key words and phrases. symplectic topology, embedding, rigidity, flexibility, ellipsoids.

 Financial support from FCT, and Calouste Gulbenkian Foundation.

