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Abstract

The present paper is intended to investigate a fractional telegraph equa-
tion of the form

−a
(
Dα+1

t+0
u
)

(t, x) +
(
Dβ+1

x+0
u
)

(t, x)− b
(
Dα
t+0
u
)

(t, x)− cu(t, x) = 0,

with positive real parameters a, b, c. Here Dα+1

t+0
, Dα

t+0
,Dβ+1

x+0
are operators of

the Riemann- Liouville fractional derivative, where 0 < α ≤ 1 and 0 < β ≤
1. A symbolic operational form of the solutions in terms of the Mittag-Leffler
functions is exhibited. Using Banach fixed point theorem, the existence
and uniqueness of solutions is studied for this kind of fractional differential
equations.

Keywords:Fractional telegraph equation, Riemann-Liouville fractional inte-
grals and derivatives, generalized Mittag-Leffler function.

MSC: 45J05, 26A33, 33E12.

1 Introduction

The fractional calculus is one of the most accurate tools to refine the description of
natural phenomena. Fractional differential equations have attracted in the recent
years a considerable interest due to their frequent appearance in various fields and
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their more accurate models of systems under consideration provided by fractional
derivatives.

The fractional telegraph equation has been recently considered by many au-
thors. Cascaval et al. [1] discussed the time-fractional telegraph equations, deal-
ing with wellposedness and presenting a study of their asymptotic behavior by
using the Riemann-Liouville approach. Orsingher and Beghin [4] discussed the
time-fractional telegraph equation and telegraph processes with Brownian time,
showing that some processes are governed by time-fractional telegraph equations.
Chen et al. [2] examined and derived a solution of the time-fractional telegraph
equation with three kinds of nonhomogeneous boundary conditions, by the method
of separation of variables. Recently, in [7] the first author dealt with fractional
generalization of the Laplace equation for rectangular domains which related to
Riemann-Liouville’s fractional derivatives.

These derivatives and the corresponding integral of order γ > 0 are

(Dγ
a+v)(x) =

(
d

dx

)n
1

Γ(n− γ)

∫ x

a

v(t)

(x− t)γ−n+1
dt, a, x > 0, n = [γ] + 1, (1)

(Iγa+v)(x) =
1

Γ(γ)

∫ x

a

v(t)

(x− t)1−γ dt, a, x > 0, (2)

respectively, where [γ] means the integer part of γ (see e.g. [6] , [8]).
In this paper, we consider the following class of fractional telegraph equation

−a
(
Dα+1

t+0
u
)

(t, x) +
(
Dβ+1

x+0
u
)

(t, x)− b
(
Dα
t+0
u
)

(t, x)− cu(t, x) = 0, (3)

with a, b, c are parameters connected with resistance, inductance, capacitance and
conductance of the cable, respectively. Here, we present a general operational
approach to describe fundamental solutions of the fractional two-parameter tele-
graph equation (3). Operational solutions will be done in terms of the generalized
Mittag-Leffler function Eµ,ν(z) (see e.g. [7], [6], [8]) which, in turn, is defined in
terms of the power series

Eµ,ν(z) =
∞∑
n=0

zn

Γ(µn+ ν)
, µ > 0, ν ∈ R, z ∈ C. (4)

Particular simple cases are

E1,2(z) =
ez − 1

z
, E2,2(z) =

sinh(z1/2)

z1/2
.

We note that Eµ,ν(z) is an entire function of order 1/µ and type 1.
In the sequel we will prove the existence and uniqueness of solutions concerning

equation (3).
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2 Preliminaries

We start by recalling some definitions and facts from the theory of fractional
differential operators.

Definition 2.1 (see [6]) By ACn([a, b]), n ∈ N, one denotes the class of functions
v(x), which are continuously differentiable on the segment [a, b] up to the order
n− 1 and v(n−1)(x) is absolutely continuous on [a, b].

It is known [6] that the class ACn([a, b]), n ∈ N contains only functions repre-
sented in the form

v(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1ϕ(t)dt+
n−1∑
k=0

ck(x− a)k, (5)

where ϕ(t) ∈ L1(a, b) and ck are arbitrary constants. It is not difficult to find
that ϕ(t) = vn(t), ck = v(k)(a)/k!. Moreover, if v(x) ∈ ACn([a, b]), then fractional
derivative (1) exists almost everywhere and can be represented by the formula

(Dγ
a+v)(x) =

n−1∑
k=0

v(k)(a)

Γ(1 + k − γ)
(x− a)k−γ +

1

Γ(n− γ)

∫ x

a

v(n)(t)

(x− t)γ−n+1
dt, (6)

n = [γ] + 1.

Definition 2.2 (see [6]) By Iγa+(L1) denotes the class of functions v represented
by a left-sided fractional integral (2) of a summable function, that is, v = Iγa+ϕ,
ϕ ∈ L1(a, b).

This class of functions is described below.

Theorem 2.3 (see [6]) A function v(x) ∈ Iγa+(L1), γ > 0 if and only if (In−γa+ v)(x) ∈
ACn([a, b]), n = [γ] + 1 and (In−γa+ v)(k)(a) = 0, k = 0, 1, . . . , n− 1.

Definition 2.4 (see [6]) One will say that a function v ∈ L1(a, b) has a summable
fractional derivative (Dγ

a+v)(x) if (In−γa+ v)(x) ∈ ACn([a, b]), n = [γ] + 1.

If (Dγ
a+v)(x) = (d/dx)n(In−γa+ v)(x) exists in the ordinary sense, that is, (In−γa+ v)(x)

is differentiable in each point up to the order n, then v(x) evidently admits the
derivative (Dγ

a+v)(x) in the sense of definition (2.4).
So, if v(x) ∈ Iγa+(L1), then (Iγa+D

γ
a+v)(x) = v(x). Otherwise if v just admits

a summable fractional derivative, then the composition of fractional operators (1)
and (2) can be written in the form (see [6])

(Iγa+D
γ
a+v)(x) = v(x)−

n−1∑
k=0

(x− a)γ−k−1

Γ(γ − k)
(In−γa+ v)(n−k−1)(a), n = [γ] + 1. (7)

Nevertheless, we note that (Dγ
a+I

γ
a+v)(x) = v(x) for any summable function v.
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3 Fundamental solutions of the fractional two-

parameter telegraph equation

In this section, we present a general operational approach to describe fundamental
solutions of the fractional two-parameter telegraph equation (3). Moreover, its
operational solutions will be written in terms of the generalized Mittag-Leffler
function Eµ,ν(z).

So, let us consider fractional telegraph equation (3).

Theorem 3.1 Let u(t, x) ∈ L1(Ω), Ω = [t0, T0] × [x0, X0] and u ∈ Iα+1

t+0
(L1),

u ∈ Iβ+1

x+0
(L1) by t ∈ [t0, T0] and x ∈ [x0, X0], respectively. Then the unique

solution of (3) is zero.

Proof: Since u(t, x) belongs to classes Iα+1

t+0
(L1), Iβ+1

x+0
(L1) by t ∈ [t0, T0] and

x ∈ [x0, X0], respectively, we take operator Iα+1

t+0
from both sides of (3) to obtain

−aIα+1

t+0

(
Dα+1

t+0
u
)

(t, x) + Iα+1

t+0

(
Dβ+1

x+0
u
)

(t, x)− bIα+1

t+0

(
Dα
t+0
u
)

(t, x)

−c
(
Iα+1

t+0
u
)

(t, x) = 0. (8)

Using identity
(
Iα+1

t+0
Dα+1

t+0
u
)

(t, x) = u(t, x) it becomes

−au(t, x) + Iα+1

t+0

(
Dβ+1

x+0
u
)

(t, x)− b
(
I1
t+0
u
)

(t, x)− c
(
Iα+1

t+0
u
)

(t, x) = 0. (9)

Applying operator Iβ+1

x+0
from both sides of (9) and invoking Fubini’s theorem we

obtain

−aIβ+1

x+0
u(t, x) + Iα+1

t+0
Iβ+1

x+0

(
Dβ+1

x+0
u
)

(t, x)− bIβ+1

x+0

(
I1
t+0
u
)

(t, x)

−cIβ+1

x+0

(
Iα+1

t+0
u
)

(t, x) = 0. (10)

Using the identity
(
Iβ+1

x+0
Dβ+1

x+0
u
)

(t, x) = u(t, x) it gives

−a
(
Iβ+1

x+0
u
)

(t, x) +
(
Iα+1

t+0
u
)

(t, x)− b
(
Iβ+1

x+0
I1
t+0
u
)

(t, x)

−c
(
Iβ+1

x+0
Iα+1

t+0
u
)

(t, x) = 0. (11)



5

Denoting by U(t, s) =
∫ X0

x0
e−syu(t, y)dy the Laplace transform [9] by x of u and

appealing to its operational properties, the latter equality becomes

−as−β−1U(t, s) +
1

Γ(α + 1)

∫ t

t0

(t− z)αU(z, s)dz − bs−β−1

∫ t

t0

U(z, s)dy

−cs−β−1 1

Γ(α + 1)

∫ t

t0

(t− z)αU(z, s)dz = 0, (12)

which can be treated as a second kind homogeneous integral equation of the
Volterra type

U(t, s)−
∫ t

t0

(
sβ+1 − c
aΓ(α + 1)

(t− z)α − b

a

)
U(z, s)dz = 0. (13)

But U(t, s) ∈ L1(t0, T0) via U(t, s) ∈ I1+α

t+0
(L1). Therefore, as it is known (see,

for example [7]) equation (13) has only a trivial solution in the class of summable
functions. Cancelling the Laplace transform and using its uniqueness property in
L1 we have u(t, x) = 0.

Remark Taking the Laplace transform in variable t from both sides of (11)

with U(s, x) =
∫ T0
t0
e−szu(z, x)dz, we come to the same conclusion for equation

U(s, x)− asα+1 + bsα + c

Γ(β + 1)

∫ x

x0

(x− y)βU(s, y)dy = 0. (14)

Now, we will prove the following Lemma.

Lemma 3.2 Let u(t, x) ∈ L1(Ω) admit a summable fractional derivative
(
Dβ+1

x+0
u
)

(t, x)

by x ∈ [x0, X0] and belong to Iα+1

t+0
(L1) by t ∈ [t0, T0]. Then u is a solution of (3)

if and only if U satisfies the Volterra integral equation

U(s, x)− asα+1 + bsα + c

Γ(β + 1)

∫ x

x0

(x− y)βU(s, y)dy = G(s, x),

where U(s, x) =
∫ T0
t0
e−szu(z, x)dz,

G(s, x) =
(x− x0)β

Γ(β + 1)
G0(s) +

(x− x0)β−1

Γ(β)
G1(s), (15)

G0(s) =

∫ t

t0

e−szg0(z)dz and G1(s) =

∫ t

t0

e−szg1(z)dz.
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Proof: Indeed, under conditions of the lemma and returning to (10) we derive

−a
(
Iβ+1

x+0
u
)

(t, x) + Iα+1

t+0

[
u(t, x)− (x− x0)β

Γ(β + 1)
g0(t)− (x− x0)β−1

Γ(β)
g1(t)

]
−b
(
Iβ+1

x+0
I1
t+0
u
)

(t, x)− c
(
Iβ+1

x+0
Iα+1

t+0
u
)

(t, x) = 0, (16)

where g0(t) =
(
Dβ

x+0
u
)

(t, x0) and g1(t) =
(
I1−β
x+0

u
)

(t, x0).

After application of the Laplace transform to both sides of (16) by t, we come
out with

− a

Γ(β + 1)

∫ x

x0

(x− y)βU(s, y)dy + s−α−1

[
U(s, x)− (x− x0)β

Γ(β + 1)
G0(s)

−(x− x0)β−1

Γ(β)
G1(s)

]
− b s−1

Γ(β + 1)

∫ x

x0

(x− y)βU(s, y)dy

−c s−α−1

Γ(β + 1)

∫ x

x0

(x− y)βU(s, y)dy = 0. (17)

Further, this can be rewritten as

U(s, x)− asα+1 + bsα + c

Γ(β + 1)

∫ x

x0

(x− y)βU(s, y)dy = G(s, x), (18)

where

G(s, x) =
(x− x0)β

Γ(β + 1)
G0(s) +

(x− x0)β−1

Γ(β)
G1(s),

G0(s) =
∫ t
t0
e−szg0(z)dz and G1(s) =

∫ t
t0
e−szg1(z)dz.

Lemma 3.3 Let u(t, x) ∈ L1(Ω) admit a summable fractional derivative
(
Dα+1

t+0
u
)

(t, x)

by t ∈ [t0, T0] and belong to Iβ+1

x+0
(L1) by x ∈ [x0, X0]. Then u is a solution of (3)

if and only if U satisfies the Volterra integral equation

U(t, s)−
∫ t

t0

(
sβ+1 − c
aΓ(α + 1)

(t− z)α − b

a

)
U(z, s)dz = F (t, s),

where U(t, s) =
∫ X0

x0
e−syu(t, y)dy,

F (t, s) =
(t− t0)α

Γ(α + 1)

(
F0(s)− b

a
F1(s)

)
+

(t− t0)α−1

Γ(α)
F1(s),

F0(s) =

∫ x

x0

e−syf0(y)dy and F1(s) =

∫ x

x0

e−syf1(y)dy.
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Proof: In fact, similarly to the previous proof we deduce

−aU(t, s) +
sβ+1

Γ(α + 1)

∫ t

t0

(t− z)αU(z, s)dz

−b
∫ t

t0

U(z, s)dz − c

Γ(α + 1)

∫ t

t0

(t− z)αU(z, s)dz

= −a (t− t0)α

Γ(α + 1)
F0(s)− a(t− t0)α−1

Γ(α)
F1(s) + b

(t− t0)α

Γ(α + 1)
F1(s), (19)

i.e.,

U(t, s)−
∫ t

t0

(
sβ+1 − c
aΓ(α + 1)

(t− z)α − b

a

)
U(z, s)dz = F (t, s) (20)

where

F (t, s) =
(t− t0)α

Γ(α + 1)

(
F0(s)− b

a
F1(s)

)
+

(t− t0)α−1

Γ(α)
F1(s),

F0(s) =

∫ x

x0

e−syf0(y)dy, F1(s) =

∫ x

x0

e−syf1(y)dy, (21)

with f0(x) =
(
Dα
t+0
u
)

(t0, x) and f1(x) =
(
I1−α
t+0

u
)

(t0, x).

Theorem 3.4 Under conditions of Lemma (3.2) a solution of (18) can be written
in terms of the Mittag-Leffler functions.

Proof: Following [7] we see that the unique solution of (18) in a class of
summable functions involves as the kernel the generalized Mittag-Leffler function
(4), namely

U(s, x) = G(s, x) + (asα+1 + bsα + c)

∫ x

x0

(x− y)β

× Eα+1,α+1

(
(asα+1 + bsα + c)(x− y)β+1

)
G(s, y)dy, (22)

where the corresponding change of the order of integration and summation are
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motivated by estimates below. Precisely, we obtain∣∣∣∣(asα+1 + bsα + c)

∫ x

x0

(x− y)βEβ+1,β+1

(
(asα+1 + bsα + c)(x− y)β+1

)
G(s, y)dy

∣∣∣∣
≤ |G0(s)|

+∞∑
n=0

(a|s|α+1 + b|s|α + c)
n+1

Γ((n+ 1)(β + 1))Γ(β + 1)

∫ x

x0

(x− y)(β+1)n+β(y − x0)βdy

+|G1(s)|
+∞∑
n=0

(a|s|α+1 + b|s|α + c)
n+1

Γ((n+ 1)(β + 1))Γ(β)

∫ x

x0

(x− y)(β+1)n+β(y − x0)β−1dy

≤ (a|s|α+1 + b|s|α + c)(X0 − x0)2β

×
[
(X0 − x0)E1+β,2(β+1)

((
a|s|α+1 + b|s|α + c

)
(X0 − x0)1+β

) ∫ t

t0

e−sz|g0(z)|dz

+ E1+β,2β+1

(
(a|s|α+1 + b|s|α + c)(X0 − x0)1+β

) ∫ t

t0

e−sz|g1(z)|dz
]
< +∞.

(23)

Furthermore, minding∫ x

x0

(x− y)(1+β)n+β(y − x0)βdy =
(x− x0)(1+β)n+2β+1Γ(1 + β)Γ((1 + β)n+ 1 + β)

Γ((1 + β)n+ 2(1 + β))
,∫ x

x0

(x− y)(1+β)n+β(y − x0)β−1dy =
(y − y0)(1+β)n+2βΓ(β)Γ((1 + β)n+ 1 + β)

Γ((1 + β)n+ 2β + 1)
,

formula (22) can be rewritten in terms of the Mittag-Leffler functions as

U(s, x) = G0(s)(x− x0)βE1+β,1+β

(
(sα+1 + bsα + c)(x− x0)1+β

)
+ F1(s)(t− t0)α−1E1+α,α

(
(sα+1 + bsα + c)(x− x0)1+β

)
. (24)

Theorem 3.5 Under conditions of Lemma (3.3) a solution of (20) can be pre-
sented in the resolvent form.

Proof: Indeed by operational method for direct and inverse Laplace transforms
(see [5]), a solution of (20) can be expressed in the form

U(t, s) = F (t, s)−
∫ t

t0

Rs(t− z)F (z, s)dz, (25)

where the resolvent Rs(t) is defined by

Rs(t) =
1

2πi

∫ c+i∞

c−i∞
R̃s(p)e

ptdp,
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and

R̃s(p) =
K̃s(p)

1 + K̃s(p)
, K̃s(p) =

∫ ∞
0

Ks(t)e
−ptdt,

Ks(t) =

(
sβ+1 − c
aΓ(α + 1)

(t− z)α − b

a

)
.

4 Existence and Uniqueness of Solutions

This section will be developed to the existence and uniqueness of solutions for
equation (3) employing the Banach fixed point theorem.

We begin introducing some notations and results for further consideration.
Let I = [a, b] (a < b, a, b ∈ R) and m ∈ N0. Denoting by Cm a usual space of

functions v which are m times continuously differentiable on I with the norm

‖v‖Cm =
m∑
k=0

‖v(k)‖C =
m∑
k=0

max
x∈Ω
|v(k)(x)|,

m ∈ N0.
In particular, for m = 0, C0(I) ≡ C(I) is the space of continuous functions v

on I with the norm ‖v‖C = max
x∈I
|v(x)|.

For 0 ≤ γ < 1, denoting by Cγ(I) a weighted space of functions v for x ∈ (a, b]
such that (x− a)1+γv(x) ∈ C[a, b] and

‖v‖Cγ = ‖(x− a)1+γv(x)‖C .

Theorem 4.1 (see [6]) Let γ ≥ 0 and v(x) ∈ ACn([a, b]), n = [γ]+1. Then Dγ
a+v

exists almost everywhere and may be represented in the form

Dγ
a+v =

n−1∑
k=0

v(k)(a)

Γ(1 + k − γ)
(x− a)k−γ +

1

Γ(n− γ)

∫ x

a

v(n)(t)

(x− t)γ−n+1
dt. (26)

Theorem 4.2 (see [3]) Let γ ≥ 0 and n = [γ] + 1. If v(x) ∈ ACn([a, b]), then
the Caputo fractional derivative CDγ

a+v exists almost everywhere on [a, b], and if
γ /∈ N0, CDγ

a+v is represented by

CDγ
a+v =

1

Γ(n− γ)

∫ x

a

v(n)(t)

(x− t)γ−n+1
dt := (In−γa+ Dnv)(x), (27)

where D = d/dx.
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Remark If γ /∈ N0 and n = [γ] + 1, then

∣∣In−γa+ Dnv)(x)
∣∣ ≤ ‖v(n)‖C
|Γ(n− γ)|(n− γ + 1)

(x− a)n−γ. (28)

Recalling equation (18) and cancelling the Laplace transform we obtain

u(t, x)− a
(
Iβ+1

x+0
I−1−α
t+0

u
)

(t, x)− b
(
Iβ+1

x+0
I−α
t+0
u
)

(t, x)

−c
(
Iβ+1

x+0
u
)

(t, x) = g(t, x),

which can be rewritten as

u(t, x)− a
(
Iβ+1

x+0
Dα+1

t+0
u
)

(t, x)− b
(
Iβ+1

x+0
Dα
t+0
u
)

(t, x)

−c
(
Iβ+1

x+0
u
)

(t, x) = g(t, x), (29)

where

g(t, x) =
(x− x0)β

Γ(β + 1)
g0(t) +

(x− x0)β−1

Γ(β)
g1(t),

with 0 < α < 1, 0 < β < 1.
In order to prove the existence and uniqueness of solution for equation (3)

under conditions of Lemma 3.2, it is sufficient to prove the existence of a unique
solution of (29).

Now, we will establish an auxilliarly result.

Lemma 4.3 The fractional integration operator Iγ
x+0

of order γ with γ ∈ R+ forms

a map from C[x0, X0] to itself for each t ∈ [t0, T0], and we have the estimate∥∥∥Iγ
x+0
u
∥∥∥
C[x0,X0]

≤ (X0 − x0)γ+1

Γ(γ + 1)
‖u‖C[x0,X0].

Proof: First we prove that, if u(t, x) ∈ C[x0, X0] then (Iγ
x+0
u)(t, x) ∈ C[x0, X0]. In
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fact, for any x ∈ [x0, X0] and ∆x > 0, x+ ∆x ≤ X0 we have∣∣∣(Iγ
x+0
u)(t, x+ ∆x)− (Iγ

x+0
u)(t, x)

∣∣∣
=

1

Γ(γ)

∣∣∣∣∫ x+∆x

x0

(x+ ∆x− z)γ−1u(t, z)dz −
∫ x

x0

(x− z)γ−1u(t, z)dz

∣∣∣∣
≤ 1

Γ(γ)

[∣∣∣∣∫ x

x0

u(t, z)
(
(x+ ∆x− z)γ−1 − (x− z)γ−1

)
dz

∣∣∣∣
+

∣∣∣∣∫ x+∆x

x
(x+ ∆x− z)γ−1u(t, z)dz

∣∣∣∣]
≤
‖u(t, x)‖C[x0,X0]

(γ)Γ(γ)
[((x+ ∆x− x0)γ − (x− x0)γ) + 2(∆x)γ ]

≤
‖u(t, x)‖C[x0,X0]

Γ(γ + 1)
[((x+ ∆x− x0)γ − (x− x0)γ) + 2(∆x)γ ] .

(30)

Therefore, when ∆x→ 0+ we have∣∣∣(Iγ
x+0
u)(t, x+ ∆x)− (Iγ

x+0
u)(t, x)

∣∣∣→ 0.

Similarly it is valid when ∆x→ 0−. Hence, Iγ
x+0
u ∈ C[x0, X0]. Consequently,∥∥∥Iγ

x+0
u
∥∥∥
C[x0,X0]

= max
x∈[x0,X0]

∣∣∣∣ 1

Γ(γ)

∫ x

x0

(x− z)γ−1u(t, z)dz

∣∣∣∣
≤
‖u‖C[x0,X0]

Γ(γ)

∫ x

x0

(x− z)γ−1dz

≤ (X0 − x0)γ+1

(γ)Γ(γ)
‖u‖C[x0,X0]

≤ (X0 − x0)γ+1

Γ(γ + 1)
‖u‖C[x0,X0].

(31)

Theorem 4.4 Integral equation (29) has a unique solution whenever 0 < ξ < 1
and where

ξ =
(X0 − x0)β+2

Γ(β + 2)

[
a

(
(T0 − t0)γ−α

|Γ(−α)|
+

(T0 − t0)γ+1−α

Γ(1− α)
+

(T0 − t0)γ+2−α

Γ(1− α)(2− α)

)
+ b

(
(T0 − t0)γ+1−α

Γ(1− α)
+

(T0 − t0)γ+2−α

Γ(1− α)(2− α)

)
+ c(T0 − t0)γ+1

]
,

with γ > α.
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Proof: We denote by X the Banach space

X = {u : u(., x) ∈ C([x0, X0]), u(t, .) ∈ C2([t0, T0])}

and by Y the Banach space

Y = {u : u(., x) ∈ C([x0, X0]), u(t, .) ∈ Cγ([t0, T0])}.

Next, we put T : X → Y ,

(Tu)(t, x) = a
(
Iβ+1

x+0
Dα+1

t+0
u
)

(t, x)+ b
(
Iβ+1

x+0
Dα
t+0
u
)

(t, x)+ c
(
Iβ+1

x+0
u
)

(t, x)+g(t, x).

Hence, we rewrite equation (29) in the form

u(t, x) = (Tu)(t, x).

Calling definitions of Cγ−norm, C2−norm and C−norm and taking into account
(26), (27) and (28), we have

‖Tu1 − Tu2‖Y = ‖aIβ+1

x+0
Dα+1

t+0
(u1 − u2) + bIβ+1

x+0
Dα
t+0

(u1 − u2) + cIβ+1

x+0
(u1 − u2)‖Y

≤ (X0 − x0)β+2

Γ(β + 2)

[
a‖(t− t0)1+γDα+1

t+0
(u1 − u2)‖Y

+ b‖(t− t0)γ+1Dα
t+0

(u1 − u2)‖Y + c‖(t− t0)γ+1(u1 − u2)‖Y
]

≤ (X0 − x0)β+2

Γ(β + 2)

[
a

(
(T0 − t0)γ−α

|Γ(−α)|
+

(T0 − t0)γ+1−α

Γ(1− α)

+
(T0 − t0)γ+2−α

Γ(1− α)(2− α)

)
+ b

(
(T0 − t0)γ+1−α

Γ(1− α)
+

(T0 − t0)γ+2−α

Γ(1− α)(2− α)

)
+ c(T0 − t0)γ+1

]
‖u1 − u2‖X

= ξ‖u1 − u2‖X , (32)

where we let

ξ =
(X0 − x0)β+2

Γ(β + 2)

[
a

(
(T0 − t0)γ−α

|Γ(−α)|
+

(T0 − t0)γ+1−α

Γ(1− α)
+

(T0 − t0)γ+2−α

Γ(1− α)(2− α)

)
+ b

(
(T0 − t0)γ+1−α

Γ(1− α)
+

(T0 − t0)γ+2−α

Γ(1− α)(2− α)

)
+ c(T0 − t0)γ+1

]
,

and γ > α.
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