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In this paper we introduce a notion of Schrödinger’s kernel to the
familiar Kontorovich-Lebedev transform. In order to control its singu-
larity at infinity, we will need to implement the so-called regulariza-
tion procedure. Hence we will obtain a sequence of regularized kernels
which converge to the original kernel when a regularization parame-
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1 Introduction

Time evolution problems are of extreme importance in mathematical physics.
However, there is still a strong need to develop further special techniques to
deal with these problems. A possible approach in the analysis of time evolu-
tion equations presumes the use of integral transforms and special functions.
For instance, in [3] the authors appeal to a combination of Clifford analysis
and integral transforms to study the time dependent Schrödinger equation
in some specific manifolds. Another type of integrals transforms which can
be applied to study this type of equations are index transforms, in partic-
ular, the Kontorovich-Lebedev transform. This transform has been used
in many applications including, for instance, fluid mechanics, quantum and
nano-optics and plasmonics. It proves to be an effective tool in solving the
resulting differential equations when modeling optical or electronic response
of such problems. It arises naturally when one deals with the method of
separation of variables to solve boundary-value problems in terms of cylin-
drical coordinate system (for more details see [7]). An application of index
transforms to examine Schrödinger’s operator is connected to some tech-
niques developed for elliptic equations, which were involved to study the
heat operator (see [9]). However, we need to take into account that in many
aspects the Schrödinger operator is substantially different from the heat op-
erator. First of all the Galilean group is the invariance group associated to
the Schrödinger equation, while the parabolic group is the invariance group
that is associated to the heat equation (see [8]). Secondly, the Schrödinger
equation is related to the Minkowski space-time metric, while the heat equa-
tion is linked to the parabolic space-time metric (see [8]). More important
for us, under an analytical point of view, the singularity for large values of
variable t, i.e. when t→ +∞, of the Schrödinger kernel is not removable by
standard methods. To overcome this problem we introduce a regularization
procedure prior to the development of a hypoelliptic analysis (see [2], [3]
and [8]).

The main goal of this paper is to show that index transforms can be
applied in the analysis of certain type of regularized Schrödinger equation.
More specifically, we will investigate differential properties of the regularized
Schrödinger kernel related to the Kontorovich-Lebedev transform, which will
be introduced below. Moreover, a pointwise convergence of a sequence of
Weierstrass’s integral operators, which are defined via the regularized kernel
when a regularization parameter tends to zero, will be established.
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2 Preliminaries

The Kontorovich-Lebedev transform is given by the formula [7], [13]

Kiτ [f ] =

∫
R+

Kiτ (x)f(x) dx, (1)

where integral (1) converges with respect to the norm in L2(R+, τ sinh(πτ) dτ).
The corresponding Parseval identity holds∫

R+

τ sinh(πτ)|Kiτ [f ]|2 dτ =
π2

2

∫
R+

x|f(x)|2 dx (2)

as well as the inversion formula

f(x) =
2

xπ2

∫
R+

τ sinh(πτ)Kiτ (x)Kiτ [f ] dτ, (3)

where integral (3) converges with respect to the norm in L2(R+, x dx). The
kernel Kiτ (x) is the modified Bessel function of pure imaginary index iτ ,
which is an eigenfunction of the following second order differential operator

Ax = x2 − x d

dx
x
d

dx
, (4)

i.e. we have

AxKiτ (x) = τ2Kiτ (x). (5)

It has, in particular, the following integral representation (see [1])

Kν(z) =

√
πzν

2νΓ
(
ν + 1

2

) ∫
R+

e−z cosh(w) sinh2ν(w) dw, . (6)

where Re(z) > 0 and Re(ν) > −1
2 . Moreover, it verifies the following

relation

Kiτ (z) =
π

2 sinh(πτ)
[I−iτ (z)− Iiτ (z)] (7)

and admits the asymptotic behavior

Kν(z) =
( π

2z

) 1
2

e−z
[
1 +O

(
1

z

)]
, z → +∞ (8)

Kν(z) = O(z−|Re(ν)|), z → 0 (9)

K0(z) = − log(z) +O(1), z → 0. (10)
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When τ → +∞ and x > 0, the modified Bessel function Kiτ (x) behaves as
(see [13])

Kiτ (x) =

√
2π

τ
e−

πτ
2 sin

(
τ

(
log

(
2τ

x

)
− 1

)
+
π

4
+
x2

4τ

)(
1 +O

(
1

τ

))
. (11)

The convolution of the Kontorovich-Lebedev transform is defined accord-
ingly [13, 14]

(f ∗ h)(x) =
1

2x

∫
R+

∫
R+

e
− 1

2

(
xu

2+y2

uy + yu
x

)
f(u)h(y) du dy, x > 0. (12)

This operator (12) is well-defined in the Banach ring Lα(R+) ≡ L1 (R+,Kα(x) dx),
α ∈ R+, i.e., the space of all summable functions f : R+ → C with respect
to the measure Kα(x) dx for which

||f ||Lα(R+) =

∫
R+

|f(x)|Kα(x) dx

is finite. The following embedding relations take place

Lα(R+) ≡ L−α(R+), Lα(R+) ⊆ Lβ(R+), |α| ≥ |β| ≥ 0, α, β ∈ R

Lα(R) ⊃ Lp(R+, x dx), 2 < p ≤ +∞, |α| < 1− 2

p
,

where Lp(R+, x dx) is a weighted space with the norm

||f ||Lp(R+,x dx) =

(∫
R+

|f(x)|px dx

) 1
p

, 1 ≤ p < +∞,

||f ||L∞(R+,x dx) = ess sup
x∈R+

|f(x)|.

The factorization property is true for the convolution (12) in terms of the
Kontorovich-Lebedev transform in the space Lα(R+), namely

Kiτ [f ∗ h] = Kiτ [f ]Kiτ [h], τ ∈ R+. (13)

This equality is based on the Macdonald formula [1]

Kν(x)Kν(y) =
1

2

∫
R+

e
− 1

2

(
t x

2+y2

xy + xy
t

)
Kν(t)

dt

t
. (14)

It is also proved in [14] and [13] that the Kontorovich-Lebedev transform
is a bounded operator from Lα(R+) into the space of bounded continuous
functions on R+ vanishing in the infinite. Furthermore, convolution (12) of
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two functions f, h ∈ Lα(R+) exists as a Lebesgue integral and belongs to
Lα(R+). It satisfies the Young type inequality

||f ∗ h||Lα(R+) ≤ ||f ||Lα(R+)||h||Lα(R+).

Further, let us recall some definitions and results regarding the space S2(R+)
that will be used in the sequel (for more details see [12] and [11]).

Definition 2.1. A function f : R+ → C is said to be in S2(R+) if f ∈
L2

(
R+,

dx
x

)
and Axf ∈ L2

(
R+,

dx
x

)
, where the operator Ax is defined by

(4).

The k−th iterate of the operator Ax, Akxf ∈ L2

(
R+,

dx
x

)
, k ∈ N0 means

that there exists a function v(x) in L2

(
R+,

dx
x

)
denoted by Akxf such that

for all φ ∈ D(R+) ∫
R+

f(x)Akxφ
dx

x
=

∫
R+

v(x)φ(x)
dx

x
.

It is proved that S2(R+) is a Banach space which with the norm

||f ||S2(R+) =

(∫
R+

|f(x)|2 dx

x
+

∫
R+

|Axf |2
dx

x

) 1
2

.

A characterization of S2(R+) can be given in terms of the Kontorovich-

Lebedev transform (1). First we observe that f ∈ L2

(
R+,

dx
x

)
means f(x)

x ∈
L2(R+, x dx). We have

Theorem 2.2. Let f ∈ L2

(
R+,

dx
x

)
with the Kontorovich-Lebedev trans-

form Kiτ
[
f(x)
x

]
. Then f ∈ S2(R+) (i.e. Axf ∈ L2

(
R+,

dx
x

)
) if and only

if τ → τ2Kiτ
[
f(x)
x

]
is in L2(R+, τ sinh(πτ) dτ). Moreover, Kiτ

[
Axf
x

]
=

τ2Kiτ
[
f(x)
x

]
and therefore

||f ||2S2(R+) =
2

π2

∫
R+

τ sinh(πτ)

∣∣∣∣Kiτ [f(x)

x

]∣∣∣∣2 (1 + τ4) dτ.

One can extend the previous theorem for the iteratesAk, k ∈ N0. Indeed,
we have

Theorem 2.3. The iterate Akxf ∈ L2

(
R+,

dx
x

)
, k ∈ N0 if and only if τ →

τ2kKiτ
[
f(x)
x

]
is in L2(R+, τ sinh(πτ) dτ). Moreover,

Kiτ
[
Akxf
x

]
= τ2kKiτ

[
f(x)

x

]
.
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Finally in this section we recall some basic definitions regarding general-
ized functions (for more details see [15]). The space of test functions D(R+)
consists of the C∞(R+)−functions that have compact support in R+. Let
D′(R+) be the space dual to D(R+). A sequence of generalized functions in
D′(R+) converges in D′(R+) if it converges on every element of D(R+).

3 The regularized Schrödinger kernel and its prop-
erties

Using ideas presented in [9] a natural extension of the heat kernel for the
case of Schrödinger’s equation will be the following integral

ht(x, y) =
2

xπ2

∫
R+

e−itτ
2

τ sinh(πτ)Kiτ (x)Kiτ (y) dτ, (15)

where (x, y) ∈ R+×R+ and t > 0. Integral (15) converges relatively and this
will be verified by Lemma 5.1 below taking into account asymptotic behavior
(11) and integration by parts. However, a differentiation by t under the
integral sign in (15) is impossible since it drives us to a divergent integral. In
order to overcome this problem, we need to regularize the Schrödinger kernel
(15) involving a regularization parameter. We will study in the sequel a
convergence of this family of kernels and the corresponding integral operators
when the regularization parameter tends to zero.

Definition 3.1. Let t > 0, (x, y) ∈ R+ × R+. The following integral

hεt(x, y) =
2

xπ2

∫
R+

e−kεtτ
2

τ sinh(πτ)Kiτ (x)Kiτ (y) dτ (16)

with kε = ε+i√
ε2+1

, ε > 0, is called the regularized Schrödinger kernel for the

Kontorovich-Lebedev transform.

The differentiability with respect to t of the regularized kernel hεt(x, y)
is given by

Theorem 3.2. For any (x, y) ∈ R+ ×R+ and t > 0, hεt(x, y) is a infinitely
differentiable function by t and it satisfies the estimate∣∣∣∣∂mhεt(x, y)

∂tm

∣∣∣∣ ≤ Γ
1
4

(
4m+ 3

2

)
2m+1π

7
8

e
π2

4tRe(kε)

x (tRe(kε))
m+ 1

2

K
1
2
0

(
2
√
x2 + y2

)
, (17)

where Re(kε) = ε√
ε2+1

is a real part of kε.
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Proof. Appealing to the following inequality (c.f. [10]) for derivatives with
respect to x of modified Bessel functions∣∣∣∣∂mKiτ (x)

∂xm

∣∣∣∣ ≤ e−δτKm(x cos δ), x, τ > 0, δ ∈
[
0,
π

2

[
, m = 0, 1, 2, . . . (18)

we conclude that for t > 0 integral (16) and its derivatives of any order with
respect to x and y converge absolutely and uniformly by x ≥ x0 > 0 and
y ≥ y0 > 0. Therefore the regularized Schrödinger kernel (16) is infinitely
differentiable by (x, y) ∈ R+×R+. Similarly, we guarantee the differentiation
with respect to t > 0 and get the formula

∂mhεt(x, y)

∂tm
=

2(−kε)
m

xπ2

∫
R+

e−kεtτ
2

τ2m+1 sinh(πτ)Kiτ (x)Kiτ (y) dτ, (19)

for m = 0, 1, 2, . . . . Further, applying the Schwarz inequality we deduce∣∣∣∣∂mhεt(x, y)

∂tm

∣∣∣∣
≤ 2

xπ2

(∫
R+

e−2tτ
2Re(kε)τ4m+1 sinh(πτ) dτ

) 1
2
(∫

R+

τ sinh(πτ) |Kiτ (x)Kiτ (y)|2 dτ

) 1
2

.

(20)

The second integral in the right-hand side of (20) via (1), (2), Macdonald’s
formula (14) and relation (2.3.16.1) in [5] becomes∫

R+

τ sinh(πτ) |Kiτ (x)Kiτ (y)|2 dτ =
π2

4
K0(2

√
x2 + y2). (21)

For the first integral in (20) we get accordingly,∫
R+

e−2tτ
2Re(kε)τ4m+1 sinh(πτ) dτ

≤ 1

2

(∫
R
e2(πτ−tτ

2Re(kε)) dτ

) 1
2

(∫
R+

e−2tτ
2Re(kε)τ8m+1 dτ2

) 1
2

=
π

1
4

2
Γ

1
2

(
4m+

3

2

)
e

π2

4tRe(kε) (2tRe(kε))
−(2m+1)

. (22)

Substituting (21) and (22) in (20), we derive inequality (17).

Now we will establish a connection between function hεt and a Schrödinger
type equation.
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Theorem 3.3. The function hεt is a solution of regularized Schrödinger
equations (u = u(x, y, t),∆ = ∂2xx)(

−x2∆− k−1ε ∂t
)
u =

(
3x∂x − (x2 − 1)

)
u (23)

for each fixed y ∈ R+,(
−y2∆− k−1ε ∂t

)
u =

(
y∂y − y2

)
u (24)

for each fixed x ∈ R+, under the initial condition in the sense of distribu-
tions

lim
t→0

hεt(x, y) = δ(x− y), (25)

where δ is Dirac’s delta function.

Proof. Taking into account (5) with absolute and uniform convergence by x
and y of the integral (16) on any compact set of R+×R+, formula (19) can
be rewritten in terms of the following differential equations

∂mhεt
∂tm

= (−kε)
mAmy hεt(x, y),

∂mhεt
∂tm

=
(−kε)

m

x
Amx [xhεt(x, y)] ,

where m = 0, 1, 2, . . . and Amx , Amy are m-th iterates of operator (4). In
particular, if m = 1 we easily check, that hεt is a solution of regularized
Schröndinger type equations (23) and (24).

It remains to proof (25). Indeed, for any φ from the test function space
D(R+)

lim
t→0
〈hεt(x, ·), φ(·)〉 = lim

t→0

2

xπ2

∫
R+

e−kεtτ
2

τ sinh(πτ)Kiτ (x)Kiτ [φ] dτ. (26)

Taking into account relation (2.16.14.1) in [6] and the Parseval equality for
the cosine Fourier transform [7], we get

2

xπ2

∫
R+

e−kεtτ
2

τ sinh(πτ)Kiτ (x)Kiτ [φ] dτ

=

√
2

xπ
√
π

∫
R+

e−kεtτ
2

τ sinh
(πτ

2

)
Kiτ (x)

∫
R+

cos(τu)Fc[φ, sinh(u)] du dτ, (27)

where Fc[φ, v] denotes the cosine Fourier transform of φ ∈ D(R+). Hence,
making use of differentiation, integration by parts, convolution properties
and the Parseval equality for the Fourier transform, we obtain
√

2

xπ
√
π

∫
R+

e−kεtτ
2

τ sinh
(πτ

2

)
Kiτ (x)

∫
R+

cos(τu)Fc[φ, sinh(u)] du dτ

= −
√

2

xπ
√
π

∫
R+

e−kεtτ
2

sinh
(πτ

2

)
Kiτ (x)

∫
R+

sin(τu)
∂

∂u
[Fc[φ, sinh(u)]] du dτ

=
−1

2ixπ
√

2π

∫
R
e−kεtτ

2

sinh
(πτ

2

)
Kiτ (x)

∫
R
eiτu

∂

∂u
[Fc[φ, sinh(u)]] du dτ. (28)
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By relations (2.5.36.1) and (2.5.54.6) in [5], the product e−kεtτ
2

sinh
(
πτ
2

)
Kiτ (x)

can be represented as the Fourier transform of a convolution, namely

e−kεtτ
2

sinh
(πτ

2

)
Kiτ (x)

=
i

4t
√
πkεt

∫
R
ye−

y2

4kεt eiyτ
∫
R
eiyτ

∫ +∞

y

sin(x sinh(v)) dv dy dy

=
i

4t
√
πkεt

∫
R
eiyτ

∫
R
u e−

u2

4kεt

∫ +∞

y−u
sin(x sinh(v)) dv du dy

=
i

4t
√
πkεt

∫
R
eiyτ

∫
R
e−

u2

4kεt sin(x sinh(y − u)) du dy,

where the main branch of the square root of kε is taken. Hence, (28) is
equal to

2

xπ2

∫
R+

e−kεtτ
2

τ sinh(πτ)Kiτ (x)Kiτ [φ] dτ

= − 1

2xπ
√

2kεt

∫
R

d

dy
[Fc[φ, sinh(y)]]

∫
R
e−

u2

4kεt sin(x sinh(y − u)) du dy

=
1

2π
√

2kεt

∫
R
Fc[φ, sinh(y)]

∫
R
e−

u2

4kεt cos(x sinh(y − u)) cosh(y − u) du dy

=
1

π
√

2

∫
R
Fc[φ, sinh(y)]

∫
R
e−u

2

cos(x sinh(y − 2u
√

kεt)) cosh(y − 2u
√

kεt) du dy.

(29)

But asymptotic properties at infinity of Fourier transforms of test functions
allow us to pass to the limit when t → 0 under the integral sign in the
right-hand side of the latter equality in (29) via the Lebesgue dominated
convergence theorem. Then after straightforward calculations and appealing
to inversion formula for the cosine Fourier transform we derive

lim
t→0
〈hεt(x, ·), φ(·)〉 =

1

π
√

2

∫
R
Fc[φ, sinh(u)]

∫
R
e−u

2

cos(x sinh(y)) cosh(y) du dy

=

√
2

π

∫
R+

cos(xλ)Fc[φ, λ] dλ = φ(x),

which yields (26).

Theorem 3.4. The Kontorovich-Lebedev transform (1) by x of the kernel
hεt(x, y) is

Kiτ [hεt] =

∫
R+

Kiτ (x)hεt(x, y) dx = e−kεtτ
2

Kiτ (y), (30)

and by y

Kiτ
[
hεt
y

]
=

∫
R+

Kiτ (y)hεt(x, y)
dy

y
= e−kεtτ

2Kiτ (x)

x
. (31)
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Proof. First we easily observe that for fixed positive t, x, y the right-hand
side of (30) and (31) belong to the space L2(R+, τ sinh(πτ) dτ). Therefore,
by reciprocities (1) and (3) we can guarantee the validity of (30) and (31)
with the convergence of integrals in L2−sense. Nevertheless, via estimate
(17) and the asymptotic behavior of the modified Bessel function (see ex-
pressions (8), (9) and (10)) we verify that integral (31) converges absolutely
to the same limit. In order to examine the absolute convergence of integral
(30) we will use (31) and the asymptotic behavior of hεt(x, y) when x → 0.
To obtain, in turn, this asymptotic expansion, we start rewriting formula
(16) in an equivalent form. In fact, taking into account relation (7) for
modified Bessel functions and the parity of the integral, we get

hεt(x, y) =
1

xiπ

∫
R
e−kεtτ

2

τI−iτ (x)Kiτ (y) dy, (32)

where Iν(z) is the modified Bessel function of the first kind represented by
[1]

Iν(z) =

+∞∑
k=0

(
z
2

)2k+ν
k! Γ(k + ν + 1)

.

Substituting this series into (2.12), we have for x→ 0

hεt(x, y) =
1

xπi

∫
R
e−kεtτ

2

τ
e−iτ log( x2 )

Γ(1− iτ)
+

1

2πi

∫
R
e−kεtτ

2

τ

+∞∑
j=1

(
x
2

)2j−iτ−1
j! Γ(j − iτ + 1)

dτ.(33)

In the meantime, by straightforward estimates we see that second term in
(33) is O(x), when x→ 0 and t, y > 0 are fixed. Considering the first term,
we integrate by parts, eliminating the corresponding boundary terms. So,
repeating this procedure n times we get

1

xπi

∫
R
e−kεtτ

2

τKiτ (y)
e−iτ log( x2 )

Γ(1− iτ)
dτ = O

(
1

x logn x

)
, x→ 0, n ∈ N.

Therefore, via inequality |Kiτ (x)| ≤ K0(x) and asymptotic formula (10) we
take n = 3, 4, . . . and establish the absolute convergence of integral (30) to
the same limit.

4 Regularized Weierstrass’s type transform

The aim of this section is to investigate mapping properties and prove an
inversion formula for Weierstrass’s type integral operator, which is defined
via the regularized Schrödinger kernel presented in the previous section.
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Let us consider the following integral

(gεtf)(x) =

∫
R+

hεt(y, x)f(y) dy, (34)

which we will call the regularized Weierstrass type transform. When f ∈
S2(R+) it convergent absolutely via Schwarz’s inequality. Moreover, by The-
orems 3.4 and 2.2 we find

Kiτ
[

(gεtf)(x)

x

]
= e−kεtτ

2

Kiτ
[
f(x)

x

]
(35)

and therefore, we can denote kernel (16) by the operator e−kεtA. Further-
more, it has (gεtf)(x) = e−kεtAf . So the action of A on the Kontorovich-
Lebedev transform corresponds to a multiplication by τ2, while the regular-

ized Schrödinger kernel is a multiplication by e−kεtτ
2
. Further, from The-

orem 3.3 and Schwarz’s inequality it follows that (gεtf)(x) is an infinitely
differentiable function of x, t > 0. It satisfies the regularized Schrödinger
type equation

∂(gεt )(x)

∂t
= −kεAxgεtf

for t > 0 with the initial condition

lim
t→0

(gεtf)(x) = f(x)

where f ∈ L2

(
R+,

dx
x

)
.

Theorem 4.1. For each t, ε > 0 integral transformation (34) is a bounded
operator in S2(R+) and the following estimate holds

||gεt ||S2(R+) ≤ ||f ||S2(R+).

Proof. Indeed, taking into account (2) and Theorem 3.4 we have

(gεtf)(x) =
2

π2

∫
R+

τ sinh(πτ)Kiτ [hεt(·, x)]Kiτ
[
f(·)
·

]
dτ

=
2

π2

∫
R+

τ sinh(πτ)e−kεtτ
2

Kiτ (x)Kiτ
[
f(·)
·

]
dτ.

Hence we observe immediately, that the latter integral and its derivatives
are uniformly convergent for x ≥ x0 > 0. Using (5), we deduced

Ax(gεtf) =
2

π2

∫
R+

τ3 sinh(πτ)e−kεtτ
2

Kiτ (x)Kiτ
[
f(·)
·

]
dτ,

11



and

||Ax(gεtf)||2
L2(R, dxx ) =

2

π2

∫
R+

τ sinh(πτ)e−2Re(kε)tτ
2

∣∣∣∣Kiτ [A·f·
]∣∣∣∣2 dτ

≤ ||f ||2S2(R+) <∞.

Moreover,

||gεtf ||2L2(R, dxx ) =
2

π2

∫
R+

τ sinh(πτ)e−2Re(kε)tτ
2

∣∣∣∣Kiτ [f(·)
·

]∣∣∣∣2 dτ

≤ ||f ||2S2(R+) <∞.

Therefore, by Theorem 2.2 we find

||gεtf ||2L2(R, dxx ) =
2

π2

∫
R+

τ sinh(πτ)e−2Re(kε)tτ
2

∣∣∣∣Kiτ [f(·)
·

]∣∣∣∣2 (1 + τ4) dτ ≤ ||f ||2S2(R+).

The next theorem will deal with an inversion formula for integral trans-
formation (34).

Theorem 4.2. Let t, ε > 0, f ∈ S2(R+) and etτ
2Kiτ

[
(gεtf)(x)

x

]
∈ L2(R+, τ sinh(πτ) dτ).

Then for almost all x > 0 an inversion formula

f(x) = ekεtAxgεt (36)

holds.

Proof. Indeed, from (35) we derive

Kiτ
[
f(x)

x

]
= ekεtτ

2

Kiτ
[

(gεtf)(x)

x

]
, x > 0, (37)

where the right -hand side of the last expression is from L2(R+, τ sinh(πτ) dτ)
via conditions of the theorem. Then

τ2kKiτ
[

(gεt )(x)

x

]
∈ L2(R+, τ sinh(πτ) dτ),

for any k ∈ N0. Taking into account Theorem 2.3 we write

F εn(t, τ) =

n∑
m=0

(kεt)
m

m!
τ2mKiτ

[
(gεtf)(x)

x

]

=

n∑
m=0

(kεt)
m

m!
Kiτ

[
Amx (gεtf)

x

]
= Kiτ

[
Pn(kεtAx)(gεtf)

x

]
,

12



where Pn(z) is the nth Taylor polynomial of the exponential function ez.
From the inversion formula of the Kontorovich-Lebedev transform (3) we
get

Pn(kεtAx)(gεtf)(x) =
2

π2

∫
R+

τ sinh(πτ)Kiτ (x)Pn(kεtτ
2)Kiτ

[
(gεtf)(x)

x

]
dτ, n ∈ N0,

where the last integral converges absolutely for any n since

etτ
2

Kiτ
[

(gεtf)(x)

x

]
∈ L2(R+, τ sinh(πτ) dτ).

On the other hand we have from (37)

f(x) = lim
T→+∞

2

π2

∫ T

0

τ sinh(πτ)Kiτ (x)ekεtτ
2

Kiτ
[

(gεtf)(·)
·

]
dτ

and Parseval equality (2) yields∫
R+

|f(x)− Pn(kεtAx)(gεtf)|2 dx
x

=
2

π2

∫
R+

τ sinh(πτ)
∣∣∣ekεtτ2

− Pn(kεtτ
2)
∣∣∣2 ∣∣∣∣Kiτ [ (gεtf)(·)

·

]∣∣∣∣2 dτ. (38)

Since
∣∣∣ekεtτ2 − Pn(kεtτ

2)
∣∣∣ < 2etτ

2
and tends to zero when n → ∞ for

each t, τ, ε > 0, by Lebesgue dominated convergence theorem we obtain that
the left hand-side of the latter equality vanishes as well. Therefore with a
convergence by the norm in L2

(
R+,

dx
x

)
we arrive at the inversion formula

of gεt which can be written in the symbolic form (36). However, since (38) is
true for some subsequence Pnk when the convergence is pointwise, we have
equality (36) for almost all x > 0.

5 The limit case ε→ 0+

Here we will deal with the behavior of the regularized Schrödinger kernel
hεt(x, y) and Weierstrass’s type transform (gεtf)(x) when the parameter ε
goes to zero.

Lemma 5.1. The following integral∫ ∞
T

(
e−kεtτ

2

− e−itτ
2
)
τ sinh(πτ)Kiτ (x)Kiτ (y) dτ, x, y > 0, (39)

where T > 0 is fixed and sufficiently big, is uniformly convergent by ε ∈
[0, ε0].

13



Proof. Taking into account asymptotic expansion (11) we have when τ →∞

Kiτ (x)Kiτ (y)

=
π

τ
e−πτ

[
cos
(
τ log

(y
x

))
+ sin

(
τ

(
log

(
4τ2

xy

)
− 2

)
+
x2

2τ

)](
1 +O

(
1

τ

))
.

Hence integral (39) becomes

O

(∫ +∞

T

(
e−kεtτ

2

− e−itτ
2
)[

cos
(
τ log

(y
x

))
+ sin

(
τ

(
log

(
4τ2

xy

)
− 2

))]
dτ

)
+O

(∫ +∞

T

(
e−kεtτ

2

− e−itτ
2
)[

cos
(
τ log

(y
x

))
+ sin

(
τ

(
log

(
4τ2

xy

)
− 2

))]
dτ

τ

)
= O

(∫ +∞

T

e−kεtτ
2

cos
(
τ log

(y
x

))
dτ

)
︸ ︷︷ ︸

I

+O

(∫ +∞

T

e−kεtτ
2

sin

(
τ log

(
4τ2

xy

)
− 2τ

)
dτ

)
︸ ︷︷ ︸

II

+O

(∫ +∞

T

e−itτ
2

cos
(
τ log

(y
x

))
dτ

)
︸ ︷︷ ︸

III

+O

(∫ +∞

T

e−itτ
2

sin

(
τ

(
log

(
4τ2

xy

)
− 2

))
dτ

)
︸ ︷︷ ︸

IV

+O

(∫ +∞

T

e−kεtτ
2

cos
(
τ log

(y
x

)) dτ

τ

)
︸ ︷︷ ︸

V

+O

(∫ +∞

T

e−kεtτ
2

sin

(
τ log

(
4τ2

xy

)
− 2τ

)
dτ

τ

)
︸ ︷︷ ︸

VI

+O

(∫ +∞

T

e−itτ
2

cos
(
τ log

(y
x

)) dτ

τ

)
︸ ︷︷ ︸

VII

+O

(∫ +∞

T

e−itτ
2

sin

(
τ

(
log

(
4τ2

xy

)
− 2

))
dτ

τ

)
︸ ︷︷ ︸

VIII

.

(40)

We examine the convergence of integral I (in a similar way we proceed to
integrals II, III, IV, V, VI, VII, VIII). Precisely, making the substitution
τ2 = v and integrating by parts, one gets

1

2

∫ +∞

T 2

e−kεtv cos
(√

v log
(y
x

)) dv√
v

=
e−kεtT

2

2tkεT
cos
(
T log

(y
x

))
−

log
(
y
x

)
4kεt

∫ +∞

T 2

e−kεtv sin
(√

v log
(y
x

)) dv

v︸ ︷︷ ︸
IX

− 1

4kεt

∫ +∞

T 2

e−kεtv cos
(√

v log
(y
x

)) dv

v
3
2︸ ︷︷ ︸

X

.

(41)

Regarding integral X one, we can evidently guarantee its absolutely and
uniformly convergence by ε ∈ [0, ε0]. Concerning integral IX after integra-
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tion by parts again we find∫ +∞

T 2

e−kεtv sin
(√

v log
(y
x

)) dv

4v
= −e

−kεtT 2

4tkεT 2
sin
(
T log

(y
x

))
+

1

8tkε

∫ +∞

T 2

e−kεtv cos
(√

v log
(y
x

)) dv

v
3
2︸ ︷︷ ︸

XI

− 1

4tkε

∫ +∞

T 2

e−kεtv sin
(√

v log
(y
x

)) dv

v2︸ ︷︷ ︸
XII

.

Since the latter integrals XI and XII converge absolutely and uniformly
convergent by ε ∈ [0, ε0] and |kε| = 1 we establish in the same manner
uniform convergence of other mentioned integrals and complete the proof of
lemma 5.1.

We will show now that the regularized Schrödinger kernel hεt(x, y) con-
verges weakly in D′(R+).

Theorem 5.2. For each x, t > 0 it has

(gεt φ)(x)→ (gt φ)(x), φ ∈ D(R+),

when ε→ 0+, where (gt φ)(x) is the Weierstrass type transform associated
with the kernel ht(x, y) (see (15)).

Proof. In fact,

|(gεt φ)(x)− (gt φ)(x)| =
∣∣∣∣∫

suppφ

(hεt(y, x)− h(y, x))φ(y) dy

∣∣∣∣
=

∣∣∣∣∣
∫
suppφ

2

yπ2

∫
R+

(
e−kεtτ

2

− e−itτ
2
)
τ sinh(πτ)Kiτ (x)Kiτ (y) dτ φ(y) dy

∣∣∣∣∣ . (42)

Fixing a big T > 0, one can divide the previous integral in two integrals∣∣∣∣∣
∫
suppφ

2

yπ2

∫
R+

(
e−kεtτ

2

− e−itτ
2
)
τ sinh(πτ)Kiτ (x)Kiτ (y) dτ φ(y) dy

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫
suppφ

2

yπ2

∫ T

0

(
e−kεtτ

2

− e−itτ
2
)
τ sinh(πτ)Kiτ (x)Kiτ (y) dτ︸ ︷︷ ︸
IX

+

∫ +∞

T

(
e−kεtτ

2

− e−itτ
2
)
τ sinh(πτ)Kiτ (x)Kiτ (y) dτ︸ ︷︷ ︸
X

 φ(y) dy

∣∣∣∣∣∣∣∣ .
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But integral IX is uniformly convergent by ε ∈ [0, ε0] as a proper integral.
On the other side, Lemma 5.1 yields that integral X converges uniformly as
well on this interval. Consequently, one can pass to the limit when ε tends
to zero under the integral sign, proving the theorem.

Finally, we establish a pointwise convergence of a family of Weierstrass’s
transforms of integrable functions. We have

(gtf)(x) =

∫
R+

ht(x, y)f(y) dy; f ∈ L1

(
R+, y

− π
t0 dy

)
, (43)

where t0 > 0, is given by

Theorem 5.3. Let f ∈ L1

(
R+, y

− π
t0 dy

)
, t0 > 0. Then (gεtf)(x) converges

pointwisely to (gtf)(x), when ε→ 0.

Proof. Indeed, taking into account relations (2.16.52.8) and (2.5.57.1) in
[6] [5], respectively, and Parseval’s equality for sine Fourier transform after
making an elementary substitution we write the kernel hεt(x, y) in the form

hεt(x, y) =
ye

π2

4kεt

π
√
πkεt

∫ ∞
1

e−(arccosh
2(u)/(4kεt))

K1

(√
x2 + y2 + 2xyu

)
√
x2 + y2 + 2xyu

×
(
u+
√
u2 − 1

) iπ
kεt − 1

(u+
√
u2 − 1)

iπ
2kεt

du. (44)

Hence

|hεt(x, y)| ≤ 2ye
π2

4t0

π
√
πt0

∫ ∞
1

K1

(√
x2 + y2 + 2xyu

)
√
x2 + y2 + 2xyu

(
u+

√
u2 − 1

)π/t0
du

≤ e
π2

4t0

xπ(πt0)1/2(xy)π/t0

∫ ∞
0

K1

(√
u
)
u
π
t0
− 1

2 du.

Taking into consideration relation (2.16.2.2) in [6] we obtain the uniform
estimate with respect to ε ∈ [0, ε0]

|hεt(x, y)| ≤ 2
2π
t0 e

π2

4t0

xπ(πt0)1/2(xy)π/t0
Γ

(
π

t0
+ 1

)
Γ

(
π

t0

)
. (45)

Consequently, for all x > 0∣∣∣∣∣
∫
R+

hεt(x, y)f(y)dy

∣∣∣∣∣ ≤
∫
R+

|hεt(x, y)f(y)| dy < C

xπ/t0+1

∫
R+

|f(y)|y−
π
t0 dy <∞.

Hence with the aid of the Lebesgue dominated convergence theorem and
Lemma 5.1 we immediately complete the proof of Theorem 5.3.
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