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Universidade do Porto

Rua do Campo Alegre, 687

4169-007 Porto, Portugal

Ana Rodrigues§

Departamento de Matemática Pura
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Abstract

In a recent paper Dias and Stewart (Secondary Bifurcations in Systems with All-to-All
Coupling, Proc. R. Soc. Lond. A (2003) 459, 1969-1986.) studied the existence, branching
geometry, and stability of secondary branches of equilibria in all-to-all coupled systems of dif-
ferential equations, that is, equations that are equivariant under the permutation action of the
symmetric group SN . They consider the general cubic order truncation system of this type. Pri-
mary branches in such systems correspond to partitions of N into two parts p, q with p+q = N .
Secondary branches correspond to partitions of N into three parts a, b, c with a + b + c = N .
They prove that when all of the a, b, c are different from N/3 secondary branches exist, and are
(generically) globally unstable in the cubic-order system. In this work they realized that the
cubic order system is too degenerate to provide secondary branches if a = b = c. In this paper
we prove the existence and the branching geometry of secondary branches of equilibria with
Sn × Sn × Sn symmetry, in systems of ordinary differential equations that commute with the
permutation action of the symmetric group S3n (action on R3n). Moreover, we prove that the
solutions of the secondary branch are (generically) globally unstable in the fifth-order truncation
of the system.

AMS classification scheme numbers: 37G40, 34C15, 37C80.

Keywords: Secondary bifurcation, symmetry, stability.

1 Introduction

The original motivation for this work came from evolutionary biology. Cohen and Stewart [1] intro-
duced a system of SN -equivariant ordinary differential equations (ODEs) that models sympatric
speciation as a form of spontaneous symmetry-breaking in a system with SN -symmetry. Elmhirst
[3, 4] studied the stability of the primary branches in such a model and also linked it to a biological
specific model of speciation. Stewart et al. [7] made numerical studies of relatively concrete models.
Here the population is aggregated into N discrete ‘cells’, with a vector xj representing values of

†Correspondence to A.P.S.Dias. E-mail: apdias@fc.up.pt
‡CMUP is supported by FCT through POCTI and POSI of Quadro Comunitário de apoio III (2000-2006) with

FEDER and national fundings.
§E-mail: ana.rodrigues@fc.up.pt

1



some phenotypic observable - the phenotype - the organisms form and behavior. If the initial popu-
lation is monomorphic (single-species) then the system of ODEs representing the time-evolution
of the phenotypes should be equivariant under the action of the symmetric group SN ; that is, the
model is an example of an all-to-all coupled system. Symmetry-breaking bifurcations of the system
correspond to the splitting of the population into two or more distinct morphs (species).

Dias and Stewart [2] continue the study of the general cubic truncation of a centre manifold
reduction of a system of that type, which takes the form

dxi
dt

= λxi +B(Nx2
i − π2) + C(Nx3

i − π3) +Dxiπ2 (1.1)

for i = 1, . . . , N . Here λ,B,C,D ∈ R are parameters, xi ∈ R for all i, the coordinates satisfy
x1 + · · ·+ xN ≡ 0, and

π2 = x2
1 + · · ·+ x2

N , π3 = x3
1 + · · ·+ x3

N

Their study was motivated by numerical simulations showing jump bifurcations between primary
branches. These jumps correspond to the loss of stability of the primary branches, see Stewart
et al. [7]. Primary branches in such systems correspond to partitions of N into two parts p, q
with p + q = N . Secondary branches correspond to partitions of N into three parts a, b, c with
a + b + c = N . They remarked that the cubic-order system (1.1) is too degenerate to provide
secondary branches in the case a = b = c. We focus our work in this case.

In this paper we study the general fifth order truncation of a centre-manifold reduction of a
SN -equivariant system, which takes the form

dx

dt
= G(x, λ) (1.2)

where

Gi(x, λ) = λxi +B(Nx2
i − π2) + C(Nx3

i − π3) +Dxiπ2+
E(Nx4

i − π4) + F (Nx2
i π2 − π2

2) +Gxiπ3+
H(Nx5

i − π5) + I(Nx3
iπ2 − π3π2) + J(Nx2

iπ3 − π3π2) + Lxiπ4 +Mxiπ
2
2

(1.3)

for i = 1, . . . , N. Here λ,B,C,D,E, F,G,H, I, J, L,M ∈ R are parameters, xi ∈ R for all i, and as
before the coordinates satisfy x1 + · · ·+ xN ≡ 0. Also

πi = xi1 + · · ·+ xiN

for i = 2, . . . , 5.
The aim of this paper is to study the existence, branching geometry, and stability of secondary

branches of equilibria with Sa×Sa×Sa symmetry of the system (1.2) where G is defined by (1.3).
Thus we consider N = 3a.

In Section 2 we begin by reviewing some concepts related to equivariant bifurcation theory, and
some results related to general SN -symmetric systems. In particular, we obtain the general fifth
order truncation (1.2) of a general smooth SN -equivariant vector field posed on the SN -absolutely
irreducible space

V1 = {x ∈ Rn : x1 + · · ·+ xN = 0}
In section 3 we suppose N = 3a and we look for secondary branches of steady-state solutions for

the system (1.2) that are Sa × Sa × Sa-symmetric obtained by bifurcation from a primary branch
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(with isotropy group (conjugate to) Sa ×S2a). We prove in Theorem 3.1 the generic existence of a
branch of solutions of (1.2) with that symmetry. Moreover, the existence of this branch of solutions
does not depend on the fact that the vector field is truncated to the fifth order. Specifically, the
restriction of a general S3a-equivariant system to the fixed-point subspace of Σ = Sa × Sa × Sa is
D3-equivariant. The D3-singularity results of Golubitsky et al. [6] imply that the generic existence
and stability of this branch of solutions depends only on certain nondegeneracy conditions on the
coefficients of the fifth order truncation of a general smooth S3a-equivariant vector field posed on V1

as above (where N = 3a). See Section 4. Furthermore, we describe in Theorem 4.3 the parameter
regions of stability of the solutions with Σ-symmetry (in Fix(Σ)). In Theorem 4.5 we prove that the
solutions of the secondary branch are (generically) globally unstable for the fifth order truncation
of the system.

2 Background

In this section we review some concepts related to equivariant bifurcation theory, and some results
related to SN -symmetric systems. For a detailed discussion of the basics of equivariant bifurcation
theory see Golubitsky et al. [6]. We summarise a few key points.

Consider a system of ODEs

dx

dt
= G(x, λ) (2.4)

where x ∈ V = RN , the vector fieldG : V ×R→ V is smooth, and λ ∈ R is a bifurcation parameter.
Suppose that a compact Lie group Γ acts linearly (and without loss of generality orthogonally) on
V . Recall that G commutes with the action of Γ (or it is Γ-equivariant) if

G(γx, λ) = γG(x, λ)

for all γ ∈ Γ, x ∈ V and λ ∈ R. Henceforth we assume G to be Γ-equivariant. The group

Σx = {γ ∈ Γ : γx = x} ⊆ Γ

is the isotropy subgroup of x ∈ V . The fixed-point space of a subgroup Σ ⊆ Γ is the subspace of V
defined by

Fix(Σ) = {x ∈ V : γx = x, ∀ γ ∈ Σ}
For any Γ-equivariant mapping G and any subgroup Σ ⊆ Γ we have

G(Fix(Σ)×R) ⊆ Fix(Σ)

An isotropy subgroup of Γ is axial if it has a 1-dimensional fixed-point space. An equilibrium with
axial isotropy is called an axial equilibrium, and a branch of axial equilibria is an axial branch.

A subspace W ⊆ V is absolutely irreducible for Γ if the only matrices commuting with the
action of Γ on W are the scalar multiples of the identity. Note that if W is absolutely irreducible
for Γ then it is irreducible ([6] Lemma XII 3.3).

Under certain suitable genericity hypotheses for (2.4) steady-state bifurcation from a trivial equi-
librium to axial equilibria for each axial subgroup of Γ is guaranteed by the Equivariant Branching
Lemma of Vanderbauwhede and Cicogna ([6] Theorem XIII 3.3).
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The Symmetric Group

Let the symmetric group Γ = SN act on V = RN by permutation of coordinates:

ρ(x1, . . . , xN ) =
(
xρ−1(1), . . . , xρ−1(N)

)
(ρ ∈ SN )

The ring of the smooth SN -invariants over R is generated by

πk = xk1 + xk2 + · · ·+ xkN

where k = 1, . . . , N . Denote by [xk1] = [xk1, x
k
2, . . . , x

k
N ]t, for k = 0, . . . , N − 1. Then the module

of the SN -equivariant smooth mappings from V to V are generated over the ring of the smooth
SN -invariants by [xk1] for k = 0, . . . , N − 1. For a detailed discussion see Golubitsky and Stewart
[5] Chapter 1 Section 5.

In order to compute the isotropy subgroups Σx of SN acting on RN , we partition {1, . . . , N}
into disjoint blocks B1, . . . , Bk with the property that xi = xj if and only if i, j belong to the same
block. Let bl = |Bl|. Then

Σx = Sb1 × · · · × Sbk

where Sbl is the symmetric group on the block Bl. Up to conjugacy, we may assume that

B1 = {1, . . . , b1}, B2 = {b1 + 1, . . . , b1 + b2}, . . . , Bk = {b1 + b2 + · · ·+ bk−1 + 1, . . . , N}

where b1 ≤ b2 ≤ · · · ≤ bk. Therefore, conjugacy classes of isotropy subgroups of SN are in one-
to-one correspondence with partitions of N into nonzero natural numbers arranged in ascending
order. If Σ corresponds to a partition of N into k blocks, then dim Fix(Σ)= k.

We restrict the action of SN onto the standard irreducible RN−1, that is,

V1 = {(x1, x2, . . . , xN ) ∈ V : x1 + x2 + · · ·+ xN = 0} ∼= RN−1

Note that

V = {(x, x, . . . , x) : x ∈ R} ⊕ V1

where the action of SN on {(x, x, . . . , x) : x ∈ R} is trivial. Also the action of SN on V1 is absolutely
irreducible.

The isotropy subgroups of SN for the action on V1 remain the same but the dimension of every
fixed-point subspace is reduced by 1. In particular, the isotropy subgroups Sp×Sq where p+q = N
have one-dimensional fixed-point subspaces, that is, they are axial.

Suppose G(x, λ) commutes with SN on RN ×R where λ is the bifurcation parameter, and the
Jacobian (dG)(X0,λ0) is singular where X0 is a full symmetric equilibrium of (2.4). Then by the
Equivariant Branching Lemma ([6] Theorem XIII 3.3), generically, there exist branches of equilibria
of (2.4) bifurcating from X0 at λ = λ0 with isotropy subgroups Sp×Sq. We call these the primary
branches.

We obtain now the general form G of the center manifold reduction from the general SN -
equivariant mapping G on V . As we have seen above, G(x) has the following form:

G(x) =
N−1∑

k=0

pk(π1, . . . , πN )[xk1] (2.5)
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where pk, for k = 0, . . . , N − 1, are smooth functions of the invariants πk, for k = 1, . . . , N .
From (2.5) we obtain the fifth order truncation of the Taylor expansion of G on V . By imposing

the relation π1 = 0 and then projecting the result onto V1 we obtain (1.3). We show that this
fifth order truncation captures the presence of a secondary branch of equilibria with symmetry
Sa × Sa × Sa when N = 3a and its stability.

3 Existence of Secondary Branches

Consider (1.2) where G is defined by (1.3) and suppose N = 3a where a is a positive integer.
We look for secondary branches of equilibria of (1.2) with Sa × Sa × Sa-symmetry. Any such

secondary branch must live in the two-dimensional fixed-point subspace Fix(Sa×Sa×Sa). Define

Σ1 = S{1,...,a} × S{a+1...,N}, Σ2 = S{1,...,a,2a+1,...,N} × S{a+1,...,2a}, Σ3 = S{1,...,2a} × S{2a+1,...,N}
(3.6)

and

Σ = Sa × Sa × Sa,

and let

Fix(Σ) = {(−x− y, . . .
︸ ︷︷ ︸

a

; y, . . .
︸ ︷︷ ︸

a

;x, . . .
︸ ︷︷ ︸

a

) : x, y ∈ R}

We restrict to Fix(Σ) the general SN -equivariant vector field G with components of degree less
than or equal to five as in (1.3) obtaining the equations







dx

dt
= λx+B(Nx2 − π2) + C(Nx3 − π3) +Dxπ2 + E(Nx4 − π4) + F (Nx2π2 − π2

2)+

Gxπ3 +H(Nx5 − π5) + I(Nx3π2 − π3π2) + J(Nx2π3 − π3π2) + Lxπ4 +Mxπ2
2

dy

dt
= λy +B(Ny2 − π2) + C(Ny3 − π3) +Dyπ2 + E(Ny4 − π4) + F (Ny2π2 − π2

2)+

Gyπ3 +H(Ny5 − π5) + I(Ny3π2 − π3π2) + J(Ny2π3 − π3π2) + Lyπ4 +Myπ2
2

(3.7)
where

πi = a[(−x− y)i + yi + xi)] (3.8)

for i = 2, 3, 4, 5.
Note that

Fix(Σ1) = {(−2x, . . .
︸ ︷︷ ︸

a

;x, . . . ;x, . . .
︸ ︷︷ ︸

2a

) : x ∈ R}

Fix(Σ2) = {(x, . . .
︸ ︷︷ ︸

a

;−2x, . . .
︸ ︷︷ ︸

a

;x, . . .
︸ ︷︷ ︸

a

) : x ∈ R}

Fix(Σ3) = {(−
1

2
x, . . . ,−1

2
x

︸ ︷︷ ︸

2a

;x, . . . , x
︸ ︷︷ ︸

a

) : x ∈ R}
(3.9)
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Observe that Σ1,Σ2,Σ3 are the isotropy subgroups of SN containing Σ. Moreover, they are
axial subgroups and so by the Equivariant Branching Lemma generically there exist branches of
equilibria of (1.2) (and so of (3.7)) with isotropy subgroups Σ1,Σ2,Σ3. The solutions of equations
(3.7) with Σ1-symmetry satisfy y = x; those with Σ2-symmetry satisfy y = −2x, and finally those
with Σ3-symmetry satisfy y = −x/2.

Equations (3.7) are equivariant under the quotient group N(Σ)/Σ where N(Σ) is the normalizer
of Σ in SN . Since Σ = Sa × Sa × Sa ⊆ SN we have that N(Σ)/Σ ∼= D3 where D3 is the dihedral
group of order 6.

Theorem 3.1 Suppose that N = 3a and Σ = Sa × Sa × Sa. Then equations (3.7) have a branch
of equilibria with symmetry Σ. This is described by







λ+BN(x+ y) + CN(x2 + y2 + xy) +Dπ2+

EN(x3 + y3 + xy2 + yx2) + FNπ2(x+ y) +Gπ3+

HN(x4 + x3y + xy3 + x2y2 + y4) + INπ2(x
2 + y2 + xy) + JNπ3(x+ y) + Lπ4 +Mπ2

2 = 0,

B + (2aF + E)(x2 + y2 + xy)− (H + 3aJ)(x2y + xy2) = 0,

(3.10)
where

πi = a[(−x− y)i + yi + xi],

for i = 2, 3, 4.

Proof: We look for steady-state solutions of equations (3.7), that is, solutions of







λx+B(Nx2 − π2) + C(Nx3 − π3) +Dxπ2 + E(Nx4 − π4) + F (Nx2π2 − π2
2) +Gxπ3+

H(Nx5 − π5) + I(Nx3π2 − π3π2) + J(Nx2π3 − π3π2) + Lxπ4 +Mxπ2
2 = 0

λy +B(Ny2 − π2) + C(Ny3 − π3) +Dyπ2 + E(Ny4 − π4) + F (Ny2π2 − π2
2) +Gyπ3+

H(Ny5 − π5) + I(Ny3π2 − π3π2) + J(Ny2π3 − π3π2) + Lyπ4 +Myπ2
2 = 0

(3.11)
We distinguish the following two cases:
(1) Equilibria with x = 0 : from (3.11) we have







Bπ2 + Eπ4 + Fπ2
2 = 0

λy +B(Ny2 − π2) + CNy3 +Dyπ2 + E(Ny4 − π4) + F (Ny2π2 − π2
2)+

HNy5 + INy3π2 + Lyπ4 +Myπ2
2 = 0

(3.12)

where π2 = 2ay2 and π4 = 2ay4. If y = 0 we have the trivial solution (x, y, λ) = (0, 0, λ). If y 6= 0,
then from (3.12) we get (E + 2aF )y2 = −B. If (−B)(E + 2aF ) > 0 we obtain

(x, y, λ) =
(
0,±α,∓aBα− a(3C + 2D)α2 ∓ a(E + 2aF )α3 − a(3H + 2L+ 6aI + 4aM)α4

)
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where α = (−B)/(E + 2aF ). If (−B)/(E + 2aF ) ≤ 0 we obtain no new solutions.

(2) Equilibria with x 6= 0 : the first equation of (3.11) implies that

λ = B
(
π2

x −Nx
)
+ C

(
π3

x −Nx2
)
−Dπ2 + E

(
π4

x −Nx3
)
+ F

(
π2
2

x −Nxπ2

)

−Gπ3+

H
(
π5

x −Nx4
)
+ I

(
π3π2

x −Nx2π2

)
+ J

(
π3π2

x −Nxπ3

)
− Lπ4 −Mπ2

2

(3.13)

and taking this in the second equation we obtain

(y − x)
[
Bπ2 + Cπ3 + Eπ4 + Fπ2

2 +Hπ5 + Iπ3π2 + Jπ3π2 + xyN [B + (x+ y)C+

(x2 + y2 + xy)E + Fπ2 +H(x+ y)(x2 + y2) + Iπ2(x+ y) + Jπ3

]
= 0

The zeros satisfying y = x have Σ1-symmetry. We now solve

Bπ2 + Cπ3 + Eπ4 + Fπ2
2 +Hπ5 + Iπ3π2 + Jπ3π2 + xyN [B + (x+ y)C+

(x2 + y2 + xy)E + Fπ2 +H(x+ y)(x2 + y2) + Iπ2(x+ y) + Jπ3] = 0
(3.14)

where πi = a[(−x− y)i + yi + xi], for i = 2, 3, 4, 5. Equation (3.14) is equivalent to

(x+ 2y)[B(2x+ y) + 2aF (2x3 + y3 + 3x2y + 3xy2) + E(2x3 + y3 + 3x2y + 3xy2)−
H(xy3 + 3x2y2 + 2x3y)− 3aJ(xy3 + 3x2y2 + 2x3y)] = 0

and solutions with x+ 2y = 0 have Σ3-symmetry. Now from

B(2x+ y) + 2aF (2x3 + y3 + 3x2y + 3xy2) + E(2x3 + y3 + 3x2y + 3xy2)−
H(xy3 + 3x2y2 + 2x3y)− 3aJ(xy3 + 3x2y2 + 2x3y) = 0

we get

(2x+ y)
[
B + (2aF + E)(x2 + y2 + xy)− (H + 3aJ)(x2y + xy2)

]
= 0 (3.15)

Solutions such that 2x+ y = 0 have Σ2-symmetry. The others satisfy

B + (2aF + E)(x2 + y2 + xy)− (H + 3aJ)(x2y + xy2) = 0

and therefore we obtain a branch of equilibria with Σ-symmetry. Using (3.14), from (3.13) we have
the first equation of (3.10).

2

4 Stability of the Secondary Branches

In this section we study the stability of the solutions of the secondary branch obtained in Theorem
3.1. As before we assume that Σ = Sa × Sa × Sa where N = 3a.
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4.1 Stability in Fix(Σ)

As we mentioned before, equations (1.2) restricted to Fix(Σ) are equivariant under the quotient
group N(Σ)/Σ ∼= D3. That is, equations (3.7) are D3-equivariant. We start by analyzing the
stability in Fix(Σ) of the solutions X0 with symmetry Σ obtained in Theorem 3.1 and by showing
that the Σ-branch bifurcates from the appropriate primary branches (when an eigenvalue changes
sign). For that we reduce the equations (3.7) to a D3-equivariant bifurcation problem in two state
variables, where D3 acts by its standard representation on R2 ≡ C.

D3-Equivariant Bifurcation Problem

We begin with a brief description of the characterization of a D3-equivariant bifurcation problem
obtained by Golubitsky et al. [6] (Chapter XIII Section 5, Chapter XIV Section 4, and Chapter
XV Section 3).

Consider the standard action of D3 on C ≡ R2 generated by

kz = z, ξz = e2πi/3z (4.16)

where ξ = 2π/3 and D3 = 〈k, ξ〉. Up to conjugacy, the only isotropy subgroup of D3 with one-
dimensional fixed-point subspace is Z2(k) = {1, k}.

If g : C×R→ C is smooth and commutes with this action of D3 on C then

g(z, λ) = p(u, v, λ)z + q(u, v, λ)z2 (4.17)

where u = zz, v = z3 + z3 and p, q : R3 → R are smooth functions. In order g to be a bifurcation
problem, the linearization of (4.17) at (z, λ) = (0, 0) must be zero and so p(0, 0, 0) = 0. Moreover,
the genericity hypothesis of the Equivariant Branching Lemma [6] requires pλ(0, 0, 0) 6= 0. A second
nondegeneracy hypothesis,

q(0, 0, 0) 6= 0 (4.18)

implies that generically the only (local) solution branches to g = 0 obtained by bifurcation from
(z, λ) = (0, 0) are those obtained using the Equivariant Branching Lemma, that is, those that have
Z2(k)-symmetry or conjugate.

Note that there is a nontrivial D3-equivariant quadratic z
2, and z and z2 are collinear only when

Im(z3) = 0. If Im(z3) 6= 0 then solving g = 0 is equivalent to solving p = q = 0. Thus, under the
genericity hypothesis (4.18) it is not possible to find solutions to (4.17) near the origin in this case.
Moreover, Theorem [6] XIII 4.4 implies that generically the branch of Z2(k) solutions is unstable.
Therefore, in order to find asymptotically stable solutions to a D3-equivariant bifurcation problem
by a local analysis, we must consider the degeneracy hypothesis q(0, 0, 0) = 0 and apply unfolding
theory.

We state a normal form for the degenerate D3-equivariant bifurcation problem for which
q(0, 0, 0) = 0. We follow Golubitsy et al. [6] Chapter XIV, Section 4. We begin by specifying
the lower order terms in p and q as follows:

p(u, v, λ) = Ãu+ B̃v + α̃λ+ · · ·
q(u, v, λ) = C̃u+ D̃v + β̃λ+ · · · (4.19)
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We call any D3-equivariant bifurcation problem g satisfying p(0, 0, 0) = 0 = q(0, 0, 0) nonde-
generate if

α̃ 6= 0, Ã 6= 0, α̃C̃ − β̃Ã 6= 0, ÃD̃ − B̃C̃ 6= 0 (4.20)

Theorem 4.1 [6] Let g be a D3-equivariant bifurcation problem. Assume that p(0, 0, 0) = 0 =
q(0, 0, 0) and that g is nondegenerate. Then g is D3-equivalent to the normal form

h(z, λ) = (εu+ δλ)z + (σu+mv)z2 (4.21)

where ε = sgn Ã, δ = sgn α̃, σ = sgn (α̃C̃− β̃Ã)sgn α̃, and

m = sgn (Ã)
(ÃD̃− B̃C̃)α̃2

(α̃C̃− β̃Ã)2

Proof: See Golubitsky et al. [6], Theorem XIV 4.4. 2

The next theorem states a universal D3-unfolding for the D3-normal form of Theorem 4.1 above.

Theorem 4.2 [6] The D3-normal form h(z, λ) = (εu+ δλ)z+(σu+mv)z2 where ε, δ, σ = ±1 and
m 6= 0, obtained in Theorem 4.1, has D3-codimension 2 and modality 1. A universal unfolding of
h is

H(z, λ, µ, α) = (εu+ δλ)z + (σu+ µv + α)z2 (4.22)

where (µ, α) varies near (m, 0).

Proof: See Golubitsky et al. [6], Theorem XV 3.3 (b). 2

We present in Figure 1 (a) and (b), respectively, the bifurcation diagrams for the problems
ż = −h(z, λ) and ż = −H(z, λ, µ, α) where

h(z, λ) = (u− λ)z + (u+mv)z2 (4.23)

and

H(z, λ, µ, α) = (u− λ)z + (u+ µv + α)z2 (4.24)

where µ ∼ m and α ∼ 0. These figures appear in [6] (Figure XV 4.1 (b) and Figure XV 4.2 (c))
with opposite signs for the eigenvalues since the authors consider the eigenvalues of (dh)(z,λ) and
(dH)(z,λ), and we show in Figure 1 the signs of the eigenvalues of −(dh)(z,λ) and −(dH)(z,λ).

Since we are assuming that the trivial solution is asymptotically stable when λ < 0, we consider
δ = −1 in (4.22). Moreover, by transforming g(z, λ) to −g(−z, λ) we may fix another choice of
signs since this change of coordinates preserves the asymptotic stability of solutions. We fix σ = 1.
Finally, we show only the case ε = 1 so that the Z2-branch of steady-state solutions is supercritical.
Fixing δ = −1, σ = 1 and ε = 1 in (4.21) and (4.22) we obtain (4.23) and (4.24).
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Figure 1: (a) Unperturbed D3-symmetric bifurcation diagram for ż = −h(z, λ), where h is the
normal form h(z, λ) = (u− λ)z + (u+mv)z2 (Figure [6] XV 4.1 (b)). (b) Bifurcation diagram for
ż = −H(z, λ), where H is defined by H(z, λ, µ, α) = (u − λ)z + (u + µv + α)z2, with α < 0 and
µ > 0 (Figure [6] XV 4.2 (c)).

Identification with the D3-Equivariant Bifurcation Problem

Equations (3.7) are equivariant under the group N(Σ)/Σ ∼= D3. In order to apply Theorem 4.2 we
choose coordinates in Fix(Σ) such that the action of N(Σ)/Σ on Fix(Σ) is given by (4.16).

Recall that Fix(Σ) = {(−x− y, . . . ; y, . . . ;x, . . . , x) : x, y ∈ R}. Denote by

B1 = (−1, . . . ,−1; 0, . . . , 0; 1, . . . , 1), B2 = (−1, . . . ,−1; 1, . . . , 1; 0, . . . , 0)
and note that B = (B1, B2) is a basis for Fix(Σ). Denote by (x, y)tB the coordinates vector of
(−x− y, . . . ; y, . . . ;x, . . .) in the basis B and recall that the equations (1.2) restricted to Fix(Σ) in
these new coordinates are given by (3.7).

We have N(Σ)/Σ ∼= D3
∼= S3. Moreover

N(Σ)/Σ = 〈(12)Σ, (123)Σ〉
where we consider the action of the elements of N(Σ)/Σ on Fix(Σ) defined by:

(12)Σ · (−x− y, . . . ; y, . . . ;x, . . .) def
= (y, . . . ;−x− y, . . . ;x, . . .)

(123)Σ · (−x− y, . . . ; y, . . . ;x, . . .) def
= (x, . . . ;−x− y, . . . ; y, . . .)

In matrix notation we have

(12)Σ ·
(
x
y

)

B

=M

(
x
y

)

B

where M =

(
1 0
−1 −1

)

has eigenvalues −1, 1. Also denoting A =

(
0 1
−1 −1

)

we have

(123)Σ ·
(
x
y

)

B

= A

(
x
y

)

B

where A has no real eigenvalues (it has the complex conjugate eigenvalues ei
2π

3 , e−i
2π

3 ).
It follows that

10



b =

(

−2
√
3

3
B1 +

√
3

3
B2, B2

)

is another basis for Fix(Σ) such that if (X,Y )tb denote coordinates on this basis, then in these
coordinates we have

(12)Σ ·
(
X
Y

)

b

=

(
X
−Y

)

b

(123)Σ ·
(
X
Y

)

b

=

(
cos 2π

3 X − sin 2π
3 Y

sin 2π
3 X + cos 2π

3 Y

)

b

(Recall (4.16)). We relate now the coordinates (X,Y )tb and (x, y)tB. Consider the matrix represent-
ing the change of basis from b to B:

P =

(

−2
√

3
3 0√
3

3 1

)

It follows that the matrix representing the change of basis from B to b is

P−1 =

(

−
√

3
2 0

1
2 1

)

Therefore we have the following relations

(
X
Y

)

b

= P−1

(
x
y

)

B

=

(

−
√

3
2 x

1
2x+ y

)

(4.25)

and

(
x
y

)

B

= P

(
X
Y

)

b

=

(

−2
√

3
3 X√

3
3 X + Y

)

We proceed by writing equations (3.7) in the coordinates (X,Y )tb. From (4.25) we have

{

Ẋ = −
√

3
2 ẋ

Ẏ = 1
2 ẋ+ ẏ

and then equations (3.7) in X,Y are

(
Ẋ

Ẏ

)

= λ

(
X
Y

)

+
[

−
√

3
3 BN −

√
3

3

(
E + 2

3FN
)
N(X2 + Y 2)

](X2 − Y 2

−2XY

)

+

[

N(C + 2
3D)(X2 + Y 2)−

√
3

9 N (E +G) 2X(X2 − 3Y 2)
](X

Y

)

+

1
9HN

[

2X(X2 − 3Y 2)

(
X2 − Y 2

−2XY

)

+ 9(X2 + Y 2)2
(
X
Y

)]

+

1
9JN

22X(X2 − 3Y 2)

(
X2 − Y 2

−2XY

)

+ 2
3N(IN + L+ 2

3MN)(X2 + Y 2)2
(
X
Y

)

(4.26)

Identifying z = X + iY in (4.26) yields the equation
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ż −
[

λ+
(
C + 2

3D
)
Nu−

√
3

9 (E +G)Nv + 2
3N
(

3
2H + IN + L+ 2

3MN
)
u2
]

z

−
[

−
√

3
3 BN −

√
3

3

(
E + 2

3FN
)
Nu+ 1

9(H + JN)Nv
]

z2 = 0

(4.27)

where u = zz and v = z3 + z3. We can now state the following theorem:

Theorem 4.3 Consider the equations (4.27) where

B < 0, 3C + 2D < 0, 3E + 2FN > 0, (3C + 2D)(H + JN)− (E +G)(3E + 2FN) > 0
(4.28)

Then for small enough B 6= 0 equations (4.27) have a branch of stable steady-state solutions with
trivial isotropy (for the D3-problem) that bifurcates from the branch of steady-state solutions with
Z2(k)-symmetry.

Proof: Writing (4.27) as ż + g(z, λ) = 0 where g(z, λ) = p(u, v, λ)z + q(u, v, λ)z2, we have

p(u, v, λ) = −λ+ β1u+ β2v + β3u
2,

q(u, v, λ) = β4 + β5u+ β6v,
(4.29)

where β1 = −
(
C + 2

3D
)
N, β2 =

√
3

9 (E + G)N, β3 = −2
3

(
3
2H + IN + L+ 2

3MN
)
N, β4 =

√
3

3 BN,

β5 =
√

3
3

(
E + 2

3FN
)
N, β6 = −1

9(H + JN)N.
Note that p(0, 0, 0) = 0 and pλ(0, 0, 0) 6= 0. Moreover

q(0, 0, 0) = β4 =

√
3

3
BN

and q(0, 0, 0) = 0 if and only if B = 0.
Let B = 0 and recall (4.19) and (4.20). Comparing (4.29) with (4.19) we obtain

α̃ = −1, Ã = β1, α̃C̃ − β̃Ã = −β5, ÃD̃ − B̃C̃ = β1β6 − β2β5

By Theorem 4.1, g (with B = 0) is D3-equivalent to (4.21) if g is nondegenerate. That is, if

β1 6= 0, β5 6= 0, β1β6 − β2β5 6= 0

where

ε = sgn β1, δ = −1, σ = sgn β5, m = sgn (β1)
β1β6 − β2β5

β2
5

Moreover, a universal unfolding of (4.21) is (4.22):

H(z, λ, µ, α) = (εu+ δλ)z + (σu+ µv + α)z2

where (µ, α) varies near (m, 0).
Suppose now the conditions (4.28). Then it follows that

ε = 1, δ = −1, σ = 1,

and (µ, α) varies near (m, 0) where
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sgn m = sgn (β1β6 − β2β5) = 1

and

H(z, λ, µ, α) = (u− λ)z + (u+ µv + α)z2

The bifurcation diagram for ż + H(z, λ, µ, α) = 0 appears in Figure 1(b) for α < 0 (and
µ > 0). Note that there is a secondary branch of stable steady-state solutions with trivial symmetry
bifurcating from the branch of steady-state solutions with Z2(k)-symmetry.

Thus there is a branch of steady-state solutions with trivial symmetry of ż + g(z, λ) = 0 that
satisfy

p(u, v, λ) = −λ+ β1u+ β2v + β3u
2 = 0,

q(u, v, λ) = β4 + β5u+ β6v = 0

provided B < 0 and small enough.
Observe that for small β4 < 0 (thus B < 0 and small enough) and β5 > 0 the solutions of (4.30)

(near the origin) form a circlelike curve in the (x, y)-plane of radius approximately
√

|β4|/β5. This
is exactly true for β6 = 0, and approximately true for β6 6= 0. It follows that in the (x, y, λ)-space
this curve intersects the y = 0 plane at two points (x−, λ−) and (x+, λ+) where x− < 0 < x+

that correspond to intersection points of the branch with trivial isotropy (for the D3-problem) and
solutions with isotropy Z2.

Moreover the stability is determined by

tr
(
(dg)(z,λ)

)
= 2(upu +

v
2 (3pv + qu) + 3qvu

2)

= 2(β1u+ 2β3u
2 + v

2 (3β2 + β5) + 3β6u
2)

det
(
(dg)(z,λ)

)
= 3(pvqu − puqv)(z3 − z3)2

= 12(Im (z3))2(β1β6 − β2β5 + 2β3β6u)

and so the solutions (near the origin) are stable since from (4.28) we have β1 > 0 and β1β6−β2β5 > 0.
The same conclusion can be derived from the fact that D3-equivalence preserves the asymptotic
stability of the solutions with trivial symmetry ([6] Chapter XV, Section 4).

2

4.2 Intersection between the Primary and the Secondary Branches

Let N = 3a and write the second equation in (3.10) as

ν + β(x2 + y2 + xy) + γ(x2y + xy2) = 0 (4.30)

where

ν = B, β = E + 2
3FN, γ = −(H + JN) (4.31)

Assuming the conditions of Theorem 4.3 we have β > 0 and ν < 0.
The Σ-branch intersects the Σ1-branch if y = x. Using this in (4.30) we get

ν + 3βx2 + 2γx3 = 0 (4.32)
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Note that if we assume β >> |γ|, |ν|, then if

p(x) = ν + 3βx2 + 2γx3

we have

p′(x) = 6x(γx+ β)

and so p(x) has three real roots, say, x−1 , x
+
1 , x1, where x

−
1 < 0 < x+

1 , and x1 > −β
γ if γ < 0, or

x1 < −β
γ if γ > 0. Thus the Σ-branch intersects the Σ1-branch at three points with the x-coordinate

x−1 , x
+
1 , x1. In the (x, λ)-plane, we denote by (x−1 , λ

−
1 ) and (x+

1 , λ
+
1 ) the intersections between the

two branches in Figure 1(b). Similarly, we have intersections in (x, λ)-plane that we denote by
(x−2 , λ

−
2 ), (x

+
2 , λ

+
2 ) and (x−3 , λ

−
3 ), (x

+
3 , λ

+
3 ) between the Σ-branch and the Σ2-branch and Σ3-branch,

respectively.

4.3 Secondary Branches: Full Stability

Given an equilibrium X0 = (x0, λ0) of (1.2), in the Σ-branch obtained in Theorem 3.1, in or-
der to analyze the stability of this solution, we need to compute the eigenvalues of the Jacobian
(dG)(x0,λ0). We use now the decomposition of V1 into isotypic components for the action of Σ to
block-diagonalize the Jacobian on V1. We have

V1 = Fix(Σ)⊕ U1 ⊕ U2 ⊕ U3

where

U1 = {(x1, . . . , xa; 0, . . . , 0; 0, . . . , 0) ∈ V1 : x1 + · · ·+ xa = 0}
U2 = {(0, . . . , 0;xa+1, . . . , x2a; 0, . . . , 0) ∈ V1 : xa+1 + · · ·+ x2a = 0}
U3 = {(0, . . . , 0; 0, . . . , 0;x2a+1, . . . , x3a) ∈ V1 : x2a+1 + · · ·+ x3a = 0}

The action of Σ is absolutely irreducible on each isotypic component Ui, for i = 1, 2, 3 and
trivial on Fix(Σ). Moreover, dim Ui = a− 1. Thus (dG)X0

, when restricted to each of the Ui, has
a real eigenvalue λi with multiplicity a− 1. Since (dG)X0

commutes with Σ,

(dG)X0
=





C1 C2 C3

C4 C5 C6

C7 C8 C9



 (4.33)

where the blocks correspond to the isotypic decomposition and C1, C5, C9 commute with Sa.
If we write a square matrix M of order a with rows l1, . . . , la, and if M commutes with Sa, then

M =








l1
(12) · l1

...
(1a) · l1








where if l1 = (m1, . . . ,ma), then (1i) · l1 = (mi,m2, . . . ,mi−1,m1,mi+1, . . . ,ma). Moreover, l1 is
invariant under Sa−1 in the last a− 1 entries. Thus, l1 is of type (m1,m2, . . . ,m2). Applying this
to C1, C5, C9 we get
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Ci =






ai bi
. . .

bi ai




 (4.34)

for i = 1, 5, 9, where

a1 = (∂G1/∂x1)X0
, a5 = (∂Ga+1/∂xa+1)X0

, a9 = (∂G2a+1/∂x2a+1)X0

b1 = (∂G1/∂x2)X0
, b5 = (∂Ga+1/∂xa+2)X0

, b9 = (∂G2a+1/∂x2a+2)X0

The other symmetry restrictions on the Ci, for i 6= 1, 5, 9, imply that the rest of the matrices
each have one identical entry. From this we obtain basis for each Ui composed by eigenvectors of
(dG)X0

:

U1 : ν1 = (1,−1, 0, . . . , 0; 0, . . . , 0; 0, . . . , 0)T
ν2 = (0, 1,−1, 0, . . . , 0; 0, . . . , 0; 0, . . . , 0)T
...

νa−1 = (0, . . . , 0, 1,−1; 0, . . . , 0; 0, . . . , 0)T

U2 : ψ1 = (0, . . . , 0; 1,−1, 0, . . . , 0; 0, . . . , 0)T
ψ2 = (0, . . . , 0; 0, 1,−1, . . . , 0; 0, . . . , 0)T
...

ψa−1 = (0, . . . , 0; 0, . . . , 0, 1,−1; 0, . . . , 0)T

U3 : φ1 = (0, . . . , 0; 0, . . . , 0; 1,−1, 0, . . . , 0)T
φ2 = (0, . . . , 0; 0, . . . , 0; 0, 1,−1, 0, . . . , 0)T
...

φa−1 = (0, . . . , 0; 0, . . . , 0; 0, . . . , 0, 1,−1)T

Moreover the eigenvalue associated with νi is

λ1 = a1 − b1 = (∂G1/∂x1)X0
− (∂G1/∂x2)X0

the one associated with ψi is

λ2 = a5 − b5 = (∂Ga+1/∂xa+1)X0
− (∂Ga+1/∂xa+2)X0

and the one associated with φi is

λ3 = a9 − b9 = (∂G2a+1/∂x2a+1)X0
− (∂G2a+1/∂x2a+2)X0

The branching conditions for Σ of Theorem 3.1 yield:
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λ1 = −3BN(x+ y) + CN(2x2 + 2y2 + 5xy)+
EN(−5x3 − 5y3 − 13xy2 − 13yx2)− 2FN2(x+ y)(x2 + y2 + xy)+
HN(4y2 + 7xy + 4x2)(x2 + y2 + 3xy) + 2

3IN
2(2x4 + 9x2y2 + 2y4 + 7x3y + 7xy3)+

3JN2xy(x2 + y2 + 2xy)

λ2 = BN(y − x) + CN(y − x)(2y + x)+
EN(y − x)(x2 + 3y2 + 2xy) + 2

3FN
2(y − x)(x2 + y2 + xy)−

HN(x4 + x3y + xy3 + x2y2 − 4y4) + 2
3IN

2(−x4 + 2y4 − 2x3y + 2xy3)+
3JN2(x3y − xy3)

λ3 = BN(x− y) + CN(x− y)(2x+ y)+
EN(x− y)(y2 + 3x2 + 2xy) + 2

3FN
2(x− y)(x2 + y2 + xy)−

HN(x3y + xy3 + x2y2 + y4 − 4x4) + 2
3IN

2(2x4 − y4 + x3y − 2xy3)+
3JN2(xy3 − x3y)

(4.35)
where x and y are related by the second equation of (3.10). Using (4.35) and (3.10) we obtain:

Lemma 4.4 Let X0 be an equilibrium of (3.7) in the Σ-branch obtained in Theorem 3.1. Then the
eigenvalues λ1, λ2, λ3 of (dG)X0

are

λ1 = N(x+ 2y)(2x+ y)S2(x,−x− y)
λ2 = N(x+ 2y)(y − x)S2(x, y)
λ3 = N(x− y)(2x+ y)S2(y, x)

(4.36)

where

S2(x, y) = C + Ey + 2
3IN(x2 + y2 + xy) +H(x2 + 2y2 + xy) (4.37)

and x and y are as in the second equation of (3.10):

B +

(
2

3
FN + E

)

(x2 + y2 + xy)− (H + JN)(x2y + xy2) = 0

Remark 4.5 Suppose X0 corresponds to a solution of the primary branch with Σ1-symmetry.
Note that the isotypic decomposition of V1 for the action of Σ1 is

V1 =W0 ⊕W1 ⊕W2

where

W0 = Fix(Σ1) = {(−2x, . . . ;x, . . . ;x, . . .) : x ∈ R}
W1 = {(x1, . . . , xa; 0, . . . , 0) ∈ V1 : x1 + · · ·+ xa = 0}
W2 = {(0, . . . , 0;xa+1, . . . , x3a) ∈ V1 : xa+1 + · · ·+ x3a = 0}

The action of Σ1 is absolutely irreducible on each W1,W2 and trivial on W0. It follows then
that the Jacobian (dG)X0

has (at most) three distinct real eigenvalues, µj , one for each Wj , with
multiplicity dimWj .

The stability in Fix(Σ) for the solution with Σ1-symmetry is determined by the eigenvalue µ0

associated with W0 =Fix(Σ1) and µ2 since Fix(Σ)
⋂
W2 6= {0}.

Suppose now that X0 corresponds to a solution of the Σ-branch and of the Σ1-branch. Then
the eigenvalue µ2 is zero and it is associated with the eigenspace W2. Moreover, U2 ⊆ W2 and
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U3 ⊆ W2. Therefore X0 is a zero of λ2 and λ3, and we have the factor y − x in the expressions
for λ2 and λ3 that appear in (4.36). Similarly, we justify the factors x + 2y and 2x + y in those
expressions. 3

Theorem 4.6 Assume the conditions of Theorem 4.3 and let X0 be an equilibrium of the secondary
branch of steady-state solutions with symmetry Σ obtained in Theorem 3.1 and guaranteed by Theo-
rem 4.3 for negative values of B sufficiently small. Consider the eigenvalues λ1, λ2, λ3 of (dG)X0

as in Lemma 4.4 and suppose parameters values B,C, . . . ,H such that

S2(x, y) 6= 0

for all x, y such that

B +

(
2

3
FN + E

)

(x2 + y2 + xy)− (H + JN)(x2y + xy2) = 0

and

x−1 < x < x+
1

Then the solutions of the secondary branch are unstable.

Proof: Theorem 3.1 and Theorem 4.3 prove the existence of the secondary branch of equilibria
of (3.7) for B negative and small enough obtained by bifurcation from the primary branches with
Σi-symmetry for i = 1, 2, 3. Recall from Section 4.2 that each primary branch with Σi-symmetry
intersects the Σ-branch at two points, with x-coordinate denoted by x−i and x+

i and where x−i <
x < x+

i . Let X0 be an equilibrium of (3.7) in the Σ-branch and consider the eigenvalues λ1, λ2, λ3

of (dG)X0
as in Lemma 4.4 (defining the stability of X0 at the isotypic components for the action

of Σ).

The solutions of (4.30) with x = 0 in the (x, y)-plane are the points
(

0,±
√

−ν/β
)

, where

ν = B and β = E + 2
3FN , where from the conditions of Theorem 4.3 we have ν < 0 and β > 0.

Computing λ1, λ2, λ3 for these points we obtain

λ1 = 2Ny2S2(0,−y)

λ2 = 2Ny2S2(0, y)

λ3 = −Ny2S2(y, 0)

where y = ±
√

−ν/β. It follows then that the signs of λ1, λ2, λ3 are determined by the signs of
S2(0,−y), S2(0, y), and S2(y, 0), respectively.

Assuming S2(x, y) 6= 0 along the Σ-branch we have

sgn (S2(y, 0)) = sgn (S2(0, y))

Thus we have that λ2, λ3 have opposite signs at the points of the Σ-branch (0,±
√

−ν/β). Therefore
these points are unstable equilibrium points that lie in the Σ-branch. The same conclusion holds
for the other equilibrium points in the Σ-branch (not corresponding to the intersection points with
the primary branches with Σi-symmetry, for i = 1, 2, 3).

2
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Suppose parameter values B,C, . . . ,H such that there is an equilibrium X0 = (x0, y0, λ0) of the
secondary branch with symmetry Σ obtained in Theorem 3.1 such that

S2(x0, y0) = 0

Generically, we can assume that X0 is not an intersection point between the Σ-branch and one
of the Σi-branches, for i = 1, 2, 3. This situation corresponds to a tertiary bifurcation at λ = λ0

from the secondary branch and implies the change of the sign of one of the eigenvalues determining
the stability of the steady-state solutions of the Σ-branch near X0.

Denote by

R1 = {(x, y) ∈ R2 : −1
2x < y < x}

R2 = {(x, y) ∈ R2 : x < y < −2x}
R6 = {(x, y) ∈ R2 : −2x < y < −1

2x}
Assume that (x0, y0) ∈ R1. (The other cases are addressed in a similar way.) Then the

eigenvalue λ2 determining the stability of the equilibrium points in the Σ-branch and in region R1

changes sign.
We can find steady-state solutions in the Σ-branch of the region R1 and their D3-orbit points

in region R2, close to (x+
1 , y

+
1 ) (one of the intersections between the Σ-branch and the Σ1-branch).

By symmetry these points in both regions have the same stability. Moreover, there are equilibria
in those conditions such that the functions S2(x,−x − y), S2(x, y) and S2(y, x) do not vary their
signs. In this case, the signs of two of the eigenvalues (λ2 and λ3) determining the stability (outside
Fix(Σ)) of those equilibria in R1 have opposite signs from those in their D3-orbits in region R2.
The same reasoning applies to steady-state solutions of the Σ-branch close to the point (x+

3 , y
+
3 )

and their orbits by D3 in the regions R1 and R6. It follows then that no stability is possible for
the Σ-branch solutions where S2(x, y) 6= 0 in the R1-region (and so in the other regions of the
plane excluding the points of the Σ-branch where S2(x, y) = 0 and the intersection points with the
Σi-branches).

From Theorem 4.6 and the above discussion we conclude that the solutions of the secondary
branch are (generically) globally unstable in the fifth-order truncation of the system.
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