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Begoña Alarcóna,c Sofia B. S. D. Castroa,b Isabel S. Labouriaua
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Abstract

We consider sufficient conditions to determine the global dynamics
for equivariant maps of the plane with a unique fixed point which is
also hyperbolic. When the map is equivariant under the action of a
compact Lie group, it is possible to describe the local dynamics. In
particular, if the group contains a reflection, there is a line invariant
by the map. This allows us to use results based on the theory of free
homeomorphisms to describe the global dynamical behaviour. We
briefly discuss the case when reflections are absent, for which global
dynamics may not follow from local dynamics near the unique fixed
point.
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1 Introduction

Dynamics of planar maps has drawn the attention of many authors. See,
for instance, references such as [3], [6], [7], [9] or [12]. Problems addressed
include the theory of free homeomorphism and trivial dynamics, searching for
sufficient conditions for global results with topological tools or the Discrete
Markus-Yamabe Problem. The latter conjectures results on global stability
from local stability of the fixed point under some additional condition on the
Jacobian matrix1. Results in [3] guarantee the global stability of the unique
fixed point resorting to local conditions and the existence of an invariant
embedded curve joining the fixed point to infinity.

To the best of our knowledge, this problem has been addressed exclusively
in a non-symmetric context. However the existence of the invariant curve in
[3] made it seem natural to approach this problem in a symmetric setting,
where invariant spaces for the dynamics are a key feature. In this context,
we address the global dynamics of planar diffeomorphisms having a unique
fixed point which is hyperbolic. We restrict our attention to the cases where
the fixed point is either an attractor or a repellor. The case of a saddle point
does not rely so much on symmetry. It will therefore be addressed elsewhere.

The issue of uniqueness of a fixed point has been addressed by Alarcón
et al [4] who gave simple conditions for planar maps under which the origin
is the unique fixed point.

The presence of symmetry constrains the admissible local dynamics near
the fixed point. We extend, whenever possible, the local dynamics to the
whole plane using the properties determined by the symmetry. The reader
may see that, in the case of O(2), Z2(〈κ〉) and Dn, local dynamics determines
global dynamics. However, SO(2) and Zn symmetry do not provide any extra
information on how to go from local to global dynamics. Actually, for Zn, we
have constructed examples where more than one configuration can occur. For
instance, in the case of a local attractor, the global dynamics may exhibit
either several periodic points [2] or a globally attracting set with special
properties [1]. For SO(2) the dynamics is determined by a one-dimensional
map. These situations provide a comprehensive description of the possible
global dynamics.

The paper is organised as follows: in the next section we transcribe pre-

1The Discrete Markus-Yamabe Problem also derives its fame from its relation to the
Jacobian Conjecture [8].
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liminary results concerning dynamics of planar maps and equivariance. These
are organised in two subsections, the first on Topological Dynamics and the
second on Equivariance. The reader familiar with the subject may skip them
without loss. Section 3 shows how local results can be extended to global
results.

We thus establish all possible dynamics in the presence of symmetry. This
is discussed at the end in Section 4. Note that the aforementioned groups
are the only compact subgroups of O(2) acting on the plane. For the reader’s
convenience the results obtained are summarised in the Equivariant Table of
Appendix B.

2 Preliminaries

This section contains definitions and known results about topological dynam-
ics and equivariant theory. These are grouped in three separate subsections,
which are elementary for readers in each field.

2.1 Topological Dynamics

We consider planar topological embeddings, that is, continuous and injective
maps defined in R2. The set of topological embeddings of the plane is denoted
by Emb(R2).

Recall that for f ∈ Emb(R2) the equality f(R2) = R2 may not hold.
Since every map f ∈ Emb(R2) is open (see [14]), we will say that f is a
homeomorphism if f is a topological embedding defined onto R2. The set of
homeomorphisms of the plane will be denoted by Hom(R2).

When H is one of these sets we denote by H+ (and H−) the subset of
orientation preserving (reversing) elements of H.

Given a continuous map f : R2 → R2, we say that p is a non-wandering
point of f if for every neighbourhood U of p there exists an integer n > 0
and a point q ∈ U such that fn(q) ∈ U . We denote the set of non-wandering
points by Ω(f). We have

Fix(f) ⊂ Per(f) ⊂ Ω(f),

where Fix(f) is the set of fixed points of f , and Per(f) is the set of periodic
points of f .
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Let ω(p) be the set of points q for which there is a sequence nj → +∞
such that fnj(q) → p. If f ∈ Hom(R2) then α(p) denotes the set ω(p) under
f−1.

Let f ∈ Emb(R2) and p ∈ R2. We say that ω(p) = ∞ if ‖fn(p)‖ → ∞
as n goes to ∞. Analogously, if f ∈ Hom(R2), we say that α(p) = ∞ if
‖f−n(p)‖ → ∞ as n goes to ∞.

We say that 0 ∈ Fix(f) is a local attractor if its basin of attraction
U = {p ∈ R

2 : ω(p) = {0}} contains an open neighbourhood of 0 in R
2 and

that 0 is a global attractor if U = R2. The origin is a stable fixed point if for
every neighborhood U of 0 there exists another neighborhood V of 0 such
that f(V ) ⊂ V and f(V ) ⊂ U . Therefore, the origin is an asymptotically
local (global) attractor or a (globally) asymptotically stable fixed point if it is
a stable local (global) attractor. See [5] for examples.

We say that 0 ∈ Fix(f) is a local repellor if there exists a neighbourhood
V of 0 such that ω(p) /∈ V for all 0 6= p ∈ R2 and a global repellor if this
holds for V = R2. We say that the origin is an asymptotically global repellor
if it is a global repellor and, moreover, if for any neighbourhood U of 0 there
exists another neighbourhood V of 0, such that, V ⊂ f(V ) and V ⊂ f(U).

When the origin is a fixed point of a C1−map of the plane we say the
origin is a local saddle if the two eigenvalues of Df0, α, β, are both real and
verify 0 < |α| < 1 < |β|.

We also need the following theorem of Murthy [13], to be applied to parts
of the domain of our maps with no fixed points:

Theorem 2.1 (Murthy [13]). Let f ∈ Emb+(R2). If Fix(f) = ∅, then
Ω(f) = ∅.

We say that f ∈ Emb(R2) has trivial dynamics if, for all p ∈ R
2, either

ω(p) ⊂ Fix(f) or ω(p) = ∞. Moreover, we say that a planar homeomorphism
has trivial dynamics if, for all p ∈ R2, both ω(p), α(p) ⊂ Fix(f) ∪ {∞}.

Let f : RN → RN be a continuous map. Let γ : [0,∞) → R2 be a
topological embedding of [0,∞) . As usual, we identify γ with γ ([0,∞)) .
We will say that γ is an f−invariant ray if γ(0) = (0, 0) , f(γ) ⊂ γ , and
limt→∞

|γ(t)| = ∞, where | · | denotes the usual Euclidean norm.

Proposition 2.2 (Alarcón et al. [3]). Let f ∈ Emb+(R2) be such that
Fix(f) = {0}. If there exists an f−invariant ray γ, then f has trivial dy-
namics.
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The relation between the stability of the origin and the admissible forms
of the Jacobian at that point is well known, but it is not usually clear that it
holds for continuous maps that are not necessarily C1. The precise hypothe-
ses are stated in the following result, and its proof is given in Appendix A.

Proposition 2.3. Let U ⊂ RN be an open set containing the origin and let
f : RN → RN be a continuous map, differentiable at the origin and such
that f(0) = 0. If all the eigenvalues of Df(0) have norm strictly smaller than
one then the origin is locally assymptotically stable. If all the eigenvalues of
Df(0) have norm strictly greater than one then the origin is a local repellor.

2.2 Equivariant Planar Maps

Let Γ be a compact Lie group acting on R
2. The following definitions and

results are taken from Golubitsky et al. [10], especially Chapter XII, to which
we refer the reader interested in further detail.

Given a map f : R2 −→ R2, we say that γ ∈ Γ is a symmetry of f if
f(γx) = γf(x). We define the symmetry group of f as the smallest closed
subgroup of GL(2) containing all the symmetries of f . It will be denoted by
Γf .

We say that f : R2 → R2 is Γ−equivariant or that f commutes with Γ if

f(γx) = γf(x) for all γ ∈ Γ.

It follows that every map f : R2 → R2 is equivariant under the action of
its symmetry group, that is, f is Γf−equivariant. We are interested in maps
having a non-trivial symmetry group, Γf ⊂ GL(2).

Let Σ be a subgroup of Γ. The fixed-point subspace of Σ is

Fix(Σ) = {p ∈ R
2 : σp = p for all σ ∈ Σ}.

If Σ is generated by a single element σ ∈ Γ, we write Fix〈σ〉 instead of Fix(Σ).
We note that, for each subgroup Σ of Γ, Fix(Σ) is invariant by the dy-

namics of a Γ−equivariant map ([10], XIII, Lemma 2.1).
For a group Γ acting on R

2 a non trivial fixed point subspace arises when
Γ contains a reflection. By a linear change of coordinates we may take the
reflection to be the flip

κ.(x, y) = (x,−y).
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3 Symmetric Global Dynamics

In this section we study the global dynamics of a symmetric discrete dynami-
cal system with a unique and hyperbolic attracting fixed point. We establish
conditions for the hyperbolic local dynamics to become global dynamics. For
most symmetry groups, the local dynamics is restricted to either an attractor
or a repellor. Saddle points only occur for very small symmetry groups and
therefore the study of these points does not depend so much on symmetry
issues and requires additional tools. As pointed out before, this will be the
object of a separate article.

We address the dynamics when the groups involved possess an element
acting as a reflection (flip). This is the main result of this article. In this case,
we make use of the fact that there exists an invariant ray for the dynamics
(either of f itself or of f 2) from which results follow.

We begin with two convenient results. Although the next lemma is only
required to hold for planar maps, we present it for RN , as the proof is the
same.

Let p ∈ RN and f : RN → RN be a continuous map. We denote by ω2(p)
the ω−limit of p with respect to f 2, given by

ω2(p) = {q ∈ R
N : lim f 2nk(p) = q, for some sequence nk → ∞}.

Lemma 3.1. Let f ∈ Emb(RN) be such that f(0) = 0.
For p ∈ RN ,

a) if ω2(p) = {0}, then ω(p) = {0};

b) if ω2(p) = ∞, then ω(p) = ∞.

Proof. Let p ∈ RN .
a) Suppose ω2(p) = {0} and suppose also that ω(p) 6= {0}. Then there

exists an r 6= 0 such that r ∈ ω(p). In that case r = lim fnk(p), so there
exists a k0 ∈ N such that ∀k > k0, nk is odd because ω2(p) = {0}. Then,
f(r) = lim fnk+1(p) with nk + 1 even. So f(r) ∈ ω2(p) hence f(r) = 0 with
r 6= 0, which is impossible because f is an injective map such that f(0) = 0.

b) Suppose now ω2(p) = ∞ and also that ω(p) 6= ∞. Then there exists
an r ∈ RN such that r ∈ ω(p). In that case r = lim fnk(p), so there exists
a k0 ∈ N such that ∀k > k0, nk is odd because ω2(p) = ∞. Then, f(r) =
lim fnk+1(p) with nk + 1 even. So f(r) ∈ ω2(p) which is impossible, since
ω2(p) = ∞.
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Lemma 3.2. Let g : [0, 1) → [0, 1) be a continuous and injective map such
that Fix(g) = {0}. The following holds:

a) If 0 is a local attractor for g, then 0 is a global attractor for g.

b) If 0 is a local repellor for g, then 0 is a global repellor for g.

Proof. Assume 0 is a local attractor. Since g is a continuous map, g is
increasing at 0. Because g is injective, g is increasing in [0, 1). Moreover,
Fix(g) = {0} so the graph of g does not cross the diagonal of the first
quadrant and one of the following holds:

i) g(x) > x, for all x ∈ (0, 1);

ii) g(x) < x, for all x ∈ (0, 1).

Only ii) can happen when 0 is a local attractor. Then g(x) < x, for all
x ∈ [0, 1) and 0 is a global attractor for g.

The proof of b) follows in a similar fashion.

We now proceed to use the existence of an invariant ray to obtain infor-
mation concerning the dynamics.

Lemma 3.3. Let f : R2 → R2 be a map with symmetry group Γ. If
κ ∈ Γ, then Fix〈κ〉 is an f−invariant line. Moreover, Fix〈κ〉 contains an
f 2−invariant ray.

Proof. By Lemma XIII, 2.1 and Theorem XIII, 2.3 in [10], Fix〈κ〉 is a vector
subspace of dimension one such that f(Fix〈κ〉) ⊆ Fix〈κ〉. Let γ denote one
of the two half-lines in Fix〈κ〉, then γ is an f 2−invariant ray.

The next proposition describes the admissible ω-limit set of a point and
is essential for the main results.

Proposition 3.4. Let f ∈ Emb(R2) have symmetry group Γ with κ ∈ Γ,
such that Fix(f) = {0}. Suppose one of the followings holds:

a) f ∈ Emb+(R2) and f does not interchange connected components of
R2 \ Fix〈κ〉.

b) Fix(f 2) = {0}.
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Then for each p ∈ R2 either ω(p) = {0} or ω(p) = ∞.

Proof. Suppose a) holds. By Lemma 3.3, R2 \Fix〈κ〉 is the disjoint union of
two open subsets U1, U2 ⊂ R

2 homeomorphic to R
2. Moreover, f |Ui

: Ui → Ui

for i = 1, 2 is an orientation preserving embedding without fixed points.
Then by Theorem 2.1, Ω(f |Ui

) = ∅ for i = 1, 2 and it then follows that
Ω(f) ⊆ Fix〈κ〉.

The subspace Fix〈κ〉\{0} is the disjoint union of two subsets homeomor-
phic to (0, 1). Even if f interchanges these components, f 2 does not. Then
applying Lemma 3.2 to the restriction of f 2 to each component, it follows
that for p ∈ Fix〈κ〉 either ω2(p) = 0 or ω2(p) = ∞. By Lemma 3.1 , it follows
that for p ∈ Fix〈κ〉 either ω(p) = 0 or ω(p) = ∞.

Let p ∈ R2 \ Fix〈κ〉. Since Ω(f) ⊆ Fix〈κ〉, we have that ω(p) ⊆ Fix〈κ〉.
We show next that ω(p) 6= Fix〈κ〉.

Suppose there is an r ∈ ω(p)∩ (Fix〈κ〉 \ {0}) and an open neighbourhood
K of r such that 0 /∈ K and Fix〈κ〉 ∩ K is an embedded segment and
K \ Fix〈κ〉 is the union of two disjoint disks W1 and W2 homeomorphic
to R2. Suppose without loss of generality that p ∈ U1, then the positive
orbit of p accumulates at r and this positive orbit meets W1 infinitely many
times. Since r ∈ Ω(f)\{0,∞} is not a fixed point, taking K (and hence W1)
sufficiently small, there exists an open disk V ⊂ W1 and a positive integer
n, with n ≥ 2, such that for some s ∈ V, we have that fn(s) ∈ V , while
V ∩ f ℓ(V ) = ∅, for ℓ = 1, 2, . . . , n − 1. Then, by Theorem 3.3 in [13], f has
a fixed point in V which contradicts the uniqueness of the fixed point. So
the orbit of p does not accumulate at Fix〈κ〉 and hence either ω(p) = 0 or
ω(p) = ∞.

Suppose b) holds. By Lemma 3.3 there exists an f 2−invariant ray γ ⊂
Fix〈κ〉. Moreover, f 2 ∈ Emb+(R2) and Fix(f 2) = {0}, so by Proposition 2.2
we have that for each p ∈ R2 either ω2(p) = {0} or ω2(p) = ∞ and therefore,
by Lemma 3.1, either ω(p) = {0} or ω(p) = ∞.

The next example shows that assumption b) in Proposition 3.4 is neces-
sary in the case where f interchanges connected components of R

2 \ Fix〈κ〉.

Example 3.5. Consider the map f : R2 → R2 defined by

f(x, y) =
(

−ax3 + (a − 1)x,−
y

2

)

0 < a < 1.

It is easily checked that f has symmetry group D2 and verifies (see Figure
1):
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1. f ∈ Emb+(R2) is an orientation-preserving diffeomorphism.

2. Spec(f) ∩ [0,∞) = ∅.

3. 0 is a local hyperbolic attractor.

4. Fix(f 2) 6= {0}.

Figure 1: A local attractor which is not a global attractor due to the existence
of periodic orbits.

The main results, Theorems 3.6 and 3.8, are obtained as a direct conse-
quence of Proposition 3.4 under additional assumptions.

We say that a map f is dissipative if there is an open set V such that
R

2\V is compact and ω(p) /∈ V for all p ∈ R
2.

Theorem 3.6. Let f ∈ Emb(R2) be dissipative with symmetry group Γ with
κ ∈ Γ such that Fix(f) = {0}. Suppose in addition that one of the following
holds:

a) f ∈ Emb+(R2) and f does not interchange connected components of
R2 \ Fix〈κ〉.

b) There exist no 2−periodic orbits.

Then 0 is a global attractor.

Proof. Follows from Proposition 3.4 since being dissipative excludes ω(p) =
∞.

Corollary 3.7. Suppose the assumptions of Theorem 3.6 are verified and f
is differentiable at 0. If every eigenvalue of Df(0) has norm strictly less than
one, then 0 is a global asymptotic attractor.
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Proof. Follows by Theorem 3.6 and Proposition 2.3.

Theorem 3.8. Let f ∈ Emb(R2) be a map with symmetry group Γ with
κ ∈ Γ such that Fix(f) = {0}. Suppose in addition that one of the following
holds:

a) f ∈ Emb+(R2) and f does not interchange connected components of
R2 \ Fix〈κ〉.

b) There exist no 2−periodic orbits.

Then, if 0 is a local repellor, then 0 is a global repellor.

Proof. Follows from Proposition 3.4, since a local repellor excludes ω(p) =
{0}.

Corollary 3.9. Suppose the assumptions of Theorem 3.8 are verified and f
is differentiable at 0. If every eigenvalue of Df(0) has norm strictly greater
than one, then 0 is a global asymptotic repellor.

Proof. Follows from Theorem 3.8 and Proposition 2.3.

4 Discussion: From Local to Global Symmet-

ric Dynamics

In this section we discuss all possible groups of symmetries for a planar topo-
logical embedding, and how this may be used to obtain global dynamics from
local information near a unique fixed point. In our discussion of symmetries
we need only be concerned with compact subgroups of the orthogonal group
O(2), since every compact Lie group in GL(2) can be identified with one of
them. For the convenience of the reader less familiar with symmetry, these
are listed in Appendix C, together with their action on R

2. Finally we give
a brief description of what happens for SO(2) and Zn, the groups that do
not contain a flip, where the information about the local dynamics cannot
be extended to global dynamics.

Since most of our results depend on the existence of a unique fixed point
for f , we assume also that the group action is faithful: for every γ ∈ Γ,
different from the identity, there exists x ∈ R2 such that γx 6= x. Therefore
Fix(Γ) = {0} and hence, if f is Γ−equivariant then f(0) = 0.

The Jacobian matrix of an equivariant map f at the origin depends on
its symmetries as follows:
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Lemma 4.1. Let f : V → V be a Γ-equivariant map differentiable at the
origin. Then Df(0), the Jacobian of f at the origin, commutes with Γ.

Straightforward calculations, Lemma 4.1 and Proposition 2.3 allow us to
describe the Jacobian matrix at the origin and, from it, the local dynamics
for maps equivariant under each of the subgroups of O(2).

Proposition 4.2. Let f be a planar map differentiable at the origin. The
admissible forms for the Jacobian matrix of f at the origin are those given
in the third column of the Table in Appendix B depending on the symmetry
group of f . The fourth column of this table describes how the dynamics near
the origin depends on the symmetry of f .

The groups that do not possess a flip are SO(2) and Zn. For these groups,
local dynamics does not determine global dynamics. In order to complete
our analysis we add some remarks about each case.

The dynamics of an SO(2)-symmetric embedding is mostly determined
by its radial component, as can be seen by writing f in polar coordinates as
f(ρ, θ) = (R(ρ, θ), T (ρ, θ)). Since f is SO(2)−equivariant, then for all α ∈ R

f(ρ, θ+α) = (R(ρ, θ), T (ρ, θ)+α). Therefore, f(ρ, θ−θ) = (R(ρ, 0), T (ρ, 0)) =
(R(ρ, θ), T (ρ, θ) − θ). So R(ρ, θ) only depends on ρ and R ∈ Emb(R+).

Suppose 0 is a local attractor. If Fix(R) = {0} then the origin is a global
attractor by Lemma 3.2. Otherwise, the fixed points of the radial component
are invariant circles for f and therefore, knowledge about local dynamics does
not contribute to the description of global dynamics2.

In general if f is an SO(2)-symmetric embedding, then R2 may be de-
composed into f -invariant annuli with centre at the origin. Each annulus
is either the union of f -invariant circles with f acting as a rotation in each
circle (corresponding to fixed points of R) or, for all points p in the annulus,
ω(p) is contained in the same connected component of the boundary of the
annulus.

For the group Zn we may have a local attractor or repellor if n ≥ 3 and
a local atractor, repellor or saddle in the case of Z2. For a local attractor,
almost any global dynamics may be realised. Examples of dissipative Zn-
equivariant diffeomorphism with a periodic orbit of period n are given in [2]
for all n ≥ 2. Alarcón [1] proves the existence of a Denjoy map of the circle
with symmetry group Zn. This is used to construct orientation preserving

2We are grateful to a referee for pointing this out.
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homeomorphisms of the plane with symmetry group Zn having the origin,
the unique fixed point, as an asymptotic local attractor. Moreover, for these
homeomorphisms there exists a global attractor containing the origin that is
a compact and connected subset of R2 with zero Lebesgue measure.

Summarising, we have obtained conditions on planar Γ-equivariant maps
f under which a local attractor/repellor is always a global attractor/repellor.
This concerns only subgroups Γ containing a reflection, the only subgroups
where this is possible.
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A Proof of Proposition 2.3

In order to prove Proposition 2.3 we show that the hypotheses guarantee
that f is either a uniform contraction or expansion in a neighbourhood of
the origin. For this we need the following standart result, similar to a Lemma
in Chapter 9 §1 of Hirsch and Smale [11].

Lemma A.1. Let A : RN → RN be linear and let α, β ∈ R satisfy

0 < α < |λ| < β

for all eigenvalues λ of A. Then there exists a basis for RN such that, in the
corresponding inner product and norm,

α ‖x‖ ≤ ‖Ax‖ ≤ β ‖x‖ ∀ x ∈ R
N . (1)

and moreover,

|〈Ax, y〉| ≤ β ‖x‖ ‖y‖ ∀ x, y ∈ R
N . (2)

Proof of Proposition 2.3. Write f(x) = Df(0).x + r(x). If f is linear then
r(x) ≡ 0. Otherwise, using the norm of the previous lemma, since f is
differentiable at the origin, we know that

lim
x→0

‖r(x)‖

‖x‖
= 0,

that is,
∀ ε > 0 ∃ δ > 0 : ‖x‖ < δ ⇒ ‖r(x)‖ < ε ‖x‖ .

Assume the eigenvalues of Df(0) = A have absolute value smaller than
β < 1. Then, we have, if ‖x‖ < δ:

‖f(x)‖2 = 〈f(x), f(x)〉 = 〈Ax + r(x), Ax + r(x)〉

= 〈Ax, Ax〉 + 2〈Ax, r(x)〉 + 〈r(x), r(x)〉

≤ β2 ‖x‖2 + 2β ‖x‖ ‖r(x)‖ + ‖r(x)‖2

≤ β2 ‖x‖2 + 2εβ ‖x‖2 + ε2 ‖x‖2

≤
(

β2 + 2εβ + ε2
)

‖x‖2

showing that f is a uniform contraction in a ball of radius δ around the origin
provided that β2 + 2βε + ε2 < 1. Since β is fixed and smaller that one, such
an ε always exists.
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Assume now that
1 < α < |λ| < β,

for all eigenvalues λ of Df(0) = A. Then

‖f(x)‖2 = 〈f(x), f(x)〉 = 〈Ax + r(x), Ax + r(x)〉

= 〈Ax, Ax〉 + 2〈Ax, r(x)〉 + 〈r(x), r(x)〉

≥ α2 ‖x‖2 + 2〈Ax, r(x)〉

since ‖r(x)‖2 > 0. It then follows that

‖f(x)‖2 ≥ α2 ‖x‖2 + 2〈Ax, r(x)〉

≥ α2 ‖x‖2 − 2 |〈Ax, r(x)〉|

≥ (α2 − 2βε) ‖x‖2 ,

showing that f is a uniform expansion in a ball of radius δ around the origin
provided that

ε <
α2 − 1

2β
.

Since α2 − 1 > 0 such an ε always exists.

B Compact subgroups of O(2)

• O(2), acting on R2 ≃ C as the group generated by θ and κ given by

θ.z = eiθz, θ ∈ S1 and κ.z = z̄.

• SO(2), acting on R
2 ≃ C as the group generated by θ given by

θ.z = eiθz, θ ∈ S1.

• Dn, n ≥ 2, acting on R2 ≃ C as the finite group generated by ζ and κ
given by

ζ.z = e
2πi
n z and κ.z = z̄.

• Zn, n ≥ 2, acting on R2 ≃ C as the finite group generated by ζ given
by

ζ.z = e
2πi
n z.

• Z2(〈κ〉), acting on R2 as

κ.(x, y) = (x,−y).
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C The equivariant table

This appendix contains a table summarizing the bulk of results in the pa-
per. The first column concerns the group of symmetry. The second column
provides information about the existence of an invariant ray. The third and
fourth columns concern the dynamics by providing the form of the jacobian
matrix at the origin and a list of possible local dynamics. Finally, the last
column lists hypotheses required to go from local to global dynamics.

No conditions are provided when the fixed point is a local saddle since
this case is not addressed here.
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EQUIVARIANT TABLE
Symmetry Group Contains κ? Df(0) Hyperbolic

Local Stability
Hypothesis for Hyperbolic
Global Stability.

O(2) yes

(

α 0
0 α

)

α ∈ R attractor

repellor

Emb(R2) differentiable and
dissipative.
Emb(R2) differentiable.

SO(2) no

(

α −β
β α

)

α, β ∈ R attractor / repellor Other configurations.

Dn, n ≥ 3, yes

(

α 0
0 α

)

α ∈ R attractor

repellor

Emb(R2) differentiable and
dissipative.
Emb(R2) differentiable.

Zn, n ≥ 3 no

(

α −β
β α

)

α, β ∈ R attractor / repellor Other configurations.

Z2(〈κ〉) yes

(

α 0
0 β

)

α, β ∈ R attractor

repellor
saddle

Emb(R2) differentiable and
dissipative.
Emb(R2) differentiable.
—

Z2 no any matrix attractor / repellor
saddle

Other configurations.
—

D2 yes

(

α 0
0 β

)

α, β ∈ R attractor

repellor
saddle

Emb(R2) differentiable and
dissipative.
Emb(R2) differentiable.
—


