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ABSTRACT

Takahasi’s theorem on chains of subgroups of bounded rank in a free group is
generalized to several classes of semigroups. As an application, it is proved that
the subsemigroups of periodic points are finitely generated and periodic orbits are
bounded for arbitrary endomorphisms for various semigroups. Some of these re-
sults feature classes such as completely simple semigroups, Clifford semigroups or
monoids defined by balanced one-relator presentations. In addition to the back-
ground on semigroups, proofs involve arguments over groups and finite automata.
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1 Introduction

In a paper of 1950, Takahasi proved the following, often called Takahasi’s Theorem (the same result
was proved independently by Higman in the paper [10] of 1951):

Theorem 1.1. [21] Let F be a free group and let K1 6 K2 6 · · · be an ascending chain of finitely
generated subgroups of F . If the rank of the subgroups in the chain is bounded, then the chain is
stationary.

Recall that in view of Nielsen’s Theorem [15, Proposition I.2.6], every finitely generated sub-
group of a free group is free, so in Takahasi’s Theorem rank means the cardinality of a basis.

The concept of rank admits a natural generalization to arbitrary groups. Given a group G, we
define its group rank, denoted by rkG(G), to be the minimum cardinality of a generating set of G
(as a group).

Bogopolski and Bux proved recently an analogue of Takahasi’s Theorem for fundamental groups
of closed compact surfaces [4, Proposition 2.2]. In [1], Araújo, Silva and Sykiotis introduced the
concept of Takahasi group. A group G is a Takahasi group if every ascending chain of subgroups
of G of bounded group rank is stationary. In [1], among other results it is proved that:

Theorem 1.2. [1, Theorem 4.1] Every finite extension of a Takahasi group is a Takahasi group.

It is also proved in [1, Section 4] that every virtually free group is a Takahasi group, and the
fundamental group of a finite graph of groups with virtually polycyclic vertex groups and finite
edge groups is a Takahasi group. On the other hand, in [1, Example 4.3] it is shown that a free
group of finite rank has arbitrarily long strict chains of subgroups of equal rank.

Takahasi’s Theorem can be applied to prove that the subgroup Per(ϕ) of periodic points of an
automorphism ϕ of a free group of finite rank is finitely generated (which implies that the size of
the periodic orbits is bounded for each automorphism). Using the aforementioned generalization
of Takahasi’s Theorem, one obtains:

Theorem 1.3. [1, Theorem 5.1] Let G be the fundamental group of a finite graph of groups with
finitely generated virtually nilpotent vertex groups and finite edge groups. Then there exists a
constant M > 0 such that

rkG(Per(ϕ)) 6M

for every ϕ ∈ End(G).

As a consequence, a bound for the periods of a given endomorphism of G was also obtained
in [1].

In this paper, we consider the condition of Takahasi’s Theorem in the context of several varieties
of semigroups, and apply results obtained to investigate the subsemigroup of fixed points and the
subsemigroup of periodic points of an endomorphism of a semigroup of various kinds.

The reader is assumed to have basic knowledge of semigroup theory, universal algebra and
automata theory.

We consider the following varieties throughout this paper:
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• M – the variety of all monoids (type (2,0));

• S – the variety of all semigroups (type (2));

• I – the variety of all inverse semigroups (type (2,1));

• G – the variety of all groups (type (2,1));

• CR – the variety of all completely regular semigroups (type (2,1));

• C – the variety of all Clifford semigroups (type (2,1));

• CS – the variety of all completely simple semigroups (type (2,1)).

The unary operation is a 7→ a−1 in the case of inverse semigroups and groups, where a−1 denotes
the inverse of a, and a 7→ a in the case of completely regular semigroups, where a is the unique
inverse of a commuting with it. Recall that CR contains both C and CS. Also

G = I ∩ CS, C = I ∩ CR.

It is particularly important for us to remark which type of subalgebras we have for each of
these varieties: submonoids for M, subsemigroups for S, inverse subsemigroups for I, subgroups
for G and completely regular subsemigroups for CR. If V is any of the varieties of type τ defined
above and S ∈ V, we write T 6V S, and say that T is a V-subalgebra of S, meaning that T is a
τ -subalgebra of S.

The paper is structured as follows. In Section 2, we generalize the concept of Takahasi group to
further varieties of algebras. We show that finite J -above semigroups are Takahasi, and provide a
full description of Takahasi completely simple semigroups and of Takahasi Clifford semigroups. We
also prove corollaries involving appropriate notions of finite index, as well as some negative results.

In Section 3, we introduce classes of semigroups UA (respectively UE) where the rank of fixed
point subsemigroups is uniformly bounded for arbitrary automorphisms (respectively endomor-
phisms). Using the results of Section 2, we prove that the subsemigroups of periodic points are
finitely generated and periodic orbits are bounded for arbitrary endomorphisms of finitely generated
completely simple or Clifford semigroups whose H-classes are Takahasi groups and belong to UE.
Similar results are proved for balanced one-relator presentations of length 2.

2 Takahasi semigroups

Let S be a semigroup and let A ⊆ S be nonempty. We denote the subsemigroup of S generated
by A by A+, and one has

A+ =
⋃
n>1

An .

If S is a monoid, the submonoid of S generated by A will be denoted by A∗. Clearly, A∗ = A+∪{1}.
For any semigroup S, the rank of S, denoted by rk(S), is defined as

rk(S) = min
{
|A| : ∅ 6= A ⊆ S, A+ = S

}
,
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if S is finitely generated, and as rk(S) =∞ otherwise.
Assume now that V is an arbitrary variety. Let S ∈ V and A ⊆ S be nonempty. We denote by

〈A〉 the V-subalgebra of S generated by A. Given S ∈ V, we also define the V-rank of S, denoted
by rkV(S), as

rkV(S) = min
{
|A| : ∅ 6= A ⊆ S, 〈A〉 = S

}
,

if S is finitely generated, and as rkV(S) = ∞ otherwise. Note that, for V ∈ {M, I,G, CR, C, CS},
the inequalities

rkV(S) 6 rk(S) 6 2rkV(S) (1)

hold for every S ∈ V. Thus Takahasi’s Theorem could be stated using the semigroup rank instead
of the group rank.

We generalize now the concept of Takahasi group for a variety V. Given S ∈ V, we write
S ∈ Tak(V) if every ascending chain of V-subalgebras of S of bounded V-rank is stationary. More
precisely, whenever

T1 6 T2 6 · · · 6 S

and rkV(Tn) 6M for every n > 1, there exists some p > 1 such that Tp = Tp+1 = Tp+2 = · · ·
It follows easily from the definitions and (1) that

Tak(S) ∩ G ⊆ Tak(G).

The following result shows that the opposite inclusion is far from true. Given groups G and H, we
denote by G ∗G H and G ∗S H the free product of G and H in the varieties G and S, respectively.

Proposition 2.1. (i) Z× Z /∈ Tak(S);

(ii) if H is a nontrivial group, then Z ∗G H /∈ Tak(S);

(iii) if H is a nontrivial group, then Z ∗S H /∈ Tak(S).

Proof . (i) The group Z × Z is generated by a = (1, 0) and b = (0, 1). For every n > 1, let Sn
be the subsemigroup of Z× Z generated by a−2 and a2n−1b. Since a2n−1b = a−2(a2n+1b) for every
n > 1, then

S1 ⊆ S2 ⊆ S3 ⊆ · · · (2)

Suppose that a2n+1b ∈ Sn. Then the generator a2n−1b must be used exactly once to get a2n+1b,
which is clearly impossible. Hence a2n+1b /∈ Sn and so all the inclusions in (2) are strict. Therefore
Z× Z /∈ Tak(S).

(ii) We use the same construction taking a to be a generator of Z and b ∈ H \ {1}. Once again,
we have (2).

Suppose that a2n+1b ∈ Sn. Then

a2n+1b = a−2k0a2n−1ba−2k1a2n−1b · · · a−2km−1a2n−1ba−2km

for some m > 1 and k0, . . . , km > 0. Since there exists always an odd number of a’s between any
two consecutive b’s in the right hand side, it follows easily from the normal form for the elements
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of the free product Z ∗G H that we must have m = 1, k1 = 0 and k0 = −1, a contradiction. Hence
a2n+1b /∈ Sn and so all the inclusions in (2) are strict. Therefore Z ∗G H /∈ Tak(S).

(iii) The proof of (ii) holds for Z ∗S H as well.

Since Z × Z and the groups of the form Z ∗G H with H finite are Takahasi groups by [1,
Corollary 4.4], it follows that Tak(G) 6⊆ Tak(S). By Proposition 2.1(ii), no free group of rank > 1
belongs to Tak(S).

Another consequence of this last proposition is the bad behaviour of Tak(S) with respect to
direct products and free products. But first we discuss the case of infinite cyclic groups.

Proposition 2.2. The additive semigroup Z belongs to Tak(S), and so does (N,+).

For the proof we need some classical tools. Given a subsemigroup S of the additive semigroup N
of natural numbers and d ∈ N, we say that S is ultimately a d-segment if there is p ∈ N such that
for all n ∈ N such that n > p, we have n ∈ S if and only if d divides n. It is clear that S cannot be
ultimately a d1-segment and ultimately a d2-segment for distinct natural numbers d1 and d2. Let

dS = min
{

gcd{x, y} : x, y ∈ S
}
.

The next result can be found in [9, Sec. II.4] (see also [13, 20]).

Theorem 2.3. If S is a subsemigroup of N, then S ⊆ NdS, S is ultimately a dS-segment, and S
is finitely generated.

For a subsemigroup S of N, define

pS = min
{
p ∈ N : ∀n > p (dS |n⇒ n ∈ S)

}
,

which is a natural number by Theorem 2.3.
From Theorem 2.3 and its dual for Z− we can easily deduce the following corollary, which can

also be found in [9, Sec. II.4].

Corollary 2.4. A subsemigroup of Z either contains only non-negative integers, or contains only
non-positive integers, or is of the form Zd for some d ∈ N, hence a subgroup of Z.

Now we are able to make the proof of Proposition 2.2.

Proof of Proposition 2.2. First we prove that any infinite ascending chain of subsemigroups
of N

S1 6 S2 6 · · ·

is stationary (this implies that N ∈ Tak(S)). Let us take such a chain. Then

dS1 > dS2 > · · ·

whence there is k ∈ N such that dSk = dSi for all i > k. Given i > k, the fact that Si 6 Si+1 and
dSi = dSi+1 implies that pSi+1 6 pSi . Thus

pSk > pSk+1
> · · · ,
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and then there is ` > k such that pS` = pSi for every i > `. Then in the chain

S` 6 S`+1 6 · · ·

any two of these semigroups only may differ in natural numbers less than p`, and, hence, this chain
is stationary.

Dually Z− satisfies the same condition. Now let

S1 6 S2 6 · · · (3)

be an infinite ascending chain of nontrivial subsemigroups of Z. By Corollary 2.4, either all these
subsemigroups are contained in Z−0 , or all these subsemigroups are contained in N, or there is k ∈ N
such that Si is a subgroup of Z for every i > k. In the first two situations, the chain is stationary as
we proved above. In the third situation, the claim follows immediately from Z being a noetherian
ring. Therefore Z ∈ Tak(S).

As opposed to Proposition 2.2, we have the following.

Proposition 2.5. The additive group Q of rational numbers is not a Takahasi group.

Proof . It suffices to observe that, defining, for each positive integer k, the subgroup Hk as being
the cyclic subgroup of Q generated by 1

2k
, we have the infinite ascending chain

H1 < H2 < H3 < · · ·

of subgroups of Q of rank 1.

A celebrated result of Group Theory, attributed to Higman, Neumann and Neumann, and,
independently to Freudenthall, states that every countable group is embeddable in a 2-generator
group [7, 11, 17]. Thus, by Proposition 2.5, there are finitely generated groups that are not Takahasi
groups.

Now we can prove:

Proposition 2.6. Tak(S) is not closed under:

(i) direct product;

(ii) free product.

Proof . (i) This follows from Proposition 2.1(i) and Proposition 2.2.
(ii) Trivially, all finite semigroups belong to Tak(S). Now, the result follows from Proposi-

tion 2.1(iii) and Proposition 2.2.

On the positive side, the following result provides a wide class of examples of semigroups in
Tak(S).

The quasi-order 6J on S is defined by

a 6J b if a ∈ S1bS1.
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A semigroup S is finite J -above if
{x ∈ S : x >J a}

is finite for every a ∈ S.

Theorem 2.7. Let S be a finite J -above semigroup. Then S ∈ Tak(S).

Proof . Let S be a finite J -above semigroup and suppose that

T1 < T2 < T3 < · · · (4)

is an infinite ascending chain of finitely generated subsemigroups of S. It suffices to show that
rk(Tn) is unbounded.

For each n > 1, we fix a generating set An of Tn of minimum size. Let a ∈ A1. Since a ∈ Tn = A+
n

for every n > 1, we have a ∈ anT 1
n for some an ∈ An. Hence an >J a in S for every n > 1. Since

S is finite J -above, it follows that there exists a refinement

Ti1 < Ti2 < Ti3 < · · ·

of (4) and some
b1 ∈ Ai1 ∩Ai2 ∩Ai3 ∩ · · ·

Proceeding inductively, we assume now that there exists a refinement

Tj1 < Tj2 < Tj3 < · · · (5)

of (4) and some distinct
b1, . . . , bn ∈ Aj1 ∩Aj2 ∩Aj3 ∩ · · ·

Since Tj1 ⊂ Tj2 , there exists some c ∈ Aj2 \ Tj1 . Since c ∈ Tjn \ Tj1 = A+
jn
\A+

j1
for every n > 2, we

have c ∈ T 1
jn
cnT

1
jn

for some cn ∈ Ajn \ Aj1 . Hence cn >J c in S for every n > 2. Since S is finite
J -above, it follows that there exists a refinement

Tk1 < Tk2 < Tk3 < · · ·

of (5) (and therefore of (4)) and some

bn+1 ∈ (Ak1 ∩Ak2 ∩Ak3 ∩ · · · ) \Aj1 .

Since b1, . . . , bn ∈ Aj1 , it follows that b1, . . . , bn+1 are n+1 distinct elements of Ak1∩Ak2∩Ak3∩· · · .
By induction, such a property holds for arbitrary n. In particular, for every n > 1, there exists
some m > 1 such that |Am| > n. Thus rk(Tn) = |An| is unbounded and so S ∈ Tak(S).

A semigroup (monoid) presentation of the form 〈A | ui = vi (i ∈ I)〉 is said to be balanced if
|ui| = |vi| for every i ∈ I.

Since the semigroups in the statement of the next corollary are clearly finite J -above, we
immediately get:
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Corollary 2.8. The following semigroups belong to Tak(S):

(i) finite semigroups;

(ii) free semigroups and free monoids;

(iii) trace monoids;

(iv) semigroups or monoids defined by balanced presentations;

(v) free inverse semigroups and free inverse monoids.

Since Tak(S) ∩ I ⊆ Tak(I), we get also:

Corollary 2.9. Free inverse semigroups and free inverse monoids belong to Tak(I).

We consider next CS and Rees matrix semigroups. But first we need a lemma on ranks of
groups defined by automata. Let A be an alphabet. We denote by A−1 a set of formal inverses
of A. If M is a monoid of type (2, 1), and x 7→ x−1 is the unary operation, we say that a monoid
homomorphism ϕ : (A ∪A−1)∗ →M is matched if a−1ϕ = (aϕ)−1 holds for every a ∈ A.

We say that A = (Q, q0, T, E) is a finite A-automaton if Q is a finite set, q0 ∈ Q, T ⊆ Q and
E ⊆ Q×A×Q, and refer to the elements of Q and E as vertices and edges, respectively.

We say that an (A ∪A−1)-automaton A = (Q, q0, T, E) is:

• dual if
(p, a, q) ∈ E ⇔ (q, a−1, p) ∈ E

holds for all p, q ∈ Q and a ∈ A;

• inverse if it is dual, trim and deterministic;

• Stallings if it is inverse, T = {q0} and the unique vertex which may have outdegree 1 is q0 [2,
Section 2].

Recall that the language recognized by A is the set L(A) of words w ∈ (A ∪ A−1)∗ such that w is
the label of a path from q0 to some t ∈ T .

Lemma 2.10. Let A be a finite alphabet and let ϕ : (A∪A−1)∗ → G be a matched homomorphism
onto a group. Let A = (Q, q0, T, E) be a finite (A∪A−1)-automaton such that (L(A))ϕ = G. Then:

(i) rkG(G) 6 |E|;

(ii) rkG(G) 6 |E| − |Q|+ |{q0} ∪ T | if A is trim.

Proof . Since the trim part of A (i.e. the subautomaton induced by all vertices lying in some
successful path) has at most |E| edges, it is enough to consider the case when A is trim.

Let A1 = (Q1, q0, q0, E1) be the automaton obtained by identifying all the vertices of T with q0.
Clearly, A1 is trim. Then let A2 = (Q1, q0, q0, E2) be the automaton obtained from A1 by adding
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edges of the form p
a−1

−→q whenever E1 contains an edge q
a−→p (a ∈ A ∪ A−1) but no edge p

a−1

−→q.
Note that A2 is a trim dual automaton.

Next let A3 = (Q3, q0, q0, E3) be the inverse automaton obtained by successively identifying all
pairs of edges of the form

q
a←−p a−→r

with a ∈ A∪A−1. This is the procedure known as Stallings foldings. It is well known that the final
result is independent of the order in which foldings are executed (see [2, Section 2]).

Finally, let A4 = (Q4, q0, q0, E4) be the Stallings automaton obtained by successively removing
from A3 all vertices of outdegree 1 that are distinct from q0.

We prove that

(L(A4))ϕ = (L(A3))ϕ = (L(A2))ϕ = (L(A1))ϕ = (L(A))ϕ = G. (6)

We start with the equality (L(A1))ϕ = (L(A0))ϕ. Clearly, L(A) ⊆ L(A1), and so (L(A))ϕ ⊆
(L(A1))ϕ. To prove the opposite inclusion, it suffices to assume that we are identifying q0 with a
single element t ∈ T .

We claim that

if p
v−→q is a path in A and p, q ∈ {q0, t}, then vϕ ∈ G. (7)

Since A is trim, there exists some path q0
u−→t in A. If p = t and q = q0, then uvu ∈ L(A) and so

vϕ = (uϕ)−1(uvu)ϕ(uϕ)−1 ∈ G. The other cases are straightforward variations of this one and can
be omitted. Thus (7) holds.

Now let w ∈ L(A1). Then we may factor w = w0w1 · · ·wn so that

q0
w0−→q0

w1−→· · · wn−→q0

enhances all the occurrences of the vertex q0 in a path of A1 labelled by w. It follows that there
are paths pi

wi−→ri in A with pi, ri ∈ {q0, t} for i = 0, . . . , n. By (7), we get wiϕ ∈ G for every i,
hence w ∈ G = (L(A))ϕ and so (L(A1))ϕ = (L(A))ϕ.

Similarly to the preceding equality, to prove the nontrivial inclusion (L(A2))ϕ ⊆ (L(A1))ϕ, we
may assume that A2 was obtained from A1 by adding the single edge p

a−1

−→q. Let w ∈ L(A2)\L(A1).
Then we may factor w = w0a

−1w1 · · · a−1wn so that

q0
w0−→p a

−1

−→q w1−→· · · a
−1

−→q wn−→q0 (8)

enhances all the occurrences of the new edge in a path of A2 labelled by w. Since A1 is trim, there
exist paths of the form

q0
u−→q, p

v−→q0

in A1. Moreover, all the paths labelled by some wi in (8) can be seen as paths in A1, hence
uav,w0v, uwn, uwiv ∈ L(A1) for i = 1, . . . , n− 1 and we get

wϕ = (w0a
−1w1 · · · a−1wn)ϕ = (w0v)ϕ((uav)ϕ)−1(uw1v)ϕ · · · ((uav)ϕ)−1(uwn)ϕ ∈ G.
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Thus (L(A2))ϕ = (L(A1))ϕ.
The equalities (L(A4))ϕ = (L(A3))ϕ = (L(A2))ϕ are well-known facts from the theory of

Stallings foldings ([2, Section 2]), therefore (6) holds.
Let FGA denote the free group on A and let H be the subgroup of FGA having Stallings

automaton A4 (i.e. H is the canonical pre-image of G in FGA with respect to ϕ). The famous

rank formula for Stallings automata states that rkG(H) = |E4|
2 − |Q4|+ 1, see [2, Proposition 2.6]).

Since G is a homomorphic image of H, it follows that

rkG(G) 6
|E4|

2
− |Q4|+ 1. (9)

Now each time we delete a vertex on constructing A4 from A3, we delete at least two edges, hence

|E4|
2
− |Q4|+ 1 6

|E3|
2
− |Q3|+ 1.

Similarly, each time we identify two vertices on constructing A3 from A2, we identify at least two
pairs of edges, hence

|E3|
2
− |Q3|+ 1 6

|E2|
2
− |Q1|+ 1.

Since |E2| 6 2|E1|, condition (9) and the above inequalities yield

rkG(G) 6 |E1| − |Q1|+ 1. (10)

Now it suffices to note that |E1| 6 |E| and |Q1| = |Q| − |{q0} ∪ T |+ 1.

Let S = M [G, I,Λ, P ] be a Rees matrix semigroup. Given X ⊆ S, i ∈ I and λ ∈ Λ, we write

X(iλ) = X ∩ ({i} ×G× {λ}).

Given X ⊆ S, we write

IX =
{
i ∈ I : X ∩ ({i} ×G× Λ) 6= ∅

}
, ΛX =

{
λ ∈ Λ : X ∩ (I ×G× {λ}) 6= ∅

}
.

Lemma 2.11. Let S = M [G, I,Λ, P ] be a Rees matrix semigroup. Let T 6CS S, i ∈ IT and
λ ∈ ΛT . Then:

(i) T (iλ) is a subgroup of T and T (iλ) ∼= G(iλ) for some G(iλ) 6G G;

(ii) if T is finitely generated, then

rkG(T (iλ)) 6 (rkCS(T ))2 + 1. (11)

Proof . (i) Since T 6CR S makes T a union of groups and {i} × G × {λ}, being an H-class of S,
is a group itself, then T (iλ) is a subgroup of T .
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Write P = (pλi). We define a mapping

ϕ : T (iλ) → G
(i, g, λ) 7→ gpλi

For all g, h ∈ G, we have

((i, g, λ)(i, h, λ))ϕ = (i, gpλih, λ)ϕ = gpλihpλi = ((i, g, λ)ϕ((i, h, λ)ϕ),

hence ϕ is a group homomorphism.
Since ϕ is clearly injective, we get T (iλ) ∼= T (iλ)ϕ, so we may take G(iλ) = T (iλ)ϕ.
(ii) Let A be a generating set for T (as a completely simple semigroup) of minimum size. Note

that
IT = IA, ΛT = ΛA. (12)

We take two new elements q0, t /∈ ΛA and let Q = {q0, t} ∪ ΛA. Let also

E =
{

(q0, g, λ
′) : (i, g, λ′) ∈ A

}
∪
{

(λ′, pλ′i′g, λ
′′) : λ′ ∈ ΛA, (i′, g, λ′′) ∈ A

}
∪
{

(λ, pλi, t)
}

⊆ Q×G×Q.

Then A = (Q, q0, t, E) is a finite G-automaton. Notions such as (successful) path and language
generalize from classical automata theory to G-automata in the obvious way.

We prove that
L(A) = G(iλ). (13)

Let g ∈ L(A). Then there exists a path

q0
g0−→λ0

pλ0i1g1−−−−→λ1

pλ1i2g2−−−−→· · ·
pλn−1in

gn
−−−−−−→λn = λ

pλi−−→t (14)

in A, where (ij , gj , λj) ∈ A for j = 0, . . . , n, i0 = i and

g = g0pλ0i1g1pλ1i2g2 . . . pλn−1ingnpλi. (15)

Hence
(i, gp−1

λi , λ) = (i, g0, λ0)(i1, g1, λ1) · · · (in, gn, λn) ∈ A+ = T

and so (i, gp−1
λi , λ) ∈ T (iλ). Thus g = (i, gp−1

λi , λ)ϕ ∈ T (iλ)ϕ = G(iλ) and so L(A) ⊆ G(iλ).
Conversely, let g ∈ G(iλ). Then (i, gp−1

λi , λ) ∈ T (iλ), therefore there exist (i0, g0, λ0), (i1, g1, λ1), . . . ,
(in, gn, λn) ∈ A such that

(i0, g0, λ0)(i1, g1, λ1) · · · (in, gn, λn) = (i, gp−1
λi , λ).

It is straightforward to check that this implies the existence of a path of the form (14) in A. Since
(15) holds as well, it follows that g ∈ L(A) and so (13) holds.

View E as a finite alphabet and let E−1 be a set of formal inverses of E. Let θ : (E∪E−1)∗ → G
be the matched homomorphism which associates to each e ∈ E its label. Replacing G by G′ =
Im(θ), we may assume that θ is surjective.

11



Let B be the finite E-automaton obtained by replacing the label of each edge e in A by e itself.
In view of (13), we have G(iλ) = L(A) = (L(B))θ. To prove that A is trim, we take λ′ ∈ ΛA. Then
A contains elements of the form (i, g1, λ1), (i2, g2, λ

′) and (i3, g3, λ). It is easy to check that there
exists a path

q0
g1−→λ1

pλ1i2g2−−−−→λ′
pλ′i3

g3
−−−−→λ pλi−−→t

in A, hence A is trim, and so is B.
Thus we may apply Lemma 2.10 to get

rkG(Giλ) 6 |E| − |Q|+ 2 6 |A|+ |ΛA| · |A|+ 1− |ΛA| = (|ΛA|+ 1)(|A| − 1) + 2.

Since |ΛA| 6 |A| = rkCS(T ), we get in view of (i)

rkG(T iλ) 6 (rkCS(T ))2 + 1

as required.

Theorem 2.12. Let S = M [G, I,Λ, P ] be a Rees matrix semigroup. Then, S ∈ Tak(CS) if and
only if G ∈ Tak(G).

Proof . If H is a subgroup of G, then H 6CS S up to isomorphism and rkCS(H) = rkG(H). It
follows that if S ∈ Tak(CS), then G ∈ Tak(G).

Conversely, assume that G is a Takahasi group. Let N > 0 and suppose that

T1 6 T2 6 T3 6 · · · (16)

is an infinite chain of completely simple subsemigroups of S with rkCS(Tn) 6 N for every n > 1. If
rkCS(Tn) is realized by An, it follows from (12) that

|ITn | = |IAn | 6 |An| = rkCS(Tn) 6 N.

Since IT1 ⊆ IT2 ⊆ · · · , then this chain must be stationary. Similarly, the chain ΛT1 ⊆ ΛT2 ⊆ · · ·
is stationary. Removing finitely many terms of (16) if needed, we may assume that ITn = I ′ and
ΛTn = Λ′ for all n > 1, for some I ′ and Λ′ finite.

In view of Lemma 2.11(i), for all i ∈ I ′ and λ ∈ Λ′, we have chains of subgroups

T
(iλ)
1 6 T

(iλ)
2 6 · · · (17)

By the proof of Lemma 2.11(i), we get a chain

G
(iλ)
1 6 G

(iλ)
2 6 · · · (18)

of subgroups of G. Since Lemma 2.11(ii) yields

rkG(G(iλ)
n ) = rkG(T (iλ)

n ) 6 N2 + 1

and G ∈ Tak(G), each of the chains (18) (and so each of the chains (17)) must be stationary. Since
I ′ and Λ′ are both finite and

Tn =
⋃
i∈I′

⋃
λ∈Λ′

T (iλ)
n

for every n > 1, it follows that the chain (16) is also stationary. Therefore S ∈ Tak(CS).
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Corollary 2.13. Let S be a completely simple semigroup and let T 6CS S. Let a ∈ T and let G
and H be the H-classes of a in S and in T , respectively. If T ∈ Tak(CS) and H is a subgroup of G
of finite index, then S ∈ Tak(CS).

Proof . By Theorem 1.2, H ∈ Tak(G) implies G ∈ Tak(G). Now the claim follows from Theo-
rem 2.12.

We consider next Clifford semigroups. This class of semigroups admits various different char-
acterizations. One of them states that a semigroup S is a Clifford semigroup if and only if H is a
semilattice congruence on S.

Theorem 2.14. Let S be a Clifford semigroup. Then, S ∈ Tak(C) if and only if every H-class
of S is a Takahasi group.

Proof . It is clear that if S ∈ Tak(C), then every H-class of S is a Takahasi group.
Conversely, assume that every H-class of S is a Takahasi group. Let H be an H-class of S.

First, we show that given T 6C S such that T ∩H 6= ∅,

rkG(T ∩H) 6 rkC(T ). (19)

Let e denote the identity element of H. Since T ∩H 6= ∅ and T is a Clifford subsemigroup of S,
then T ∩H is a group of H. Let T ′ = {t ∈ T : te ∈ H}. We claim that

t ∈ T ′ ⇔ te 6<J e, (20)

where <J denotes the J -order in T .
Indeed, we have always te 6J e. Since J =H in a Clifford semigroup, we get

te 6<J e⇔ te J e⇔ te H e⇔ te ∈ H ⇔ t ∈ T ′

and so (20) holds.
If t, u ∈ T ′, then

tue = t(eue) = (te)(ue) ∈ H, (21)

hence T ′ is a subsemigroup of T .
Assume first that T ′ = T . Then

ψ : T → T ∩H
t 7→ te

is a semigroup homomorphism by (21). Given t ∈ T , and since idempotents are central in a Clifford
semigroup, we have

(tψ)−1 = (te)−1 = e−1t−1 = et−1 = t−1e = t−1ψ,

hence ψ is a homomorphism of Clifford semigroups. Since ψ fixes each element of T ∩H, then it is
surjective and so

rkG(T ∩H) = rkC(T ∩H) 6 rkC(T ).
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Thus we may assume that T \ T ′ 6= ∅. Let (T ∩ H)0 be the Clifford semigroup obtained by
adjoining a zero element 0 to T ∩H. We define a mapping ψ : T → (T ∩H)0 by

tψ =

{
te if t ∈ T ′
0 otherwise

Let t, u ∈ T . If t, u ∈ T ′, then (tu)ψ = tue = (tψ)(uψ) by (21). Suppose next that u /∈ T ′. By (20),
we have ue <J e, hence tue <J e. It follows that tu 6∈ T ′, whence (tu)ψ = 0 = (tψ)(uψ). Finally,
assume that t /∈ T ′. Then te <J e by (20), hence tue = teu <J e and so (tu)ψ = 0 = (tψ)(uψ).
Thus ψ is a semigroup homomorphism. Similarly to the case T ′ = T , we show that (tψ)−1 = t−1ψ,
hence ψ is a homomorphism of Clifford semigroups. Since T ′ 6= T and ψ fixes each element of
T ∩H, then it is surjective and so

rkC((T ∩H)0) 6 rkC(T ).

If A is a generating set of minimum size for (T∩H)0 in C, then A\{0} generates T∩H. Therefore (19)
holds.

Now let N > 0 and suppose that

T1 6 T2 6 T3 6 · · · (22)

is an infinite chain of Clifford subsemigroups of S with rkC(Tn) 6 N for every n > 1. Consider the
canonical homomorphism ϕ : S → S/ H and write Yn = Tnϕ. Since the free semilattice on a set
with m elements has 2m − 1 elements, it follows from rkC(Tn) 6 N that

|Yn| 6 2N − 1.

Therefore the chain Y ′ = Y1 ⊆ Y2 ⊆ · · · must be stationary. Removing finitely many terms of
(22) if needed, we may assume that Yn = Y ′ for every n > 1. Thus Y ′ consists of finitely many
H-classes H1, . . . ,Hm of S with m 6 2N − 1.

For each i = 1, . . . ,m, we get a chain of subgroups of Hi of the form

T1 ∩Hi 6 T2 ∩Hi 6 · · · (23)

and from (19) we have rkG(Tn ∩Hi) 6 rkC(Tn) 6 N for every n > 1. Since Hi ∈ Tak(G), the chain
(23) must be stationary for each i. As Y ′ is finite and

Tn =

m⋃
i=1

(Tn ∩Hi)

for every n > 1, it follows that the chain (22) is also stationary. Therefore S ∈ Tak(C).

We have not succeeded so far on establishing whether a completely regular semigroup where
the H-classes are Takahasi groups belongs to Tak(CR). A first obstacle is that a finitely generated
completely regular semigroup may have infinitely many H-classes. The first such example was
found by Clifford in [6, Section 6]: the free completely regular semigroup on two generators.
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We introduce now a notion of index for Clifford semigroups. Let S be a Clifford semigroup with
H-classes {Hi : i ∈ I} and let T be a (2, 1)-subalgebra of S. Then T is also a Clifford semigroup
and T = ·∪i∈I(Hi ∩ T ). Thus, each Hi ∩ T is the empty set or a subgroup of Hi. Define the index
of T in S, which we denote by [S :T ], by

[S :T ] = sup
{

[Hi :Hi ∩ T ] : i ∈ I
}
,

with the convention that, for any group G, [G : ∅] is the order of G. Clearly, this definition does not
give rise to any contradiction if S and T are groups. Theorem 1.2 can be generalized as follows.

Theorem 2.15. If S is a Clifford semigroup with a (2, 1)-subalgebra T of finite index such that
T ∈ Tak(C), then S ∈ Tak(C).

Proof . Let S and T as in the statement. Write S/H= {Hi : i ∈ I}. Let i ∈ I. If Hi ∩ T = ∅,
then Hi is a finite group, by hypothesis, hence a Takahasi group. Besides, since T ∈ Tak(C),
every nonempty group Hi ∩ T belongs to Tak(C), and therefore is a Takahasi group. Thus, by
Theorem 1.2, Hi is a Takahasi group. Now Theorem 2.14 gives the desired conclusion.

Now we will compare this notion of index with a notion of index introduced by Gray and
Ruskuc [8]. Let S be a semigroup and let T be a subsemigroup of S. Define the binary relation
LT on S by

a LT b ⇔ T 1a = T 1b

for all a, b ∈ S. Define RT dually, and HT= LT ∩ RT . Each of these relations is an equivalence
relation on S and both T and S \ T are union of LT -classes (resp. RT -classes, HT -classes). In
this context, those authors have defined the Green index of T in S, which we denote by [S :T ]Gr,
as n + 1, where n is the cardinal of the set of HT -classes contained in S \ T . This notion when
restricted to groups S and T coincides with the usual notion of index of a subgroup in a group.
Let us see how it relates with our notion of index in the case of Clifford semigroups.

Proposition 2.16. Let S be a Clifford semigroup such that S/H is finite and let T be a (2, 1)-
subalgebra of S.

If [S :T ] <∞, then [S :T ]Gr <∞.

Proof . Write S/H= {Hi : i ∈ I}. Since HT⊆H, each H-class Hi is a union of HT -classes.
Suppose that Hi ∩ T 6= ∅ and let a, b ∈ Hi. If (Hi ∩ T )a = (Hi ∩ T )b, then a ∈ Tb and b ∈ Ta,

whence a LT b. Dually, if a(Hi ∩ T ) = b(Hi ∩ T ), then a RT b. Let

I1 =
{
i ∈ I : Hi ∩ T = ∅

}
and I2 = I \ I1.

Let
X =

⋃
i∈I2

{
((Hi ∩ T )a, a(Hi ∩ T )) : a ∈ Hi

}
.

Then it is well defined the mapping ψ : X → S/HT such that

((Hi ∩ T )a, a(Hi ∩ T ))ψ = HT
a ,
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for i ∈ I2 and a ∈ Hi, where HT
a denotes the HT -class of a.

Assume that [S : T ] < ∞. Then Hi is finite for any i ∈ I1. Moreover, X is finite, since I is
finite, and so is [S :T ], whence Xψ is finite too. Clearly

S/HT=
( ⋃
i∈I1

{
HT
a : a ∈ Hi

})
∪ Xψ,

hence [S :T ]Gr 6
∣∣S/HT ∣∣ <∞.

Next, we give an example that shows the analogue of Theorem 2.15 for Green index as well as
the converse of Proposition 2.16 do not hold.

Example 2.17. Let G0 be a finitely generated group that is not a Takahasi group (we have observed
that such a group exists). Let A be a finite generating set of G0 and let G1 be the free group over A.
Then there is a surjective homomorphism φ : G1 → G0. Let S = G0 ·∪G1 endowed with the product
that extends the products in G0 and in G1 and such that, for a ∈ G0 and b ∈ G1, a · b = a(bφ)
and b · a = (bφ)a. Then S is a Clifford semigroup (it is a strong semilattice of groups) such that
[S :G1]Gr = 2 and [S :G1] = |G0| = ∞. Moreover, by Theorem 1.1, G1 is a Takahasi group.
However, S 6∈ Tak(C) since G0 6∈ Tak(C).

3 Periodic points

In this section we apply the results of Section 2 to the study of the subsemigroups of periodic points
as well as of the periodic orbits of the endomorphisms of some classes of semigroups.

For technical reasons, in this section we consider the empty set to be a semigroup (of rank 0).
Let V be one of the varieties considered in Section 1. Given S ∈ V we denote by Aut(S) (re-

spectively End(S)) the automorphism group (respectively endomorphism monoid) of S. Note that,
when dealing with homomorphisms, for the varieties of type (2, 1) there is no need to specify the
unary operation: any semigroup homomorphism between inverse (respectively completely regular)
semigroups preserves necessarily the respective unary operation.

Given ϕ ∈ End(S), its fixed point subsemigroup is

Fix(ϕ) = {a ∈ S : aϕ = a}

and its periodic point subsemigroup is

Per(ϕ) =
⋃
n>1

Fix(ϕn).

Notice that Fix(ϕ) and Per(ϕ) are actually V-subalgebras of S.
Given x ∈ Per(ϕ), the period of x is the least n > 1 such that xϕn = x.
Let UA(V) denote the class of all S ∈ V such that

∃N ∈ N, ∀ϕ ∈ Aut(S), rk(Fix(ϕ)) 6 N.
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Similarly, we denote by UE(V) the class of all S ∈ V such that

∃N ∈ N, ∀ϕ ∈ End(S), rk(Fix(ϕ)) 6 N.

Clearly, UE(V) ⊆ UA(V). By considering the identity automorphism, every S ∈ UA(V) must be
finitely generated. Note that, in view of (1), the definitions of UA(V) and UE(V) would not be
affected if we had replaced rk by rkV . In the case that V is one of the varieties of type (2, 1), if
S ∈ V, then Aut(S) (respectively End(S)) is formed by all semigroup automorphisms (respectively
semigroup endomorphisms) of S, as we had observed. Thus, in this case we will refer to the
classes UA(V) and UE(V) simply as UA and UE, respectively. Observe, however, that semigroup
homomorphisms between monoids do not necessarily respect the identity.

Let FGn denote the free group of rank n ∈ N. Using their sophisticated train track techniques,
Bestvina and Handel proved in [3] that, for every ϕ ∈ Aut(FGn),

rk(Fix(ϕ)) 6 n.

Latter, Imrich and Turner used this fact to prove in [12] that the same relation holds for every
ϕ ∈ End(FGn). Thus FGn ∈ UE for every n ∈ N.

More generally, as stated in Theorem 1.3, fundamental groups of finite graphs of groups with
finitely generated virtually nilpotent vertex groups and finite edge groups belong to UE.

For semigroups, we should mention that in the proof of [18, Theorem 3.1] it was shown that,
whenever ϕ is an endomorphism of a finitely generated trace monoid (i.e. partially commutative
monoid) M(A, I), we have rkM(Fix(ϕ)) 6 2|A|. Therefore M(A, I) ∈ UE(M) if A is finite.

Next, in a series of results, we provide some more instances of semigroups in UE.

Lemma 3.1. Let S be a completely regular semigroup with finitely many H-classes. If all H-classes
of S are in UE, then S ∈ UE.

Proof . Let H1, . . . ,Hn be the H-classes of S. For i = 1, . . . , n, assume that

rk(Fix(ψ)) 6 Ni for every ψ ∈ End(Hi). (24)

We show that

rk(Fix(ϕ)) 6
n∑
i=1

Ni (25)

for every ϕ ∈ End(S).
Fix ϕ ∈ End(S) and let

I =
{
i ∈ {1, . . . , n} : Fix(ϕ) ∩Hi 6= ∅

}
.

If i ∈ I, then Hiϕ∩Hi 6= ∅, and this yields Hiϕ ⊆ Hi since the H-classes are the maximal subgroups
of S ∈ CR. For every i ∈ I, let ϕi denote the restriction of ϕ to Hi, which is itself an endomorphism.
It is immediate that

Fix(ϕ) =
⋃
i∈I

Fix(ϕi).
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In view of (24), we get

rk(Fix(ϕ)) 6
∑
i∈I

rk(Fix(ϕi)) 6
∑
i∈I

Ni 6
n∑
i=1

Ni

and so (25) holds. Therefore S ∈ UE.

Proposition 3.2. The following semigroups belong to UE:

(i) finitely generated completely simple semigroups with H-classes in UE;

(ii) finitely generated Clifford semigroups with H-classes in UE.

Proof . (i) Let S = M [G, I,Λ, P ] be finitely generated. Then both I and Λ must be finite. Thus
S has finitely many H-classes and the claim follows from Lemma 3.1.

(ii) Let S ∈ C. Then the canonical mapping S → S/H is a surjective homomorphism, and S/H
is a semilattice. Thus, if S is finitely generated, then S/H is also finitely generated. Since finitely
generated semilattices are well known to be finite, we may now apply Lemma 3.1.

It was noticed in [1] that there exist automorphisms ϕ of the group FG2 × Z such that neither
Fix(ϕ) nor Per(ϕ) is finitely generated as a group. Hence FG2×Z 6∈ UA. Now we give an example
of a finite J -above semigroup which satisfies the analogous property.

Example 3.3. Let S be the semigroup defined by the presentation 〈 a, b, c | cac = cbc 〉. This
semigroup is finite J -above, since |cac| = |cbc|. Clearly, there exists an endomorphism ϕ of S
satisfying aϕ = b, bϕ = a and cϕ = c. Since ϕ2 = idS, this homomorphism is an automorphism
of S. The elements of S

cac, (ca)2c, (ca)3c, . . .

are pairwise distinct and belong to Fix(ϕ). By definition of S, given n ∈ N, the nontrivial factor-
izations of (ca)nc in S of length two are (ca)nc = uv, where

(u, v) =
(
(ca)kc, (ac)n−k

)
or (u, v) =

(
(ca)k+1, (ca)n−k−1c

)
,

with k ∈ {0, . . . , n−1}. However, in any of these situations, {u, v} 6⊆ Fix(ϕ). Then any generating
set of Fix(ϕ) contains cac, (ca)2c, (ca)3c, . . . , and hence Fix(ϕ) is not finitely generated. Therefore
S 6∈ UA. Notice that Per(ϕ) = Fix(ϕ), since ϕ2 = ϕ.

The following result and its corollary show that the above counterexample is in some sense
minimal among the semigroups not in UA defined by one-relator balanced presentations.

Theorem 3.4. Let M be the monoid defined by a finite presentation of the form

〈A | a1a2 = a3a4〉, (26)

with a1, . . . , a4 ∈ A not necessarily distinct. Let ϕ ∈ End(M). Then

rkM(Fix(ϕ)) 6 |A|.
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Proof . We use induction on |A|. The case |A| = 1 is trivial, since Fix(ϕ) = {1} or Fix(ϕ) = M .
Now assume that |A| > 1 and the claim holds for smaller alphabets.

The possibility of induction is legitimate since any submonoid of M generated by a proper
subset of A can still be defined by a presentation of the form (26) as we prove next. Let A′ be such
a subset, and let M ′ be the submonoid of M generated by A′. If a1, . . . , a4 ∈ A′, then it is easy
to see that M ′ is presented by 〈A′ | a1a2 = a3a4〉, and M is the free product of M ′ and the free
monoid on A \A′. Assume now that {a1, . . . , a4} 6⊆ A′.

Suppose that a1 6= a3 and a2 6= a4. If we view (26) as a group presentation, it becomes a one-
relator presentation with a cyclically reduced relator a1a2a

−1
4 a−1

3 . By Magnus’ famous Freiheitssatz
(see [16]), since the subgroup generated by A′ misses one of the generators occurring in the cyclically
reduced relator, it is the free group on A′. Now it follows easily that M ′ is the free monoid on A′,
hence trivially definable by a presentation of the form (26).

Finally, by left-right symmetry, we only need to consider the case of presentations of the form
〈A | ab = a2〉 or 〈A | ab = ac〉. In the first case, we may still use the Freiheitssatz since ba−1 is a
cyclically reduced relator where a and b both occur. The second case follows easily from the fact
that there are no nontrivial overlappings involving ab and ac, thus every application of the relation
ab = ac (involving a letter which is not in A′) must be “undone” the exact same way. That is, M ′

is the free monoid on A′.
Let Af be the set of letters of A occurring in any word representing any fixed point of ϕ. Let

M ′ denote the submonoid of M generated by Af . Then u = uϕ for all u ∈ Fix(ϕ) yields Afϕ ⊆M ′,
and so the restriction ϕ′ = ϕ|M ′ is an endomorphism of M ′. Moreover, Fix(ϕ) = Fix(ϕ′).

If Af ⊂ A, we get
rkM(Fix(ϕ)) = rkM(Fix(ϕ′)) 6 |Af | < |A|

by the induction hypothesis. Now assume that Af = A.
Before proceeding, let us notice that, since words representing the same element of M must

have the same length, we have a natural concept of length for the elements of M .
Then, given a ∈ A, there exist x, y ∈ M such that xay ∈ Fix(ϕ). Thus, since xay = (xay)ϕn

for all n > 1, the element aϕn is a factor of xay, and |aϕn| 6 |xay| for all n > 1. Therefore
{a, aϕ, aϕ2, . . . } must be finite.

It follows that, for every a ∈ A, there exist ma > 0 and pa > 1 such that aϕma+pa = aϕma .
For any integers m and p such that m > ma and p is positive multiple of pa for all a ∈ A, we have
aϕm+p = aϕm for every a ∈ A. Thus, we may take such an m and such a p satisfying m = p − 1,
yielding aϕ2p−1 = aϕp−1 for all a ∈ A. Hence, for every u ∈M ,

uϕ2p−1 = uϕp−1 (27)

and, in general, uϕjp−1 = uϕp−1 for every j > 1. It follows that

uϕn = 1⇒ uϕp−1 = 1 (28)

for all u ∈M and n > 1. We now prove that

Fix(ϕ) = (Fix(ϕp−1))ϕp. (29)
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If u ∈ Fix(ϕ), then u = uϕp−1 = uϕp yields u ∈ (Fix(ϕp−1))ϕp. Conversely, let v ∈ Fix(ϕp−1)
and u = vϕp. Then, in view of (27), uϕ = vϕp+1 = vϕp−1ϕp+1 = vϕ2p = vϕp = u, and so (29)
holds.

Thus rkM(Fix(ϕ)) 6 rkM(Fix(ϕp−1)). By replacing ϕ by ϕp−1, in view of (28) this allows us
to assume that

aϕn = 1⇒ aϕ = 1

for all a ∈ A and n > 1. Let

A0 = A ∩ 1ϕ−1 and A1 = A \A0 .

Then
A1ϕ

n ⊆M \A∗0 (30)

for every n > 1.
Now we split our discussion into two cases. We consider first the case A0 6= ∅.
Consider the homomorphism between free monoids π : A∗ → A∗1 which erases the letters of A0.

Let M1 be the monoid defined by the presentation

〈A1 | (a1a2)π = (a3a4)π〉. (31)

We claim that (31) is equivalent to some presentation of the form (26). This clearly holds if
|(a1a2)π| = |(a3a4)π|. On the other hand, the facts that 1π−1 = A∗0, (a1a2)ϕ = (a3a4)ϕ and in M
there is no invertible elements other than 1 imply that (a1a2)π = 1 if and only if (a3a4)π = 1.
Therefore we are left, in view of left-right symmetry, with the case a1, a3, a4 ∈ A1 and a2 ∈ A0.

Suppose that a1 ∈ {a3, a4}. Then |(a1a2)ϕ| = |(a3a4)ϕ| implies aiϕ = 1 for some i ∈ {3, 4},
contradicting ai ∈ A1. Hence a1 /∈ {a3, a4}. But then M1 is the free monoid on A1 \ {a1}.

Let θ : A∗ → M and θ1 : A∗1 → M1 be the canonical homomorphisms. Since both homomor-
phisms πθ|A∗1

ϕ and θϕ coincide for letters of A0 and A1, we have

πθ|A∗1
ϕ = θϕ. (32)

As Ker(θ) is the congruence generated by the relation a1a2 = a3a4 and (a1a2)πθ1 = (a3a4)πθ1,
there exists a homomorphism π′ : M →M1 such that

θπ′ = πθ1. (33)

On the other hand, since Ker(θ1) is the congruence generated by the relation (a1a2)π = (a3a4)π
and (a1a2)πθ|A∗1

ϕ = (a3a4)πθ|A∗1
ϕ in view of (32), there exists a homomorphism ψ : M1 →M such

that
θ1ψ = θ|A∗1

ϕ. (34)

We show that
π′ψ = ϕ. (35)
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Indeed, since θ is onto, (35) follows from

θπ′ψ = πθ1ψ = πθ|A∗1
ϕ = θϕ,

where these equalities come from (33), (34) and (32), respectively.
We show next that

Fix(ϕ) = (Fix(ψπ′))ψ. (36)

Let v ∈ A∗ be such that vθ ∈ Fix(ϕ). By (32) and (34), we have

vθ = vθϕ = vπθϕ = vπθ1ψ.

Now (34), (32) and (33) yield

(vπθ1)ψπ′ = vπθϕπ′ = vθϕπ′ = vθπ′ = vπθ1,

hence vπθ1 ∈ Fix(ψπ′) and Fix(ϕ) ⊆ (Fix(ψπ′))ψ.
Conversely, let v ∈ A∗1 be such that vθ1 ∈ Fix(ψπ′). Then (35) yields

vθ1ψϕ = vθ1ψπ
′ψ = vθ1ψ,

hence (Fix(ψπ′))ψ ⊆ Fix(ϕ) and (36) holds.
Now we may apply the induction hypothesis to the endomorphism ψπ′ of M1 to get

rkM(Fix(ψπ′)) 6 |A1|.

Therefore (36) yields
rkM(Fix(ϕ)) 6 rkM(Fix(ψπ′)) 6 |A1| < |A|

and the case A0 6= ∅ is settled.
We assume now that A0 = ∅. By (30), we have |aϕ| > 1 for every a ∈ A = A1. Recall that we

are considering the case A = Af . Thus, if there exists a ∈ A such that |aϕ| > 1, then |uϕ| > |u|
for every u ∈M that has a as a factor, contradicting the fact that a ∈ Af . It follows that

|aϕ| = 1 for every a ∈ A. (37)

Let B = A \ {a1, . . . , a4} and C = {a1, . . . , a4}. Any word u of A∗ can be factorized in a
unique way in the form u = w0u1w1 · · ·unwn, where n > 0, w0, wn ∈ B∗, w1, . . . , wn−1 ∈ B+ and
u1, . . . , un ∈ C∗. A word v of A∗ represents the same element of M as such a word u if and only
if v = w0v1w1 · · · vnwn, where v1, . . . , vn ∈ C∗ are such that ui and vi represent the same element
of M for every i = 1, . . . , n. Then, in view of (37) and that every letter of B occurs in a fixed point
of ϕ, we have

aϕ = a for every a ∈ B, (38)

and Cϕ ⊆ C. Let MCϕ be the submonoid of M generated by Cϕ. Then

Fix(ϕ) =
(
B ∪ Fix

(
ϕ|MCϕ

))∗
.
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If Cϕ 6= C, by the induction hypothesis it follows that

rkM(Fix(ϕ)) = |B|+ rkM
(
Fix
(
ϕ|MCϕ

))
6 |B|+ |Cϕ| < |B|+ |C| = |A|.

Suppose now that Cϕ = C. Then ϕ induces a permutation on A. If ϕ is the identity of M , then
Fix(ϕ) = M , whence rkM(Fix(ϕ)) = |A|. If ϕ is not the identity of M and the words a1a2 and a3a4

are equal, then M is the free monoid on A, and Fix(ϕ) = B∗, whence rkM(Fix(ϕ)) = |B| < |A|. We
proceed under the assumption that ϕ is not the identity of M and that the words a1a2 and a3a4 are
distinct. In view of (38), and using left-right symmetry, we may assume that a1ϕ 6= a1. Suppose
that a1ϕ 6= a3. Then, from (a1a2)ϕ = (a3a4)ϕ and the definition of M , we have a1ϕ = a3ϕ and
a2ϕ = a4ϕ, whence a1 = a3 and a2 = a4, a contradiction. Hence a1ϕ = a3. It follows that a1 6= a3.
From the fact that ϕ is induces a permutation on A and the definition of M , the homomorphism ϕ
must permute a1 with a3 as well as a2 with a4. We split our discussion into two cases.

In the case that a2 = a4 it is easy to check that

Fix(ϕ) =
(
(A \ {a1, a3}) ∪ {a1a2}

)∗
.

Therefore rkM(Fix(ϕ)) < |A| in this case.
Assume now that a2 6= a4. Then our defining relation of M must be of the form ab = cd or

ab = ba or a2 = b2, with a, b, c, d distinct. If it is ab = cd or ab = ba, it is easy to check that

Fix(ϕ) = (B ∪ {ab})∗,

yielding rkM(Fix(ϕ)) < |A|. Let us consider the case where the relation is a2 = b2. The rewriting
system (see [5] for details) {

b2 −→ a2, ba2 −→ a2b
}

is noetherian (there are no infinite chains of reductions since the lexicographic order is a well-order)
and locally confluent (since the unique overlappings between relators are those of the form bb2 = b2b
and b(ba2) = b2a2, and both lead to commutative diagrams such as

b3 //

��

ba2

}}

b2a2

��

// ba2b // a2b2

uu
a2b a4

The rewriting system is then confluent and the set of irreducible words is a set of normal forms
for M . The irreducible words are those of the form w0v1w1 · · · vnwn, where n > 0, w0, wn ∈ B∗,
w1, . . . , wn−1 ∈ B+ and v1, . . . , vn ∈ a∗(ba)∗{1, b}.

Now, it is easy to check that
Fix(ϕ) =

(
B ∪

{
a2
})∗

,

and rkM(Fix(ϕ)) = |B|+ 1 < |A| as required.

Now, we may conclude the following.
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Corollary 3.5. Any monoid (respectively semigroup) defined by a finite presentation of the form

〈A | a1a2 = a3a4〉,

with a1, . . . , a4 ∈ A not necessarily distinct, is in UE(M) (respectively UE(M)).

Proof . The statement for monoids follows directly from Theorem 3.4. Suppose that S is a semi-
group defined by such a (semigroup) presentation 〈A | a1a2 = a3a4〉. Since S does not have an
identity, the monoid S1 is also defined by the (monoid) presentation 〈A | a1a2 = a3a4〉. Then any
(semigroup) endomorphism ϕ of S can be naturally extended to a (monoid) endomorphism ϕ1 of S1.
For such endomorphisms, we have Fix(ϕ1) = Fix(ϕ) ∪ {1}, whence rk(Fix(ϕ)) = rkM(Fix(ϕ1)).
The desired conclusion now follows from Theorem 3.4.

Contrarily to what happens in free groups, Rodaro and the third author proved [19, Theo-
rem 3.10 and Corollary 3.11] that any nontrivial finitely generated free inverse monoid has auto-
morphisms ϕ such that Fix(ϕ) is not finitely generated. Hence nontrivial finitely generated free
inverse monoids are not in UA(M), and thus not in UE(M) either.

Next we will see some relationships between the classes Tak(V) and the classes UA and UE.
A simple adaptation of an argument known for groups (see e.g. the proof of [1, Theorem 5.1])

allows us to prove the following:

Theorem 3.6. Let V be one of the varieties of type (2) or (2, 1) considered in Section 1 and let
S ∈ Tak(V).

(i) If S ∈ UA, then Per(ϕ) is finitely generated for every ϕ ∈ Aut(S).

(ii) If S ∈ UE, then Per(ϕ) is finitely generated for every ϕ ∈ End(S).

Proof . (i) If S ∈ UA, then there exists some N ∈ N such that

∀ψ ∈ Aut(S), rk(Fix(ψ)) 6 N. (39)

Let ϕ ∈ Aut(S). It is easy to see that

m|n ⇒ Fix(ϕm) 6 Fix(ϕn) (40)

holds for all m,n > 1. Hence we have an ascending chain of subsemigroups of S of the form

Fix(ϕ) 6 Fix(ϕ2!) 6 Fix(ϕ3!) 6 · · ·

By (39), we have rk(Fix(ϕn!)) 6 N for every n > 1. Since S ∈ Tak(V), there exists some k > 1
such that Fix(ϕn!) = Fix(ϕk!) for every n > k. In view of (40), we get

Per(ϕ) =
⋃
n>1

Fix(ϕn) =
⋃
n>1

Fix(ϕn!) = Fix(ϕk!).

Therefore rk(Per(ϕ)) = rk(Fix(ϕk!)) 6 N by (39) and so Per(ϕ) is finitely generated.
(ii) Similar.

23



We remark that, even for S ∈ Tak(V), the conditions S ∈ UA or S ∈ UE are far from
necessary to get finitely generated periodic subalgebras. For instance, it follows from the results in
[19, Section 3] that Fix(ψ) is not finitely generated when M is the free monogenic inverse monoid
and ψ ∈ Aut(M) sends the generator a to its inverse a−1. However, by [19, Theorem 3.8], Per(ϕ)
is finitely generated for every endomorphism ϕ of a free inverse monoid of finite rank.

A straightforward adaptation of the proof of [1, Corollary 5.2] yields the following corollary.
We include the (short) proof for completeness.

Corollary 3.7. Let V be one of the varieties of type (2) or (2, 1) considered in Section 1 and let
S ∈ Tak(V).

(i) If S ∈ UA and ϕ ∈ Aut(S), then there exists a constant Rϕ > 0 such that every a ∈ Per(ϕ)
has period less or equal to Rϕ.

(ii) If S ∈ UE and ϕ ∈ End(S), then there exists a constant Rϕ > 0 such that every a ∈ Per(ϕ)
has period less or equal to Rϕ.

Proof . (i) By Theorem 3.6, we may write Per(ϕ) = {a1, . . . , ar}+. Let Rϕ denote the least
common multiple of the periods of the elements a1, . . . , ar. Let a ∈ Per(ϕ). Then there exist
i1, . . . , in ∈ {1, . . . , r} such that a = ai1 · · · ain . It follows that

aϕRϕ = (ai1 · · · ain)ϕRϕ = (ai1ϕ
Rϕ) · · · (ainϕRϕ) = ai1 · · · ain = a,

hence a has period less or equal to Rϕ.
(ii) Similar.

We note that Theorem 3.6 and Corollary 3.7 also hold for V = M by replacing UA and UE
by UA(M) and UE(M), respectively.

Now we get the following result:

Theorem 3.8. Let S ∈ CS ∪ C be finitely generated with all H-classes in Tak(G) ∩UE. Then:

(i) Per(ϕ) is finitely generated for every ϕ ∈ End(S);

(ii) for every ϕ ∈ End(S), there exists a constant Rϕ > 0 such that every a ∈ Per(ϕ) has period
less or equal to Rϕ.

Proof . By Theorems 2.12 or 2.14, we have accordingly S ∈ Tak(CS) or S ∈ Tak(C). By Propo-
sition 3.2 and Theorem 3.6(ii), Per(ϕ) is finitely generated for every ϕ ∈ End(S). In view of
Corollary 3.7(ii), we may now obtain (ii).

Similarly, in view of Corollaries 3.5 and 3.7(ii) and Theorem 3.6(ii), we get also

Theorem 3.9. Let S be the monoid (respectively semigroup) defined by a finite presentation of the
form

〈A | a1a2 = a3a4〉,

with a1, . . . , a4 ∈ A not necessarily distinct. Then:
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(i) Per(ϕ) is finitely generated for every ϕ ∈ End(S);

(ii) for every ϕ ∈ End(S), there exists a constant Rϕ > 0 such that every a ∈ Per(ϕ) has period
less or equal to Rϕ.

Note that Example 3.3 shows that Theorem 3.9 cannot be generalized to presentations with a
relation u = v such that |u| = |v| = 3.
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