
ar
X

iv
:1

70
2.

04
02

9v
1 

 [
m

at
h.

N
A

] 
 1

4 
Fe

b 
20

17

Spectral Lanczos’ tau method for systems of nonlinear

integro-differential equations∗

P. B. Vasconcelos† J. Matos‡ M. S. Trindade§

Abstract

In this paper an extension of the spectral Lanczos’ tau method to systems of nonlin-

ear integro-differential equations is proposed. This extension includes (i) linearization

coefficients of orthogonal polynomials products issued from nonlinear terms and (ii) re-

cursive relations to implement matrix inversion whenever a polynomial change of basis

is required and (iii) orthogonal polynomial evaluations directly on the orthogonal basis.

All these improvements ensure numerical stability and accuracy in the approximate solu-

tion. Exposed in detail, this novel approach is able to significantly outperform numerical

approximations with other methods as well as different tau implementations. Numerical

results on a set of problems illustrate the impact of the mathematical techniques intro-

duced.

Keywords: spectral (tau) method, nonlinear systems of differential equations

Mathematics Subject Classification: 65L60, 65H10, 68N01

1 Introduction

The tau method is a spectral method, originally developed by Lanczos in the 30’s [5] that

delivers polynomial approximations to the solution of differential problems. The method

tackles both initial and boundary value problems with ease. It is a spectral method thus

ensuring excellent error properties, whenever the solution is smooth.

Initially developed for linear differential problems with polynomial coefficients, it has

been used to solve broader mathematical formulations: functional coefficients, nonlinear

differential and integro-differential equations. Several studies applying the tau method

have been performed to approximate the solution of differential linear and non-linear

equations [2, 7], partial differential equations [8, 9] and integro-differential equations

[1, 11], among others. Nevertheless, in all these works the tau method is tuned for the

approximation of specific problems and not offered as a general purpose numerical tool.

A barrier to use the method as a general purpose technique has been the lack of auto-

matic mechanisms to translate the integro-differential problem by an algebraic one. Fur-

thermore and most importantly, problems often require high-order polynomial approxi-

mations, which brings numerical instability issues. The tau method inherits numerical

instabilities from the large condition number associated with large matrices representing

∗This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal)

with national (MEC) and European structural funds (FEDER) under the partnership agreement PT2020.
†Center of Mathematics at University of Porto & Economics Faculty at University of Porto, Portugal

(pjv@fep.up.pt)
‡Center of Mathematics at University of Porto & Politechnic School of Engeneering Porto, Portugal

(jma@isep.ipp.pt
§Center of Mathematics at University of Porto, Portugal (marcelo.trindade.fc.up.pt)

1

http://arxiv.org/abs/1702.04029v1


algebraically the actions of the integral, differential or integro-differential operator on the

coefficients of the series solution.

In this work numerical instabilities related with high-order polynomial approxima-

tions, in the tau method, are tackled allowing for the deployment of a general framework

to solve integro-differential problems. We aim at contributing to broadcast the tau method

for the scientific community and industry as it provides polynomials solutions with good

error properties. The Tau Toolbox [13] is a MATLAB tool to solve integro-differential

problems by the tau method. It aggregates all contributions available, enhances the use of

the method by developing more stable algorithms and offers efficient implementations.

2 Preliminaries

We begin by introducing the notation for the algebraic formulation of the tau method.

Assume throughout that P = [P0,P1, . . .]⊆ P is an orthogonal basis for the polynomi-

als space P of any non-negative integer degree, X = [1,x,x2, . . .] ∈ P the power basis for

P. Furthermore, consider that y(x) = ∑i≥0 aiPi = Pa is a formal series with coefficients

a= [a0,a1, . . .]
T . For the power basis, y(x) = ∑i≥0 aix

i = X aX .

Lemma 1 illustrates matrices M, N and O that set, respectively, polynomial multipli-

cation, differentiation and integration into algebraic operations.

Lemma 1. Let V be the triangular matrix such that P = X V and a = V−1aX . Then

xy = PMa, d
dx

y = PNa and
∫

ydx = POa where

M= V−1MX V, MX =











0

1 0

1 0

. . .
. . .











, (1)

N= V−1NX V, NX =











0 1

0 2

0 3

. . .
. . .











(2)

and

O= V−1OX V, OX =











0

1 0
1
2

0

. . .
. . .











. (3)

Proof. See [10] for M and N. It is then easy to extend to O (see [4]).

The next proposition shows how to translate a linear ordinary differential and integral

operators, with polynomial coefficients, into an algebraic representation.

Proposition 2. The νth order, ν ∈N, ordinary linear differential operator Dy=∑ν
k=0 pk

dky

dxk

and the γth order, γ ∈ N, ordinary linear integral operator S y = ∑
γ
ℓ=0 pℓ (

∫

ydx)ℓ acting

on P, are casted on P by, respectively,

Dy = PDa, D=
ν

∑
k=0

pk(M)Nk (4)

and

S y = PSa, S=
γ

∑
ℓ=0

pℓ(M)Oℓ, (5)

with pr(M) = ∑
nr
i=0 pr,iM

i, r = k, ℓ and nr ∈N0.

2



Proof. Note that

X MX aX = xy, X NX aX =
d

dx
y and X OX aX =

∫

ydx

for MX , NX and OX as in Lemma 1. Then,

(i) xy = X MX aX = X VMV−1aX = PMa;

(ii) d
dx

y = X NX aX = X VNV−1aX = PNa and thus Dy = ∑ν
k=0 pk

dky

dxk = PDa;

(iii)
∫

ydx = X OX aX = X VOV−1aX = POa and thus S y = ∑
γ
ℓ=0 pℓ (

∫

ydx)ℓ =
PSa.

Let K(x, t) be a two-variable polynomial, or a two-variable polynomial approximation

of a two- variable function. Then, for P
∣

∣

x=t
= [P0(t),P1(t), . . .] and K ∈R

nx×nt ,

K(x, t) =
nx

∑
i=0

nt

∑
j=0

ki, jPi(x)Pj(t) = PKP
T
∣

∣

x=t
. (6)

Lemma 3. For the integral operator
∫ x

K(x, t)y(t)dt, where
∫ x

stands for the calcu-

lation of the integral at x, K(x, t) = ∑
nx
i=0 ∑

nt
j=0 ki jPi(x)Pj(t) and y(x) = Pa, one has

∫ x
K(x, t)y(t)dt = PSa, where S= ∑

nx
i=0 ∑

nt
j=0 ki jPi(M)OPj(M).

Proof. Using Lemma 1 one can deduce that

∫ x

xit jy(t)dt = X (VMiV−1)(VOV−1)(VM jV−1)Va

= PMiOM ja,

and therefore
∫ x

Pi(x)Pj(t)y(t)dt = PPi(M)OPj(M)a.

Lemma 4.
∫ x

x0
Pi(x)Pj(t)y(t)dt = P(Pi(M)− ei+1P

∣

∣

x=x0
)OPj(M)a, where ei+1 is the

(i+ 1)th column of the identity matrix.

Proof. From Lemma 3

∫ x

x0

Pi(x)Pj(t)y(t)dt = PPi(M)OPj(M)a−P
∣

∣

x=x0
Pi(M)OPj(M)a

= P(Pi(M)− ei+1P
∣

∣

x=x0
)OPj(M)a.

Note that it is easy to understand that X
∣

∣

x=x0
Mi

X
= ei+1X

∣

∣

x=x0
.

Lemma 5.
∫ b

a Pi(x)Pj(t)y(t)dt = Pei+1(P
∣

∣

x=b
−P

∣

∣

x=a
)OPj(M)a.

Proof. Immediate since it is a particular case of Lemma 4.

Proposition 6. The linear Volterra integral operator SV y =
∫ x

x0
K(x, t)y(t)dt and the

Fredholm integral operator SF y =
∫ b

a K(x, t)y(t)dt, with degenerate kernel K(x, t) ≈

∑
nx
i=0 ∑

nt
j=0 ki jPi(x)Pj(t), smooth and continuous, acting on y have, respectively, the fol-

lowing algebraic representation

SV y =
nx

∑
i=0

nt

∑
j=0

ki j

(

Pi(M)− ei+1P
∣

∣

x=x0

)

OPj(M)a (7)

3



and

SF y =
nx

∑
i=0

nt

∑
j=0

ki jei+1

(

P
∣

∣

x=b
−P

∣

∣

x=a

)

OPj(M)a (8)

for ei the ith column of the identity matrix.

Proof. Equation (7) can be immediately obtained from Lemma 4 (see e.g. [12]) and

equation (8) from Lemma 5 (see e.g. [4]).

3 The tau method for integro-differential problems

An approximate polynomial solution yn for the linear integro-differential problem

{

Dy+S y+SV y+SFy = f

ci(y) = si, i = 1, . . . ,ν
, (9)

is obtained in the tau sense by solving a perturbed system

{

Dyn +S yn +SV yn +SFyn = f + τn

ci(yn) = si, i = 1, . . . ,ν
, (10)

where f is a λ th degree polynomial (or a polynomial approximation of a function), τn is

the residual and ci(y) = si, i = 1, . . . ,ν the initial and/or boundary conditions.

Problem (9) has a matrix representation given by

{

Ca= s

(D+S+SV +SF)a= f
, (11)

where C= [ci j]ν×∞, ci j = ci(Pj−1), i = 1, . . . ,ν, j = 1,2, . . ., a= [a0,a1, . . .]
T the coef-

ficients of y in P , s = [s1, . . . ,sν ]
T , D, S, SV and SF as defined in, respectively, (4)-(8),

and f = [ f0, . . . , fλ ,0,0, . . .]
T the right hand side of the system.

Choosing an integer n ≥ ν +λ , an (n−1)th degree polynomial approximate solution

yn = Pnan is obtained by truncating system (11) to its first n columns. Moreover, re-

stricting this system to its first n+ν + h equations, a linear system of dimension n× n is

obtained, which is equivalent to introduce a polynomial residual

τn = (Dy−Dyn)+ (S y−S yn)+ (SV y−SV yn)+ (SFy−SFyn). (12)

4 Nonlinear approach for integro-differential problems

Nonlinear differential problems are tackled with linear approximations and solving a set

of linear problems.

Let G be the nonlinear operator acting on an appropriate space of smooth functions

G(y(−γ), . . . ,y(−1),y(0),y(1), . . . ,y(ν)) = 0, (13)

where y(ℓ) =
dℓy

dxℓ
for ℓ ∈ Z+, y(ℓ) = (

∫

ydt)ℓ for ℓ ∈ Z− and includes Volterra and Fred-

holm terms.

If G is C
1 in a neighborhood Ω of ω = (y(−γ), . . . ,y(−1),y(0),y(1), . . . ,y(ν)) and if

ω0 ∈ Ω is an approximation of ω , then a linear operator T can be defined, represented by

the order one Taylor polynomial centered at ω0

T (ω) = G(ω0)+
ν

∑
i=−γ

∂G

∂y(i)
|ω0

(y(i)− y
(i)
0 )

4



As in the Newton method for algebraic equations, we can replace G by T in (13) and

solve the approximated equation

ν

∑
i=−γ

∂G

∂y(i)
|ω0

y(i) =−G(ω0)+
ν

∑
i=−γ

∂G

∂y(i)
|ω0

y
(i)
0 . (14)

Applying the Tau method to the linear differential equation (14) and taking ω1 =

(y
(−γ)
1 , . . . ,y

(ν)
1 ) as the solution, if ω1 ∈ Ω we can repeat the process, obtaining an iterative

procedure, solving for ωk the linear differential equation

ν

∑
i=−γ

∂G

∂y(i)
|ωk−1

y
(i)
k =−G(ωk−1)+

ν

∑
i=−γ

∂G

∂y(i)
|ωk−1

y
(i)
k−1, k = 1,2, . . . .

5 Contributions to stability

In this section we summarize some of the mathematical techniques developed for the tau

method to provide stable algorithms for the Tau Toolbox library.

Let P = [P0(x),P1(x), . . .] be an orthogonal basis satisfying xPj = α jPj+1 + β jPj +
γ jPj−1, j ≥ 0, P0 = 1, P−1 = 0.

Orthogonal evaluation: If P∗ are the corresponding orthogonal polynomials shifted to

[a, b] and x is a vector, then the evaluation of yn(x) = ∑n
i=0 aiP

∗
i is directly computed in

P∗ by the recursive relation














P∗
0 = [1, . . . ,1]T

P∗
1 =

c1x+(c2−β0)P
∗
0

α0

P∗
i =

(c1x+c2−βi−1P∗
0 )⊙P∗

i−1−γi−1P∗
i−2

αi−1
, i = 2,3, . . . ,n

where ⊙ is the element-wise product of two vectors, c1 =
2

b−a
and c2 =

a+b
a−b

.

The Tau Toolbox proposes a orthoval function, instead of the polyval MAT-

LAB one, to implement this functionality.

Change of basis by recurrence: Let V satisfy aX = Va. The coefficients of W = V−1

can be computed without inverting V by the recurrence relation
{

w1 = e1

w j+1 =Mw j, j = 1,2, ...
, (15)

where M is such that Px = PM, w j is the jth column of M and e1 the first column of

the identity matrix.

Avoiding similarity transformations: Matrix inversion presented at all similarity trans-

formations must be avoided to ensure numerically stable computations. Recurrence rela-

tions to compute the elements of matrices M, N and O directly on P can be computed,

respectively, by

M= [µi, j]
n
i, j=1

=

{

µ j+1, j = α j−1, µ j, j = β j−1, µ j−1, j = γ j−1

µi, j = 0, |i− j|> 1
,

N= [ηi, j ]
n
i, j=1

=







ηi, j+1 =
αi−1η j,i−1+(βi−β j)η j,i+γi+1η j,i+1−γ jη j−1,i

α j

η j, j+1 =
α j−1η j, j−1+1

α j

, and

O= [θi, j]
n
i, j=1

=

{

θ j+1, j =
α j

j+1

θi+1, j =− ai
i+1 ∑

j+1
k=i+2 ηi,kθk, j , i = j− 1, . . . ,1,0

.

5



Linearization coefficients: Product of polynomials p and q in P occurs in nonlinear

problems. Usually both polynomials are translated first from P to X , then the con-

volution is applied and finally the product is translated back, pq = V−1conv(Vp,Vq).
Alternatively, ensuring robustness, this product can be directly computed on P using

the linearization coefficients: PiPj = ∑
i+ j
k=0 li, j,kPk, where li, j,k are computed by recurrence

relations [6].

For p= Pa and q= Pb, of degree n, then pq= Pc where



























ck =
k

∑
j=0

n− j

∑
i=⌊ k+1− j

2 ⌋

(
1

2
)δi, j (aib j + a jbi)li,i+ j,k, k = 0, . . . ,n

cn+k =
n−k

∑
j=0

n− j

∑
i=⌊ n−k− j

2 ⌋

(
1

2
)δi, j (aib j + a jbi)li,i+ j,n+k, k = 1, . . . ,n

.

Computing with M: An efficient way to compute the powers of M is

Mk = [µ
(k)
i, j ], µ

(k)
i, j = µ

(k−1)
i−1, j αi−1 + µ

(k−1)
i, j βi + µ

(k−1)
i+1, j γi+1.

Moreover, the evaluation of yn(M) = ∑n
i=0 an,iPi(M) can be performed with

Pj+1(M) =
(M−β jI)Pj(M)− γ jPj−1(M)

α j

, j ≥ 0,

P0(M) = I and P−1(M) =∅.

6 Numerical results

Example 7. Consider the integro-differential Fredholm nonlinear equation of the second

kind [3], with exact solution y(x) = exp(−x),

d

dx
y(x)+ y(x)−

∫ 1

0
y(t)2dt = 0.5(e−2 − 1), y(0) = 1. (16)

Introducing new variables y1 = y and y2 = y2
1, we get d

dx
y2 = 2y1

d
dx

y1. Linearizing

it results y1
d
dx

y1 ≈ y
(k)
1

d
dx

y1 +
d
dx

y
(k)
1 y1 − y

(k)
1

d
dx

y
(k)
1 and, therefore, problem (16) can be

casted as























d

dx
y
(k+1)
1 + y

(k+1)
1 −

∫ 1

0
y
(k+1)
2 dt = 0.5(e−2 − 1)

d

dx
y
(k+1)
2 − 2

(

y
(k)
1

d

dx
y
(k+1)
1 + y

(k+1)
1

d

dx
y
(k)
1

)

=−2y
(k)
1

d

dx
y
(k)
1

y
(1)
1 (0) = 1, y

(1)
2 (0) = 1

, (17)

and the coefficient matrix (ChebyshevT basis) of the linear system TT aT = bT is

TT =











T0(0) . . . Tn−1(0) 0

0 T0(0) . . . Tn−1(0)
MT + I −SFT

−2
[

y
(k)
1 (MT )NT + y

(k)
1

′
(MT )I

]

NT











,

where SFT
by (8), making use of the Tau Toolbox fred function. The independent

vector is bT =
[

1, 1, 0.5(e−2 − 1), 0, . . . , 0, −2y
(k)
1

d
dx

y
(k)
1

]T

.

6



[3] Tau Toolbox

n ||e||∞ CPU time ||e||∞ CPU time

5 9.63e-04 0.42 1.58e-04 0.03

9 1.28e-04 0.58 1.28e-09 0.03

17 2.87e-05 0.73 7.77e-16 0.04

33 5.61e-06 0.07 4.44e-16 0.07

65 2.39e-06 1.54 4.44e-16 0.37

129 1.28e-06 2.15 4.44e-16 2.35

Table 1: Comparison between the results at [3] and with Tau Toolbox .

The error presented in [3] is ||e||∞ = max j |yn(x j)− y(x j)|, and therefore the same

measure is applied to compare the results, see Table 1.

For all polynomial degree approximations the approximate solution provided by Tau

Toolbox is clearly better than the one given by [3]. The error for n = 129 with [3]

was reached with Tau Toolbox with a polynomial degree smaller than 9 and for degree

17 the Tau Toolbox was able to find the solution with machine precision order. Note-

worthy is that for increasing polynomial degree the algorithm is stable, not showing any

perturbations for higher degrees. The CPU time should not be compared between both

approaches since results are reported from two distinct machines. It is however relevant to

understand that the effort to solve the problem with Tau Toolbox is higher: if we take

n = 5 as reference time then for n = 128 Tau Toolbox required 78.3× the reference

computational cost whereas [3] necessitates 5.12×. Robustness and stability comes at a

price: more elaborate mathematics must be performed to reach such quality results. Nev-

ertheless, one must point out that the CPU time to compute an accurate approximation

was still low, only 2.35 seconds.

Example 8. Consider now the system of integro-differential equations with nonlinear

Volterra term [1], with exact solution y1(x) = sinh(x) and y2(x) = cosh(x),























d

dx
y1(x)+

1

2

(

d

dx
y2(x)

)2

−

∫ x

0
(x− t)y2(t)+ y2(t)y1(t)dt = 1

d

dx
y2(x)−

∫ x

0
(x− t)y1(t)− y2

2(t)+ y2
1(t)dt = 2x

y1(0) = 0, y2(0) = 1

. (18)

As for the previous example, linearization is done first and the Volterra integral term

SV , following (7), is tackled using the Tau Toolbox volt function.

Fig. 1 shows the error after 5 iterations along the interval [0,1]. For n = 20, Tau

Toolbox was able to provide an approximate solution with machine precision all over

the interval. For comparison purposes, results for the same problem in [1] with n= 10 are

plotted together with Tau Toolbox library. The former, at the right part of the interval,

can only reach single-precision accuracy, in contrast with the latter, which delivers double

precision accuracy. For n ≥ 25, Tau Toolbox reaches machine precision.

7



0 0.2 0.4 0.6 0.8 1

x

10-16

10-10

10-5

|s
in
h
(x
)
−

y
(5
)

1
(x
)|

TauToolbox, n = 20
TauToolbox, n = 10
[AbTa09], n = 10

0 0.2 0.4 0.6 0.8 1

x

10-16

10-14

10-12

10-10

10-8

|c
o
sh
(x
)
−

y
(5
)

2
(x
)|

TauToolbox, n = 20

TauToolbox, n = 10

[AbTa09], n = 10

Figure 1: Comparison between [1] and Tau Toolbox for 10 (and 20) degree polynomial.

7 Conclusions

In this work we proposed the Lanczos’ tau method for nonlinear integro-differential sys-

tems of equations. Contributions to improve the stability of the numerical implementation

are presented. Numerical experiments illustrate the accuracy and efficiency of the new

proposal, when compared with the results in the literature.

All these contributions are included at Tau Toolbox – a MATLAB library for the

solution of integro-differential problems.

References

[1] S. Abbasbandy and A. Taati. Numerical solution of the system of nonlinear volterra

integro-differential equations with nonlinear differential part by the operational tau

method and error estimation. Journal of Computational and Applied Mathematics,

231(1):106 – 113, 2009.

[2] M. R. Crisci and E. Russo. An extension of ortiz’ recursive formulation of the tau

method to certain linear systems of ordinary differential equations. Mathematics of

Computation, 41(163):27–42, 1983.

[3] M. Dehghan and R. Salehi. The numerical solution of the non-linear integro-

differential equations based on the meshless method. Journal of Computational

and Applied Mathematics, 236(9):2367 – 2377, 2012.

[4] S. Hosseini and S. Shahmorad. Numerical solution of a class of integro-differential

equations by the tau method with an error estimation. Applied Mathematics and

Computation, 136(2–3):559 – 570, 2003.

[5] C. Lanczos. Trigonometric interpolation of empirical and analytical functions. Stud-

ies in Applied Mathematics, 17(1-4):123–199, 1938.

[6] S. Lewanowicz. Second-order recurrence relation for the linearization coefficients

of the classical orthogonal polynomials. Journal of Computational and Applied

Mathematics, 69(1):159 – 170, 1996.

[7] K. Liu and C. Pan. The automatic solution to systems of ordinary differential

equations by the tau method. Computers & Mathematics with Applications, 38(9–

10):197 – 210, 1999.

8



[8] J. Matos, M. J. Rodrigues, and P. B. Vasconcelos. New implementation of the tau

method for {PDEs}. Journal of Computational and Applied Mathematics, 164–

165:555 – 567, 2004.

[9] E. L. Ortiz and A. P. N. Dinh. Linear recursive schemes associated with some

nonlinear partial differential equations in one dimension and the tau method. SIAM

Journal on Mathematical Analysis, 18(2):452–464, 1987.

[10] E. L. Ortiz and H. Samara. An operational approach to the tau method for the

numerical solution of non-linear differential equations. Computing, 27(1):15–25,

1981.

[11] J. Pour-Mahmoud, M. Y. Rahimi-Ardabili, and S. Shahmorad. Numerical solution

of the system of fredholm integro-differential equations by the tau method. Applied

Mathematics and Computation, 168(1):465–478, Sept. 2005.

[12] L. Saeedi, A. Tari, and S. H. M. Masuleh. Numerical solution of some nonlinear

volterra integral equations of the first kind. Applications and Applied Mathematics,

8(1):214–216, 2013.

[13] M. Trindade, J. Matos, and P. B. Vasconcelos. Towards a lanczos’ τ-method toolkit

for differential problems. Mathematics in Computer Science, 10(3):313–329, 2016.

9


	1 Introduction
	2 Preliminaries
	3 The tau method for integro-differential problems
	4 Nonlinear approach for integro-differential problems
	5 Contributions to stability
	6 Numerical results
	7 Conclusions

