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deriving some semi-classical properties of perturbed second degree forms namely: the
Stieltjes function, the Stieltjes equation, the functional equation, the class, a structure
relation and the second order linear differential equation. We give new explicit results for
some perturbed of order 3 of the second kind Chebyshev polynomials.
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1. Introduction

The general method and the algorithm PSDF presented in this work are based on the algebraic approach of orthogonal
polynomials introduced by Pascal Maroni mainly in Refs. [1–6], in particular on an implementation of a set of operations
defined in the topological dual space of the vectorial space of polynomials. The basic idea consists in dealing directlywith the
linear forms, determined by theirmoments or equivalently by the corresponding Stieltjes series, and their interrelationships,
and not with the integral representations of them [5].

Perturbation corresponds to a modification on the first coefficients of the recurrence relation of order two satisfied by
orthogonal polynomial sequences. This transformation can promote a deep change of properties; nevertheless there is a
large set of forms that are preserved by perturbation: the second degree forms. In other words, the perturbed of a second
degree form still is a second degree form. Moreover, a second degree form is also a semi-classical one [5,7]. The general
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method presented herein is based on this crucial fact. We remark that, in general, the perturbed of a semi-classical form is
not semi-classical, but a Laguerre–Hahn [5] that satisfies a fourth-order differential equation [8–11]. Laguerre–Hahn forms
[12,13] generalize semi-classical and second degree forms. It is worthy to mention here that among the classical forms only
certain Jacobi forms are of second degree [14]; from them other second degree forms can be generated by applying several
transformations [7,15,14,16]. Furthermore, all self-associated forms are also of second degree [17].

We notice that perturbed orthogonal polynomials have some possible applications [18–20,9,21], which motivate further
their study. In fact, during the last years, several authors have worked on this subject considering perturbations of several
orders with more or less free parameters with respect to classical, semi-classical, Laguerre–Hahn and others families,
studying several properties like generating functions, Stieltjes functions, structure relations and differential equations,
separation and the distribution function of zeros and integral representations among others.With respect to the co-recursive
case, wewould like to cite [22,23,18,24,10], for the co-dilated situation refer to [16,21], for the co-modified [25,26,8], for the
generalized co-polynomials see [19,27]. Also, we call the attention to the general Refs. [28,29]. Furthermore, there are some
specific works about perturbed Chebyshev families namely [16] on the co-dilated case of the second kind form and [15,30]
concerning all the four forms.

It is well known that the four Chebyshev forms [31–33] are the most important cases of second degree forms [15] due
to their remarkable properties and utility in applied mathematics, physics and other sciences [34]. In particular, for the
purposes of perturbation, the form of second kind is the most simple among them, because it is self-associated, therefore
it is often taken as study case in the mentioned literature. So, it seemed important to us to clarify and explicit some semi-
classical properties of perturbed Chebyshev polynomials of second kind.

In this work we present a general method, and the corresponding symbolic algorithm, intended to explicit some semi-
classical properties of perturbed second degree forms, namely: the Stieltjes function, the Stieltjes equation, the functional
equation, the class, a structure relation and the second order linear differential equation. Moreover, we provide the first
moments of the perturbed forms. The advantage of this method is its generality: it is intended to work for any perturbation
and any second degree form and can be implemented in an algebraic manipulator.

The Chebyshev form of second kind is taken as study example and we give new explicit results for the generalized co-
recursive and co-dilated cases of order three. In the same way, other perturbations can be treated and the same procedure
can be applied to the other three forms of Chebyshev. This will be the subject of a forthcoming article [35]. Moreover, the
characteristic elements presented in this work can be useful in order to obtain other ones like integral representations or
make the study of zeros that are crucial in quadrature formulas of numerical integration.

Let us summarize the content of this article. In Section 2, we establish the theoretical framework, we recall the
mathematical background necessary to understand the subject of perturbed second degree forms. In particular, we have
collected themost important formulas andprocedures that compose the generalmethod closely followingRefs. [5–7,12–14].
In Section 3, we introduce the method and the algorithm PSDF—Perturbed Second Degree Forms. In last section we apply the
method step by step to the Chebyshev form of second kind andwe give the corresponding new results concerning the above
mentioned perturbations. Also, we derive a closed formula for the generating functions of any perturbed Chebyshev family
and we compute them in the two treated cases. Notice that often in applications one is interested on numerical concrete
values of parameters so that the given formulas will be quite simplified.

2. Theoretical framework

2.1. General definitions and features

Let P be the vector space of polynomials with coefficients in C and let P � be its topological dual space. The effect of the
form or functional u ∈ P � on f ∈ P will be denoted by �u, f �. In particular (u)n := �u, xn�, n ≥ 0, are called the moments
of u. Give u, is equivalent to give the sequence of moments (u)n, n ≥ 0, or the formal series F

�
u

�
(z) := �

n≥0(u)nz
n, or the

so-called formal Stieltjes function [5]

S

�
u

�
(z) := −z

−1
F

�
u

�
(z−1) = −

�

n≥0

(u)n

zn+1 .

Let f , p ∈ P , u, v ∈ P �. By transposition of the operations in P , we have the following operations in P � [4]. Left-
multiplication of a form by a polynomial fu, �fu, p� := �u, fp�. Derivative of a form u

� = Du, �u�, p� := −�u, p��. Division of a
form by a first degree polynomial (x − c)−1

u, �(x − c)−1
u, p� := �u, θcp�, where θc is the divided difference operator

�
θcp

�
(x) := p(x) − p(c)

x − c
, c ∈ C, x �= c; (θcp)(c) = p

�(c).

Cauchy product of two forms uv, �uv, p� := �u, vp�, where
�
vp

�
(x) := �v, xp(x)−ξp(ξ)

x−ξ
� is the right-multiplication of a form

by a polynomial.
Let us consider a polynomial sequence {Pn}n≥0 such that deg Pn = n, n ≥ 0, then there exists a unique sequence {un}n≥0,

un ∈ P �, n ≥ 0, called the dual sequence of {Pn}n≥0 such that �un, Pm� = δn,m, n, m ≥ 0.
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Let {P (1)
n }n≥0 be the associated sequence of {Pn}n≥0, with respect to u0, then [23,5,17]

P
(1)
n

(x) :=
�
u0θ0Pn+1

�
(x) =

�
u0,

Pn+1(x) − Pn+1(ξ)

x − ξ

�
. (1)

More generally, the successive associated sequences [23,5] are defined by iteration

P
(r+1)
n

=
�
P

(r)
n

�(1)
, u

(r+1)
n

= (u(r)
n

)(1), n, r ≥ 0. (2)

A polynomial sequence {Pn}n≥0 is orthogonal with respect to u ∈ P � if and only if

�u, PnPm� = knδn,m, n,m ≥ 0; kn �= 0, n ≥ 0. (3)

Consequently deg Pn = n, n ≥ 0, and any Pn can be taken monic, i.e., with unit leading coefficient (Pn(x) = x
n + · · · ), then

the sequence {Pn}n≥0 is called a monic orthogonal polynomial sequence (MOPS). Necessarily u = (u)0u0, (u)0 �= 0; the
form u is normalized if (u)0 = 1, in this case u = u0. In this work, we will always consider monic polynomial sequences
and normalized forms. A form u is regular [5] if it is possible to associate with it an orthogonal sequence fulfilling (3). A
sequence {Pn}n≥0 is orthogonal with respect to a normalized form u (thus u = u0) if and only if there are two sequences
of coefficients {βn}n�0 and {γn+1}n�0, with γn+1 �= 0, n � 0 such that {Pn}n≥0 verifies the following initial conditions and
recurrence relation of order two [23]

�
P0(x) = 1, P1(x) = x − β0,
Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x), γn+1 �= 0, n ≥ 0. (4)

Moreover,

βn = �u, xP2
n
(x)�

kn

, γn+1 = kn+1

kn

, n ≥ 0.

If {Pn}n≥0 is orthogonal, then {P (r)
n }n≥0 is also orthogonal and fulfils [5]

�
P

(r)
0 (x) = 1, P

(r)
1 (x) = x − β

(r)
0 ,

P
(r)
n+2(x) = (x − β

(r)
n+1)P

(r)
n+1(x) − γ

(r)
n+1P

(r)
n

(x), n, r ≥ 0,
(5)

where

β(r)
n

= βn+r , γ
(r)
n+1 = γn+1+r , n, r ≥ 0. (6)

The co-recursive [22,23] of a MOPS {Pn}n≥0 is a sequence {Pn(µ; ·)}n≥0 such that
�
P0(µ; x) = 1, P1(µ; x) = x − β0 − µ,
Pn+2(µ; x) = (x − βn+1)Pn+1(µ; x) − γn+1Pn(µ; x), n ≥ 0, (7)

where µ ∈ C − {0}. The sequence {Pn(µ; ·)}n≥0 is orthogonal with respect to the form u(µ) given by [5]

S

�
u(µ)

�
(z) = S

�
u

�
(z)

1 + µS

�
u

�
(z)

. (8)

More generally, let {�Pn}n≥0 be the r-perturbed sequence of a MOPS {Pn}n≥0 defined by [5]
��P0(x) = 1, �P1(x) = x − β̃0,
�Pn+2(x) = (x − β̃n+1)�Pn+1(x) − γ̃n+1�Pn(x), n ≥ 0,

(9)

where

β̃0 = β0 + µ0, (10)

β̃n = βn + µn, µn ∈ C; γ̃n = λnγn, λn ∈ C − {0}, 1 ≤ n ≤ r, (11)

β̃n = βn; γ̃n = γn, n ≥ r + 1. (12)

Either µr �= 0 or λr �= 1. Thus, the co-recursive case corresponds to the perturbed case of order 0. With the notation
µ := (µ1, . . . , µr), λ := (λ1, . . . , λr), r ≥ 1, we put

�Pn(x) = Pn

�
µ0;

µ

λ
; r; x

�
, n ≥ 0,
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and we say that the sequence {�Pn}n≥0 is orthogonal with respect to the perturbed form ũ := u

�
µ0; µ

λ
; r

�
given by [5]

S

�
ũ

�
(z) = −Ur(z) + Vr(z)S

�
u

�
(z)

Xr(z) + Yr(z)S
�
u

�
(z)

, (13)

with the transfer polynomials

Ur(z) = γr

�
�P (1)
r−1(z)P

(1)
r−2(z) − λr P

(1)
r−1(z)

�P (1)
r−2(z)

�
− µr P

(1)
r−1(z)

�P (1)
r−1(z), (14)

Vr(z) = γr

�
�P (1)
r−1(z)Pr−1(z) − λr Pr(z)�P (1)

r−2(z)
�

− µr Pr(z)�P (1)
r−1(z), (15)

Xr(z) = γr

�
�Pr(z)P (1)

r−2(z) − λr P
(1)
r−1(z)

�Pr−1(z)
�

− µr P
(1)
r−1(z)

�Pr(z), (16)

Yr(z) = γr

�
�Pr(z)Pr−1(z) − λr Pr(z)�Pr−1(z)

�
− µr Pr(z)�Pr(z), (17)

where�P (1)
n are the associated of the perturbedpolynomials�Pn. As usual,we suppose that Pn(x) = 0, P (r)

n (x) = 0 and�Pn(x) = 0
for n < 0.

We can consider two elementary particular cases of a perturbation of order r for r > 0, when there is only one parameter
of perturbation. That is, when µk = 0, k = 0(1)r − 1, µr �= 0, λk = 1, k = 1(1)r and when µk = 0, k = 0(1)r , λk = 1,
k = 1(1)r−1,λr �= 1. In the first case,we do aperturbation by translation of the recurrence coefficientβr and, in the second
case, we do a perturbation by dilatation of the recurrence coefficient γr . In both situations, the operator corresponding to
the recurrence relation of order 2 is perturbed, whereas for r = 0 the operator does not change, but the initial condition
P1(x) = x− β0 becomes P1(x) = x− (β0 + µ0) leading to a different solution of the same recurrence relation. In literature,
these cases are often designated as r-generalized co-recursive and r-generalized co-dilated cases, respectively. Explicit
results given in this work in Section 4 concern these kind of perturbations.

2.2. Shohat–Favard method

From the Shohat–Favardmethod [1], one can establish a general procedure [36]1 to obtain the firstmoments (u)n=0,...,nmax

of a normalized regular formu from the first recurrence coefficients {βn}n=0,...,nmax−1, {γn+1}n=0,...,nmax−2 of the corresponding
MOPS {Pn(x)}n≥0. Let us write Pn in the canonical basis

Pn(x) =
n�

ν=0

pn,νx
ν, n ≥ 0. (18)

Obviously that

pn,ν = 0, ν > n, ν < 0, n < 0; pn,n = 1, n ≥ 0. (19)

Replacing in the recurrence relation (4) the polynomials by their expressions given by (18), we have

p1,0 = −β0, (20)
pn+2,ν = pn+1,ν−1 − βn+1pn+1,ν − γn+1pn,ν, 0 ≤ ν ≤ n, (21)
pn+2,n+1 = pn+1,n − βn+1, n ≥ 0. (22)

Then, from the orthogonality condition �u, Bn� = 0, n ≥ 1, we obtain the moments

(u)0 = 1, (u)n = −
n−1�

ν=0

pn,ν(u)ν, n ≥ 1. (23)

2.3. Laguerre–Hahn forms

A normalized regular form u is a Laguerre–Hahn form [12,13] if its formal Stieltjes function S

�
u

�
(z) satisfies the Riccati

equation

A(z)S ��
u

�
(z) = B(z)S2

�
u

�
(z) + C(z)S

�
u

�
(z) + D(z), (24)

1 Ref. [36] is accompanied by a symbolic implementation written inMathematica
R� available in netlib.
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where A, B, C and D are polynomials. The sequence {Pn}n≥0 orthogonal with respect to u is also called a Laguerre–Hahn

sequence. With A = Φ , Eq. (24) is equivalent to [12,13]

(Φu)� + ψu + B(x−1
u
2) = 0,

with

C(z) = −Φ �(z) − ψ(z),

D(z) = −
�
uθ0Φ

��
(z) −

�
uθ0ψ

�
(z) −

�
u
2θ2

0 B
�
(z).

Perturbed and associated of Laguerre–Hahn forms still are Laguerre–Hahn forms [5], because the corresponding formal
Stieltjes functions satisfy the Riccati equations (33) and (43) (see next section). The same is true for the structure relation
(49), which is also valid for Laguerre–Hahn sequences [5].

2.4. Semi-classical forms

Let (Φ, ψ) be two polynomials, Φ monic, degψ ≥ 1. The pair (Φ, ψ) is called admissible if the functional equation

that it generates,

(Φu)� + ψu = 0, (25)

possesses at least one normalized regular solution u [5]. Let t = degΦ and p = degψ . With an admissible pair (Φ, ψ) it is
possible to associate an integer

s := max(p − 1, t − 2). (26)

A normalized solution u fulfilling (25) also satisfies equationsχ(Φu)� +χψu = 0, for any polynomialχ , or (χΦu)� +(χψ −
χ �Φ)u = 0. Then s1 = max(p1 − 1, t1 − 2) = s + degχ , with t1 = deg(χΦ), p1 = deg(χψ − χ �Φ). Thus, let us consider
the function u −→ s(u) ⊆ N. The minimum element of s(u) will be called the class of the form u [5].

A regular form u is semi-classical (SC) [5,6] if it satisfies (25), where the pair (Φ, ψ) is admissible. The sequence {Pn}n≥0
orthogonal with respect to u is also called a semi-classical sequence, it is said to be of class s, if u is of class s.

For any semi-classical form u the pair (�Φ, ψ̂) which realizes the minimum of s(u) is unique. A classical sequence

(Hermite, Laguerre, Bessel and Jacobi) [6,37] appears as a semi-classical sequence of class zero.
Given a semi-classical form u it is necessary to know whether the integer s associated with (Φ, ψ) is the minimum of

s(u). A normalized semi-classical form u satisfying (25) is of class s = max(degψ − 1, degΦ − 2) if and only if [6]
�

c

�
|ψ(c) + Φ �(c)| + |�u, θcψ + θ2

c
Φ�|

�
�= 0, (27)

where c goes over the set of zeros of Φ . When it is possible to simplify (25) by the factor x − c , we obtain the new equation�
(θcΦ)u

�� +
�
θcψ + θ2

c
Φ

�
u = 0, then u is of class less than or equal to s − 1.

For any regular normalized form u the following two assertions are equivalent [5,6].

1. There are two polynomials Φ and ψ, Φ monic, such that

(Φu)� + ψu = 0. (28)

2. There are two polynomials A and C , A monic, such that

A(z)S ��
u

�
(z) = C(z)S

�
u

�
(z) + D(z), (29)

where

D(z) = −
�
uθ0Φ

��
(z) −

�
uθ0ψ

�
(z).

If s is given by (26), then deg C ≤ s + 1 and degD ≤ s. The form u is of class

s = max(deg C − 1, degD) (30)

if and only if A, C and D have no common factor [5].
The link between (28) and (29) is [5]

A(z) = Φ(z), C(z) = −Φ �(z) − ψ(z). (31)

From (29), it is obvious that semi-classical sequences are the particular case of Laguerre–Hahn sequences corresponding
to B = 0 in Eq. (24).
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2.4.1. Perturbed sequences of semi-classical sequences

If u is a normalized semi-classical form fulfilling (28), or equivalently, if S
�
u

�
fulfils (29) written as

A0(z)S
��
u

�
(z) = B0(z)S

2�
u

�
(z) + C0(z)S

�
u

�
(z) + D0(z), (32)

with A0(z) = Φ(z) and B0(z) = 0, then the formal Stieltjes function S

�
ũ

�
of ũ = u

�
µ0; µ

λ
; r

�
, satisfies

�A(z)S ��
ũ

�
(z) =�B(z)S2

�
ũ

�
(z) +�C(z)S

�
ũ

�
(z) +�D(z). (33)

If r = 0 (co-recursive sequences), from (8), we obtain

�A(z) = A0(z), �B(z) = B0(z) − µC0(z) + µ2
D0(z), (34)

�C(z) = C0(z) − 2µD0(z), �D(z) = D0(z). (35)

If r ≥ 1, from (13), we obtain [5]

�A(z) = A0(z)
�
Ur(z)Yr(z) − Vr(z)Xr(z)

�
, (36)

�B(z) = B0(z)X
2
r
(z) − C0(z)Xr(z)Yr(z) + D0(z)Y

2
r
(z) + A0(z)

�
X

�
r
(z)Yr(z) − Xr(z)Y

�
r
(z)

�
, (37)

�C(z) = 2
�
B0(z)Ur(z)Xr(z) + D0(z)Vr(z)Yr(z)

�
− C0(z)

�
Ur(z)Yr(z) + Vr(z)Xr(z)

�

+ A0(z)
�
U

�
r
(z)Yr(z) − Ur(z)Y

�
r
(z) + Vr(z)X

�
r
(z) − V

�
r
(z)Xr(z)

�
, (38)

�D(z) = B0(z)U
2
r
(z) − C0(z)Ur(z)Vr(z) + D0(z)V

2
r
(z) + A0(z)

�
U

�
r
(z)Vr(z) − Ur(z)V

�
r
(z)

�
(39)

where Ur(z), Vr(z), Xr(z) and Yr(z) are the transfer polynomials given by (14)–(17). Thus, in general, the perturbed of a semi-
classical form is not semi-classical, but is a Laguerre–Hahn form.

2.4.2. Associated sequences of semi-classical sequences and a structure relation

If u is a normalized semi-classical form fulfilling (28), then the formal Stieltjes function S

�
u

(1)
�
(z) of its associated form

u
(1) satisfies [5]

A1(z)S
��
u

(1)�(z) = B1(z)S
2�
u

(1)�(z) + C1(z)S
�
u

(1)�(z) + D1(z), (40)

where

A1(z) = Φ(z), B1(z) = γ1D(z), C1(z) = −C(z) + 2(z − β0)D(z), (41)

D1(z) = γ −1
1

�
−Φ(z) − (z − β0)C(z) + (z − β0)

2
D(z)

�
. (42)

For the associated form of order r , we get [5]

Ar(z)S
��
u

(r)
�
(z) = Br(z)S

2�
u

(r)
�
(z) + Cr(z)S

�
u

(r)
�
(z) + Dr(z), r ≥ 0, (43)

where

A0(z) = Φ(z), B0(z) = 0, C0(z) = C(z), D0(z) = D(z), (44)
Ar+1(z) = Φ(z), r > 0, (45)
Br+1(z) = γr+1Dr(z), r > 0, (46)
Cr+1(z) = −Cr(z) + 2(z − βr)Dr(z), r > 0, (47)

γr+1Dr+1(z) = −Φ(z) + Br(z) − (z − βr)Cr(z) + (z − βr)
2
Dr(z), r > 0. (48)

We have deg Cr ≤ s + 1, degDr ≤ s, r ≥ 0, where s is the class of u. Thus, in general the associated of a semi-classical form
is a Laguerre–Hahn form.

Any semi-classical sequence {Pn}n≥0 satisfies the following structure relation [5]

Φ(x)P �
n+1(x) − B0(x)P

(1)
n

(x) = 1
2

�
Cn+1(x) − C0(x)

�
Pn+1(x) − γn+1Dn+1(x)Pn(x), n ≥ 0, (49)

with B0(x) = 0.
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2.4.3. The second order linear differential equation

Any polynomial Pn+1 from a semi-classical sequence {Pn}n≥0 satisfies the following second-order linear differential

equation [5]

J(x; n)P ��
n+1(x) + K(x; n)P �

n+1(x) + L(x; n)Pn+1(x) = 0, n ≥ 0, (50)
with deg J(·; n) ≤ 2s + 2, deg K(·; n) ≤ 2s + 1, deg L(·; n) ≤ 2s, n ≥ 0, and

J(x; n) = Φ(x)Dn+1(x), n ≥ 0, (51)

K(x; n) = C0(x)Dn+1(x) − W

�
Φ,Dn+1(x)

�
(x), n ≥ 0, (52)

L(x; n) = W

�
1
2
(Cn+1 − C0),Dn+1

�
(x) − Dn+1(x)

n�

ν=0

Dν(x), n ≥ 0, (53)

where W (f , g) denotes the wronskian of f and g . Reciprocally, if any polynomial Pn+1 from an orthogonal sequence fulfils
(50)–(53), then the sequence {Pn}n≥0 is semi-classical [5].

2.5. Second degree forms

A normalized regular form u is a second degree form (SD) [5] if there are polynomials B and C , Bmonic, such that, S
�
u

�
(z)

satisfy the quadratic Stieltjes equation

B(z)S2
�
u

�
(z) + C(z)S

�
u

�
(z) + D(z) = 0, (54)

where
D(z) =

�
uθ0C

�
(z) −

�
u
2θ2

0 B
�
(z).

The regularity of umeans that we must have B �= 0, C2 − 4BD �= 0 and D �= 0 [5]. The sequence {Pn}n≥0 orthogonal with
respect to u is also called a second degree sequence.

From (54), it is obvious that second degree forms are the particular case of Laguerre–Hahn forms corresponding to take
A = 0 in Eq. (24).

2.5.1. Perturbed sequences of second degree sequences

If u is a second degree form, then the perturbed form of u, ũ = u(µ0; µ
λ
; r), r ≥ 0, is also of second degree and satisfies

�B(z)S2
�
ũ

�
(z) +�C(z)S

�
ũ

�
(z) +�D(z) = 0, (55)

with
kr

�B(z) = B(z)X2
r
(z) − C(z)Xr(z)Yr(z) + D(z)Y 2

r
(z), (56)

kr
�C(z) = 2

�
B(z)Ur(z)Xr(z) + D(z)Vr(z)Yr(z)

�
− C(z)

�
Ur(z)Yr(z) + Vr(z)Xr(z)

�
, (57)

kr
�D(z) = B(z)U2

r
(z) − C(z)Ur(z)Vr(z) + D(z)V 2

r
(z), (58)

where kr is a normalization constant chosen in order to make�B monic and Ur(z), Vr(z), Xr(z) and Yr(z) are the transfer

polynomials. These identities can be obtained from (36)–(39) taking A(z) = A0(z) = 0.

2.5.2. Second degree forms as semi-classical forms

If u is a second degree form, then u is a semi-classical form and satisfies Eq. (28) with [5,7]

kΦ(x) := B(x)
�
C
2(x) − 4B(x)D(x)

�
, (59)

kψ(x) := −3
2
B(x)

�
C
2(x) − 4B(x)D(x)

��
, (60)

where k is a normalization constant chosen in order to make Φ(x) monic [7]. Equivalently, if u is a second degree form, then
S

�
u

�
(z) fulfils the affine Stieltjes equation [7]

�A(z)S ��
u

�
(z) = �C(z)S

�
u

�
(z) +�D(z), (61)

where
�A(z) = B(z)

�
C
2(z) − 4B(z)D(z)

�
, (62)

�C(z) = 2B(z)
�
B

�(z)D(z) − D
�(z)B(z)

�
+ C(z)

�
C

�(z)B(z) − B
�(z)C(z)

�
, (63)

�D(z) = B(z)
�
C

�(z)D(z) − D
�(z)C(z)

�
+ D(z)

�
C

�(z)B(z) − B
�(z)C(z)

�
. (64)

Among the classical forms, only the Jacobi forms J(k − 1
2 , l − 1

2 ), for k + l ≥ 0, k ∈ Z, l ∈ Z, are second degree forms
[14, Theorem p.445].
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3. A new general method for expliciting some semi-classical properties of perturbed second degree forms

In this section, we begin by giving a description of the method followed by the corresponding algorithm intended to be
implemented in an algebraic manipulator.

3.1. Description of the general method

The method consists in four main steps. In the first one, we define the starting data of the original second degree form
needed in the sequel of computations, they are the recurrence coefficients, the closed formula of the Stieltjes function and
the coefficients of the quadratic Stieltjes equation. In step two we do the perturbation and we compute the closed formula
of the Stieltjes function and the coefficients of the Stieltjes equation of the perturbed form as second degree form. In step
three we determine some elements of the perturbed form as semi-classical form, namely the coefficients of the functional
equation and of the Stieltjes equation and the class. In the last step, we begin by finding and demonstrating by induction
the closed formulas of the coefficients of the structure relation and from themwe obtain directly the closed formulas of the
coefficients of the differential equation.

Let us detail better each step of the algorithm.
The starting point of computations is constituted by the recurrence coefficients βn, γn+1 of the recurrence relation (4),

the closed formula of the Stieltjes function S(u)(z) and the characteristic elements B
SD(z), CSD(z) and D

SD(z) of the Eq.
(54) of the original second degree form u. Then we consider the perturbed form ũ = u(µ0; µ

λ
; r) and the corresponding

modified recurrence coefficients �βn and �γn+1 given by (10)–(12) from which we compute the first perturbed polynomials
{�Pn}n=0,...,nmax using (9) and from their canonical coefficients, we apply the Shohat–Favard algorithm to obtain some first
moments (ũ)n=0,...,nmax by (19)–(23). Next we want to calculate the coefficients of the Stieltjes equation (55) satisfied by
the perturbed form ũ as second degree form, i.e.�BSD(z), �CSD(z) and �DSD(z) by means of the equalities (56)–(58) in which
intervenes the transfer polynomials Ur(z), Vr(z), Xr(z) and Yr(z) stated by (14)–(17). We need to compute some first
polynomials of the sequences {Pn}n≥0, {�Pn}n≥0 and {�P (1)

n }n≥0 to get the transfer polynomials, using the relations (4), (5),
(7) and (9). The closed formula of the Stieltjes function S(ũ)(z) is obtained from the transfer polynomials by means of (8) or
(13).

In the sequel, we pretend to obtain some semi-classical properties of ũ.
We begin by determining the coefficients �ΦSC (x) and �ψ SC (x) of the functional equation (25) applying the identities (59)

and (60) and also the coefficients�ASC (z),�CSC (z) and�DSC (z) of the Stieltjes equation (61) using (62)–(64). These two steps
are accomplished from�BSD(z),�CSD(z) and�DSD(z). At this moment, we are able to determine the class of the semi-classical
form ũ from �ΦSC (x) and �ψ SC (x) or from�ASC (z), �CSC (z) and �DSC (z). In both cases it is necessary to assure that we get the
minimum value of s. In the case we use (26) from the coefficients of the functional equation, we should verify the criterion
(27), and in the case we employ (30) from the coefficients of the Stieltjes equation, we should cancel any existent common
factor between�ASC (z),�CSC (z) and�DSC (z).

Our final goal is to obtain closed formulas for the polynomial coefficients�JSC (x; n), �KSC (x; n) and�LSC (x; n), ∀n ≥ 0, of
the second order linear differential equation (50) concerning the form ũ. These closed formulas can be obtained directly
from the closed formulas of the coefficients �ΦSC (z), �CSC

n+1(z) and �DSC

n+1(z), ∀n ≥ 0 of the structure relation (49) for the
form ũ by means of the equalities (51)–(53) assuming that it is possible to find a closed formula, valid for any n ≥ 0, for
the finite summation that appears in (53). In fact, the major difficult of this work lies in the closed formulas of �CSC

n+1(z)

and �DSC

n+1(z), ∀n ≥ 0. The coefficients �BSC

n+1(z), �CSC

n+1(z) and �DSC

n+1(z) for n = 0, 1, . . . until a maximal order nmax can
always be computed recursively from the relations (41)–(42) or (44)–(48), starting from �ΦSC (z), �CSC (z) and �DSC (z). The
recurrence coefficients of the perturbed form ũ given by (10)–(12) are also required at this step. In general it is not possible
to solve analytically the recurrence relations (41)–(42) or (44)–(48) in order to obtain closed formulas for the coefficients
of the structure relation valid ∀n ≥ 0. Otherwise, in the case we have a model for these closed formulas, we can use these
same relations to do a demonstration by induction. Considering that the coefficients of�BSC

n+1(z),�CSC

n+1(z) and�DSC

n+1(z) in the
canonical basis �1, z, z2, . . . , zk, . . .� are polynomials in n of limited and fixed degree, often of low degree, it is possible to
find those closed formulas from the first few elements for n = 0, 1, . . . , nmax by an interpolation procedure.

Finally, we notice that it is important to factorize Jn(x; n), Kn(x; n) and Ln(x; n), because often there are common factors
between them that can be simplified in the differential equation. All these tasks can be accomplish by the implementation
of the next algorithm in an automatic manipulator.

3.2. PSDF – perturbed second degree forms – algorithm

• Step 1

For the original second degree form u give the starting data:
1.1 Recurrence coefficients: βn, γn+1, n ≥ 0.
1.2 Closed formula for the Stieltjes function: S(u)(z).
1.3 For the form u as second degree form give:
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Coefficients of the Stieltjes equation (54): BSD(z), CSD(z), DSD(z).
1.4 Perturbation: (µ0; µ

λ
; r), µ = (µ1, . . . , µr), λ = (λ1, . . . , λr), r ≥ 1.

• Step 2

For the perturbed form ũ = u(µ0; µ
λ
; r) compute:

2.1 Recurrence coefficients:�βn and�γn+1 given by (10)–(12).
2.2 First MOPS Pn,�Pn, P (1)

n ,�P (1)
n using (4), (5), (7) and (9).

2.3 First moments: (ũ)n, n = 0, . . . , nmax from (19)–(23).
2.4 Transfer polynomials: Ur(z), Vr(z), Xr(z), Yr(z) stated by (14)–(17).
2.5 Closed formula for the Stieltjes function S(ũ)(z) given by (8) or (13).
2.6 For the perturbed form ũ as second degree form compute:
Coefficients of the Stieltjes equation (55):�BSD(z),�CSD(z),�DSD(z) given by (56)–(58).

• Step 3

For the perturbed form ũ as semi-classical form, from�BSD(z),�CSD(z),�DSD(z), compute:
3.1 Coefficients of the functional equation (25): �ΦSC (x), �ψ SC (x) given by (59) and (60).
3.2 Coefficients of the Stieltjes equation (61):�ASC (z),�CSC (z),�DSC (z) using (62)–(64).
3.3 Compute the class s: from the polynomials of step 3.1 by (26) and (27), or from the polynomials of step 3.2 by (30).

• Step 4

For the perturbed form ũ as semi-classical form:
4.1 From �ΦSC (z), �CSC (z), �DSC (z) find by an interpolation procedure and prove automatically by induction closed
formulas for the coefficients�BSC

n+1(z),�CSC

n+1(z),�DSC

n+1(z), n ≥ 0, given by (41)–(42) or (44)–(48) of the Stieltjes equations
(40) or (43) of ũ(r) and of the structure relation (49) of ũ.2
4.2 From closed formulas of �ΦSC (z), �CSC

n+1(z), �DSC

n+1(z), n ≥ 0 compute closed formulas for the coefficients�JSC (x; n),
�KSC (x; n),�LSC (x; n), n ≥ 0, given by (51)–(53) of the second order linear differential equation (50) of ũ.

4. New results for some perturbed of the Chebyshev form of second kind

In this section, we present new explicit results obtained applying the algorithm PSDF step by step in the cases of the
following two perturbations of order three of the second kind Chebyshev form U

U

�
0; 0, 0, µ3

1, 1, 1
; 3

�
, µ3 �= 0; U

�
0; 0, 0, 0

1, 1, λ3
; 3

�
, λ3 �= 0, λ3 �= 1.

The computations of PSDF start from the recurrence coefficients, the Stieltjes function and the coefficients of the Stieltjes
equation of U as second degree form [7,15] given respectively by

βn = 0, γn+1 = 1
4
, n ≥ 0, (65)

S(U)(z) = − 2
z +

√
z2 − 1

,

A
SD(x) = 0, B

SD(x) = 1, C
SD(x) = 4x, D

SD(x) = 4.

For the sake of completeness, we present next some other characteristic elements of U and {Pn(x)}n≥0 [37,7,15]. Also,
recall that U is a Jacobi classical form with parameters α = β = 1

2 .

f (x, t) =
�

n≥0

Pn(x)t
n = 1

1 + t

� 1
4 t − x

� ;

(U)n = 2
Γ

� 3
2

�
n�

ν=0

�
n

ν

�
(−1)n−ν2ν

Γ
�
ν + 3

2

�

Γ (ν + 3)
, n ≥ 0;

{(U)n}n=0,...,10 =
�
1, 0,

1
4
, 0,

1
8
, 0,

5
64

, 0,
7

128
, 0,

21
512

, 0,
33

1024
, 0,

429
16384

, 0
�

;

ΦSC (x) = x
2 − 1, ψ SC (x) = −3x;

A
SC (x) = x

2 − 1, B
SC (x) = 0, C

SC (x) = x, D
SC (x) = 2;

A
SC

n
(x) = x

2 − 1; B
SC

0 (x) = 0, B
SC

n
(x) = n

2
, n ≥ 1,

2 In fact, only the coefficients �CSC

n+1(z), �DSC

n+1(z), n ≥ 0 are necessary for the structure relation and for the differential equation as we can see from
identities (49) and (51)–(53).
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C
SC

n
(x) = (2n + 1)x, D

SC

n
(x) = 2(n + 1), n ≥ 0;

kn = 1
4n

, n ≥ 1; A
SD

n
(x) = 0, B

SD

n
(x) = 1, C

SD

n
(x) = 4x, D

SD

n
(x) = 4, n ≥ 1.

Generalizing what is done in [16, Sec.5], let us deduce a closed formula for the generating function of any perturbed
Chebyshev sequence {�Pn(x)}n≥0 of order r , r ≥ 0

f̃ (x, t) =
�

n≥0

�Pn(x)tn. (66)

From (9), (12) and (65), we have

�Pn+r+2(x) = x�Pn+r+1(x) − 1
4
�Pn+r(x), n ≥ 0, r ≥ 0.

Multiplying both sides by t
n+r+2 and summing for n ≥ 0, we get

�

n≥0

�Pn+r+2(x)t
n+r+2 = xt

�

n≥0

�Pn+r+1(x)t
n+r+1 − 1

4
t
2
�

n≥0

�Pn+r(x)t
n+r .

Taking into account (66), we obtain the desired formula as follows:

f̃ (x, t) −
r+1�

n=0

�Pk(x)tk = xt

�
f̃ (x, t) −

r�

n=0

�Pk(x)tk
�

− 1
4
t
2
�
f̃ (x, t) −

r−1�

n=0

�Pk(x)tk
�
,

f̃ (x, t)

�
1 + t

�
1
4
t − x

��
=

r+1�

n=0

�Pk(x)tk − xt

r�

n=0

�Pk(x)tk + 1
4
t
2

r−1�

n=0

�Pk(x)tk,

f̃ (x, t) =

r+1�
n=0

�Pk(x)tk − xt

r�
n=0

�Pk(x)tk + 1
4 t

2
r−1�
n=0

�Pk(x)tk

1 + t

� 1
4 t − x

� , r ≥ 0.

4.1. Elementary perturbation of order three by translation

The perturbed form Recurrence coefficients of ũ The generating function

ũ = U
�
0; 0, 0, µ3

1, 1, 1 ; 3
�

, µ3 �= 0. β̃n = µ3δn,3, n ≥ 0; γ̃n+1 = 1
4 , n ≥ 0. f̃ (x, t) = 1+t

4µ3( x

2 −x
3)

1+t( t

4 −x)
.

First moments: (ũ)n=0(1)14 =
�
1, 0, 1

4 , 0,
1
8 , 0,

5
64 ,

µ3
64 , 1

128

�
7 + 2µ2

3
�
, 1

64µ3
�
2 + µ2

3
�
, 1

512

�
21 + 20µ2

3 + 8µ4
3
�
,

1
256µ3

�
11 + 12µ2

3 + 4µ4
3
�
,

33+66µ2
3+56µ4

3+16µ6
3

1024 , 1
256µ3

�
13 + 23µ2

3 + 16µ4
3 + 4µ6

3
�
,

429+1456µ2
3+1952µ4

3+1152µ6
3+256µ8

3
16384

�
.

Transfer polynomials: Ur(x) = − 1
16 (−1 + 2x)2(1 + 2x)2µ3, Vr(x) = 1

64

�
1 − 8xµ3 + 48x3µ3 − 64x5µ3

�
,

Xr(x) = 1
64

�
−1 − 8xµ3 + 48x3µ3 − 64x5µ3

�
, Yr(x) = − 1

4x
2
�
−1 + 2x2

�2
µ3.

The Stieltjes function of ũ: S(ũ)(z) = −2(−1+6zµ3−32z3µ3+32z5µ3)+4(−1+2z)2(1+2z)2µ3
√

−1+z2

z(−1+24zµ3−80z3µ3+64z5µ3)+
√

−1+z2(−1−8zµ3+48z3µ3−64z5µ3)
.

Coefficients of the Stieltjes equation of ũ as second degree form

�BSD(x) = x
7 − x

6µ3 − 3x5
2 + x

4µ3 + 5x3
8 − x

2µ3
4 − x

16 − 1
256µ3

,

�CSD(x) = 2x6 − 2x5µ3 − 5x4
2 + 3x3µ3

2 + 3x2
4 − x

�
1+16µ2

3

�

64µ3
− 1

32 ,
�DSD(x) = x

5 − x
4µ3 − x

3 + x
2µ3
2 + 3x

16 − 1+4µ2
3

64µ3
.

Coefficients of the functional equation of ũ ũ is a semi-classical form of class 7.
�ΦSC (x) = (x2 − 1)�BSD(x), �ψ SC (x) = −3x�BSD(x).
Coefficients of the Stieltjes equation of ũ as semi-classical form

�ASC (x) = �ΦSC (x), �CSC (x) = −6x8 + 5x7µ3 + 13x6 − 9x5µ3 − 35x4
4 + 17x3µ3

4 + 15x2
8 − x

�
1+128µ2

3

�

256µ3
− 1

16 ,

�DSC (x) = −5x7 + 4x6µ3 + 39x5
4 − 13x4µ3

2 − 43x3
8 + 9x2µ3

4 + 47x
64 − 1+16µ2

3
128µ3

.

Coefficients of the Stieltjes equation of ũ
(n)

as Laguerre–Hahn form

�ASC

0 (x) = �ΦSC (x); �BSC

0 (x) = 0, �BSC

n
(x) = 1

4
�DSC

n−1(x), n ≥ 1,
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Coefficients of the structure relation of ũ as semi-classical form

�CSC

0 (x) = �CSC (x), �CSC

1 (x) = −4x8 + 3x7µ3 + 13x6
2 − 4x5µ3 − 2x4 + x

3µ3
4 − 13x2

32 + x

�
−3+64µ2

3

�

256µ3
+ 1

16 ,

�CSC

2 (x) = −2x8 + x
7µ3 + 7x6

2 − 2x5µ3 − 13x4
8 + 3x3µ3

4 + 13x2
32 − x

�
5+64µ2

3

�

256µ3
− 1

16 ,
�CSC

3 (x) = −x
7µ3 + x

6

2 + x
5µ3 − 3x4

8 − x
3µ3
4 + x

2

16 − 7x
256µ3

+ 1
16 ,

�CSC

n
(x) = (2n − 6)x8 − (2n − 7)x7µ3 − (6n−19)x6

2 + (2n − 7)x5µ3 + (10n−33)x4
8 − (2n−7)x3µ3

4 − (2n−7)x2
16 − (2n+1)x

256µ3
, n ≥ 4,

�DSC

0 (x) = �DSC (x), �DSC

1 (x) = −3x7 + 2x6µ3 + 5x5 − 3x4µ3 − 29x3
16 + x

2µ3
2 − 1

64µ3
,

�DSC

2 (x) = −x
7 + 2x5 − x

4µ3
2 − x

3 + x
2µ3
4 + 15x

64 − 3+16µ2
3

128µ3
,

�DSC

n
(x) = (2n − 5)x7 − (2n − 6)x6µ3 − (3n − 8)x5 + (2n − 6)x4µ3 + (5n−14)x3

4 − (n−3)x2µ3
2 − (n−3)x

8 − n+1
128µ3

, n ≥ 3.

Coefficients of the second order linear differential equation of ũ as semi-classical form

�JSC (0; x) = −�BSD(x)
64µ3

(x2 − 1)
�
192x7µ3 − 128x6µ2

3 − 320x5µ3 + 192x4µ2
3 + 116x3µ3 − 32x2µ2

3 + 1
�
,

�JSC (1; x) = −�BSD(x)
128µ3

(x2 − 1)
�
128x7µ3 − 256x5µ3 + 64x4µ2

3 + 128x3µ3 − 32x2µ2
3 − 30xµ3 + 16µ2

3 + 3
�
,

�JSC (n; x) = �BSD(x)
128µ3

(x2 − 1)
�
128(−3 + 2n)x7µ3 − 256(−2 + n)x6µ2

3 − 128(−5 + 3n)x5µ3 + 256(−2 + n)x4µ2
3 +

32(−9 + 5n)x3µ3 − 64(−2 + n)x2µ2
3 − 16(−2 + n)xµ3 − 2 − n

�
, n ≥ 2.

�KSC (0; x) = �BSD(x)
64µ3

x

�
768x7µ3 − 384x6µ2

3 − 1984x5µ3 + 960x4µ2
3 + 1600x3µ3 − 736x2µ2

3 − 348xµ3 + 64µ2
3 − 3

�
,

�KSC (1; x) = �BSD(x)
128µ3

�
512x8µ3−1408x6µ3+64x5µ2

3+1280x4µ3−224x3µ2
3−324x2µ3+x (−3 + 4µ3) (3 + 4µ3)+30µ3

�
,

�KSC (n; x) = −�BSD(x)
128µ3

�
512(−3+2n)x8µ3 −768(−2+n)x7µ2

3 −128(−31+20n)x6µ3 +1792(−2+n)x5µ2
3 +640(−5+

3n)x4µ3−960(−2+n)x3µ2
3−32(−25+14n)x2µ3+x

�
−2

�
−3 + 128µ2

3
�
+n

�
3 + 128µ2

3
��

+16(−2+n)µ3

�
, n ≥ 2.

�LSC (0; x) = −�BSD(x)
64µ3

�
768x7µ3 − 384x6µ2

3 − 1984x5µ3 + 960x4µ2
3 + 1600x3µ3 − 736x2µ2

3 − 348xµ3 + 64µ2
3 − 3

�
,

�LSC (1; x) = −�BSD(x)
16µ3

�
96x7µ3 − 232x5µ3 + 166x3µ3 − 32x2µ2

3 − 16µ2
3 − 3

�
,

�LSC (n; x) = −�BSD(x)
128µ3

�
128(−4 + n)(1 + n)(−3 + 2n)x7µ3 − 256(−4 + n)(−2 + n)nx6µ2

3

− 64
�
62 − 9n − 30n2 + 6n3

�
x
5µ3 + 256(−2 + n)

�
−6 − 4n + n

2
�
x
4µ2

3 + 16
�
158 − 31n − 54n2 + 10n3

�
x
3µ3

− 64(−2 + n)
�
−8 − 4n + n

2
�
x
2µ2

3 − 8(2 + n)
�
21 − 16n + 2n2

�
xµ3 − (1 + n)(2 + n)(3 + n)

�
, n ≥ 2.

4.2. Elementary perturbation of order three by dilatation

The perturbed form Recurrence coefficients of ũ

ũ = U
�
0; 0, 0, 0

1, 1, λ3
; 3

�
, λ3 �= 0, λ3 �= 1. β̃n = 0, n ≥ 0; γ̃n+1 = 1

4

�
1 − (1 − λ3)δn+1,3

�
, n ≥ 0.

The generating function: f̃ (x, t) = 1+t
4
�
1
4 x

2(1−λ3)+ 1
16 (−1+λ3)

�

1+t( t

4 −x)
.

First moments: (ũ)n=0(1)17 =
�
1, 0, 1

4 , 0,
1
8 , 0,

1
64 (4 + λ3) , 0, 1

256

�
8 + 5λ3 + λ2

3
�
, 0,

(2+λ3)
�
8+5λ3+λ23

�

1024 , 0,
(1+λ3)

�
32+25λ3+8λ23+λ33

�

4096 , 0, 64+170λ3+131λ23+52λ33+11λ43+λ53
16384 , 0, 128+494λ3+474λ23+245λ33+75λ43+13λ53+λ63

65536 , 0
�
.

Transfer polynomials: Ur(x) = − 1
16x

�
−1 + 4x2

�
(−1 + λ3) , Vr(x) = 1

64

�
1 + 8x2 (−1 + λ3) − 16x4 (−1 + λ3)

�
,

Xr(x) = 1
4x

4 (1 − λ3) + 1
8x

2 (−1 + λ3) − λ3
64 , Yr(x) = − 1

32x(−1 + 2x)(1 + 2x)
�
−1 + 2x2

�
(−1 + λ3).

The Stieltjes function of ũ: S(ũ)(z) =
−2−12z2(−1+λ3)+16z4(−1+λ3)+

�
4z(1−4z2)(−1+λ3)

�√
−1+z2

z(4−3λ3)+16z3(−1+λ3)−16z5(−1+λ3)+
√

−1+z2
�

−8z2(−1+λ3)+16z4(−1+λ3)+λ3

� .

Coefficients of the Stieltjes equation of ũ as second degree form

�BSD(x) = x
6 + 1

4x
4 (−4 − λ3) + 1

8x
2 (2 + λ3) − λ23

64(−1+λ3)
, �CSD(x) = 2x5 + 1

2x
3 (−3 − λ3) + x

�
−4+λ3+2λ23

�

16(−1+λ3)
,

�DSD(x) = x
4 + 1

4x
2 (−2 − λ3) − 1

16(−1+λ3)
.
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Coefficients of the functional equation of ũ ũ is a semi-classical form of class 6.
�ΦSC (x) = (x2 − 1)�BSD(x), �ψ SC (x) = −3x�BSD(x).
Coefficients of the Stieltjes equation of ũ as semi-classical form

�ASC (x) = �ΦSC (x), �CSC (x) = −5x7 + 3
4x

5 (12 + λ3) + 1
8x

3 (−34 − 9λ3) + x

�
−32+16λ3+15λ23

�

64(−1+λ3)
,

�DSC (x) = −4x6 + 1
2x

4 (13 + λ3) − 3
4x

2 (3 + λ3) + −4+λ3+2λ23
32(−1+λ3)

.

Coefficients of the Stieltjes equation of ũ
(n)

as Laguerre–Hahn form

�ASC

0 (x) = �ΦSC (x); �BSC

0 (x) = 0, �BSC

n
(x) = 1

4

�
1 − (1 − λ3)δn,3

��DSC

n−1(x), n ≥ 1,
Coefficients of the structure relation of ũ as semi-classical form

�CSC

0 (x) = �CSC (x), �CSC

1 (x) = −3x7 + 1
4x

5 (16 + λ3) + 1
8x

3 (−2 − 3λ3) − x

�
−16+12λ3+7λ23

�

64(−1+λ3)
,

�CSC

2 (x) = −x
7 + 1

4x
5 (8 − λ3) + 1

8x
3 (−6 + λ3) − x

�
16−12λ3+λ23

�

64(−1+λ3)
,

�CSC

n
(x) = (2n − 5)x7 − (8n−20+(2n−7)λ3)

4 x
5 + (4n−10+(2n−7)λ3)

8 x
3 − λ3(8+(2n−7)λ3)

64(−1+λ3)
x, n ≥ 3,

�DSC

0 (x) = �DSC (x), �DSC

1 (x) = −2x6 + 3x4 + 1
8x

2 (−4 − λ3) − λ23
16(−1+λ3)

, �DSC

2 (x) = x
4

2 − x
2

4 + −4+λ3
32(−1+λ3)

,
�DSC

n
(x) = 2(n − 2)x6 − (4n−8+(n−3)λ3)

2 x
4 + (2n−4+(n−3)λ3)

4 x
2 − λ3(4+(n−3)λ3)

32(−1+λ3)
, n ≥ 3.

Coefficients of the second order linear differential equation of ũ as semi-classical form

�JSC (0; x) = − �BSD(x)
16(−1+λ3)

(x2 − 1)
�
32x6 (−1 + λ3) − 48x4 (−1 + λ3) + 2x2 (−1 + λ3) (4 + λ3) + λ2

3

�
,

�JSC (1; x) = �BSD(x)
32(−1+λ3)

(x2 − 1)
�
16x4 (−1 + λ3) − 8x2 (−1 + λ3) + λ3 − 4

�
,

�JSC (n; x) = �BSD(x)
32(−1+λ3)

(x2 − 1)
�
64(−1 + n)x6 (−1 + λ3) − 16x4 (−1 + λ3)

�
−2 (2 + λ3) + n (4 + λ3)

�
+

8x2
�
−2 (1 + λ3) + n (2 + λ3)

�
− λ3 (4 − 2λ3 + nλ3)

�
, n ≥ 2.

�KSC (0; x) = �BSD(x)
16(−1+λ3)

x

�
96x6 (−1 + λ3) − 240x4 (−1 + λ3) − 2x2 (−92 + λ3) (−1 + λ3) + 16 − 12λ3 − 7λ2

3

�
,

�KSC (1; x) = − �BSD(x)
32(−1+λ3)

x

�
16x4 (−1 + λ3) − 56x2 (−1 + λ3) + 13λ3 − 4

�
,

�KSC (n; x) = − �BSD(x)
32(−1+λ3)

x

�
192(−1 + n)x6 (−1 + λ3) − 16x4 (−1 + λ3)

�
−2 (14 + λ3) + n (28 + λ3)

�
+

8x2 (−1 + λ3)
�
−2 (15 + 7λ3) + n (30 + 7λ3)

�
+ n

�
32 − 16λ3 − 13λ2

3
�
+ 2

�
−16 + 6λ3 + 13λ2

3
��

, n ≥ 2.

�LSC (0; x) = − �BSD(x)
16(−1+λ3)

�
96x6 (−1 + λ3) − 240x4 (−1 + λ3) − 2x2 (−92 + λ3) (−1 + λ3) + 16 − 12λ3 − 7λ2

3

�
,

�LSC (1; x) = − �BSD(x)
4(−1+λ3)

�
8x2 (−1 + λ3) − 4 + λ3

�
,

�LSC (n; x) = − �BSD(x)
32(−1+λ3)

�
−64(−3 + n)(−1 + n)(1 + n)x6 (−1 + λ3) + 16(−1 + n)x4 (−1 + λ3)

�
n (−8 − 5λ3)

+ 6 (−6 + λ3) + n
2 (4 + λ3)

�
− 8x2 (−1 + λ3)

�
3n (−6 + λ3) − 6n2 (1 + λ3) + n

3 (2 + λ3) + 2 (11 + 5λ3)
�

+ (4 − 2λ3 + nλ3)
�
−8 − 4n (−2 + λ3) + 11λ3 + n

2λ3

��
, n ≥ 2.
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