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Abstract
We establish asymptotic and summation properties of the Lebedev integrals with

respect to an index of the modified Bessel function, which are related to the known
Kontorovich-Lebedev transformation. Analogs of the Watson lemma and Poisson
summation formulas are proved. As applications certain type series involving Euler’s
gamma-functions and hyperbolic functions are evaluated.
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1 Introduction

Let z ∈ C be a complex number and let f be a complex -valued measurable function on
R+ = (0,∞). We deal with the following Lebedev integral

F (z) ≡ Kz[f ] =

∫ ∞

0

Kz(x)f(x)dx, (1.1)
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through the Centro de Matemática da Universidade do Porto (CMUP). Available as a PDF file from
http://www.fc.up.pt/cmup.
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which is a modification of the Kontorovich-Lebedev transformation (cf. [3], [4], [6], [7]) on
general complex index of the modified Bessel function Kz(x) [2], Vol. 2. As it is known,
the function Kz(x) satisfies the differential equation

x2d2u

dx2
+ x

du

dx
− (x2 + z2)u = 0, (1.2)

for which it is the solution that remains bounded as x tends to infinity on the real line.
The modified Bessel function has the asymptotic behavior [2], Vol. 2

Kz(x) =
( π

2x

)1/2

e−x[1 + O(1/x)], x →∞, (1.3)

and near the origin
Kz(x) = O

(
x−|Rez|) , x → 0, z 6= 0, (1.4)

K0(x) = − log x + O(1), x → 0. (1.5)

It can be defined by the following integral representation [6], [7]

Kz(x) =

∫ ∞

0

e−x cosh u cosh zu du, x > 0. (1.6)

Hence we easily find that Kz(x) is even with respect to z and a real-valued positive
function when z ∈ R. Moreover, it satisfies the following inequality

|Kz(x)| ≤ KRez(x), x > 0. (1.7)

When z is pure imaginary then (1.1) coincides with the Kontorovich-Lebedev transfor-
mation introduced by Lebedev in [4], which is different from its original form (cf. [3]).

As it is known, the product of the modified Bessel functions of different arguments
can be represented by the Macdonald formula [5], relation (2.16.9.1)

Kν(x)Kν(y) =
1

2

∫ ∞

0

e
− 1

2

�
u x2+y2

xy
+xy

u

�

Kν(u)
du

u
. (1.8)

This formula generates the following convolution operator

(f ∗ g)(x) =
1

2x

∫ ∞

0

∫ ∞

0

e
− 1

2

�
x u2+y2

uy
+ yu

x

�

f(u)g(y)dudy, x > 0, (1.9)

satisfying under some conditions (see [7], Ch. 4) the factorization property in terms of
the Lebedev integrals (1.1). Precisely, we get

Kz[f ∗ g] = Kz[f ]Kz[g]. (1.10)
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We will deal in the sequel with a particular case of the Lebedev integral (1.1) when f is
an entire function of the exponential type. We will study its analytic properties and prove
the Watson lemma, which will give an asymptotic behavior of the Lebedev integral when
z →∞. Then we will establish analogs of the Poisson formulas for the Lebedev integral
and its powers, which are known for Fourier integrals (cf. [1]). As applications we will
exhibit a few series involving Euler’s gamma-functions, which can be evaluated by using
these formulas.

2 Watson’s lemma

In this section we will study analytic properties of the Lebedev integral F (z) (1.1) when
f(x) admits the series representation f(x) =

∑∞
n=0

an

n!
xn as an entire function of the

exponential type with limsupn→∞|an|1/n = σ, where σ is a type of this function. Then
we will prove the Watson lemma for these integrals, which gives the asymptotic behavior
of F (z) when z → ∞. Similar questions for pure imaginary z have been studied in [7],
Section 2.5.

We start with the following
Lemma 1. Let f be an entire function of the exponential type with σ < 1. Then F (z)

is analytic in the strip |Re z| < 1 and for any ε ∈ (0, 1−σ) admits there the uniform with
respect to Im z estimate

|F (z)| < Cε
sin (Rez arccos(σ + ε))

sin (πRez)
√

1− (σ + ε)2
, (2.1)

where Cε > 0 is a constant depending on ε.
Proof. Indeed, since for any ε > 0

|an| < Cε(σ + ε)n, n = 0, 1, . . . ,

we easily have that |f(x)| < Cεe
(σ+ε)x, x > 0. Consequently, choosing ε ∈ (0, 1 − σ)

we appeal to integral representation (1.6), the estimate (1.7) and evaluating elementary
integrals we derive

|F (z)| ≤
∫ ∞

0

KRez(x)|f(x)|dx < Cε

∫ ∞

0

KRez(x)e(σ+ε)xdx

= Cε

∫ ∞

0

e(σ+ε)x

∫ ∞

0

e−x cosh u cosh Rezu dudx = Cε

∫ ∞

0

cosh Rezu

cosh u− σ − ε
du

= πCε
sin (Rez arccos(σ + ε))

sin (πRez)
√

1− (σ + ε)2
,
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where the change of the order of integration is due to Fubini’s theorem. Thus we arrive at
the estimate (2.1). Moreover, it shows via asymptotic formulas (1.3), (1.4), (1.5) for the
modified Bessel function that integral (1.1) converges absolutely in the strip |Re z| < 1
and uniformly with respect to Im z in each interior substrip of |Re z| < 1. Therefore F (z)
is analytic in the vertical strip |Re z| < 1. Lemma 1 is proved.

This lemma allows us to get another representation of F (z) in the strip |Re z| < 1 in
terms of the series. Indeed, substituting the series for f into (1.1) we change the order of
summation and integration owing to the convergence of the series (see Lemma 1)

∞∑
n=0

|an|
n!

∫ ∞

0

|Kz(x)|xndx.

Hence we calculate the inner integral appealing, for instance, to relation (2.140) in [7].
Thus we derive the following equalities

F (z) =

∫ ∞

0

Kz(x)
∞∑

n=0

an

n!
xndx =

∞∑
n=0

an

n!

∫ ∞

0

Kz(x)xndx

=
∞∑

n=0

an

n!
2n−1Γ

(
n + 1 + z

2

)
Γ

(
n + 1− z

2

)

=
∞∑

n=0

2n−1anB

(
n + 1 + z

2
,
n + 1− z

2

)

=
N∑

n=0

2n−1anB

(
n + 1 + z

2
,
n + 1− z

2

)
+ RN(z) = SN(z) + RN(z), (2.2)

where

RN(z) =
∞∑

n=N+1

2n−1anB

(
n + 1 + z

2
,
n + 1− z

2

)

and Γ(w), B(a, b) are the Euler gamma- and beta -functions, respectively (cf. [2], Vol. I).
With the elementary inequality for beta-functions |B(a, b)| ≤ B(Re a, Re b), the duplica-
tion formula for the gamma-function and via Lemma 1 we have the estimate

|RN(z)| ≤
∞∑

n=N+1

2n−1|an|B
(

n + 1 + Re z

2
,
n + 1− Re z

2

)

≤ Cε

∞∑
n=N+1

2n−1(σ + ε)nB

(
n + 1 + Re z

2
,
n + 1− Re z

2

)
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=

√
πCε

2

∞∑
n=N+1

(σ + ε)n Γ
(

n+1+Rez
2

)
Γ

(
n+1−Rez

2

)

Γ
(

n+1
2

)
Γ

(
n
2

+ 1
) , σ + ε < 1.

Hence applying the asymptotic formula for the ratio of gamma- functions (see [2], Vol. I,
relation (1.18.4))

Γ (z + α)

Γ (z + β)
= zα−β

[
1 +

(α− β)(α + β − 1)

2z
+ O(z−2)

]
, z →∞, (2.3)

we get that
Γ

(
n+1+Rez

2

)
Γ

(
n+1−Rez

2

)

Γ
(

n+1
2

)
Γ

(
n
2

+ 1
) = O(n−1/2), n →∞.

Therefore the remainder RN(z) can be estimated uniformly with respect to z in each
interior substrip of |Re z| < 1 as

|RN(z)| ≤ Dε

∞∑
n=N+1

(σ + ε)n

√
n

= O

(
1√
N

)
, N →∞.

Appealing again to (2.3) we have for any n = 0, . . . , N and z →∞ the following asymp-
totic expansions

Γ
(

n+1+z
2

)

Γ
(

1+z
2

) =
(z

2

)n/2
[
1 +

n2

4z
+ O(z−2)

]
, z →∞, (2.4)

Γ
(

n+1−z
2

)

Γ
(

1−z
2

) =
(
−z

2

)n/2
[
1− n2

4z
+ O(z−2)

]
, z →∞. (2.5)

Hence taking into account the elementary identity Γ
(

1+z
2

)
Γ

(
1−z
2

)
= π

cos(πz/2)
we return

to (2.2) to estimate SN(z). Invoking (2.4), (2.5) we obtain for each N ∈ N and z →
∞, |Re z| < 1 the representation

SN(z) =
π

2 cos(πz/2)

N∑
n=0

an

n!
(iz)n

[
1 +

n2

4z
+ O(z−2)

] [
1− n2

4z
+ O(z−2)

]

=
π

2 cos(πz/2)

[
N∑

n=0

an

n!
(iz)n − 1

16z2

N∑
n=0

n4an

n!
(iz)n + O(z−2)

]

=
π

2 cos(πz/2)

[
N∑

n=0

an

n!
(iz)n + O(z−2)

]
.
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Taking now N →∞ we derive the following asymptotic expansion of the Lebedev integral
(1.1) in the strip |Re z| < 1

F (z) =
π

2 cos(πz/2)
f(iz)(1 + O

(
z−2

)
), z →∞. (2.6)

Thus we have proved an analog of the Watson lemma for Lebedev’s integrals.
Lemma 2. Let f be an entire function of the exponential type with σ < 1. Then F (z)

admits asymptotic expansion (2.6) in the strip |Re z| < 1 when z →∞, i.e.

F (z) ∼ π

2 cos(πz/2)
f(iz).

3 Summation formulas

We begin to take the known Poisson formula for the cosine Fourier transform [1]

√
β

[
1

2
Fc(0) +

∞∑
n=1

Fc(nβ)

]
=
√

α

[
1

2
f(0) +

∞∑
n=1

f(nα)

]
, (3.1)

where αβ = 2π, α > 0 and

Fc(x) =

√
2

π

∫ ∞

0

f(t) cos xtdt. (3.2)

Hence putting in (1.6) z = iτ, τ ∈ R we apply (3.1) to the Lebedev integral and we arrive
at the identity

K0(x) + 2
∞∑

n=1

Kinβ(x) = α

[
e−x

2
+

∞∑
n=1

e−x cosh nα

]
, x > 0, αβ = 2π, α > 0. (3.3)

This is a key identity we will use to prove an analog of the Poisson summation for the
Lebedev integrals (1.1). Indeed, we have

Theorem 1. Let f ∈ L1(R+; Kµ(ξx)dx), where µ, ξ ∈ R, |µ| > 1/2, 0 < ξ < 1.
Then the Poisson type formula is true

K0[f ]+2
∞∑

n=1

Kinβ[f ] = α

[
1

π

∫ ∞

0

Kiτ [f ]dτ +
∞∑

n=1

(Lf)(cosh nα)

]
, αβ = 2π, α > 0. (3.4)

where (Lf)(x) is the Laplace integral

(Lf)(x) =

∫ ∞

0

e−xtf(t)dt. (3.5)
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Proof. The condition f ∈ L1(R+; Kµ(ξx)dx) means that the following integral is
finite,

||f ||L1(R+;Kµ(ξx)dx) =

∫ ∞

0

Kµ(ξt)|f(t)|dt < ∞.

Hence we multiply (3.3) on f and integrate with respect to x changing the order of
integration and summation in the series. Then invoking (3.5) and the value of the integral
(see (1.6), (3.2))

e−x =
2

π

∫ ∞

0

Kiτ (x)dτ, x > 0,

we get (3.4). The change of the order of integration and summation can be motivated
by the absolute convergence of the iterated integral in (3.4) and the convergence of the
following two series

∞∑
n=1

∫ ∞

0

|Kinβ(t)| |f(t)|dt,

∞∑
n=1

∫ ∞

0

e−t cosh nα|f(t)|dt

under conditions of the theorem. To do this we appeal to the inequality (cf. [7, relation
(1.100)])

|Kiτ (x)| ≤ e−δ|τ |K0(x cos δ), δ ∈ (0, π/2) (3.6)

and we choose δ, such that cos δ > ξ. Hence for the first series we obtain

∞∑
n=1

∫ ∞

0

|Kinβ(t)| |f(t)|dt ≤ Cµ,ξ,δ

∫ ∞

0

Kµ(ξt) |f(t)|dt

∞∑
n=1

e−δnβ < ∞,

where Cµ,ξ,δ > 0 is a constant since via asymptotic formulas (1.3), (1.4), (1.5) the ratio
K0(t cos δ)

Kµ(ξt)
is bounded, i.e. K0(t cos δ)

Kµ(ξt)
< Cµ,ξ,δ. The second series can be treated by the

estimate
∞∑

n=1

∫ ∞

0

e−t cosh nα|f(t)|dt =
∞∑

n=1

∫ ∞

0

e−t−2t sinh2(nα/2)|f(t)|dt

≤
∞∑

n=1

∫ ∞

0

e−t

1 + 2t sinh2(nα/2)
|f(t)|dt ≤ 1

2
√

2

∞∑
n=1

1

sinh(nα/2)

×
∫ ∞

0

e−t

√
tKµ(ξt)

|f(t)|Kµ(ξt)dt < Cµ,ξ

∞∑
n=1

1

sinh(nα/2)

∫ ∞

0

|f(t)|Kµ(ξt)dt < ∞,
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where Cµ,ξ > 0 is a constant. Finally we observe that the integral in (3.4) is absolutely
convergent. Indeed, calling again (3.6) we have

∫ ∞

0

|Kiτ [f ]|dτ ≤
∫ ∞

0

∫ ∞

0

|f(t)||Kiτ (t)|dtdτ ≤
∫ ∞

0

e−δτdτ

×
∫ ∞

0

|f(t)|K0(t cos δ)dt ≤ Cδ,ξ

∫ ∞

0

|f(t)|Kµ(ξt)dt < ∞,

where Cδ,ξ > 0 is a constant. Theorem 1 is proved.
Let us exhibit some interesting particular cases of the formula (3.4). Indeed, let-

ting f(x) ≡ 1, β = 2π
α

we calculate the corresponding Lebedev integral by the relation
(2.16.2.1) in [5] and we derive the identity

∞∑
n=1

[
π

cosh
(

nπ2

α

) − α

cosh nα

]
=

α− π

2
, α > 0. (3.7)

If f(x) = xγ−1, γ > 0 then we appeal to the relation (2.16.2.2) in [5] to obtain the formula

2γ−1

[
Γ2

(γ

2

)
+ 2

∞∑
n=1

∣∣∣∣Γ
(

γ

2
+

πin

α

)∣∣∣∣
2
]

= αΓ(γ)

[
1

2
+

∞∑
n=1

1

coshγ nα

]
, α > 0. (3.8)

The value γ = 1 leads again to (3.7). Let f(x) = e−xxγ−1, γ > 0. Then by using relation
(2.16.6.4) in [5] the identity (3.4) becomes (α > 0)

2−γ
√

π

Γ(γ + 1/2)

[
Γ2(γ) + 2

∞∑
n=1

∣∣∣∣Γ
(

γ +
2πin

α

)∣∣∣∣
2
]

= αΓ(γ)

[
2−γ−1 +

∞∑
n=1

1

(1 + cosh nα)γ

]
.

(3.9)
Letting γ = 1 in (3.9) we invoke the reduction and supplement formulas for gamma-
functions and we get the identity

1 +
2π2

α

∞∑
n=1

n

sinh
(

π2n
α

)
cosh

(
π2n
α

) = α

[
1

4
+

∞∑
n=1

1

1 + cosh nα

]
. (3.10)

In particular, when α = π we have

∞∑
n=1

[
2n

sinh πn cosh πn
− 1

1 + cosh πn

]
=

π − 4

4π
.

As a consequence of (3.3) and differential equation (1.2) one can get another identity
involving series of the modified Bessel functions with respect to an index. In fact, we take
into account (see(1.2)) that

x2d2Kinβ(x)

dx2
+ x

dKinβ(x)

dx
− x2Kinβ(x) = −n2β2Kinβ(x). (3.11)
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Hence we differentiate through (3.3) accordingly with respect to x under the series sign
by virtue of the uniform convergence at least for x ∈ [x0,∞), x0 > 0. The latter fact can
be established by using the expressions for the derivatives of the modified Bessel functions
(cf. [2, Vol. 2])

dKinβ(x)

dx
= −1

2
[K1−inβ(x) + K1+inβ(x)] ,

d2Kinβ(x)

dx2
=

1

4
[K2−inβ(x) + 2Kinβ(x) + K2+inβ(x)]

and the inequality (cf. [9]), which generalizes (3.6)

|Kη+iτ (x)| ≤ e−δ|τ |Kη(x cos δ), η ∈ R, δ ∈ (0, π/2).

Thus combining with (3.11) we finally obtain the equality

2β2

∞∑
n=1

n2Kinβ(x) + αx

∞∑
n=1

e−x cosh nα(x cosh2 nα− cosh nα− x)

=
αx

2
e−x, x > 0, αβ = 2π, α > 0. (3.12)

Let us integrate through (3.12) over R+ and change the order of integration and summa-
tion due to the convergence of the following series (see (3.6))

∞∑
n=1

n2

∫ ∞

0

|Kinβ(t)|dt ≤ Cδ

∞∑
n=1

n2e−δnβ < ∞,

∞∑
n=1

cosh2 nα

∫ ∞

0

e−t cosh nαt2dt = 2
∞∑

n=1

1

cosh nα
< ∞,

∞∑
n=1

cosh nα

∫ ∞

0

e−t cosh nαtdt =
∞∑

n=1

1

cosh nα
< ∞,

∞∑
n=1

∫ ∞

0

e−t cosh nαt2dt = 2
∞∑

n=1

1

cosh3 nα
< ∞.

Calculating elementary integrals and letting β = 2π
α

we come out with the identity

4π3

α2

∞∑
n=1

n2

cosh
(

nπ2

α

) + α

∞∑
n=1

tanh2 nα

cosh nα
=

α

2
, α > 0.

In particular, α = π gives the value of the series

∞∑
n=1

4n2 + tanh2 πn

cosh πn
=

1

2
.



10 Semyon B. YAKUBOVICH

The Poisson type formula (3.4) can be extended involving convolution operator (1.9).
However, first we need to prove the following lemma.

Lemma 3. Let f, g ∈ L1(R+; Kµ(ξx)dx), where µ, ξ ∈ R, 0 < ξ < 1. Then the
convolution (1.9) (f ∗ g)(x) exists almost for all x > 0, belongs to L1(R+; Kµ(ξx)dx) and
satisfies the inequality

||f ∗ g||L1(R+;Kµ(ξx)dx) ≤ ||f ||L1(R+;Kµ(ξx)dx)||g||L1(R+;Kµ(ξx)dx). (3.13)

Moreover, factorization property (1.10) holds in the closed strip |Rez| ≤ |µ|.
Proof. Indeed, by the definition of the norm, the Macdonald formula (1.8) via Fubini’s

theorem and a simple substitution we derive the estimates

||f ∗ g||L1(R+;Kµ(ξx)dx) =

∫ ∞

0

Kµ(ξx)|(f ∗ g)(x)|dx

≤ 1

2

∫ ∞

0

Kµ(ξx)

x

∫ ∞

0

∫ ∞

0

e
− 1

2

�
x y2+u2

uy
+uy

x

�

|f(u)g(y)|dydudx

=
1

2

∫ ∞

0

∫ ∞

0

|f(u)g(y)|
∫ ∞

0

Kµ(x)e
− 1

2

�
x y2+u2

ξuy
+ ξuy

x

�
dx

x
dydu

≤ 1

2

∫ ∞

0

∫ ∞

0

|f(u)g(y)|
∫ ∞

0

Kµ(x)e
− 1

2

�
x y2+u2

uy
+ ξuy

x

�
dx

x
dydu

=

∫ ∞

0

|f(u)|Kµ(u
√

ξ)du

∫ ∞

0

|g(y)|Kµ(y
√

ξ)dy

≤
∫ ∞

0

|f(u)|Kµ(ξu)du

∫ ∞

0

|g(y)|Kµ(ξy)dy

= ||f ||L1(R+;Kµ(ξx)dx)||g||L1(R+;Kµ(ξx)dx).

Thus we arrive at the inequality (3.13) and Fubini’s theorem gives us that the double
integral (1.9) exists almost for all x > 0. Now again by Fubini’s theorem we take the
Lebedev integral (1.1) and apply to convolution (1.9). After the change of the order of
integration we use the Macdonald formula (1.8) to calculate the inner integral. As a result
we obtain

Kz[f ∗ g] =
1

2

∫ ∞

0

Kz(x)

x

∫ ∞

0

∫ ∞

0

e
− 1

2

�
x y2+u2

uy
+uy

x

�

f(u)g(y)dydudx

= Kz[f ]Kz[g].

Further, since (see (1.6), (1.7))
∫ ∞

0

|Kz(x)f(x)|dx ≤
∫ ∞

0

KRez(x)|f(x)|dx
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≤
∫ ∞

0

Kµ(x)|f(x)|dx < ∞, |Rez| ≤ |µ|,

and the same integral is finite for g(x), we verify that (1.10) holds in the closed strip
|Rez| ≤ |µ|. Lemma 3 is proved.

This lemma drives us to the following extension of the Poisson formula (3.4).
Theorem 2. Let f, g ∈ L1(R+; Kµ(ξx)dx), where µ, ξ ∈ R, |µ| > 1

4
, 0 < ξ < 1.

Then the Poisson type formula is true

K0[f ]K0[g] + 2
∞∑

n=1

Kinβ[f ]Kinβ[g] = α

[
1

π

∫ ∞

0

Kiτ [f ]Kiτ [g]dτ

+

∫ ∞

0

∫ ∞

0

f(u)g(y)
∞∑

n=1

K0

(√
u2 + y2 + 2uy cosh nα

)
dudy

]
, αβ = 2π, α > 0. (3.14)

In particular, we have the identity

|K0[f ]|2 + 2
∞∑

n=1

|Kinβ[f ]|2 = α

[
1

π

∫ ∞

0

|Kiτ [f ]|2 dτ

+

∫ ∞

0

∫ ∞

0

f(u)f(y)
∞∑

n=1

K0

(√
u2 + y2 + 2uy cosh nα

)
dudy

]
, αβ = 2π, α > 0. (3.15)

Proof. The proof is based on Theorem 1, Lemma 3, formula (3.4), factorization prop-
erty (1.10), Fubini’s theorem and the change of the order of summation and integration
in the latter term of (3.14). This change is guaranteed by the convergence of the following
series ∞∑

n=1

∫ ∞

0

∫ ∞

0

|f(u)g(y)|K0

(√
u2 + y2 + 2uy cosh nα

)
dudy,

which we will justify by using the integral representation of the modified Bessel function
(cf. (1.6))

K0

(√
u2 + y2 + 2uy cosh nα

)
=

∫ ∞

0

e−
√

u2+y2+2uy cosh nα cosh tdt.

We find the estimate (n = 1, 2, . . . )

∫ ∞

0

e−
√

u2+y2+2uy cosh nα cosh tdt = e−
√

u2+y2+2uy cosh nα

×
∫ ∞

0

e−2
√

u2+y2+2uy cosh nα sinh2(t/2)dt ≤ e−(u+y)

∫ ∞

0

e−
t2

2

√
u2+y2+2uy cosh nαdt
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=

√
πe−(u+y)

√
2((u + y)2 + 4uy sinh2(nα/2))1/4

≤
√

πe−(u+y)

2(uy)1/4 sinh1/2(nα/2)
.

Consequently,

∞∑
n=1

∫ ∞

0

∫ ∞

0

|f(u)g(y)|K0

(√
u2 + y2 + 2uy cosh nα

)
dudy

≤
√

π

2

∞∑
n=1

1

sinh1/2(nα/2)

∫ ∞

0

|f(u)| e
−u

u1/4
du

∫ ∞

0

|g(y)| e
−y

y1/4
dy

≤
√

π

2

[
supx>0

e−x

Kµ(ξx)x1/4

]2 ∞∑
n=1

1

sinh1/2(nα/2)

×||f ||L1(R+;Kµ(ξx)dx)||g||L1(R+;Kµ(ξx)dx) < ∞,

when µ, ξ ∈ R, |µ| > 1
4
, 0 < ξ < 1 (see (1.3), (1.4)). Letting g(x) = f(x) we get (3.15).

Theorem 2 is proved.
An interesting example of the formula (3.15) can be done taking f(x) ≡ 1. Appealing

to the corresponding values of the Lebedev integrals (see above) we come out with the
identity

π2

2

∞∑
n=1

1

cosh2(πnβ/2)
− α

∞∑
n=1

∫ ∞

0

∫ ∞

0

K0

(√
u2 + y2 + 2uy cosh nα

)
dudy

=
2α− π2

4
, αβ = 2π, α > 0.

But ∫ ∞

0

∫ ∞

0

K0

(√
u2 + y2 + 2uy cosh nα

)
dudy

=

∫ π/2

0

∫ ∞

0

rK0

(√
1 + 2 cos ϕ sin ϕ cosh nα

)
drdϕ

=

∫ π/2

0

dϕ

1 + 2 cos ϕ sin ϕ cosh nα
=

∫ ∞

0

du

u2 + 2u cosh nα + 1

=
1

2 sinh nα
log

cosh nα + sinh nα

cosh nα− sinh nα
=

nα

sinh nα
.

Therefore we finally get

∞∑
n=1

[
π2

1 + cosh πnβ
− nα2

sinh nα

]
=

2α− π2

4
, αβ = 2π, α > 0.
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In particular, letting α = π we have

∞∑
n=1

[
1

1 + cosh 2πn
− n

sinh πn

]
=

2− π

4π
.
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