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Abstract. Two of the most popular notions of chaoticity are the
one due to Robert Devaney and the one that assumes positive
Lyapunov exponents. In this note we discuss the coexistence of
both definitions for conservative discrete dynamical sistems in the
two-sphere and with respect to the C1-generic point of view.

1. Introduction and basic definitions

As far as we know the first time the word chaos appeared in the
mathematical literature was in Li and York mid-seventies’ paper [7].
The notion has been popularized and now we have available lots of
definitions of chaoticity in various different contexts. For a survey on
the subject see [8].

We recall two well-known definition of chaos; Devaney’s definition [5]
and the definition that excludes zero Lyapunov exponents. In this
remark we study the coexistence of both definitions in one of the most
common two-dimensional manifold. Actually, we will conclude that,
in the two-sphere, typically area-preserving diffeomorphisms do not
satisfy both aforementioned definitions simultaneously.

Let Md, where d ≥ 2, be a closed Riemannian d-dimensional man-
ifold. We center our attention in the particular cases when M2 = S2

(the sphere) and when M2 = T2 (the torus). To define T2 we take the
quotient of R2 under the identification (x, y) v (x′, y′) if x−x′ and y−y′

are integers. We denote this identification by (x, y) = (x′, y′)(mod1).
Given a volume form ω on Md, let µ be the probability measure

associated to ω, which we call Lebesgue measure. Let Diff1
µ(Md) de-

notes the class of C1 diffeomorphisms f : Md → Md that preserves the
Lebesgue measure, that is, if you pick any measurable set A ⊆ Md,
then, µ(f(A)) = µ(A). Another way to check the Lebesgue preserving
property is by computing the determinant of the derivative at all points
and see if its modulus is one.

If one wants to estimate distances between two diffeomorphisms we
use the C1-metric. In broad terms, two diffeomorphisms f and g are
C1-close if they are uniformly close as well as their first derivatives
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computed in any x ∈ Md. To derive the distance between linear maps
like Df(x) and Dg(x) we use the uniform norm ‖·‖ of linear operators.

Given f : Md → Md, we denote fn(x) = f◦f◦f...◦f(x) by composing
f n-times. We say that a point x ∈ Md is periodic of period n, if
fn(x) = x and f i(x) 6= x for every i = {1, 2, ..., n − 1}. The forward
orbit of x is defined by ∪n∈Nfn(x) and we say that f has a dense orbit
if, for some x ∈ Md, the manifold Md is the closure of the forward
orbit of x. In this case we say that f is transitive.

We recall one of the most celebrated definitions of chaos due to De-
vaney (see [5, Definition 8.5]): f : Md → Md is chaotic if:

(a) f is transitive;
(b) the periodic points are dense in Md and
(c) f is sensitive to the initial conditions, i.e., there exists δ > 0

such that for all x ∈ Md and all neighborhood of x, Vx, there
exists y ∈ Vx and an integer n where d(fn(y), fn(x)) > δ, where
d(·, ·) is the distance inherit from the Riemannian structure.

In this case we also say that f is chaotic in the topological sense.

Example 1: (Arnold’s cat map) The map α : T2 → T2 defined by
α(x, y) = (2x+y, x+y)( mod 1) is an area-preserving (two-dimensional
case) diffeomorphim on the torus which is chaotic in the sense of De-
vaney.

It was proved in [2] that (a) and (b) implies (c), and so in order to
be chaotic in the sense of Devaney the system only has to satisfy the
transitivity property and the density of periodic points.

The other definition of chaotic map that we are going to use is the
one that says that there are no zero Lyapunov exponents. The point
x ∈ Md has a zero Lyapunov exponent if there exists v ∈ TxM

d (the
tangent space at x) such that

(1)
1

n
log ‖Dfn(x) · v‖ → 0 as n → ±∞.

In the area-preserving setting if f has a zero Lyapunov exponent, then
for all v ∈ TxM

2 (1) holds.
At this time you ask yourself if this limit always exists and, more-

over, if it is the same when we iterate forward and backward? Well,
Oseledets’ theorem (see [9]) assure the existence of this limits at least
for almost every point in Md with respect to any f -invariant measure.
For a proof of the Oseledets theorem on surfaces see [11]. When, in our
area-preserving setting, we have two non-zero (thus symmetric) Lya-
punov exponents we say that f is chaotic in the measurable sense. The
Arnold cat map is also chaotic in this sense.
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2. Lots of zero Lyapunov exponents in S2

We say that a diffeomorphism is stable if any other sufficiently close,
for the C1-metric, has equivalent behavior, i.e., it is possible to find a
change of coordinates conjugating the two dynamics (for more details
see [10]). The notion of hyperbolicity goes a long way if one wants to es-
tablish the stability of dynamical systems. We say that f ∈ Diff1

µ(Md)

is hyperbolic (or Anosov, see [14]) if, at each point x ∈ Md, there exists
a splitting TxM

d = Es
x ⊕ Eu

x such that both Es
x and Eu

x are invariant
by the derivative and we have

‖Df(x) · s‖ < 1/2 and ‖Df−1(x) · u‖ < 1/2,

where s ∈ Es
x and u ∈ Eu

x are unitary vectors.
The definition of hyperbolic diffeomorphisms for the dissipative case

is analog. Notice that Arnold’s cat map is hyperbolic.
This definition is very rigid and imposes certain topological cons-

traints on Md. Actually, in the late sixties, John Franks proved the
following result (see [6]).

Theorem 2.1. The only surfaces that support hyperbolic diffeomor-
phisms are the tori.

It is well-known that the set of area-preserving diffeomorphism in
Md endowed with the C1-metric is complete (see [10] and the references
therein). Moreover, a subset of it is called a residual subset if it contains
a countable intersection of open and dense subsets in the C1-metric. A
classical result from general topology asserts that in a complete space
any residual subset is also dense (see e.g. [12, Theorem 7.2]). We say
that a property is generic if it holds for a residual subset, that is, is
typical from the topological viewpoint. Notice that an intersection of
two residual subsets is also residual.

Recently, Jairo Bochi proved in [3], the following result.

Theorem 2.2. There exists a residual subset R of the set of area-
preserving C1 diffeomorphisms on M2 such that if f ∈ R, then f is
hyperbolic or else f has zero Lyapunov exponents at almost every
point in M2.

Therefore, previous theorem together with Theorem 2.1 yields the
following corollary.

Corollary 2.3. There exists a residual subset R of the set of area-
preserving C1 diffeomorphisms on S2 such that if f ∈ R, then f has
zero Lyapunov exponents at almost every point in S2.

We conclude that, from the topological point of view, typical area-
preserving diffeomorphisms in the two-sphere satisfies the following: if
you pick randomly a point in the sphere, then, with probability one,
its Lyapunov exponent is zero.
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3. Lots of chaos in the sense of Devaney

One of the most important outcome of the remarkable Bonatti and
Crovisier [4] recent work on recurrence is the following result.

Theorem 3.1. There exists a residual subset R1 of Diff1
µ(Md) such

that if f ∈ R1, then f is transitive.

Moreover, by Pugh-Robinson’s general density theorem [13] we get:

Theorem 3.2. There exists a residual subset R2 of Diff1
µ(Md) such

that if f ∈ R2, then the periodic points of f are dense in Md.

Therefore, defining R = R1 ∩R2 and recalling [2] we conclude that:

Corollary 3.3. There exists a residual subset R of Diff1
µ(Md) such

that if f ∈ R, then f is chaotic in the sense of Devaney.

4. Conclusion

It is also interesting to recall the definition of chaos in the sense
of Auslander-Yorke [1]: the diffeomorphism must be transitive and
sensitive to the initial conditions. We easily obtain the following result.

Theorem 1. There exists a residual subset R of Diff1
µ(Md) where the

definitions of chaotic in the sense of Auslander-Yorke and in the sense
of Devaney coincide.

In previous sections we saw that the Arnold cat map is both chaotic
in the sense of Devaney and also has non-zero Lyapunov exponents.
Nevertheless, as we will see in Theorem 2, in the two-sphere the two
definitions are not equivalent, in fact, there are examples of diffeomor-
phisms satisfying only the firstmentioned definition of chaoticity and
not the second. Moreover, these examples are generic.

Our main conclusion is that examples which satisfies both defini-
tions are, at most, a countable union of nowhere dense sets. Actually,
intersecting the residuals of both Corollaries 2.3 and 3.3 we obtain:

Theorem 2. There exists a residual subset R of the set of area-pre-
serving C1 diffeomorphisms on S2 such that if f ∈ R, then f is chaotic
in the sense of Devaney and f has zero Lyapunov exponents at almost
every point in S2.

Going back to the title of this note and considering the C1-generic
point of view, the answer is yes in the topological sense and no in the
measurable sense.
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