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Abstract. Let M be a closed 3-dimensional Riemannian mani-
fold. We exhibit a C1-residual subset of the set of volume-pre-
serving 3-dimensional flows defined on M such that, if π1(M) do
not has exponential growth, then any flow in this residual has zero
metric entropy, has zero Lyapunov exponents and, nevertheless, is
strongly chaotic in Devaney’s sense.

1. Introduction

What is chaos? Confusion, lots of periodic motions and inability
to predict what might happen (since small errors in the initial states
imply large deviations in the future) are the common definitions for
this phenomenon. As far as we know the first time the nomenclature
chaos appeared with the purely mathematical focus was in Li-York’s
mid 1970’s article Period Three Implies Chaos ([21]). After that, the
interest in the matter exploded and we have a wide variety of definitions
for this concept. Unfortunately, due to the excessive and abusive use
along recent years in all types of strange applications in science and
literature, the term chaos became dubious. Actually, the magic word
chaos can be used almost for everything, for instance, one can prove
how a complex fern is created just by picking the right rule and then
do a few iterations. You will get a pretty fern, well, sort of...

Indeed, considering two different definitions of chaos it is a very in-
teresting task to try to find examples that meet a definition, but not
the other.

In this work we are interested in discussing two of the most readily
accepted definitions of chaos: Chaos in the sense of Devaney (see [15,
Definition 8.5]) and existence of chaos in the sense that the metric
entropy is positive. By metric (or measure-theoretic) entropy we mean
Kolmogorov-Sinai’s entropy (see [14]). Moreover, we establish the link
between two, a priori, unrelated concepts - topological constraints on
manifolds and chatocity of flows defined on those manifolds.

We would like to find an example of a volume-preserving flow in a
three-dimensional closed manifold M such that (see next section for
full details on the definitions):

(a) periodic orbits are dense in M ;
(b) it is sensitive to initial conditions;
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(c) it has a dense orbit;
(d) the metric entropy is zero and
(e) the Lyapunov exponents are all equal to zero.

In conclusion, this example would be chaotic in Devaney’s sense but,
nevertheless displays zero entropy and zero Lyapunov exponents.

Here, despite not presenting any example, we show that this task
has many possibilities to be successful and we explain where are the
adequate manifolds to find these examples. Actually, we will prove that
most volume-preserving flows in certain (very general) three-dimen-
sional closed manifolds do not satisfy both definitions simultaneously
which is quite counterintuitive.

Our result, although it seems simple and direct, is a consequence
of several deep recent and old results in C1-generic theory of volume-
preserving flows. Because of this we will spend some time with the
basic settings so that the reader can easily follow our proof.

2. Volume-preserving flows on 3-manifolds

2.1. Notation and basic definitions. Let M be a 3-dimensional
closed and connected C∞ Riemannian manifold and we endowed it
with a volume-form ω. Let µ denote the measure associated to ω and
call µ the Lebesgue measure. We say that a vector field X : M → TM
is divergence-free if ∇·X = 0 or equivalently if the measure µ is invari-
ant for the associated flow, X t : M → M , t ∈ R. In this case we say
that the flow is incompressible or volume-preserving. Incompressible
flows have plenty of applications, namely to fluid dynamics (see e.g.
[22, 16]). We denote by Xr

µ(M) (r ≥ 1) the space of Cr divergence-free
vector fields on M and we endow this set with the usual Cr Whitney
topology. Denote by dist(·, ·) the distance in M inherited by the Rie-
mannian structure. Given X ∈ X1

µ(M) let Sing(X) denote the set of
singularities of X and R := M \ Sing(X) the set of regular points.
Given x ∈ M , if there exists τ > 0 such that Xτ (x) = x and τ is the
minimum number with this property, then the orbit of x, denoted by
O(x) := ∪t∈RX t(x), is said to be closed or periodic.

2.2. Hyperbolicity for the Linear Poincaré Flow. The vector
field X : M → TM induces a decomposition of the tangent bundle
TRM in a way that each fiber TxM has a splitting Nx ⊕RX(x) where
Nx = RX(x)⊥ is the normal 2-dimensional subbundle for x ∈ R .

Consider the automorphism of vector bundles DX t : TRM −→ TRM
such that DX t(x, v) = (X t(x), DX t(x) · v) and ΠXt(x) the canonical
projection on NXt(x). The linear map P t

X(x) : Nx −→ NXt(x) defined
by P t

X(x) = ΠXt(x) ◦ DX t(x) is called the linear Poincaré flow at x
associated to the vector field X. The map P t

X is the differential of the
standard Poincaré map P tX(x) : Vx ⊂ Nx → NXt(x), where NXs(x), for
s = 0, t, is a surface contained in M whose tangent space at Xs(x) is



CHAOTIC C1-GENERIC CONSERVATIVE 3-FLOWS 3

NXs(x) for s = 0, t and Vx is a small neighborhood of x. By using the
implicit function theorem we can guarantee the existence of a conti-
nuous time-t arrival function τ(x, t)(·) from Vx into NXt(x). Of course
that, due to the presence of singularities, Vx may be very small.

Let Λ be a X t-invariant subset of M . The splitting N1 ⊕N2 of the
normal bundle N is an m-hyperbolic splitting for the linear Poincaré
flow if it is P t

X-invariant and there is a uniform m ∈ N such that, for
any point x ∈ Λ, the following inequalities hold:

(1) ‖P−mX (x)|N1
x
‖ ≤ 1

2
and ‖Pm

X (x)|N2
x
‖ ≤ 1

2
.

2.3. Anosov flows and topological restrictions on the mani-
folds. A flow is said to be Anosov if the tangent bundle TM splits into
three continuous DX t-invariant nontrivial subbundles E0 ⊕ E1 ⊕ E2

where E0 is the flow direction, the subbundle E2 is uniformly con-
tracted by DX t and the subbundle E1 is uniformly contracted by DX−t

for all t > 0. Of course that, for an Anosov flow, we have Sing(X) = ∅
which follows from the fact that the dimensions of the subbundles are
constant on the whole manifold. It is well-known that, on compact
sets, the hyperbolicity for the linear Poincaré flow is equivalent to the
hyperbolicity of the tangent map DX t. Thus, to prove that a flow
is Anosov it is sufficient to prove that M is hyperbolic for the linear
Poincaré flow, i.e., (1) holds for all x ∈M .

Since, in our context, the stable (or unstable) manifold is one-di-
mensional we can apply the results of Plante and Thurston (see [25])
to conclude that if M supports an Anosov flow, then its fundamental
group π1(M) must have exponential growth. In rough terms the fun-
damental group π1(M) has exponential growth, if there exist positive
constants A and B such that the set, Σr, defined by those elements
α ∈ π1(M) such that α is represented by a curve with length less than
r, satisfy #Σr > AeBr for all r ≥ 0.

2.4. Lyapunov exponents, entropy and chaoticity in the metric
sense. The next result, due to Oseledets ([23]), is a cornerstone in
smooth ergodic theory. We state here Oseledets’ theorem for the linear
Poincaré flow of 3-dimensional flows.

Theorem 2.1. (Oseledets) Let X ∈ X1
µ(M). For µ-a.e. x ∈ M

there exists the upper Lyapunov exponent λ+(X, x), defined by the limit
lim
t→+∞

1
t

log ‖P t
X(x)‖, and which is a non-negative measurable function of

x. For µ-a.e. point x with a positive exponent there is a splitting of the
normal bundle Nx = Nu

x ⊕N s
x, which varies measurably with x, and is

such that:

• If v ∈ Nu
x \ {~0}, then lim

t→±∞
1
t

log ‖P t
X(x) · v‖ = λ+(X, x).

• If v ∈ N s
x \ {~0}, then lim

t→±∞
1
t

log ‖P t
X(x) · v‖ = −λ+(X, x).
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• If ~0 6= v /∈ Nu
x , N

s
x, then

(i) lim
t→+∞

1
t

log ‖P t
X(x) · v‖ = λ+(X, x) and

(ii) lim
t→−∞

1
t

log ‖P t
X(x) · v‖ = −λ+(X, x).

Given X ∈ X1
µ(M) the number hµ(X) stands for the metric entropy

(see [20] for a detailed exposition on this concept) of X and is defined by
hµ(X1), where X1 is the time-one of its associated flow. By Abramov’s
formula ([1]) we know that the metric entropy of the time-t map X t is
|t|hµ(X1) for any t ∈ R.

Definition 2.1. A flow X t is said to be chaotic in the measure-
theoretic sense if hµ(X) > 0.

2.5. Devaney’s definition of chaos. The forward orbit of x is de-
fined by O+(x) = ∪t>0X

t(x) and we say that X t has a dense orbit if,

for some x ∈ M , we have M = ∪t>0X t(x), where A stands for the
closure of the set A. In this case we say that the flow X t is tran-
sitive. An equivalent definition for a transitive flow is the following:
given any nonempty open sets U, V ⊆ M , there exists τ > 0 such
that Xτ (U) ∩ V 6= ∅. Now we consider a less general definition. We
say that a flow X t is topologically mixing if, given any nonempty open
sets U, V ⊆ M , there exists τ > 0 such that, for all t ≥ τ we have
Xτ (U) ∩ V 6= ∅.

We recall the classic definition of chaos due to Devaney ([15]) and
here we adapted it to the continuous-time context.

Definition 2.2. A flow X t is said to be chaotic in the sense of
Devaney if:

(a) X t is transitive;
(b) the closed orbits are dense in the whole manifold and
(c) X t is sensitive to the initial conditions, i.e., there exists δ > 0

such that for all x ∈ M and all neighborhood of x, Vx, there
exist y ∈ Vx and t > 0 where d(X t(y), X t(x)) > δ.

In this case we also say that X t is chaotic in the topological sense. If
we switch (a) by “X t is topologically mixing” then we say that X t is
strongly chaotic in the topological sense or X t exhibits strong Devaney
chaos.

It was proved in [5] that condition (c) follows from conditions (a) and
(b), and so, in order to be (strongly) chaotic in the sense of Devaney,
the system only has to satisfy the (topologically mixing) transitivity
property and the density of closed orbits.

2.6. Examples.

Example 1: (Volume-preserving C2 Anosov flow) Let X t be a volume-
preserving C2 Anosov flow. Recall that, in [2], Anosov proved that the
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set of closed orbits of an Anosov flow is dense in the non-wandering
set. Moreover, by Poincaré’s recurrence theorem the non-wandering
set equals the whole manifold. Hence, condition (b) in Definition 2.2
is true. We know that there exists non-transitive Anosov flows (see
e.g. [17]). However, also in [2], its is proved that, within the volume-
preserving class, the Anosov flows are ergodic, thus transitive1. Hence,
volume-preserving C2 Anosov flows are chaotic in the topological sense.
Observe also that they form an open class. Since a volume-preserving 3-
dimensional flow is Anosov if and only if it is structurally stable (see [9,
Theorem 1.3]) their metric entropy is locally constant. Since, by Pesin’s
formula and ergodicity the entropy equals the positive Lyapunov ex-
ponent, we get that these flows are chaotic in the measure-theoretic
sense.

Example 2: (Suspension flows) Given a measure space Σ, a map
f : Σ → Σ and a ceiling function h : Σ → R+ satisfying h(x) ≥ β > 0
for all x ∈ Σ we consider the space Mh ⊆ Σ× R+ defined by

Mh = {(x, t) ∈ Σ× R+ : 0 ≤ t ≤ h(x)}
with the identification between the pairs (x, h(x)) and (f(x), 0). The
semiflow defined on Mh by Ss(x, r) = (fn(x), r + s −

∑n−1
i=0 h(f i(x))),

where n ∈ N0 is uniquely defined by

n−1∑
i=0

h(f i(x)) ≤ r + s <
n∑
i=0

h(f i(x))

is called a suspension semiflow. Actually, if f is invertible, then (St)t∈R
is a flow.

If we choose h(x) = 1, then the suspension flow cannot be topo-
logically mixing. To see this just observe that the integer iterates of
Σ× (0, 1/2) are disjoint from Σ× (1/2, 1). However, our choice for h is
very restrict and generically we obtain that suspension flows are topo-
logically mixing. A suspension (with a generic ceiling bounded func-
tion) over an Anosov area-preserving diffeomorphism is strongly chaotic
in the topological sense. Moreover, the chaoticity in the measure-
theoretical sense is direct (see e.g. [11, §1.3]).

3. Statement of the result and its proof

Let us now prove the central result in this paper.

Theorem 1. There exists a residual R ⊂ X1
µ(M) such that, if π1(M)

does not have exponential growth, then any X ∈ R
(a) has zero metric entropy;

1We observe that, if a measure that gives positive measure to non-empty open
sets is ergodic, then the system is transitive.
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(b) has zero Lyapunov exponents and
(c) is strongly chaotic in Devaney’s sense.

Proof. Let R1 be the residual subset of X1
µ(M) formed by those vec-

tor fields such that, if X ∈ R1, then X is Anosov or else Lebesgue
almost every point has zero Lyapunov exponent (cf. [6, 3]). Since
π1(M) does not have exponential growth we conclude that M cannot
support Anosov flows and so Lebesgue almost every point in M has
zero Lyapunov exponents.

We use [11] and pick R2 ⊂ X1
µ(M) defined by the residual set of

vector fields such that Pesin’s entropy formula holds, i.e.,

hµ(X) =

∫
M

λ+(X, x) dµ(x),

for any X ∈ R2. Of course that if X ∈ R1 ∩ R2, then conditions (a)
and (b) of the theorem hold (recall that the intersection of residual sets
is itself a residual).

Moreover, by Pugh-Robinson’s general density theorem (see [26]),
we get that there exists a residual subset R3 ⊂ X1

µ(M) such that if
X ∈ R3, then the closed orbits of X are dense in the nonwandering
set, hence in the whole manifold M .

Now, we proved in [7], that there exists a residual R4 ⊂ X1
µ(M) such

that any X ∈ R4 is topologically mixing.
Finally, using [5] we conclude that any X ∈ R3 ∩ R4 is sensitive to

the initial conditions, thus strongly chaotic in Devaney’s sense.
The theorem is proved once we define

R = R1 ∩R2 ∩R3 ∩R4.

�

Remark 3.1. We observe that manifolds like the 3-tori and the 3-
spheres are in the hypothesis of Theorem 1. We also recall that a weak
version of Theorem 1, for area-preserving diffeomorphisms, was proved
in [8].

4. Towards a generalization to 4-dimensional manifolds
and some open questions

In this final section we will try to understand how would the cor-
responding statement could be for conservative flows defined in 4-
dimensional manifolds. First, we observe that Pugh-Robinson’s general
density theorem is true for higher-dimensions. The result in [5] is abs-
tract and also valid regardless of the dimension. Second, due to recent
results by Sun and Tian (see [27]) the result in [11] should be able to
be extended to the n-dimensional flow setting.
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Question 1: Is it true that Pesin’s entropy formula holds for C1-
generically volume-preserving flows in n-dimensional manifolds (n ≥
4)?

We make an interlude to introduce the definition of dominated split-
ting. Take a X t-invariant set Λ and fix m ∈ N. A nontrivial P t

X-
invariant and continuous splitting NΛ = N1

Λ ⊕ N2
Λ is said to have an

m-dominated splitting for the linear Poincaré flow of X over Λ if the
following inequality holds for every x ∈ Λ:

(2)
‖Pm

X (x)|N2
x
‖

m(Pm
X (x)|N1

x
)
≤ 1

2
,

where m stands for the co-norm of the operator, i.e., m(A) = ‖A−1‖−1.
Now, with respect to the Anosov versus zero Lyapunov exponents

dichotomy in ([6, 3]), the best we have for n-dimensional volume-
preserving flows is the (non-global) result in [10]. In that paper it
is proved that there exists a residual subset of n-dimensional volume-
preserving flows (n ≥ 4) such that for any element in this residual we
have, for almost every point x in the manifold, that x has zero Lya-
punov exponents or else the orbit of x is dominated. Unfortunately,
these two properties may coexist and the whole manifold may be de-
composed in regions with zero Lyapunov exponents and regions with
dominated splitting. Even worst, the constant m associated to the
domination may vary from orbit to orbit.

Nevertheless, the biggest challenge for the extension of the Theo-
rem 1 is not the difficulty described in the last paragraph. In fact,
we might even assume the most favorable circumstances, i.e., there e-
xists a global dichotomy (zero exponents or else dominated splitting in
M). The problem is that there is a total lack of knowledge about the
topological constraints on the manifolds if we assume that some flow
has a dominated splitting over M . Below we will return to this issue
(Questions 3 and 4).

We say that X ∈ X1
µ(M) is nonuniformly Anosov (adapting the de-

finition in [4, pp. 4]) if the system is nonuniformly hyperbolic (all Lya-
punov exponents are different from zero) and with a global (i.e. overM)
dominated splitting separating the positive exponents from the nega-
tive ones. Let A1(M) ⊂ X1

µ(M) stands for the subset of nonuniformly

Anosov and ergodic volume-preserving vector fields and by A1(M) its
C1-closure.

Recently (see [19]), it was announced the proof of a conjecture in [4,
Conjecture pp. 5], namely that C1-generically 3-dimensional volume-
preserving diffeomorphisms have zero Lyapunov exponents at Lebesgue
almost every point or else the system is nonuniformly Anosov and er-
godic (the definitions are the analogous obvious couterpart for the dis-
crete case).



8 MÁRIO BESSA

To obtain a correspondent version for volume-preserving flows there
is a non-trivial extra work to do and related to this we present the
following question.

Question 2: Given a 4-dimensional manifold M , is there a residual
R ⊂ X1

µ(M) such that any X ∈ R is in A1(M) or else Lebesgue almost
every point has zero Lyapunov exponents?

We say that a flow in M is (uniformly) partially hyperbolic for the
linear Poincaré flow if there exists an PX

t -invariant dominated splitting
N = Nu⊕N c⊕N s in M such that Nu is hyperbolic expanding, N s is
hyperbolic contracting, Nu dominates N c ⊕ N s and N s is dominated
by Nu ⊕N c.

Although there are known some deep results about the topological
constraints on the manifolds which support partial hyperbolic diffeo-
morphisms ([12, 13, 24]), beyond the hyperbolic context (cf. [25]) no-
thing is known when we refer to the continuous-time counterpart. To
be more precise, we may ask:

Question 3: What are the topological obstructions on a closed 4-
dimensional manifold if it supports some partially hyperbolic (volume-
preserving) flow 2?

Question 4: What are the topological obstructions on a closed 4-
dimensional manifold if it supports some flow in A1(M)3?

If we answer positively to Questions 1 and 2, then we have proved
to following:

Conjecture 1. Let M be a closed Riemannian smooth 4-dimensional
manifold. There exists a residual R ⊂ X1

µ(M) \ A1(M) such that any
X ∈ R,

(a) has zero metric entropy;
(b) has zero Lyapunov exponents and
(c) is strongly chaotic in Devaney’s sense.
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2Since, by [28, Proposition 4.1], partially hyperbolic flows cannot have linear
hyperbolic singularities (see [28, Definition 4.1]), one obvious conclusion is that the
Euler characteristic of M is equal to zero (for, at least, an open and dense subset
of partially hyperbolic flows).

3The restrictions should come from the dominated splitting hypothesis instead
of the nonuniformly property because it is well-known that, due to Hu-Pesin-
Talitskaya’s theorem ([18]), any compact manifold supports a nonuniformly hy-
perbolic flow (eventually without any domination).
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