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1 Introduction

Bootstrap methods have been shown to be very useful in a vast range of
situations. In this paper, we shall be concerned first with the estimation
of a general exponential tail coefficient. Secondly, we shall discuss an im-
portant application in risk theory, namely the estimation of the adjustment
coefficient.

Let Z1, Z2, . . . be independent, nonnegative random variables (r.v.’s) with
common distribution function (d.f.) F satisfying

1− F (z) = P (Z1 > z) = r(z)e−Rz, z > 0, (1)

where r is a regularly varying function at infinity and R is a positive con-
stant. Denoting by F−1 the left continuous inverse of F , i.e., F−1(s) :=
inf{x: F (x) ≥ s}, (1) is equivalent to

F−1(1− s) = − 1

R
log s + log L̃(s), 0 < s < 1, (2)

where L̃ is a slowly varying function at zero (see e.g. Schultze and Steinebach
(1996) and the references therein).

The problem of estimating the tail coefficient R has received considerable
attention and several estimators have been proposed in the literature. Re-
cently, Brito and Moreira (2001) have introduced an estimator of R, called

geometric-type estimator, R̂(kn), and defined as follows. Let Z1,n ≤ Z2,n ≤
. . . ≤ Zn,n denote the order statistics of the sample Z1, Z2, . . . , Zn and assume
that (kn) is a sequence of positive integers satisfying

1 ≤ kn < n, lim
n→∞

kn = ∞ and lim
n→∞

kn/n = 0. (3)

The estimator R̂(kn) is given by

R̂(kn) =

√√√√√√
∑kn

i=1 log2(n/i)− 1
kn

(∑kn

i=1 log(n/i)
)2

∑kn

i=1 Z2
n−i+1,n − 1

kn

(∑kn

i=1 Zn−i+1,n

)2 .

This estimator is related to the least square estimators proposed by
Schultze and Steinebach (1996) and denoted by R̂1 ≡ R̂1(kn) and R̂3 ≡
R̂3(kn). Indeed, R̂(kn) arises in a natural way from a geometrical adapta-
tion of the procedure used by Schultze and Steinebach and is given by the
geometric mean of R̂1 and R̂3. The asymptotic properties of R̂(kn) were in-
vestigated in Brito and Moreira Freitas (2003). In particular, these authors
established the consistency of the estimator and proved that, under general
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regularity conditions, the distribution of k
1/2
n

(
R̂(kn)−R

)
is asymptotically

normal.
We recall also that the above estimation problem is equivalent to the

estimation of the tail index of a Pareto type distribution. Setting Xi = eZi

with Zi, i = 1, 2, . . . as above, we have

1−G(x) = P (X1 > x) = x−1/αL(x), x > 1, (4)

where α = 1/R and L(x) = r(log x) is slowly varying at infinity. In this
context, several estimators have been proposed. One of the most commonly
used estimators for α is the Hill estimator (1975), defined by

Hn(kn) =
1

kn

kn∑
i=1

log Xn−i+1,n − log Xn−kn,n,

where X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the order statistics of the sample
X1, X2 . . . , Xn (for the asymptotic properties of Hn(kn) see e.g. Deheuvels
et al. (1988) and Haeusler and Teugels (1985)).

In a wide range of problems, bootstrap methods provide acurate approx-
imations to the distribution of pivotal quantities such as the studentized
mean (see e.g. Efron and Tibshirani (1993)). Over the recent years sev-
eral modifications of the bootstrap method introduced by Efron (1979) have
been suggested in the literature. We shall consider here the tail bootstrap
procedure, proposed by Bacro and Brito (1998) for estimating tail coeffi-
cients. Let ln be a nondecreasing sequence of positive integers and denote by
W1,W2, . . . , Wln the ln exceedances of the random level Zn−ln,n, that is

Wi := Zn−ln+i,n − Zn−ln,n, 1 ≤ i ≤ ln. (5)

The tail bootstrap is based on resampling, with replacement, the sample
W1,W2, . . . , Wln instead of the initial sample Z1, Z2, . . . , Zn.

If we take, ln = kn, n ∈ N, then we may write

R̂(kn) =

√
in(kn)√

1
kn

∑kn

i=1 W 2
i −

(
1
kn

∑kn

i=1 Wi

)2
, (6)

where

in(kn) :=
1

kn

kn∑
i=1

log2(n/i)−
(

1

kn

kn∑
i=1

log(n/i)

)2

. (7)

By the above representation for R̂(kn), we can derive the corresponding
bootstrap version in a obviuos way. Let W∗ =

(
W ∗

1 , ..., W ∗
kn

)
be a sample
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drawn with replacement from W1,W2, . . . ,Wkn . The tail bootstrap version
of the estimator is then given by

R̂∗(kn) =

√
in(kn)√

1
kn

∑kn

i=1 W ∗2
i −

(
1
kn

∑kn

i=1 W ∗
i

)2
. (8)

The main emphasis in this paper is on the theoretical validation of this
boostrap estimator. We follow a standard approach to establish the boot-
strap consistency. We show namely that, conditioned on the sample tail

Zn−kn,n, . . . , Zn,n, 1√
2R̂(kn)

k
1/2
n

(
R̂∗(kn)− R̂(kn)

)
converges weakly, in proba-

bility, to the same limit as 1√
2R

k
1/2
n

(
R̂(kn)−R

)
.

As a consequence of this result, we obtain that is possible to construct tail
bootstrap confidence intervals for the exponential tail coefficient R, based on
the estimator R̂(kn), with asymptotically correct coverage rates.

We present our main results in Section 2. The corresponding proofs are
given in Section 3. The application in risk theory is considered in Section 4.
In this section, we also discuss a general question concerning the risk model
assumptions. In particular, we observe that, the consistency properties of the
Hill-type estimator, R̂1, R̂3, and R̂ for the problem of estimating the exponen-
tial tail coefficient, also hold for the estimation of the adjustment coefficient
in the Sparre Andersen model under the standard conditions. Moreover, the
interesting property of the universal asymptotic normality of the last three
estimators still holds in this context. Finally, in Section 5 we present a small-
scale simulation study in order to illustrate the finite sample behaviour of
the tail bootstrap approximation.

2 Main results

Our results on the bootstrap consistency are motivated by the asymptotic
properties of the estimator R̂(kn), derived by Brito and Moreira Freitas

(2003). These results are summarized below. In the sequel,
D−→ and

D
=

stand, respectively, for convergence and equality in distribution.

Theorem 1 (Brito and Moreira Freitas (2003), Theorem 6) Assume that F
satisfies (1) and kn is a sequence of positive integers such that (3) holds. If
we suppose that, as n →∞,

k1/2
n sup

1/kn≤y≤1

∣∣∣∣∣log

(
L̃

(
ytkn

n

)

L̃
(

kn

n

)
)∣∣∣∣∣ → 0 (9)

uniformly in t on compact sets of (0,∞), then

1√
2R

k1/2
n

(
R̂(kn)−R

)
D−→ N(0, 1).
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In order to get more explicit conditions, it is necessary to specify the
asymptotic behaviour of the slowly varying function L(x) = r(log x) intro-
duced in (4). Consider the following asymptotic relation

(SR1) L(tx)/L(x)− 1 = O(g(x)) as x →∞ for each t > 0,

where g is a positive function satisfying g(x) → 0 as x → ∞. As shown in
Bacro and Brito (1998), under the above assumptions, condition (9) may be
much simplified, as stated in the following corollary.

Corollary 1 (Brito and Moreira Freitas (2003), Corollary 1) Assume that
the slowly varying function L in (4) satisfies (SR1) with g regularly varying
at infinity with index γ < 0. Then, if

k1/2
n g

(
exp(F−1(1− kn/n))

) → 0 as n →∞,

we have
1√
2R

k1/2
n

(
R̂(kn)−R

)
D−→ N(0, 1).

Our main result is given in the following theorem.

Theorem 2 Assume that F satisfies (1) and kn is a sequence of positive
integers such that (3) holds. If we suppose that, as n →∞,

k1/2
n sup

1/kn≤y≤1

∣∣∣∣∣log

(
L̃

(
ytkn

n

)

L̃
(

kn

n

)
)∣∣∣∣∣ → 0

uniformly in t on compact sets of (0,∞), then, in probability, for all x,

P

[
1√

2R̂(kn)
k1/2

n

(
R̂∗(kn)− R̂(kn)

)
≤ x | (Zn−kn,n, . . . , Zn,n)

]
→Φ (x)

as n →∞.

We now state the bootstrap analogue to Corollary 1.

Corollary 2 Assume that the slowly varying function L in (4) satisfies (SR1)
with g regularly varying at infinity with index γ < 0 and such that

k1/2
n g

(
exp(F−1(1− kn/n))

) → 0 as n →∞.

Then in probability, for all x,

P

[
1√

2R̂(kn)
k1/2

n

(
R̂∗(kn)− R̂(kn)

)
≤ x | (Zn−kn,n, . . . , Zn,n)

]
→Φ (x)

as n →∞.
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We are now in a position to define tail bootstrap confidence intervals
for R, based on R̂(kn). Keeping in mind the application in risk theory (see
Section 4), we consider the lower bounds with coverage probability p, 0 <
p < 1,

BI(kn, p) =

{
R :

1√
2R

k1/2
n

(
R̂(kn)−R

)
≤ Ĥ−1 (p)

}
,

where Ĥ denotes the tail bootstrap distribution function

Ĥ(x) = P

[
1√

2R̂(kn)
k1/2

n

(
R̂∗(kn)− R̂(kn)

)
≤ x | (Zn−kn,n, . . . , Zn,n)

]
.

One of the important applications of Theorems 1 and 2 is the construc-
tion of confidence intervals for R. The following corollaries show that the
tail bootstrap confidence intervals give asymptotically correct coverage rates.
These results are easily derived using standard techniques (see e.g. Beran
and Ducharme (1981), Proposition 1.3).

Corollary 3 Assume that F satisfies (1) and kn is a sequence of positive
integers such that (3) holds. If we suppose that, as n →∞,

k1/2
n sup

1/kn≤y≤1

∣∣∣∣∣log

(
L̃

(
ytkn

n

)

L̃
(

kn

n

)
)∣∣∣∣∣ → 0

uniformly in t on compact sets of (0,∞), then

P (R ∈ BI(kn, p))→p as n →∞.

Corollary 4 Assume that the slowly varying function L in (4) satisfies (SR1)
with g regularly varying at infinity with index γ < 0 and such that

k1/2
n g

(
exp(F−1(1− kn/n))

) → 0 as n →∞.

Then, as n →∞,
P [R ∈ BI(kn, p)]→p.

3 Proofs

Throughout this section we shall assume that (1) holds. We assume also that
U1, U2, . . . is a sequence of independent uniform U(0, 1) random variables.
The order statistics of the sample (U1, U2, . . . , Un) are denoted by U1,n ≤
U2,n ≤ . . . ≤ Un,n.

In order to prove Theorem 2, we begin by establishing the following propo-
sition.
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Proposition 1 Assume that F satisfies (1) and kn is a sequence of positive
integers such that (3) holds. If we suppose that, as n →∞,

k1/2
n sup

1/kn≤y≤1

∣∣∣∣∣log

(
L̃

(
ytkn

n

)

L̃
(

kn

n

)
)∣∣∣∣∣ → 0 (10)

uniformly in t on compact sets of (0,∞), then, in probability, for all x,

P

[
R̂(kn)√

8
k1/2

n

(
1

R̂∗(kn)
− 1

R̂(kn)

)
≤ x | (Zn−kn,n, . . . , Zn,n)

]
→Φ (x)

as n →∞.

For proving this result we derive an adequate representation of the pivotal
quantity in terms of an asymptotically r.v. plus some error terms. The major
tool used for studying the main term is the following result obtained by
Bickel and Freedman (1981), which establishes the validity of the bootstrap
for means.

Theorem 3 (Bickel and Freedman (1981), Theorem 2.1) Suppose X1, X2, . . .
are independent and identically distributed random variables and have finite
positive variance σ2. Then, as n and m tend to ∞

(a) P
[
m1/2 ((1/m)

∑m
i=1 X∗

i − (1/n)
∑n

i=1 Xi) ≤ x|(X1, . . . , Xn)
]→Φ (x/σ),

almost surely;

(b) for ε positive,

P

[∣∣∣∣∣(1/m)
m∑

i=1

(X∗
i − (1/m)

m∑
i=1

X∗
i )2 − σ

∣∣∣∣∣ > ε|(X1, . . . , Xn)

]
→ 0,

almost surely.

We also use the following auxiliary lemma.

Lemma 1 (Brito and Moreira Freitas (2003), Lemma 2) Let kn be a se-
quence of positive integers such that 1 ≤ kn ≤ n. For the sequence in(kn)
defined in (7) we have

in(kn) = 1 + O

(
log2 kn

kn

)
.
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Proof of Proposition 1. Consider the sequence (Wi)1≤i≤kn defined by
(5).

Since Zi
D
= F−1(Ui), i ≥ 1, we write, without loss of generality,

Wi = F−1(Un−kn+i,n)− F−1(Un−kn,n).

As in Bacro and Brito (1998) (cf. Theorem 1) we shall make use of the
following equivalent representation for Wi, i = 1, . . . , kn,

Wi = − 1

R
log Yi + log

L̃(Yi(1− Un−kn,n))

L̃(1− Un−kn,n)
, (11)

where

Yi =
1− Un−kn+i,n

1− Un−kn,n

, for i = 1, . . . , kn.

We recall that (Yi)1≤i≤kn is distributed as the vector of the order statistics of
an i.i.d. kn-sample from an uniform U(0, 1) distribution.

In order to simplify the presentation of the proof we will introduce some
notation. Let T1, T2, . . . and T ′

1, T
′
2, . . . be two sequences of random vari-

ables. We denote by S2
n(T) the sample variance of T = (T1, . . . , Tn) and by

Sn(T,T′) the sample covariance between T and T′ = (T ′
1, . . . , T

′
n), that is,

S2
n(T) =

1

n

n∑
i=1

(Ti − 1

n

n∑
i=1

Ti)
2

and

Sn(T,T′) =
1

n

n∑
i=1

(
(Ti − 1

n

n∑
i=1

Ti)(T
′
i −

1

n

n∑
i=1

T ′
i )

)
.

We define also, for i = 1, . . . , kn,

Ei := − 1

R
log Yi, Fi := log

L̃ (Yi (1− Un−kn,n))

L̃ (1− Un−kn,n)
,

and write E = (E1, . . . , Ekn) and F = (F1, . . . , Fkn). The corresponding
bootstrap versions are then given by

E∗
i := − 1

R
log Y ∗

i , F ∗
i := log

L̃ (Y ∗
i (1− Un−kn,n))

L̃ (1− Un−kn,n)
, i = 1, . . . , kn,

where (Y ∗
1 , . . . , Y ∗

kn
) is a sample of i.i.d. r.v.’s drawn with replacement from

the sample (Y1, . . . , Ykn).
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With these notations and using the representation (11) in the definition

of the estimators R̂(kn) and R̂∗(kn) (cf. (6), (8)), we may write

in(kn)

R̂2∗(kn)
− in(kn)

R̂2(kn)

= S2
kn

(E∗)− S2
kn

(E) + S2
kn

(F∗)− S2
kn

(F) + 2Skn(E∗,F∗)− 2Skn(E,F).

The proof will be done in two steps. Denote by P ∗ the conditional prob-
ability, given Un−kn,n, Y1, . . . , Ykn . We will show that

P

[
R2

√
8
k1/2

n

(
S2

kn
(E∗)− S2

kn
(E)

) ≤ x | (Un−kn,n, Y1, . . . , Ykn)

]
→Φ (x) a. s.

(12)
and that, in probability

R2

√
8
k1/2

n

∣∣S2
kn

(F∗)− S2
kn

(F) + 2Skn(E∗,F∗)− 2Skn(E,F)
∣∣ = oP ∗(1). (13)

We start by establishing (12). As (Y1, . . . , Ykn) is independent of Un−kn,n,
it suffices to prove that

P

[
R2

√
8
k1/2

n

(
S2

kn
(E∗)− S2

kn
(E)

) ≤ x | (Y1, . . . , Ykn)

]
→Φ (x) almost surely.

Recall that S2
kn

(E) = 1
kn

∑kn

i=1(Ei − 1
kn

∑kn

i=1 Ei)
2 is the sample variance

of an unit exponential i.i.d. kn-sample.
We will use the following decomposition

k1/2
n

(
S2

kn
(E∗)− S2

kn
(E)

)

= k1/2
n

(
S2

kn
(E∗)− 1

kn

kn∑
i=1

(Ei − 1/R)2 +
1

kn

kn∑
i=1

(E∗
i − 1/R)2

)

+k1/2
n

(
−S2

kn
(E) +

1

kn

kn∑
i=1

(Ei − 1/R)2 − 1

kn

kn∑
i=1

(E∗
i − 1/R)2

)
.

Applying Theorem 3 to the i.i.d. r.v.’s (E1 − 1/R)2, (E2 − 1/R)2, . . ., we
obtain that, almost surely,

P

[
k1/2

n

(
1

kn

kn∑
i=1

(E∗
i − 1/R)2 − 1

kn

kn∑
i=1

(Ei − 1/R)2

)
≤ x

]
→Φ

(
xR2/

√
8
)

.

Now observe that

k1/2
n

(
−S2

kn
(E) +

1

kn

kn∑
i=1

(Ei − 1/R)2

)
=

(
k1/4

n

(
1

kn

kn∑
i=1

Ei − 1/R

))2

,
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which converges to zero, almost surely. Moreover,

k1/2
n

(
S2

kn
(E∗)− 1

kn

kn∑
i=1

(E∗
i − 1/R)2

)

= −
(

k1/4
n

(
1

kn

kn∑
i=1

E∗
i −

1

kn

kn∑
i=1

Ei

)
+ k1/4

n

(
1

kn

kn∑
i=1

Ei − 1/R

))2

,

which is an oP ∗(1) almost surely, by Theorem 3 a) and the above observation.
For proving (13) we begin by noting that

k1/2
n

∣∣S2
kn

(F∗)− S2
kn

(F) + 2Skn(E∗,F∗)− 2Skn(E,F)
∣∣

≤ k1/2
n

∣∣S2
kn

(F∗) + 2Skn(E∗,F∗)
∣∣ + k1/2

n

∣∣S2
kn

(F) + 2Skn(E,F)
∣∣

=: C∗
n + Cn.

The well-known inequality

(Skn(E,F))2 ≤ S2
kn

(E)S2
kn

(F),

implies that
k1/2

n |Skn(E,F)| = OP (1)(knS2
kn

(F))1/2. (14)

By a routine calculation, it is easily verified that

k1/2
n S2

kn
(F) ≤ k1/2

n sup
Ykn≤y≤1

(
log

L̃ (y (1− Un−kn,n))

L̃ (kn/n)

)2

. (15)

To proceed the proof we need the following auxiliary result.

Lemma 2 If (10) holds, then

k1/2
n

∣∣S2
kn

(F) + 2Skn(E,F)
∣∣ P→ 0.

Proof. Choose any (λ1, λ2) ∈]1, +∞[×]1, +∞[ and consider the event

An(λ1, λ2) =

{
λ−1

1 ≤ n

kn

(1− Un−kn,n) ≤ λ1, λ
−1
2 ≤ knYkn ≤ λ2

}
.

We have on An(λ1, λ2)

k1/2
n sup

Ykn≤y≤1

∣∣∣∣∣log
L̃(y(1− Un−kn,n))

L̃(kn/n)

∣∣∣∣∣ ≤ k1/2
n sup

1
kn
≤y≤1

sup
1

λ1λ2
≤t≤λ1

∣∣∣∣∣log
L̃(ytkn/n)

L̃(kn/n)

∣∣∣∣∣ ,
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which converges to zero as n →∞, by condition (10).
Since P{An(λ1, λ2)} → 1 as n → ∞, then it follows from (14) and (15)

that k
1/2
n

∣∣S2
kn

(F) + 2Skn(E,F)
∣∣ P→ 0. ¤

By Lemma 1, Cn converges to 0, in probability. Now, we will study the
term C∗

n. Applying Theorem 3 b) to the r.v.’s E1, E2, . . ., we obtain

S2
kn

(E∗) =
1

R2
+ oP ∗(1) almost surely,

and then

(Skn(E∗,F∗))2 ≤
(

1

R2
+ oP ∗(1)

)
S2

kn
(F∗).

Hence,

C∗
n = k1/2

n S2
kn

(F∗) + OP ∗(knS
2
kn

(F∗))1/2.

Since Y ∗
1,kn

≥ Ykn , it is easily verified that

k1/2
n S2

kn
(F∗) ≤ k1/2

n

(
sup

Ykn≤y≤1

∣∣∣∣∣log
L̃ (y (1− Un−kn,n))

L̃ (kn/n)

∣∣∣∣∣

)2

,

which implies that, by the proof of Lemma 2, C∗
n = oP ∗(1), in probability.

We conclude that
C∗

n + Cn = oP ∗(1),

in probability, and hence (13) is proved.
Now, to complete the proof of the proposition it is enough to note that

R̂2(kn)√
8

k1/2
n

(
1

R̂2∗(kn)
− 1

R̂2(kn)

)

=
1

in(kn)

R̂2(kn)

R2

(
R2

√
8
k1/2

n

(
in(kn)

R̂2∗(kn)
− in(kn)

R̂2(kn)

))

and to recall that R̂2(kn) is a consistent estimator of R2 and that in(kn)
converges to one, by Lemma 1. ¤

Proof of Theorem 2. First note that we have

R̂∗(kn)− R̂(kn) =

(
1

R̂2∗(kn)
− 1

R̂2(kn)

)
− 1

2
√

ξ3
kn


 ,
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with min

(
1

R̂2∗(kn)
,

1

R̂2(kn)

)
< ξkn < max

(
1

R̂2∗(kn)
,

1

R̂2(kn)

)
.

By Proposition 1, conditioned on the sample tail Zn−kn,n, . . . , Zn,n,

k1/2
n

(
1

R̂2∗(kn)
− 1

R̂2(kn)

)

converges weakly, in probability, to N (0, 8/R4), which implies that

1

R̂2∗(kn)
− 1

R̂2(kn)
= oP ∗(1),

in probability. Since 1/R̂2(kn) is a consistent estimator of 1/R2, we have that
1

R̂2∗(kn)
− 1

R2
= oP ∗(1) and, consequently, ξkn −

1

R2
= oP ∗(1), in probability.

Hence, conditioned on Zn−kn,n, . . . , Zn,n,

1√
2R

k1/2
n

(
R̂∗(kn)− R̂(kn)

)

converges weakly, in probability, to N (0, 1) which implies the result. ¤

Proof of Corollaries 2 and 4. See the proof of Corollary 1 in Bacro and
Brito (1998).

Proof of Corollary 3. See the proof of Proposition 1.3 in Beran and
Ducharme (1981).

4 Estimating the adjustment coefficient in risk

theory

The problem of estimating the exponential tail coefficient R is motivated by
an important problem in risk theory. Consider the Sparre Andersen model
for claims arriving at an insurance company, and assume that the sequence
C1, C2, . . . of claims occur at times T1, T1 + T2, . . ., where {Ci} and {Ti} are
independent sequences of i.i.d. r.v.’s with finite means. Denoting by C(t)
the total sum of claims up to time t, we may write,

C(t) =

N(t)∑
i=1

Ci,

where

N(t) = max{n ≥ 0 :
n∑

i=1

Ti ≤ t}, t ≥ 0,
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is the number of claims observed up to time t. Starting with an initial capital
x and compensating the claim process {C(t)} by incoming premiums with
constant rate γ > 0 per unit time, the risk reserve of the company is defined
by

S(t) = x + γt− C(t).

The probability of ruin is then given by

U(x) = P
(
inf
t>0

S(t) < 0
)

= P

(
sup
n≥1

n∑
i=1

(Ci − γTi) > x

)
.

Define i.i.d. r.v.’s by Di := Ci − γTi for i = 1, 2, . . . and consider the
associated random walk S0 = 0, Sn = D1 + . . .+Dn, n = 1, 2, . . .. We assume
that E(D1) < 0 so that, as is well-known, U(x) = P{supn≥1 Sn > x} < 1.

We consider also the following standard conditions

(H1) There exists R > 0 such that E(eRD1) = 1.

(H2) E(| D1 | eRD1) < ∞.

The solution R is called the adjustment coefficient. Its importance is a
consequence of the well-known Lundberg inequality, which, under (H1) gives
an exponential upper bound for the ruin probability

U(x) ≤ e−Rx, for all x > 0,

and of the Cramér-Lundberg approximation, that, under both conditions
(H1) and (H2), gives the asymptotic relationship

U(x) ∼ ae−Rx, as x →∞,

where a is a positive constant (see e.g. Rolski et al. (1999), Sections 6.5.2
e 6.5.3). Different approaches have been used for estimating the adjustment
coefficient R (see e.g. Embrechts and Mikosch (1991), Pitts et al. (1996) and
references therein). In particular, Csörgő and Steinebach (1991) suggested
to estimate R by means of a sequence of auxiliary r.v.’s {Zk}, recursively
defined as follows.

M0 = 0, Mn = max {Mn−1 + Dn, 0} for n = 1, 2, . . . ,
ν0 = 0, νk = min{n ≥ νk−1 + 1 : Mn = 0} for k = 1, 2, . . . ,
Zk = maxνk−1<j≤νk

Mj for k = 1, 2, . . . .

Z1, Z2, . . . defines a sequence of i.i.d. r.v.’s. In the context of queueing mod-
els the r.v. Zk may be interpreted as the maximum waiting time in the k-th

13



busy cycle of a GI/G/1 queueing system. In this context, Cohen (1969) com-
puted the exact distribution of Z1 in the cases where

(H3) {C(t)} is a compound Poisson process or the claims Ci are expo-
nentially distributed.

As a consequence, Csörgő and Steinebach observed that, in both cases,

P (Z1 > z) = ce−Rz(1 + O(e−Az)) as z →∞, (16)

with positive constants c and A. Hence, under one of the assumptions stated
in (H3) condition (1) holds. Based on this fact, Schultze and Steinebach
(1996) used their least square estimators, proposed for estimating the expo-
nential tail coefficient in the family (1), to estimate the adjustment coefficient
under (H3). In Brito and Moreira Freitas (2003) the same approach was used

to propose R̂(kn) as a consistent estimator of the adjustment coefficient. But,
as is observed in Richter et al. (1993), (H3) is a too strong condition to ob-
tain the consistency of the estimators. In particular, (H3) implies (SR1),
which is a very convenient assumption in order to obtain rates of consistency
for these type of estimators, as seen in Corollaries 2 and 4.

By the following result of Iglehart (1972), concerning the tail behaviour of
random walks, the standard conditions for the Sparre Andersen model stated
in (H1) and (H2) are in fact sufficient to ensure that Z1 has the exponential
tail behaviour (1).

Theorem 4 (Iglehart (1972), Theorem 1) Let X1, X2, . . . be a sequence of
i.i.d. r.v.’s, S0 = 0, Sn = X1 + . . . + Xn, n = 1, 2, . . . and η = min{n ≥ 1 :
Sn ≤ 0}.

If E(X1) < 0 and there exists a number λ > 0 such that E(eλX1) = 1 and
E(| X1 | eλX1) < ∞, then

P (max{0, . . . , Sη−1} > z) ∼ ce−λz,

where c is a positive constant.

Since in the Sparre Andersen model, Z1 = max{0, . . . , Sν1−1}, the appli-
cation of Theorem 4 to the r.v.’s Di yields

Corollary 5 If (H1) and (H2) hold, then

P (Z1 > z) = ce−Rx(1 + o(1)) as z →∞, (17)

where c is a positive constant.
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This implies, in particular, the consistency of the Schultze and Steinebach
(1996) estimators, R̂(kn) and also the Hill-type estimator in the Sparre An-
dersen model under the standard conditions and gives an answer to a question
raised in Deheuvels and Steinebach (1990) concerning the tail behaviour of
the auxiliary r.v.’s.

Consider now the particular cases (H3). Recall that Corollaries 2 and 4
may be applied to the family given by (16) (cf. Brito and Moreira Freitas
(2003), Corollary 1). For this family, L(x) = c{1 + O(x−A)}. The relation
(SR1) is then satisfied with the regularly varying function g(x) = x−A. In
this case,

k1/2
n (exp(F−1(1− kn/n)))−A ∼ c−A/Rk1/2

n (kn/n)A/R as n →∞.

Then, if kn → ∞ such that kn = o(n2A/(2A+R)), the results of Corollaries 2
and 4 hold.

For the case of a compound Poisson claim process {C(t)} with exponen-
tially distributed claims the exact d.f. of the r.v.’s Z1, Z2, . . . is given by

F (z) =
1− ae−(1−a)z/β

1− a2e−(1−a)z/β
, z > 0, (18)

where a := β/α and α := E(γT1) > E(C1) =: β (cf. Cohen (1969)). More-
over,

R =
α− β

αβ
.

In this case, 1 − F (z) = a(1 − a)e−Rz{1 + O(e−Rz)} as z → ∞, and so the
condition of Corollaries 2 and 4 is satistied for kn = o(n2/3).

5 Simulation results

In this section we perform a small simulation study, in order to examine the
finite sample behavior of the tail bootstrap approximation.

For the sake of comparison with previous simulation studies, we consider
the family defined by (18) with (α, β) = (24000, 10000).

We successively take n = 5000 with kn = 600 and kn = 800, and
n = 10000 with kn = 1000 and kn = 2000. The number of tail bootstrap
replications was equal to 20000.

The resulting histograms are given in Figs. 1-4. They look quite normal
as predicted by the theory.
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Figure 1: Histogram of 20000 bootstrap replications for the estimator R̂∗(kn)
with n = 5000 and kn = 600. Mean = 0.0986; SD = 0.9669.
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Figure 2: Histogram of 20000 bootstrap replications for the estimator R̂∗(kn)
with n = 5000 and kn = 800. Mean = 0.0735; SD = 0.9607.
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Figure 3: Histogram of 20000 bootstrap replications for the estimator R̂∗(kn)
with n = 10000 and kn = 1000. Mean = 0.0786; SD = 1.0089.
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Figure 4: Histogram of 20000 bootstrap replications for the estimator R̂∗(kn)
with n = 10000 and kn = 2000. Mean = 0.0591; SD = 1.0151.
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