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Abstract

In this work a condition on the starting values that guarantees the convergence of the
Schröder iteration functions of any order to a pth root of a complex number is given. Con-
vergence results are derived from the properties of the Taylor series coefficients of a certain
function. The theory is illustrated by some computer generated plots of the basins of attrac-
tion.
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1 Introduction

Throughout the paper, we will assume p and j to be two integers greater or equal
than 2 and w to be a given complex number not belonging to the closed negative
real axis. The pth roots of w are the p solutions of the polynomial equation

zp−w = 0. (1.1)
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Let θ = arg(w) ∈]− π, π[ denote the argument of w. It is well-known that for
n = 0,1, . . . , p−1 each wedge of the complex plane defined by

Wn =

{
z ∈ C :

(2n−1)π +θ

p
< arg(z)<

(2n+1)π +θ

p

}
(1.2)

contains exactly one pth root of w.

Our interest in studying iterative methods for pth roots comes from the problem
of computing matrix pth roots. This is currently an important focus for research
[1,7,8,9,10,11,12] mainly because of its applications in control and finance. Since
the eigenvalues of a matrix are complex (even when the matrix has only real en-
tries), the iteration functions for pth roots of complex scalars can be extended to
the matrix case.

Consider the complex function f defined by f (z) = (1− z)1/p and let Tj(z) denote
the Taylor polynomial of degree j of f (z) at zero. For each j = 2,3, . . ., the pth
roots of w are fixed points of

N j(z) := zTj−1
(
1−wz−p) , (1.3)

which is an iteration function with order of convergence at least j (see [4]). This
means that there is an initial guess z0 such that the sequence defined by

zk+1 = N j(zk) (1.4)

converges to a pth root of w with order of convergence at least j.

It was shown in [4, Lemma 3.1] that N j coincide with the Schröder iteration func-
tions associated to the polynomial equation (1.1), which compels us to refer to N j
as the Schröder iteration functions for the pth roots of w. We refer the reader to
[14,15] for more details about Schröder iteration functions.

The Taylor polynomials Tj in (1.3) are given by

Tj(z) :=
j

∑
n=0

(
−1

p

)
n

zn

n!
, (1.5)

where (a)k := a(a+1) . . .(a+ k−1) and (a)0 = 1 represent the rising factorial of
the complex number a (Pochhammer symbol). Recall that the particular case j = 2
is nothing more than the Newton’s method for finding the zeros of the function
zp−w:

N2(z) = z
(

1− 1
p
(1−wz−p)

)
.

We note that the function f (z) = (1−z)1/p has a formal (binomial) series represen-
tation [5, p.37]:

f (z) = ∑
n>0

(
−1

p

)
n

zn

n!
, (1.6)
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and it is absolutely convergent inside the unit circle.

A complex function that is involved in the expression of N j is the so-called residual
function

R(z) := 1−wz−p. (1.7)
The successive terms of the sequence (1.4) can be related by means of the residual
function (1.7):

R(zk+1) = 1− (1− zk)
(

Tj(zk)
)−p

(1.8)

(see [4, Sec. 3]). Let us consider the function that corresponds the right hand side
of (1.8) by

R̃ j(z) = 1− (1− z)
(

Tj(z)
)−p

. (1.9)

This function will play an important role in our work.

In Section 2 we will prove our main result which is Theorem 2.1. It states that
R̃ j(z) admits a representation by a power series at z = 0 that is convergent for any
complex number z inside the unit circle and whose first j coefficients are null while
the remaining ones are positive. In order to accomplish this we will need to ensure
the analyticity of R̃ j(z) inside the unit circle as well as to recall some other known
results. The aforementioned theorem will enable us to derive in Section 3 some
convergence results on Schröder iteration functions for pth roots. In particular, we
show that if the initial guess z0 satisfies the condition |R(z0)|< 1, then for any j the
sequence (1.4) converges to a pth root of w with order of convergence j. We recall
that the case j = 2 has already been proved by Guo [8] and the case j = 3 by the
present authors [4]. Our theoretical results will be illustrated by some examples of
basins of attraction generated in Matlab.

2 Series representation of R̃ j(z)

Lemma 2.1 The roots of the Taylor polynomial Tj(z) given by (1.5) lie outside the
unit circle and consequently R̃ j(z) is analytic for any z such that |z|< 1.

PROOF. For any complex number z such that |z|< 1, we successively have

|Tj(z)| =

∣∣∣∣∣1+ j

∑
ν=1

(−1/p)ν

ν!
zν

∣∣∣∣∣=
∣∣∣∣∣1− 1

p

j

∑
ν=1

(1−1/p)ν−1

ν!
zν

∣∣∣∣∣
> 1− 1

p

j

∑
ν=1

(1−1/p)ν−1

ν!
|z|ν > 1− 1

p

j

∑
ν=1

(1−1/p)ν−1

ν!

> 1−1+
(1−1/p) j

j!
,

whence |Tj(z)| > 0 which implies Tj(z) 6= 0. Inasmuch as R̃ j(z) is a rational func-
tion whose poles lie outside the unit circle, its analyticity inside this domain is

3



guaranteed.

Based on the Faà di Bruno’s formula [5,6,13] it is possible to derive the expression

(although a tricky one) of the nth derivative of the function
(

Tj(z)
)−p

by means of
the (partial) Bell polynomials [3], or, more precisely through the so called potential
polynomials. We recall the result:

Proposition 2.1 [5, p.141] Consider the function G(z) = 1+ ∑
n>1

gn
zn

n!
where gn =

dn

dzn G(z)
∣∣∣∣
z=a

, n > 1 . For any integer number r, the nth order derivative of the

power function (G(z))r at the point z = a is given by

dn

dzn

(
G(z)

)r
∣∣∣∣
z=a

= P(r)
n (g1,g2,g3, . . . ,gn)

:=
n

∑
k=1

(−1)k(−r)kBn,k(g1,g2, . . . ,gn−k+1) , n > 0,

with Bn,k representing the partial Bell polynomials:

Bn,k(x1, . . . ,xn−k+1)=∑
1

c1!c2! . . .cn−k+1!

(x1

1!

)c1
(x2

2!

)c2
. . .

(
xn−k+1

(n− k+1)!

)cn−k+1

where the summation is taken over all partitions of n into exactly k non-negative
parts, i.e., over all solutions in non-negative integers ci such that c1 +2c2 +3c3 +
. . .+(n− k+1)cn−k+1 = n and c1 + c2 + c3 + . . .+ cn−k+1 = k.

Corollary 2.1 For any integer number r, whenever gi =
(
− 1

p

)
i

for any i= 1,2,3, . . .,
the following equality holds:

P(r)
n (g1,g2, . . . ,gn) =

(
− r

p

)
n
, n > 0. (2.1)

PROOF. The function (g(z))r = (1− z)r/p admits the series representation

(g(z))r = ∑
n>0

(
− r

p

)
n

zn

n!

insofar as
dn

dzn

(
g(z)

)r
∣∣∣∣
z=0

=
(
− r

p

)
n
, n > 0.

On the other hand, from Proposition 2.1, it follows

dn

dzn

(
g(z)

)r
∣∣∣∣
z=0

= P(r)
n (g1,g2, . . . ,gn) , n > 0,
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whence the result.

Now we are able to prove our main result.

Theorem 2.1 Consider the functions f (z) = p
√

1− z and R̃ j(z) defined in (1.9). If

c(p)
n, j := cn =

1
n!

dn

dzn

(
Tj(z)

)−p
∣∣∣∣
z=0

, n > 0, (2.2)

d(p)
n, j := dn =

1
n!

dn

dzn R̃ j(z)
∣∣∣∣
z=0

, n > 0, (2.3)

then

dn = 0 , n = 1,2, . . . , j (2.4)
dn > 0 , n > j+1 (2.5)

and both series ∑
k>0

ck zk and ∑
k>0

dk zk are absolutely convergent for any z ∈ C

such that |z|< 1. Moreover, within the same domain we are able to write

R̃ j(z) = ∑
n≥ j+1

dnzn.

PROOF. We begin by showing that (2.4) holds to afterward prove (2.5) and, at the
end, we will prove the convergence of the aforementioned series.

Let us consider the formal power series expansion at the point z = 0 of the function
q(z):

q(z) :=
(

Tj(z)
)−p

= ∑
n>0

cn zn (2.6)

where

cn =
1
n!

dn

dzn q(z)
∣∣∣∣
z=0

, n > 0.

Naturally the coefficients cn and dn are connected by:

dn = cn−1− cn , n > 1. (2.7)

From Proposition 2.1, it follows that

dn

dzn

(
Tj(z)

)−p
∣∣∣∣
z=0

= P(−p)
n

(
t1, t2, . . . , tn

)
where

tn =

 (−1/p)n , n = 1,2, . . . , j

0 , n > j+1
. (2.8)
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Corollary 2.1 ensures
dn

dzn

(
Tj(z)

)−p
∣∣∣∣
z=0

= (1)n = n! for n = 1,2, . . . , j, providing

cn = 1 for n = 1,2, . . . , j , whence (2.4).

For the sake of simplicity, from this point forward we will use the notation g(i)(a) :=
di

dzi g(z)
∣∣∣
z=a

.

After a single differentiation of q(z) defined in (2.6), we have

Tj(z) q′(z) =−p T ′j (z) q(z) .

In order to infer about the kth-order derivative of q(z) for any k > j+1, we consider
the k-times differentiation of this latter relation, which according to the Leibniz rule
yields

j

∑
σ=0

(
k
σ

)
T (σ)

j (z) q(k−σ+1)(z) =−p
j−1

∑
σ=0

(
k
σ

)
T (σ+1)

j (z) q(k−σ)(z) (2.9)

because Tj(z) is a polynomial of degree j (which implies dσ

dzσ Tj(z) = 0 for any
σ > j+1). The relation (2.9) may be equivalently written

Tj(z)q(k+1)(z) =
j−1

∑
σ=0

(
k
σ

)
−(k−σ + p(σ +1))

σ +1
T (σ+1)

j (z) q(k−σ)(z) .

Now, by taking z→ 0, we have

q(k+1)(0) =
j−1

∑
σ=0

(
k
σ

)
−(k−σ + p(σ +1))

σ +1
(−1/p)

σ+1 q(k−σ)(0) .

Since q(τ)(0) = τ! cτ for any τ > 1, we finally find a recursive relation of order j
for the coefficients cτ :

ck+1 =
1

k+1

j−1

∑
σ=0

−(k−σ + p(σ +1))
(σ +1)!

(−1/p)
σ+1 ck−σ . (2.10)

In particular,

c j+1 =
1

k+1

j−1

∑
σ=0

−(k−σ + p(σ +1))(−1/p)
σ+1

(σ +1)!
= 1−

(1−1/p) j

( j+1)!

and we have 0 < c j+1 < 1. Proceeding by finite induction, we observe that

0 < ck 6 1 , for any k > 0. (2.11)
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Now, based on (2.7) and (2.10), we have

dk+1 = −ck+1 + ck

=
1

k+1

j−1

∑
σ=0

−(k−σ + p(σ +1))
(σ +1)!

(−1/p)
σ+1 (−ck−σ + ck−σ−1)

+
j−1

∑
σ=0

−(−1/p)
σ+1

(σ +1)!

(
k−1−σ + p(σ +1)

k
− k−σ + p(σ +1)

k+1

)
ck−σ−1

therefore

dk+1 =
1

k+1

j−1

∑
σ=0

−(−1/p)
σ+1 (k−σ + p(σ +1))
(σ +1)!

dk−σ

+
j−1

∑
σ=0

−(−1/p)
σ+1 (p−1)

σ ! k (k+1)
ck−σ−1.

(2.12)

In particular,

d j+1 = 1− c j+1 =
(1−1/p) j

( j+1)!
> 0 .

Insofar as ck > 0 for any k > 0, then from (2.12) we obtain

dk+1 >
1

k+1

j−1

∑
σ=0

−(−1/p)
σ+1 (k−σ + p(σ +1))
(σ +1)!

dk−σ +0 > 0 , k > 0.

Now, on account of (2.4), the assumption over the positiveness of dk for any k >
j+1 permits to infer from this latter inequality that (2.5) holds.

Finally, we show the convergence of the sequence of the partial sums{
Sn = ∑

n
k=0 dk

}
n>0. The equality (2.7) compels Sn = c0−cn = 1−cn. Thus {Sn}n>0

is a convergent sequence as long as {cn}n>0 is. Following (2.5) and (2.11), {cn}n>0
is a decreasing and bounded sequence and therefore converges. By virtue of (2.10),
we have lim

k
ck = 0 and consequently

lim
n

n

∑
k=0

dk = 1 .

On the basis of Abel’s lemma, (2.11) implies the absolute convergence of ∑
k>0

ckzk

for any z such that |z|< 1. Likewise, the convergence of ∑
k>0

dk implies the absolute

convergence of the series ∑
k>0

dkzk for any z ∈ C for which |z|< 1.

Remark. It is worth to note that, according to (2.10), the nth order derivative of
(Tj(z))−p at the point z = 0, say P(−p)

n (t1, t2, . . . , tn) with ti = di

dzi Tj(z)
∣∣∣
z=0

given by
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(2.8), fulfill the jth order recurrence relation

P(−p)
n (t1, . . . , tn)

=


n! , n = 1, . . . , j

j−1
∑

ν=0

(n−1
ν

)−(−1/p)ν+1(n−1−ν+p(ν+1))
ν+1 P(−p)

n−ν−1(t1, . . . , tn−ν−1) , n > j+1 .

As far as we are concerned this is a new expression for the derivatives of such
composite function.

3 Convergence regions of Schröder iteration functions

Due to Theorem 2.1, we are able to derive a condition on the initial guess that
provide the convergence of the Schröder iteration functions (1.3) to a pth root of w.

Corollary 3.1 Consider the residual function R(z) defined in (1.7) and let {zk}∞
k=0

the sequence defined by (1.4). If
|R(z0)|= |1−wz−p

0 |< 1, then, for any j,

(i) |R(zk+1)| ≤ |R(zk)| j ≤ |R(z0)| j
k
, for all k = 1,2, . . .;

(ii) the sequence (1.4) converges to a pth root of w with order of convergence j.

PROOF.

(i) From (1.8) and Theorem 2.1 the following holds:

|R(z1)|=
∣∣∣∣1− (1−R(z0))

(
Tj(R(z0))

)−p
∣∣∣∣=
∣∣∣∣∣∑n≥0

dn (R(z0))
n

∣∣∣∣∣
≤ |R(z0)| j ∑

n≥ j+1
dn |R(z0)|n− j ≤ |R(z0)| j ∑

n≥ j+1
dn = |R(z0)| j.

Now the result follows by finite induction.

(ii) The result follows using statement (i) and proceeding in a similar way as in the
proof of [4, Lem. 3.2].

Proposition 3.1 For each n = 0,1, . . . , p−1, consider the sets

Sn =

{
z ∈ C : |1−wz−p|< 1∧ (2n−1)π +θ

p
< arg(z)<

(2n+1)π +θ

p

}
.

(3.1)
If z0 ∈Sn then for any j the sequence (1.4) converges with order j to the unique
pth root of w which lies on the wedge Wn defined in (1.2).
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Convergence regions

−2 −1 0 1 2
−2

−1

0

1
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−2 −1 0 1 2
−2

−1

0

1

2
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4

−2 −1 0 1 2
−2

−1

0

1

2

N
5

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 1. Convergence regions defined by the residuals associated to N j (top left) and basins
of attraction of the 3rd roots of w = 1/2+ i

√
3/2 for N3, N4 and N5.

PROOF. On account of Corollary 3.1 and Lemma 3.3 in [4], the proof is analogous
to the one of Theorem 3.3 in [4].

The following proposition gives a condition for the convergence in the particular
case when (1.3) is restricted to real numbers.

Proposition 3.2 Assume that w is a positive real number and let z0 be a real num-
ber such that

z0 >
(w

2

)1/p
.

Then for each j the sequence (1.4) converges with order j to the real positive pth
root of w.

PROOF. Similar to the proof of [4, Cor. 3.3].

Figure 1 displays the convergence regions defined in Proposition 3.1 together with
the basins of attraction of the 3rd roots of w = 1/2+ i

√
3/2. We recall that the

basin of attraction of a given 3rd root w̃ of w is the set of initial values for which
the sequence (1.4) converges to w̃. The top-left plot displays the sets S0,S1 and
S2 defined in (3.1) with different colors together with the boundaries of the sets
Wn defined in (1.2) which are the rays

Rn =

{
z ∈ C : arg(z) =

(2n−1)π +θ

p

}
,
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(n = 0,1,2). For each n, Sn corresponds to a specific 3rd root of w and according
to the previous results they define convergence regions for the iterations N j, i. e.,
they are contained in the basins of attraction. The plots on the top–right, bottom–
left and bottom–right show Matlab generated plots of the basins of attraction of
each 3rd root of w associated to N3, N4 and N5, respectively. A point z0 in the
rectangle [−2,2]× [−2,2] is marked with the same color of the 3rd root w̃ of w,
whenever |z50− w̃|< 10−4. We have also overlapped the boundaries of the regions
of convergence Sn on the basins of attraction. Black color is assigned to points that
are not in Sn (top-left) or that do not belong to the basins of attraction of the pth
roots of w (remaining plots).

We can observe that the convergence regions do not intersect the boundaries of the
basins of attractions, which are Julia sets. Recall that if the initial guess z0 belongs
to these boundaries then the iteration functions N j do not converge to a pth root of
w (see [15] and also [2] for more details about Julia sets).
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