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Abstract

We draw a parallel with the Gakhov- Cherskii method to investigate a class of
convolution integral equations related to the Kontorovich -Lebedev and Lebedev’s
type transformations. A relationship with the Cauchy type integral is obtained.
General convolution equation is solved being reduced to the Riemann boundary
value problem by means of the Kontorovich-Lebedev transform.
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1 Introduction

In this paper we will deal with an integral equation, which contains two convolution type
operators, namely

f(t) + λ1(f ∗m1)1(t) + λ2(f ∗m2)2(t) = g(t), t > 0, (1.1)

where λ1, λ2 ∈ C are parameters, m1(t),m2(t), g(t) are given functions, f(t) is to be
determined and

(f ∗m1)1(t) =
1

2t

∫ ∞

0

∫ ∞

0

e
− 1

2

(
t x2+y2

xy
+ yx

t

)

f(x)m1(y)dxdy, (1.2)
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(f ∗m2)2(t) =

∫ ∞

0

∫ ∞

0

K(x, y, t)f(x)m2(y)dxdy (1.3)

with

K(x, y, t) = y

∫ ∞

1

e−vx K1(
√

t2 + y2 + 2tyv)√
t2 + y2 + 2tyv

dv, (1.4)

where Kν(z) the modified Bessel function [1]. As we will see below operator (1.2) can be
factorized by the Kontorovich - Lebedev transform (see [10], [11], [12])

Kix[f ] =

∫ ∞

0

Kix(t)f(t)dt, x ∈ R, (1.5)

with the kernel

Kix(t) =
1

2

∫ ∞

−∞
e−t cosh ueiuxdu, t > 0, (1.6)

and operator (1.3) will be treated with the aid of the auxiliary transformation Mix[f ] (see
[9], [16])

Mix[f ] =

∫ ∞

0

Mix(t)f(t)dt, x ∈ R, (1.7)

which involves the kernel Mix(t) related to the Bessel functions (cf. [6])

Mix(t) =

∫ ∞

0

e−t cosh u sin xu du, t > 0. (1.8)

Equation (1.1) will be investigated in a certain class of functions, which is related to
mapping properties of transformations (1.5), (1.7). We will apply the so-called Gakhov-
Cherskii method (see [4]) reducing this equation to the Riemann boundary value problem
[3] for the half-plane. Such an approach was used in [4] to investigate a class of the Fourier
type convolution integral equations. This scheme has been also considered formally in
[5] for a similar equation to (1.1) from the intersection of various weighted L2-spaces.
Concerning convolution integral equations of the first kind, which are associated with the
Kontorovich-Lebedev transform, see [13], [15].

As it is known, the modified Bessel function Kν(z) satisfies the differential equation

z2d2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0, (1.9)

for which it is the solution that remains bounded as z tends to infinity on the real line.
It has the asymptotic behaviour (see [1], relations (9.6.8), (9.6.9), (9.7.2))

Kν(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (1.10)
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and near the origin
Kν(z) = O

(
z−|Reν|) , z → 0, (1.11)

K0(z) = − log z + O(1), z → 0. (1.12)

When x ∈ R, then (see (1.6)) Kix(t) is real-valued and even with respect to the pure
imaginary index ix. Furthermore, this integral can be extended to the strip δ ∈ [0, π/2)
in the upper half-plane, i.e.

Kix(t) =
1

2

iδ+∞∫

iδ−∞

e−t cosh z+ixzdz,

and leads for each t > 0 to a uniform estimate

|Kix(t)| ≤ e−|x| arccos βK0(βt), 0 < β ≤ 1. (1.13)

For a product of the modified Bessel functions of different arguments the Macdonald
formula is true [5, Vol. II, relation (2.16.9.1)]

Kν(x)Kν(y) =
1

2

∫ ∞

0

e
− 1

2

(
t x2+y2

xy
+ yx

t

)

Kν(t)
dt

t
. (1.14)

Meanwhile, kernel (1.8) has a relationship with the modified Bessel function by means of
the following integral representation [9]

π

sinh πτ
Miτ (t) =

∫ ∞

0

e−t−y

t + y
Kiτ (y)dy, τ ∈ R\{0}, (1.15)

which will be used in the sequel. In particular, substituting in the left-hand side of (1.15)
the value of Miτ (t) in terms of the integral (1.8), we let τ → 0 through (1.15) via the
absolute and uniform convergence to find the result

lim
τ→0

πMiτ (t)

sinh πτ
=

∫ ∞

0

e−t−y

t + y
K0(y)dy =

∫ ∞

0

e−t cosh uudu, t > 0, (1.16)

which defines (1.15) for all τ ∈ R. Finally in this section, putting ν = iτ in (1.14) we
multiply both sides of this equality on e−t−y

t+y
and we integrate with respect to y. Changing

the order of integration by Fubini’s theorem and employing (1.15) we derive

π

sinh πτ
Miτ (t)Kiτ (x) =

1

2

∫ ∞

0

∫ ∞

0

e
− 1

2

(
u x2+y2

xy
+ yx

u

)
−t−y

Kiτ (u)
dudy

u(t + y)

=
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

1

e
− 1

2

(
y x2+u2

xu
+ux

y

)
−v(t+y)Kiτ (u)

u
dudydv
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=
1

2

∫ ∞

0

Kiτ (u)

u

∫ ∞

1

e−vt

∫ ∞

0

e
− 1

2

(
y x2+u2+2vxu

xu
+ux

y

)
dydvdu. (1.17)

The inner integral with respect to y is calculated by relation (2.3.16.1) in [7, Vol. I].
Therefore we come out with the following integral representation

π

sinh πτ
Miτ (t)Kiτ (x) = x

∫ ∞

0

Kiτ (u)

∫ ∞

1

e−vt K1

(√
x2 + u2 + 2vxu

)
√

x2 + u2 + 2vxu
dvdu

=

∫ ∞

0

Kiτ (u)K(t, x, u)du, τ ∈ R, (1.18)

where K(t, x, u) is defined by (1.4). This kernel can be written in terms of the inversion
formula for the Kontorovich-Lebedev transformation (1.5) (see [11, Chapter 2]). Thus we
obtain

K(t, x, u) =
1

πu

∫ ∞

−∞
τMiτ (t)Kiτ (x)Kiτ (u)dτ, t, x, u > 0. (1.19)

2 Key properties of the Kontorovich-Lebedev trans-

form. A relationship with the Cauchy type integral

In this section we will give necessary mapping properties of the Kontorovich-Lebedev
transform (1.5) in the Lebesgue spaces, which we will use to establish a solvability theory
for integral equation (1.1). In particular, operator (1.5) is well defined in the Banach
ring Lα ≡ L1(R+; Kα(t) dt), α ∈ R (see [10], [11], [14]), i.e. the space of all summable
functions f : R+ → C with respect to the measure Kα(t) dt for which

||f ||Lα =

∫ ∞

0

|f(t)|Kα(t)dt (2.1)

is finite. It is shown (see [11, Chapter 4]) that the operation of multiplication for two
elements f, g of the ring Lα is the convolution (1.2) (f ∗ g)1. Moreover, the Macdonald
formula (1.14) is used to prove the factorization property for the convolution (1.2) in
terms of the Kontorovich-Lebedev transform (1.5) in the space Lα, namely

Kix[(f ∗ g)1] = Kix[f ]Kix[g], x ∈ R, (2.2)

where the integral (1.5) exists as a Lebesgue integral. It is also proved, that the Kontorovich-
Lebedev transformation is a bounded operator from Lα into the space C0(R) of bounded
continuous functions on R vanishing at infinity, admitting the following composition rep-
resentation

Kix[f ] =

√
π

2
(Fh) (x), (2.3)
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as a Fourier transform [8] of the the function h(u) =
∞∫
0

e−t cosh uf(t)dt ∈ L1(R+; dt). The

latter fact can be easily done by the estimate (see (2.1))

∞∫

0

|h(u)|du ≤
∫ ∞

0

|f(t)|
∞∫

0

e−t cosh ududt =

∞∫

0

|f(t)|K0(t)dt

≤
∞∫

0

|f(t)|Kα(t)dt < ∞.

Furthermore, the convolution (1.2) of two functions f, g ∈ Lα exists as a Lebesgue integral
and belongs to Lα. It satisfies the Young type inequality

||(f ∗ g)1||Lα ≤ ||f ||Lα||g||Lα . (2.4)

Next, we will calculate the transform (1.5) of the convolution (f ∗m2)2(t). Indeed, taking
into account (1.3), (1.4), we change the order of integration by Fubini’s theorem and by
using (1.18) we obtain the equality

Kix[(f ∗m2)2] =
π

sinh πx

∫ ∞

0

Mix(t)f(t)dt

∫ ∞

0

Kix(y)m2(y)dy

=
π

sinh πx
Mix[f ]Kix[m2], x ∈ R. (2.5)

The motivation of this interchange can be done for any f,m2 ∈ Lα, |α| ≥ 1. But first we
appeal to (1.8), (1.13), (1.16), (1.17) to find the estimate

sup
x∈R

∣∣∣ π

sinh πx
Mix(t)Kix(y)

∣∣∣ ≤ sup
x∈R

∣∣∣ πx

sinh πx

∣∣∣ K0(y)

∫ ∞

0

e−t cosh uu du

≤ e−tK0(y)

∫ ∞

0

e−2t sinh2(u/2)udu ≤ e−tK0(y)

∫ ∞

0

e−tu2/2 udu =
e−t

t
K0(y).

Therefore the iterated integral in the right-hand side of (2.5) converges absolutely and
uniformly with respect to x. Precisely, we have for x ∈ R (see (1.10), (1.11))

π

| sinh πx|
∫ ∞

0

|Mix(t)f(t)|dt

∫ ∞

0

|Kix(y)m2(y)|dy ≤
∫ ∞

0

e−t

t
|f(t)|dt

∫ ∞

0

K0(y)|m2(y)|dy

≤ sup
t>0

[
e−t

Kα(t) t

]
||f ||Lα||m2||Lα < ∞, |α| ≥ 1,

which motivates the proof of equality (2.5).
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Considering, in turn, the Kontorovich-Lebedev integral (1.5) in the case f(t) ∈ L2(R+; tdt),
i.e.

||f ||L2(R+;tdt) =

(∫ ∞

0

|f(t)|2tdt

)1/2

< ∞ (2.6)

it is not difficult to verify that it generally, does not exist in Lebesgue’s sense (take, for
instance

f(t) =

{
1

t log t
, if 0 < t ≤ 1

2
,

0, if t > 1
2
,

and use asymptotic formula (1.11)). Thus we define it in the form

Kix[f ] = lim
N→∞

∫ ∞

1/N

Kix(t)f(t) dt (2.7)

with the necessary truncation in the origin, where the limit is taken in the mean square
sense with respect to the norm of the space L2(R; x sinh πx dx). It has been proved (see
[11, Chapter 2], [17]) that the range Kix(L2(R+; tdt)) coincides with the subspace of even
functions in the weighted Hilbert space L2(R; x sinh πx dx). Operator (2.7) is bounded
and its square of the norm satisfies the Parseval identity of the form

∫ ∞

−∞
x sinh πx|Kix[f ]|2dx = π2

∫ ∞

0

t|f(t)|2dt. (2.8)

More generally, it gives
∫ ∞

−∞
x sinh πxKix[f ]Kix[g]dx = π2

∫ ∞

0

tf(t)g(t)dt, (2.9)

where f, g ∈ L2(R+; tdt). The two definitions (1.5) and (2.6) of the Kontorovich-Lebedev
operator are equivalent, if we take f ∈ Lα

2 ≡ L2(R+; tdt) ∩ Lα. The inverse operator in
the latter case is given by the formula f(t) = limN→∞ fN(t), where

fN(t) =
1

π2

∫ N

−N

x sinh πx
Kix(t)

t
Kix[f ]dx (2.10)

with the necessary truncation at infinity and the convergence is in the mean square sense
with respect to the norm (2.4) of L2(R+; tdt). Denoting by

KLix ≡ {G ∈ Kix(L2(R+; tdt)); G(x) = Kix[f ], f ∈ Lα
2}

a set of images under the Kontorovich-Lebedev transform (1.5), which, in turn, is a
subspace of Kix(L2(R+; tdt)), we will consider a restriction of this map to Kix : Lα

2 →
KLix. As we see above, for instance, it has KLix ⊂ C0(R).
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Let us consider operator (1.5) of the complex variable

Kiz[f ] =

∫ ∞

0

Kiz(t)f(t)dt, z ∈ C. (2.11)

It is not difficult to prove, that if f ∈ Lα, then Kiz[f ] is analytic in the horizontal strip
|Im z| ≤ |α|. Indeed, via (1.6) we observe, that Kiz(t) is entire with respect to z and
|Kiz(t)| ≤ KIm z(t) ≤ Kα(t). Moreover, integral (2.11) is convergent absolutely and
uniformly in the strip |Im z| ≤ |α|, representing there an analytic function. In particular,
when α = 0, we find that Kix[f ] is infinite times continuously differentiable on the real
axis. Furthermore, it satisfies there the Hölder condition [3] of any λ, 0 < λ ≤ 1.

Let us establish a relationship of the integral (2.11) and the Cauchy type integral
over real axis with the density function Kiτ [f ], τ ∈ R [3]. Assuming that f(t) ∈ Lα

2 , it
is easily seen from discussions above that the Kontorovich-Lebedev transform Kiτ [f ] ∈
C0(R) ∩ L2 (R; τ sinh πτ dτ). Therefore it belongs to L2(R; dτ) and via representation
(2.3) and the Parseval equality for the Fourier transform [8] we obtain

1

2πi

∫ ∞

−∞

Kiτ [f ]

τ − z
dτ =

1

2

∫ ∞

−∞
h(u)

1

2πi

∫ ∞

−∞

eiτu

τ − z
dτdu

=
1

2

[∫ 0

−∞
+

∫ ∞

0

]
h(u)

1

2πi

∫ ∞

−∞

eiτu

τ − z
dτdu.

Hence accounting the value of the inner integral with respect to τ (see, for instance, in
[4]) we come out with the equalities

1

2πi

∫ ∞

−∞

Kiτ [f ]

τ − z
dτ =

1

2

∫ ∞

0

h(u)eizudu, Imz > 0, (2.12)

1

2πi

∫ ∞

−∞

Kiτ [f ]

τ − z
dτ = −1

2

∫ ∞

0

h(u)e−izudu, Imz < 0, (2.13)

where

h(u) =

∫ ∞

0

e−t cosh uf(t)dt.

Substituting this value into (2.12), (2.13), we change the order of integration by Fubini’s
theorem since

∫ ∞

0

∣∣∣∣
∫ ∞

0

e−t cosh uf(t) dt

∣∣∣∣ e±izudu dt ≤
∫ ∞

0

∫ ∞

0

e−t cosh u−|Imz|u|f(t)| dtdu

≤
∫ ∞

0

∫ ∞

0

e−t cosh u|f(t)| dtdu =

∫ ∞

0

K0(t)|f(t)|dt ≤ ||f ||Lα < ∞.
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Then taking into account relations (1.6), (1.7), (1.8), (2.11) we can write (2.12), (2.13) in
the form

1

2πi

∫ ∞

−∞

Kiτ [f ]

τ − z
dτ =

1

2
[Kiz[f ] + iMiz[f ]] , Imz > 0, (2.14)

1

2πi

∫ ∞

−∞

Kiτ [f ]

τ − z
dτ = −1

2
[Kiz[f ]− iMiz[f ]] , Imz < 0. (2.15)

Consequently, since the Cauchy type integral represents a piecewise analytic function

G(z) =
1

2πi

∫ ∞

−∞

Kiτ [f ]

τ − z
dτ =

{
G+(z), if Imz > 0,

G−(z), if Imz < 0,
(2.16)

in the cut z- plane along the real axis, we have from (2.14), (2.15) that functions

G+(z) =
1

2
[Kiz[f ] + iMiz[f ]] , (2.17)

G−(z) = −1

2
[Kiz[f ]− iMiz[f ]] (2.18)

are analytic in the upper and lower half-plane, respectively. Moreover, the Sokhotski
formulas take place for the limit values on the real axis

G+(x) =
1

2
[Kix[f ] + iMix[f ]] =

1

2

[
Kix[f ] +

1

πi

∫ ∞

−∞

Kiτ [f ]

τ − x
dτ

]
, x ∈ R, (2.19)

G−(x) = −1

2
[Kix[f ]− iMix[f ]] = −1

2

[
Kix[f ]− 1

πi

∫ ∞

−∞

Kiτ [f ]

τ − x
dτ

]
, x ∈ R, (2.20)

which are equivalent to the following relations

G+(x)−G−(x) = Kix[f ], x ∈ R, (2.21)

G+(x) + G−(x) = iMix[f ] =
1

πi

∫ ∞

−∞

Kiτ [f ]

τ − x
dτ, x ∈ R. (2.22)

Besides, since Kix[f ] ∈ C0(R), it gives the condition lim|x|→∞ Kix[f ] = 0.
Definition [2]. A function G+(z) (G−(z)) (z = x + iy) belongs to the Hardy class

H+
2 (H−2 ) if it is analytic in the upper (lower) half- plane y > 0 (y < 0) and satisfies the

inequality

sup
y>0 (y<0)

∫ ∞

−∞

∣∣G(±)(x + iy)
∣∣2 dx < ∞.

We are ready to prove the following result.
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Theorem 1. A function G(x) ∈ KLix is a limit value of G+(z) ∈ H+
2 (G−(z) ∈ H−2 )

if and only if Kix[f ] = (±) iMix[f ].
Proof. Necessity. Indeed, let us suppose that G(x) is a limit value of G+(z) ∈ H+

2 .
Since G(x) is from the class KLix, we have G(x) = Kix[f ], f ∈ Lα

2 . Meanwhile (see [2],
[8]), G+(z) is representable in the upper half-plane in terms of the Cauchy type integral
(2.16) and hence G+(z) = Kiz[f ]. Thus G+(x) = Kix[f ] and from (2.17) we find the
condition Kix[f ] = iMix[f ]. If, in turn, G(x) = Kix[f ] is a limit value of G−(z) in the
lower half-plane, then the representation by the Cauchy type integral (2.16) gives the
equality G−(z) = −Kiz[f ]. Consequently, G−(x) = −Kix[f ] and from (2.18) we deduce
Kix[f ] = −iMix[f ].

Sufficiency. Conversely, if Kix[f ] = iMix[f ], then from Sokhotski’s formulas (2.21),
(2.22) we get G−(x) = 0 and therefore G+(x) = Kix[f ] = G(x) is a limit value of G+(z).
In the case of Kix[f ] = −iMix[f ] we find from the same relations that G+(x) = 0 and
therefore, G−(x) = −Kix[f ] is a limit value of G−(z). Theorem 1 is proved.

3 A solvability of convolution type equation (1.1) in

the class Lα
2

We begin to consider a simple case of equation (1.1) letting λ2 = 0. So we have a
convolution type integral equation with operator (1.2)

f(t) + λ1(f ∗m1)1(t) = g(t), t > 0, (3.1)

where λ1 6= 0, m1(t), g(t) are given functions in the class Lα
2 . We seek a solution in the

same class Lα
2 . Taking the operator (2.11) of the Kontorovich-Lebedev transformation

from both sides of (3.1) we use the factorization property (2.2) and we come out with the
algebraic equation with respect to Kiz[f ]

Kiz[f ] (1 + λ1 Kiz[m1]) = Kiz[g], |Imz| ≤ |α|. (3.2)

Assuming the normality condition

1 + λ1 Kiz[m1] 6= 0, |Imz| ≤ |α|, (3.3)

the unique solution of (3.2) is

Kiz[f ] =
Kiz[g]

1 + λ1 Kiz[m1]
, |Imz| ≤ |α|. (3.4)

But the Wiener type theorem for the Kontorovich-Lebedev transform (see [11, Theorem
4.15]) says, that there exists a unique element q(t) of the Banach ring Lα (see (2.1)) such
that

1

1 + λ1 Kiz[m1]
= 1 + λ1Kiz[q], |Imz| ≤ |α|. (3.5)
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Therefore (3.4) becomes
Kiz[f ] = Kiz[g] (1 + λ1Kiz[q]) . (3.6)

Letting z = x ∈ R in (3.6) we observe that since Kix[g] ∈ KLix and 1 + λ1Kix[q] is
bounded, then the right-hand side of (3.6) belongs to L2(R; x sinh πx dx). Thus we have
Kix[f ] ∈ L2(R; x sinh πx dx) and by virtue of inversion (2.10) it defines reciprocally a
unique solution f(t) ∈ L2(R+; tdt) by the formula

f(t) = lim
N→∞

1

π2

∫ N

−N

x sinh πx
Kix(t)

t
Kix[g] (1 + λ1Kix[q]) dx, t > 0. (3.7)

However, our goal is to show that f(t) ∈ Lα
2 . In fact, relation (3.7), factorization equality

(2.2) being written for g, q ∈ Lα and the boundedness of Kix[q] will guarantee the property
(g ∗ q)1(t) ∈ Lα

2 . Moreover, from (3.7) we deduce

f(t) = g(t) + lim
N→∞

λ1

π2

∫ N

−N

x sinh πx
Kix(t)

t
Kix[g]Kix[q]dx

= g(t) + lim
N→∞

λ1

π2

∫ N

−N

x sinh πx
Kix(t)

t
Kix[(g ∗ q)1]dx

= g(t) + λ1(g ∗ q)1(t), t > 0.

Hence
f(t) = g(t) + λ1(g ∗ q)1(t), q ∈ Lα (3.8)

is the desired unique Lα
2 -solution of equation (3.1) and we have proved the following

Theorem 2. Under normality condition (3.3) there exists a unique solution of the
convolution integral equation (3.1) in the class Lα

2 , α ∈ R given by formula (3.8).
Let us consider convolution integral equation (1.1), where λ1, λ2 ∈ R\{0},m1(t),m2(t)

and g(t) are given functions in the class Lα
2 , |α| ≥ 1, assuming that m1(t),m2(t) are real-

valued. We will seek a solution in the same class. In fact, taking the Kontorovich-Lebedev
transform (1.5) from both sides of (3.9) and invoking relations (2.2), (2.5) we obtain

Kix[f ] (1 + λ1Kix[m1]) +
λ2π

sinh πx
Mix[f ]Kix[m2] = Kix[g], x ∈ R. (3.9)

But relations (2.21), (2.22) yield the equation

(G+(x)−G−(x)) (1 + λ1Kix[m1])−i(G+(x)+G−(x))
λ2πKix[m2]

sinh πx
= Kix[g], x ∈ R, (3.10)

which can be rewritten as

G+(x) = D(x)G−(x) + H(x), x ∈ R, (3.11)
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where

H(x) =
sinh πxKix[g]

sinh πx (1 + λ1Kix[m1])− iλ2πKix[m2]
,

D(x) =
sinh πx (1 + λ1Kix[m1]) + iλ2πKix[m2]

sinh πx (1 + λ1Kix[m1])− iλ2πKix[m2]
, (3.12)

and

sinh2 πx (1 + λ1Kix[m1])
2 + λ2

2π
2K2

ix[m2] 6= 0, x ∈ R (3.13)

via the normality condition. Consequently, we have arrived at the Riemann boundary
value problem (3.11) for the half-plane. Namely, the problem is to find a piecewise
bounded analytic function G(z) in the cut plane along the real axis whose limit val-
ues satisfy the boundary condition (3.11). Moreover, we seek solutions in the class of
functions vanishing at infinity due to an asymptotic behavior of the Kontorovich-Lebedev
transformation (1.5). This problem is solved in detail in [3], and we will appeal to the
necessary formulas for the solution. Indeed, denoting by κ the index of the problem (3.11)
κ = IndD(x) we have accordingly:

1. If κ > 0 then the problem (3.11) is solvable and its solution can be written in the
form

G(z) = X(z)

[
Ψ(z) +

Pκ−1(z)

(z + i)κ

]
, (3.14)

where Pκ−1(z) is an arbitrary polynomial of degree κ−1. The so-called canonic function in
(3.14) X(z) by definition represents a piecewise analytic function satisfying the boundary
condition X+(t) = D(t)X−(t), t ∈ R, where

X+(z) = eΓ+(z), X−(z) =

(
z − i

z + i

)−κ

eΓ−(z), (3.15)

and

Γ(z) =
1

2πi

∫ ∞

−∞
log

[(
τ − i

τ + i

)−κ

D(τ)

]
dτ

τ − z
(3.16)

Meanwhile, with the Sokhotzki formulas [3] we find from (3.16)

Γ+(t) =
1

2
log

[(
t− i

t + i

)−κ

D(t)

]
+ Γ(t),

Γ−(t) = −1

2
log

[(
t− i

t + i

)−κ

D(t)

]
+ Γ(t).
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Therefore, relations (3.15) yield

X+(t) = eΓ(t)

[(
t− i

t + i

)−κ

D(t)

]1/2

, t ∈ R

X−(t) = eΓ(t)

[(
t− i

t + i

)−κ

D(t)

]−1/2

, t ∈ R.

Now we observe from (3.16) taking the definition of D(x) that Γ(z) = Γ(−z). Hence we
see that X+(−t) = X−(t). An analytic function Ψ(z) in (3.14) is defined by the Cauchy
type integral as follows (see (3.11))

Ψ(z) =
1

2πi

∫ ∞

−∞

H(τ)

X+(τ)

dτ

τ − z
, (3.17)

and again invoking (3.12), the property D(−t) = 1/D(t) and the definitions of H(t), X+(t)
we derive the relation Ψ(z) = −Ψ(−z). So returning to (3.14) we write solutions in the
form

G+(t) = X+(t)

[
Ψ+(t) +

Pκ−1(t)

(t + i)κ

]
,

G−(t) = X−(t)

[
Ψ−(t) +

Pκ−1(t)

(t + i)κ

]
,

where accordingly from (3.17) it has

Ψ+(t) =
1

2

H(t)

X+(t)
+ Ψ(t),

Ψ−(t) = −1

2

H(t)

X+(t)
+ Ψ(t).

Since G+(t)−G−(t) = Kit[f ] is even we should get

X+(−t)

[
Ψ+(−t) +

Pκ−1(−t)

(i− t)κ

]
−X−(−t)

[
Ψ−(−t) +

Pκ−1(−t)

(i− t)κ

]

= X+(t)

[
Ψ+(t) +

Pκ−1(t)

(i + t)κ

]
−X−(t)

[
Ψ−(t) +

Pκ−1(t)

(i + t)κ

]
(3.18)

and taking into account our discussions above the latter equality will be true if and only
if (

X+(−t)−X−(−t)
) Pκ−1(−t)

(i− t)κ
=

(
X+(t)−X−(t)

) Pκ−1(t)

(i + t)κ
, t ∈ R,
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i.e.
Pκ−1(−t)

(i− t)κ
= −Pκ−1(t)

(i + t)κ
, t ∈ R, (3.19)

because X+(t) 6= X−(t), t ∈ R. Consequently, we will consider for our solutions only the
polynomials Pκ−1(z), which satisfy the boundary condition (3.19). However, the Liouville
theorem immediately concludes that the only solution of (3.19) is Pκ−1(z) ≡ 0. Therefore
the Kontorovich-Lebedev transform Kit[f ] = G+(t)−G−(t) ∈ KLit can be written as the
right-hand side of the equation (3.18)

Kit[f ] =
1

2
H(t)

(
1 +

1

D(t)

)
+

(
X+(t)−X−(t)

)
Ψ(t), t ∈ R, (3.20)

and the Lα
2 - solution f of the convolution integral equation (1.1) will be found by the

inversion formula (2.10)

f(x) =
1

π2

∫ ∞

−∞
t sinh πt

Kit(x)

x

[
1

2
H(t)

(
1 +

1

D(t)

)

+
(
X+(t)−X−(t)

)
Ψ(t)

]
dt, x > 0, (3.21)

where the convergence of the integral is in L2 -sense.
2. When κ ≤ 0, formula (3.14) simply becomes G(z) = X(z)Ψ(z). However, this

unique solution is zero when κ = 0 and when κ < 0 for its existence it is necessary and
sufficient the fulfilment of −κ solvability conditions

∫ ∞

−∞

H(τ)

X+(τ)

dτ

(τ + i)k
, k = 1, 2, . . . ,−κ. (3.22)

In this case as above, the solution of the convolution integral equation (1.1) is given by
(3.21). Thus we have proved the final

Theorem 3. Let λ1, λ2 ∈ R\{0},m1(t),m2(t) and g(t) be given functions in the class
Lα

2 , |α| ≥ 1, assuming that m1(t),m2(t) are real-valued. Let also the normality condition
(3.13) be true. Denoting by κ = Ind D(x), x ∈ R, where D(x) is defined by (3.12), the
solution of equation (1.1) is given by formula (3.21) for κ > 0. When κ = 0 the solution
is trivial. Finally, for κ < 0 it is represented by (3.21) under the existence conditions
(3.22).
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