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Abstract

We draw a parallel with the Gakhov- Cherskii method to investigate a class of
convolution integral equations related to the Kontorovich -Lebedev and Lebedev’s
type transformations. A relationship with the Cauchy type integral is obtained.
General convolution equation is solved being reduced to the Riemann boundary
value problem by means of the Kontorovich-Lebedev transform.
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1 Introduction

In this paper we will deal with an integral equation, which contains two convolution type
operators, namely

@)+ M (f xma)i(t) + Ao(f *ma)a(t) = g(t), t>0, (1.1)

where A\;, Ay € C are parameters, my(t), ma(t), g(t) are given functions, f(t) is to be
determined and

(fxmq)1(t) = %/000 /OOO eé(tzzﬁ%rlf)f(x)ml(y)dxdy, (1.2)
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(ﬁwmxﬂZAwAwK@wiﬁ@WMWW@ (1.3)

with

(1.4)

o Ki(\/t? 242t
K(z,y.t) = y/ Akt s yv)dv,
1 V12 4 y? + 2tyv
where K, (z) the modified Bessel function [1]. As we will see below operator (1.2) can be
factorized by the Kontorovich - Lebedev transform (see [10], [11], [12])

Kulfl = [ Kuldf®t, v e R, (1.5)
0
with the kernel | e

K. (t) = 5/ emteoshugiur gy ¢ >0, (1.6)

and operator (1.3) will be treated with the aid of the auxiliary transformation M;,[f] (see
[9], [16])

A@WZAWMNV@%xER (1.7)

which involves the kernel M;,(t) related to the Bessel functions (cf. [6])
M;,.(t) = / et sin pu du, t > 0. (1.8)
0

Equation (1.1) will be investigated in a certain class of functions, which is related to
mapping properties of transformations (1.5), (1.7). We will apply the so-called Gakhov-
Cherskii method (see [4]) reducing this equation to the Riemann boundary value problem
3] for the half-plane. Such an approach was used in [4] to investigate a class of the Fourier
type convolution integral equations. This scheme has been also considered formally in
[5] for a similar equation to (1.1) from the intersection of various weighted Lo-spaces.
Concerning convolution integral equations of the first kind, which are associated with the
Kontorovich-Lebedev transform, see [13], [15].
As it is known, the modified Bessel function K, (z) satisfies the differential equation

P z— — (2 1Hu =0, (1.9)

for which it is the solution that remains bounded as z tends to infinity on the real line.
It has the asymptotic behaviour (see [1], relations (9.6.8), (9.6.9), (9.7.2))

K, (2) = (%)W M +0(1/2)], 2 — oo, (1.10)
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and near the origin
K,(2) =0 (z7") | 2 0, (1.11)

Ko(z) = —logz+ O(1), 2z — 0. (1.12)

When =z € R, then (see (1.6)) K, () is real-valued and even with respect to the pure
imaginary index iz. Furthermore, this integral can be extended to the strip é € [0,7/2)
in the upper half-plane, i.e.
] i6+00
Km(t) — 5 / eftcosthri;tde’

10—00
and leads for each ¢t > 0 to a uniform estimate
|Km(t)| < 6_‘3”'”‘30055}(0(525), 0< ﬁ < 1. (1.13)

For a product of the modified Bessel functions of different arguments the Macdonald
formula is true [5, Vol. II, relation (2.16.9.1)]

Ko@) K (y) = %/OOO eé<tw+yf>Ky(t)%. (1.14)

Meanwhile, kernel (1.8) has a relationship with the modified Bessel function by means of
the following integral representation [9]

M) — / T )y, T e R\{O), (1.15)

sinh 7 t+y

which will be used in the sequel. In particular, substituting in the left-hand side of (1.15)
the value of M;.(t) in terms of the integral (1.8), we let 7 — 0 through (1.15) via the
absolute and uniform convergence to find the result

MiT t oo ,—t—y 00 ]
1ml_Q:/ . %@@Z/emMMMJ>Q (1.16)
0 sinh 77 o t+y 0

which defines (1.15) for all 7 € R. Finally in this section, putting v = i in (1.14) we

multiply both sides of this equality on e;;y and we integrate with respect to y. Changing

the order of integration by Fubini’s theorem and employing (1.15) we derive

1 [ oo _1 e TR - dud
: s MiT (t) KZ-T (x) _ = / / e 2 ( Ty + w > t yK,L-T (u) uay
sinh 77 2)o Jo u(t +y)

/ / / m;;u y> (t+y)K ( >dudydU
u
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1 0 KiT &0 _ o0 _1 224w f2vzu uz
—/ ﬂ/ e ”t/ e 2(y s +y>dydvdu. (1.17)
2 Jo u 1 0

The inner integral with respect to y is calculated by relation (2.3.16.1) in [7, Vol. 1.
Therefore we come out with the following integral representation

o) K 2 2 2
T ——— M () Kir ( —x/ K (u / e vt 1(\/x tut Uxu)dvdu

sinh 77 Va2 +u? + 2uzu

/ K (w)K(t, z,u)du, T € R, (1.18)

where K(t,z,u) is defined by (1.4). This kernel can be written in terms of the inversion
formula for the Kontorovich-Lebedev transformation (1.5) (see [11, Chapter 2]). Thus we
obtain

1 o
K(t,z,u) = —/ TM;r () Kir (2) Kir (w)dT, t,2,u > 0. (1.19)

T J_o

2 Key properties of the Kontorovich-Lebedev trans-
form. A relationship with the Cauchy type integral

In this section we will give necessary mapping properties of the Kontorovich-Lebedev
transform (1.5) in the Lebesgue spaces, which we will use to establish a solvability theory
for integral equation (1.1). In particular, operator (1.5) is well defined in the Banach
ring LY = L1 (Ry; K, (t) dt),a € R (see [10], [11], [14]), i.e. the space of all summable
functions f : Ry — C with respect to the measure K,(t) dt for which

1f]]e = / O (0t (2.1)

is finite. It is shown (see [11, Chapter 4]) that the operation of multiplication for two
elements f, g of the ring L* is the convolution (1.2) (f * ¢g);. Moreover, the Macdonald
formula (1.14) is used to prove the factorization property for the convolution (1.2) in
terms of the Kontorovich-Lebedev transform (1.5) in the space L*, namely

Kio[(f % gh] = Kiu[f1Kiz[g], =z €R, (2.2)

where the integral (1.5) exists as a Lebesgue integral. It is also proved, that the Kontorovich-
Lebedev transformation is a bounded operator from L® into the space Cy(R) of bounded
continuous functions on R vanishing at infinity, admitting the following composition rep-

resentation
Kildl =[5 (F) @), 2.3
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as a Fourier transform [8] of the the function h(u) = [etchuf($)dt € Li(R,;dt). The
0

latter fact can be easily done by the estimate (see (2.1))

7wwmsAWWMFKMWMﬁ=7mmm@ﬁ

s/mmm@w<w

Furthermore, the convolution (1.2) of two functions f, g € L exists as a Lebesgue integral
and belongs to L. It satisfies the Young type inequality

1(F * galloe < (1l Lelgll e (2.4)

Next, we will calculate the transform (1.5) of the convolution (f *ms2)2(t). Indeed, taking
into account (1.3), (1.4), we change the order of integration by Fubini’s theorem and by
using (1.18) we obtain the equality

miﬂxlmkm@ﬁ@M{AwKﬁ@Mw@My

= " My[f]Ki[m], = € R. (2.5)

sinh mx

Kio[(f * ma)s] =

The motivation of this interchange can be done for any f,my € L%, || > 1. But first we
appeal to (1.8), (1.13), (1.16), (1.17) to find the estimate

‘Ko(y)/ e—tcoshuu du
0

sup
zeR

Mm(t)Km(y)’ < sup

sinh 7z zcR | sinh Tz

< etKo(y)/ ethsinhQ(u/Z)udu < etKo(y)/ et /2 4y — eTKO(Z/)
0 0

Therefore the iterated integral in the right-hand side of (2.5) converges absolutely and
uniformly with respect to z. Precisely, we have for = € R (see (1.10), (1.11))

e [ Ia0s0lar [ K maidy < [ 1@l [ Balma(nldy

-
t>0

e—t
K. (t) t
which motivates the proof of equality (2.5).

}HNwWWm<wJMZL
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Considering, in turn, the Kontorovich-Lebedev integral (1.5) in the case f(t) € Lo(R,;tdt),

1.e. . 1/2
||f||L2<R+;tdt>=(/0 |f(t)|2tdt) < o0 (2.6)

it is not difficult to verify that it generally, does not exist in Lebesgue’s sense (take, for

instance
1 . 1
f(t): Tlog 1f0<t§§,
0, if t > 1,

and use asymptotic formula (1.11)). Thus we define it in the form

o0

Kolfl = lim | Kiot)f(t) dt (2.7)

with the necessary truncation in the origin, where the limit is taken in the mean square
sense with respect to the norm of the space Lo(R;x sinh wz dz). It has been proved (see
[11, Chapter 2], [17]) that the range K;,(Lo(R;tdt)) coincides with the subspace of even
functions in the weighted Hilbert space Lo(R;zsinh7a dx). Operator (2.7) is bounded
and its square of the norm satisfies the Parseval identity of the form

/ v sinh 7z Ko [f]|2dz = 72 / (1) 2. (2.8)
oo 0
More generally, it gives
/ vsinh 2 Ko | f] Konlglde = 72 / LF(D)g(t)dt, (2.9)
—00 0

where f, g € Lo(R;tdt). The two definitions (1.5) and (2.6) of the Kontorovich-Lebedev
operator are equivalent, if we take f € LY = Ly(Ry;tdt) N L. The inverse operator in
the latter case is given by the formula f(¢) = limy_  fn(t), where

In(t) = 1/ xsinhﬁxKiz(ﬂKim[f]dx (2.10)

== N
with the necessary truncation at infinity and the convergence is in the mean square sense
with respect to the norm (2.4) of Ly(R,;tdt). Denoting by

KL, ={G € K;;,(Ly(Ry;tdt)); G(z) = Ki[f], f € L3}

a set of images under the Kontorovich-Lebedev transform (1.5), which, in turn, is a
subspace of K;,(L2(Ry;tdt)), we will consider a restriction of this map to K;, : L§ —
KL;,. As we see above, for instance, it has KL;, C Co(R).
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Let us consider operator (1.5) of the complex variable

fl1= /000 K. (t)f(t)dt, =zeC. (2.11)

It is not difficult to prove, that if f € L*, then K;,[f] is analytic in the horizontal strip
Im z| < |a|. Indeed, via (1.6) we observe, that K.(t) is entire with respect to z and
|K;.(t)] < K 2(t) < K,(t). Moreover, integral (2.11) is convergent absolutely and
uniformly in the strip [Im z| < |a], representing there an analytic function. In particular,
when o = 0, we find that K;,[f] is infinite times continuously differentiable on the real
axis. Furthermore, it satisfies there the Holder condition [3] of any A, 0 < A < 1.

Let us establish a relationship of the integral (2.11) and the Cauchy type integral
over real axis with the density function K;.[f], 7 € R [3]. Assuming that f(¢) € Lg, it
is easily seen from discussions above that the Kontorovich-Lebedev transform K;.[f] €
Co(R) N Lo (R;7sinh w7 dr). Therefore it belongs to Le(R; dr) and via representation
(2.3) and the Parseval equality for the Fourier transform [8] we obtain

KW 1 [~ 1 < ity
= h — drd
27?2/ T—Z 2/_00 (u)27ri/_007'—z7—u

{ / / } — / N Teiuzdrdu.

Hence accounting the value of the inner integral with respect to 7 (see, for instance, in
[4]) we come out with the equalities

1 [® K, 1 [ |
— /] dr = —/ h(u)e™ du, Imz > 0, (2.12)
2 f o T— 2 2 Jo

Ki-[f] 1 [ »
—= h “du, 1 0 2.13
27”/ — z 2/0 (u)e u, Imz < 0, (2.13)

where -
hu) = [ et o
0

Substituting this value into (2.12), (2.13), we change the order of integration by Fubini’s

theorem since
/ e—tcosh u]c<t) dt
0

-

~ = —tcoshu . e
S/o /0 ‘ 'f(t”dtd“—/o Ko(®) £(£)]dt < [|f][ 1+ < o0

ezl:izudu dt < / / e—tcoshu—|Imz|u‘f(t)| dtdu
0 0



8 Semyon B. YAKUBOVICH

Then taking into account relations (1.6), (1.7), (1.8), (2.11) we can write (2.12), (2.13) in
the form

Ki:[f] 1 ,
o / - z =5 (K. [f] +iM;.[f]], Tmz > 0, (2.14)
% [:’:[Jj dr = —% [Ki.[f] — iMi.[f], Imz < 0. (2.15)

—0o0

Consequently, since the Cauchy type integral represents a piecewise analytic function

/ K. [f {G*(z), ?f Imz > 0, (2.16)
" 2mi

T—Z G~ (2), ifImz <0,

in the cut z- plane along the real axis, we have from (2.14), (2.15) that functions

(K [f] + iM:[f]] (2.17)

G (2) = =5 [Ki[f] — iMi:[f]] (2.18)

are analytic in the upper and lower half-plane, respectively. Moreover, the Sokhotski
formulas take place for the limit values on the real axis

1 K’LT

G () = 5 [Kialf] + iMi[f]] = [ +— / p— } reR,  (2.19)

1 KZT
G (2) = =5 [Kulf] = iMu[fl) = =3 { — / - } zeR, (2.20)

which are equivalent to the following relations
G (z) — G (2) = Ki[f], =€eR, (2.21)
KZT

Gt (z) + G (z) = iM,[f] = - / — x reR (2.22)

Besides, since K;;[f] € Co(R), it gives the condition limg|—.. Kiz[f] = 0.

Definition [2]. A function GT(z) (G~ (2)) (2 = x + iy) belongs to the Hardy class
Hy (H) if it is analytic in the upper (lower) half- plane y > 0 (y < 0) and satisfies the
mequality
sup / ‘G(i)(x +iy)‘2d1’ < 00.

)

y>0 (y<0) J —c0

We are ready to prove the following result.
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Theorem 1. A function G(x) € KLy, is a limit value of G*(z) € Hy (G~ (z) € H;)

Proof. Necessity. Indeed, let us suppose that G(z) is a limit value of G*(2) € H; .
Since G(x) is from the class KL;,, we have G(z) = K;,[f], f € L§. Meanwhile (see [2],
[8]), G (z) is representable in the upper half-plane in terms of the Cauchy type integral
(2.16) and hence G*(z) = K;.[f]. Thus G*(z) = K;[f] and from (2.17) we find the
condition K, [f] = iM;.[f]. If, in turn, G(z) = K [f] is a limit value of G~ (z) in the
lower half-plane, then the representation by the Cauchy type integral (2.16) gives the
equality G~ (z) = —K;.[f]. Consequently, G~ (z) = —K;,[f] and from (2.18) we deduce
Kol f] = —iMlf].

Sufficiency. Conversely, if K;.[f] = iM;.[f], then from Sokhotski’s formulas (2.21),
(2.22) we get G~ (z) = 0 and therefore G*(z) = K;,[f] = G(x) is a limit value of G*(z).
In the case of K;,[f] = —iM;,[f] we find from the same relations that G (x) = 0 and
therefore, G~ (x) = —K;[f] is a limit value of G~ (z). Theorem 1 is proved.

3 A solvability of convolution type equation (1.1) in
the class L§

We begin to consider a simple case of equation (1.1) letting Ay = 0. So we have a
convolution type integral equation with operator (1.2)
F@) + X (fxmn(t) =9@), >0, (3.1)

where Ay # 0, my(t), g(t) are given functions in the class L§. We seek a solution in the
same class L§. Taking the operator (2.11) of the Kontorovich-Lebedev transformation
from both sides of (3.1) we use the factorization property (2.2) and we come out with the
algebraic equation with respect to K, [f]

Ko [f] (14 A Ki:[ma]) = Kiz[g], [Imz| < |af. (3.2)
Assuming the normality condition
L+ X\ Ki.[m] #0, [Imz| < |af, (3.3)
the unique solution of (3.2) is

_ Ki.[g]
1 + )\1 Kz [ml]

Ki:[f] , [Imz| < |af. (3.4)
But the Wiener type theorem for the Kontorovich-Lebedev transform (see [11, Theorem
4.15]) says, that there exists a unique element ¢(t) of the Banach ring L (see (2.1)) such

that
1

1 + )\1 Kiz [ml]

=14+ MKi.[q], Imz| < |al. (3.5)
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Therefore (3.4) becomes
K[ f] = Kiz[g] (1 + A Kz [q]) - (3.6)

Letting z = « € R in (3.6) we observe that since Kj,[g] € KL;; and 1 + A\ K;.[q] is
bounded, then the right-hand side of (3.6) belongs to Ls(R; z sinh 7x dz). Thus we have
Ki.[f] € La(R;zsinhmz dr) and by virtue of inversion (2.10) it defines reciprocally a
unique solution f(t) € Lo(R;tdt) by the formula

N
f(t) = lim i/ a:sinhwaiz(wKw[g] (1 4+ M Kiq]) dz, t > 0. (3.7)

N—oo 7'(‘2 N

However, our goal is to show that f(¢) € LS. In fact, relation (3.7), factorization equality
(2.2) being written for g, q € L* and the boundedness of K, [q] will guarantee the property
(g% q)1(t) € LY. Moreover, from (3.7) we deduce

N .
ft)=g(t) + lim ﬁ/ x sinh mcKw;(t) Ki.[9] Kiz[q]dz

N—oo 7T2 _N

N
K.

=g(t) + M(g*q)i(t), t>0.

Hence
f@)=9g@) +M(g*qh(t), qelL” (3.8)

is the desired unique L§-solution of equation (3.1) and we have proved the following

Theorem 2. Under normality condition (3.3) there exists a unique solution of the
convolution integral equation (3.1) in the class LS, o € R given by formula (3.8).

Let us consider convolution integral equation (1.1), where A1, Ay € R\{0}, m1(t), ma(t)
and ¢(t) are given functions in the class L, |a| > 1, assuming that m; (), ms(t) are real-
valued. We will seek a solution in the same class. In fact, taking the Kontorovich-Lebedev
transform (1.5) from both sides of (3.9) and invoking relations (2.2), (2.5) we obtain

/\27'('

sinh 7z

But relations (2.21), (2.22) yield the equation

)\27TKiz [mg]
sinh 7z

(GT(2)—G (2)) (1 + M Kip[mi])—i(GH (2)+ G (2)) = Ki.lg], * € R, (3.10)

which can be rewritten as

G*(z) = D(z)G (z) + H(z), z€R, (3.11)
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where
sinh 7z K, [g]
H pr—
(x) sinh 7z (1 + >\1Km [mﬂ) - ’i)\zﬂ'Kix [mg] ’
sinh 7z (1 + A\ Kz [my]) + iAom Ky [ms)]
D = 3.12
<x) sinh 7z (1 + )\1Kw [mﬂ) — i)\Qﬂ-Kix [mz] ’ ( )
and
sinh? mz (1 4+ M Kig[ma])? + M2n2K2[mo) #0, z € R (3.13)

via the normality condition. Consequently, we have arrived at the Riemann boundary
value problem (3.11) for the half-plane. Namely, the problem is to find a piecewise
bounded analytic function G(z) in the cut plane along the real axis whose limit val-
ues satisfy the boundary condition (3.11). Moreover, we seek solutions in the class of
functions vanishing at infinity due to an asymptotic behavior of the Kontorovich-Lebedev
transformation (1.5). This problem is solved in detail in [3], and we will appeal to the
necessary formulas for the solution. Indeed, denoting by « the index of the problem (3.11)
xk = IndD(z) we have accordingly:

1. If K > 0 then the problem (3.11) is solvable and its solution can be written in the
form

Pﬁfl(Z)
G(z)=X v 3.14
(0 =x() o) + 4. (3.14)
where P,_1(2) is an arbitrary polynomial of degree k—1. The so-called canonic function in

(3.14) X(z) by definition represents a piecewise analytic function satisfying the boundary
condition X (¢t) = D(t) X (t), t € R, where

XH(z) = O x—(z) = (Z21) e 3.15
()= "0, X = (Z) e, (3.15)
and
1 o T—i\ " dr
I'(z) = — 1 D 1
() 2me /_OO o8 (T—i—i) <T)] T—2 (3.16)

Meanwhile, with the Sokhotzki formulas [3] we find from (3.16)

(i5:) oo

1
It = 3 log + I'(¢),

11
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Therefore, relations (3.15) yield

X*T(t) ="

NS 1/2

( _Z,> D(t)] JteR
t+1

g —1/2
<l) D(t)] ,teR.
t+1

Now we observe from (3.16) taking the definition of D(z) that I'(z) = I'(—z). Hence we
see that X (—t) = X~ (¢). An analytic function ¥(z) in (3.14) is defined by the Cauchy
type integral as follows (see (3.11))

X (t) ="

1 [~ H(r) dr
U(z) =— — 3.17
(2) 270 /OO Xt(r) 7—2 (3:17)
and again invoking (3.12), the property D(—t) = 1/D(t) and the definitions of H(t), X*(t)
we derive the relation W(z) = —W(—z). So returning to (3.14) we write solutions in the
form Po(t)
GH(t) = Xt(¢) Ut (t) + = }
(0 = X(0) [ 0) +
— — — Pﬁ—l( ):|
(0 =X [0+ 0
where accordingly from (3.17) it has
1 H(t)
t() = =
v (t) _ 2X+(t) + \I!(t)v
1 H(t)

7<t) = _§X+(t) + (t)
Since G (t) — G~ (t) = K[f] is even we should get

B b Poa(=t)| - . P, 1(—1)
X (—t) [\1/ ( t>+—(i—t)” } X7 (—t) [\1/ ( t>+—(i—t)" }

— Xt (1) {\If*(t) " g:g)] X (1) {\If(t) " i:t(;)] (3.18)
and taking into account our discussions above the latter equality will be true if and only
if

N _ Poa(—t) 4 _ P._1(t)
(XF(—t) = X~ (-1)) i - (X*(t)— X (1)) 1o t €R,
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ie.

P“fl(_t) = —P.“@), t€R, (3.19)

(1 —1t)r (i 41t)=

because X (t) # X~ (¢t), t € R. Consequently, we will consider for our solutions only the
polynomials P,_;(z), which satisfy the boundary condition (3.19). However, the Liouville
theorem immediately concludes that the only solution of (3.19) is P,;_1(z) = 0. Therefore
the Kontorovich-Lebedev transform K;[f] = G*(t) — G~ (t) € KLj;; can be written as the
right-hand side of the equation (3.18)

Kulf] = % H(t) (1 + ﬁ) + (X*(t) — X (1) ¥(t), t €R, (3.20)

and the Lg- solution f of the convolution integral equation (1.1) will be found by the
inversion formula (2.10)

flz) = %/Ztsmhm[(";@) B H(t) (1 + ﬁ)

+(XT(t) = X~ (1) ¥(t)] dt, = >0, (3.21)
where the convergence of the integral is in Ly -sense.
2. When x < 0, formula (3.14) simply becomes G(z) = X(2)¥(z). However, this

unique solution is zero when x = 0 and when x < 0 for its existence it is necessary and
sufficient the fulfilment of —x solvability conditions

* H(T) dr B i
/_OOX+(T) s k=l (3.22)

In this case as above, the solution of the convolution integral equation (1.1) is given by
(3.21). Thus we have proved the final

Theorem 3. Let A, \y € R\{0}, m;(t), ma(t) and g(t) be given functions in the class
LS, |a| > 1, assuming that mq(t), me(t) are real-valued. Let also the normality condition
(3.13) be true. Denoting by k = Ind D(z), v € R, where D(z) is defined by (3.12), the
solution of equation (1.1) is given by formula (3.21) for kK > 0. When k = 0 the solution
is trivial. Finally, for k < 0 it is represented by (3.21) under the ezistence conditions
(3.22).
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